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a b s t r a c t

To improve the learning capability of HAZOP expert systems, a new learning HAZOP expert system called
PetroHAZOP has been developed based on the integration of case-based reasoning (CBR) and ontology
that can help automate “non-routine” HAZOP analysis. PetroHAZOP consists of four modules including
case base module, CBR engine module, knowledge maintenance module and user graphical interface
ccepted 4 October 2008
vailable online 22 October 2008

eywords:
AZOP
ase-based reasoning

module. Within the case base, HAZOP analysis knowledge is represented as cases which are organized
with a hierarchical structure. Similarity-based case retrieval algorithm is also depicted to find the closest-
matching cases. In order to enhance the case retrieval, a new set of ontologies for CBR-based HAZOP
analysis is created by integration of existing ontologies reported in literature. Finally the application of
PetroHAZOP is demonstrated by two case studies of industrial processes.
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. Introduction

Safety is an important issue in process design and operation
n the chemical process industry (CPI). It is even more critical for

odern chemical manufacturing processes which are often oper-
ted under extreme conditions to achieve maximum economic
rofit, or have to undergo changes of customer demands. The

mportance of safety analysis in process operation is well recog-
ized after occurrence of several tragic accidents that could have
een avoided if adequate process safety analysis had been done.
o ensure safe operation, process hazard analysis (PHA) is very
mportant to proactively identify the potential safety problems and
ecommend feasible mitigation actions. Among the available PHA
echniques, hazard and operability (HAZOP) analysis is the most
idely used one in the CPI. HAZOP analysis done by human teams,
owever, has the following shortcomings: time consuming, labori-
us, expensive and inconsistent. To solve these problems, various
odel and/or rule-based HAZOP expert systems have been devel-

ped during the last decade, which was respectively reviewed by
enkatasubramanian, Zhao, and Viswanathan (2000) and McCoy
t al. (1999). These systems, however, can only address “routine” or

rocess-generic HAZOP analysis. “Routine” HAZOP analysis means
hat its reasoning logic can be applied to different processes while
he “non-routine” HAZOP analysis means that its reasoning logic
s process specific or plant specific. Generally analysis of devia-

∗ Corresponding author. Tel.: +86 10 62783109.
E-mail address: jinsongzhao@tsinghua.edu.cn (J. Zhao).
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ions generated by using guidewords “other than”, “as well as” and
part of” are “non-routine”. As a result, these kinds of deviations
re hardly addressed in literature about HAZOP expert systems.

In the CPI, “routine” HAZOP analysis roughly occupies 60–80%
hile “non-routine” HAZOP analysis occupies 20–40%. Due to the

ack of self-learning capability in existing HAZOP experts systems,
he knowledge of “non-routine analysis” can be hardly formulized
nd reused for similar chemical processes, and the “non-routine”
AZOP analysis still needs to be addressed by human experts.

To evaluate the output quality of the signed directed graph (SDG)
odel based HAZOP expert system HAZID developed by McCoy

t al. (1999), five industrial plant systems which had not been
sed during the model development stage were selected as a test
et (McCoy, Wakeman, Larkin, Chung, & Rushton, 2000). The out-
ut of HAZID was compared against the results of conventional
AZOP study which was done by human teams. Table 1 shows

he test results which are quite interesting. According to Table 1,
he percentage of scenarios identified by conventional HAZOP also
dentified by HAZID ranged from 33% to 60%, and the percentage of
cenarios identified by HAZID which were judged to be corrected
anged from 33% to 83%. Moreover, the percentage of scenarios
dentified by HAZID which were judged to be correct and of interest
as much lower, ranging from 9.5% to 29%. In other words, severe

ompleteness and correctness issues existed in HAZID. The unfa-

orable performance of HAZID was attributed to a few factors such
s the quality of the unit model, lack of fluid property data, the
lant complexity and human judgment variance. In fact, there is
nother more important factor that was unrecognized and that
actor is knowledge representation limitation. The “non-routine”

http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
mailto:jinsongzhao@tsinghua.edu.cn
dx.doi.org/10.1016/j.compchemeng.2008.10.006
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Table 1
Summary analysis of trial results of HAZID (McCoy et al., 2000).

Plant systems

Absorber system �-trichloroethane system Propane rectification system Benzene storage Separation system

Scenarios identified by
conventional HAZOP also
identified by HAZID (%)

36 33 60 50 53

Scenarios identified by
HAZID which were
judged to be correct (%)

49 33 69 83 53

Scenarios identified by
HAZID which were
judged to be correct and

9.5 29 24 27 N/A
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time, effort and money involved in performing HAZOP, there exists
considerable incentive to develop intelligent systems for automat-
ing the process hazards analysis of chemical process plants. An
intelligent system can reduce the time, effort and expense involved
of interest (%)
rotections identified by
HAZID which were
judged to be correct (%)

9.5 29

AZOP analysis could not be represented by the existing models.
herefore, it is clear that there is much room for improvement in
nowledge representation for HAZOP expert systems.

It is worth noting that consistence and completeness are criti-
al in HAZOP analysis because neglect of any potential hazard may
ven result in disasters. Investigation results of past industrial acci-
ents, e.g. the tragic BP Texas city plant accident occurred in March
005, have proved that poor quality of PHA is a major root cause of
ccidents occurred in the CPI.

Recently case-based reasoning (CBR) technology (Kolodner,
993; Aha, 1998) has been integrated into HAZOP automation
echnology by researchers at Purdue University to enhance the
elf-learning capability of HAZOP expert systems (Zhao, Bhushan,

Venkatasubramanian, 2005). However, the case-based reason-
ng they proposed aimed to facilitate modification of the existing

odels and creation of new models based on the knowledge in
he existing models. The “non-routine” HAZOP analysis still relied
n the human team. To solve this problem, a new learning HAZOP
xpert system called PetroHAZOP has been developed in this paper
ased on the integration of CBR and ontology that can help auto-
ate both “routine” and “non-routine” HAZOP analysis.
This article is organized as follows. In Section 2, HAZOP analysis

nd related work on the automation of HAZOP are briefly described.
n Section 3, the integrated methodology for HAZOP analysis is
xplained. Section 4 contains two industrial application examples
hat illustrate how the proposed HAZOP expert system can help
ith improvement of “routine” and “non-routine” analysis. Finally,

ontributions of this work are summarized and discussed in Section
.

. HAZOP

HAZOP was firstly introduced by ICI (Imperial Chemical Indus-
ries, UK) for identifying hazards in chemical plants in 1960s.
AZOP study is accomplished by a HAZOP team through a collec-

ive brainstorming effort that stimulates creativity and brings about
ew ideas of the potential hazards including their cause–effect rela-
ionships.

Generally the chemical process is divided into sessions called
analysis nodes” before study. Then meaningful deviations in every
nalysis nodes are generated by combining process parameters and
AZOP guidewords including MORE OF, LESS OF, NONE, REVERSE,
ART OF, AS WELL AS and OTHER THAN. For each deviation, the

AZOP team has to identify all of its credible causes and all of pos-

ible adverse consequences. Once the causes and consequences are
ecorded, the team has to list the existing safeguards for the iden-
ified hazards and give necessary recommendations accordingly
or hazard mitigation if the required risk level cannot be achieved
N/A 77 N/A

y the safeguards. The process is repeated deviation by deviation
nd node by node until the analysis of the whole process is com-
leted. The conventional HAZOP study procedure is presented in
ig. 1.

To complete the HAZOP analysis of a typical chemical process, it
akes about 1–8 weeks for a HAZOP team with 4–8 members. It is
idely accepted that HAZOP analysis is an extremely time consum-

ng and effort consuming process. An estimated including direct
nd indirect costs $5 billion is spent annually by the CPI to perform
HAs and related activities. The estimated cost of process hazards
eviews is about 1% of sales or about 10% of profits for a big chemical
ompany. Moreover, the quality of HAZOP analysis depends on the
nowledge and experience of the HAZOP team. Therefore, incom-
leteness and inconsistence usually are the drawbacks with regards
o HAZOP done by human teams. Given the enormous amounts of
Fig. 1. HAZOP study procedure.
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n a HAZOP, make the analysis more thorough, detailed, and con-
istent, minimize human errors, and free the team to concentrate
n the more complex aspects of the analysis which are unique
nd difficult to automate (Venkatasubramanian et al., 2000). The
AZOP analysis that is difficult to automate generally refers to

non-routine” analysis discussed in the above section. In what fol-
ows, case-based reasoning and ontology are integrated for the
utomation of HAZOP analysis that was considered difficult to auto-
ate before by using the traditional model-based or rule-based

pproaches.

. HAZOP expert system by the integration of CBR and
ntology

.1. Case-based reasoning (CBR)

Experts often find it easier to relate stories about past cases
han to formulate rules. Similarly it is true in the HAZOP analy-
is domain that rules or models are hard to construct to automate
non-routine” analysis. To overcome this problem, an important
rtificial intelligence technique – CBR is adopted to augment the
easoning machines embedded in the existing HAZOP expert sys-
ems. CBR is both a pattern for computer-aided problem solvers and
model of human cognition. The central idea is that the problem

olver reuses the solution from past cases to solve a new problem.
n this way, valuable experiences that are difficult to formulate into
ules or models could be utilized for solving new problems.

In a CBR system, the problem solving process includes four
hases (Aamodt and Plaza, 1994), namely 4R’s: Retrieve, Reuse,
evise and Retain as shown in Fig. 2. Basically, knowledge and expe-
ience are stored in the form of cases in a case base. The content of

case is made up of three parts: the problem/situation description,

he solution, and the outcome. The outcome is not needed but could
e added to suggest solutions that work and use cases with failed
olutions to warn of potential failures. When a new problem is sub-
itted, CBR system retrieves the similar cases from the case base

i

a
e
o

Fig. 2. Problem solving
Engineering 33 (2009) 371–378 373

sing certain similarity algorithm based on the predefined indexes.
ndexes should be abstract enough to retrieve a relevant case in a
ariety of future situations, and also should be concrete enough to
e easily recognizable in future situations. Then the solutions of
etrieved cases are adapted to solve the new problem if necessarily.
inally, the new problem description and its solutions are retained
s a new case in the case base for future use.

Most of the CBR applications do not go through all the above
our phases (López-Arévalo, Bańares-Alcántara, Aldea, Rodríguez-

artínez, & Jiménez, 2007). In this paper, the adaptation is done
y the users because it is highly domain dependent and requires
erification of the solution performance.

.2. Ontology

Human experts are indispensable in HAZOP analysis of any
hemical processes even though various expert systems can be
esigned to facilitate the process. Different experts especially from
ifferent organizations have different jargons with regards to the
escriptions of the analysis objects and results including causes
nd consequences of hazards. That is to say, there is no standard to
epresent the HAZOP analysis domain information. This increases
he difficulty of CBR for different users. To settle the terminological
nd conceptual incompatibility problem, a new set of ontologies
or CBR-based HAZOP analysis (CHA) is created in this paper by
ntegration of existing ontologies reported in literatures.

“Ontology” is a term of philosophy originally, which refers to the
ubject of existence. Artificial intelligence (AI) borrows the old term
rom philosophy and gives it new wonderful meanings. In AI, there
re a number of definitions of ontology. However, the definition
iven by Gruber is accepted by majority of researchers: an ontology

s an explicit specification of a conceptualization (Gruber, 1993).

HAZOP analysis of chemical process needs knowledge from
reas such as chemistry, chemical process engineering, safety
ngineering, electrical engineering and so on. A large-scale ontol-
gy OntoCape was constructed by the research group of Professor

phases with CBR.
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Fig. 3. Workfl

arquardt for chemical process engineering (Morbach, Yang, &
arquardt, 2007). To facilitate the information sharing among

he HAZOP analysis expert systems developed by the labo-
atory of Professor Venkatasubramanian at Purdue University
Venkatasubramanian et al., 2000), process simulation packages
uch as Aspentech’s BatchPlus and documentation tool such as
yadym’s PHAPro, operational related ontologies and safety related
ntologies were created (Zhao, Bhushan, & Venkatasubramanian,
003). Batres et al. created an upper level ontology based on ISO
5926 that had already been used for knowledge queries in HAZOP
Batres et al., 2007). Based on the major concepts and ideas from
he above ontologies, six ontologies are created for case-based
AZOP analysis. They respectively are process ontology, process
nit ontology, unit operation ontology, equipment ontology, mate-
ial ontology and HAZOP ontology. Within each of the ontologies,
oncepts are organized in a hierarchy where concept nodes are
onnected by is-a links. Synonyms are given for concepts whose
ynonyms are available in the CPI. Process ontology is built based
n the classification of chemical plant types such as hydrocracking
lant, FCCU plant, ethylene plant, ammonia synthesis plant and so
n. Process unit ontology and unit operation ontology are basically
rom OntoCape. In equipment ontology, equipment is specified by
esign properties such as design temperature, pressure and some
tructural specifications. Since MSDS information of each mate-
ial is indispensable in HAZOP analysis, material ontology not only

epicts the chemical species information, but also contains MSDS

nformation for each material. In HAZOP ontology, HAZOP related
onceptions such as nodes, parameters, guidewords, deviations,
auses, consequences, safeguards, recommendations and risk are
escribed. After the ontologies were created, the ontology editor

d
g
s
d
t

PetroHAZOP.

rotégé (Stanford Medical Informatics, 2006) was used for verifica-
ion.

.3. Integrated reasoning framework for HAZOP analysis

As stated above, the existing HAZOP expert systems could only
ddress “routine” and generic process analysis. Due to the lack of
he ability of machine learning, they could not “remember” the
nalysis, especially “non-routine” analysis that has been done so
hat the HAZOP team has to do the analysis once again even if
imilar HAZOP analysis scenarios have been discussed before. To
vercome this problem, a HAZOP expert system PetroHAZOP with
earning capability is built by integrating CBR and the above six
ntologies.

The HAZOP analysis process of the case-based expert system
pproach is illustrated in Fig. 3. PetroHAZOP consists of four mod-
les, as shown in Fig. 4. In what follows, the four modules will be
xplained.

.3.1. Case base module
Construction of the case base to a large extent determines the

ntelligence level of a CBR system. Each case instance generally con-
ists of two parts: the problem and the solution. Inside the case base
f PetroHAZOP, the problem part contains the HAZOP analysis back-
round information of a particular deviation while the solution part

escribes its abnormal causes, adverse consequences, risk, safe-
uards, recommendations and some other auxiliary information
uch as the name of HAZOP team members and HAZOP analysis
ate. Stored in a relational database, each case holds a unique iden-
ification number. It is not uncommon that there are hundreds or
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Fig. 4. Configuration of PetroHAZOP.

ven thousands of deviations that need to be combed through dur-
ng a HAZOP analysis of a typical chemical process. Therefore, the
ase base will grow to a very large size with time. To facilitate the
imilarity-based case retrieval that is described in the following
ection, a hierarchical case structure is introduced in this paper
s an indexing method to partition a huge number of cases into
ultiple hierarchical subordinate case bases (SCB). HAZOP analy-

is cases can be categorized into the first level SCBs by the types
f the chemical processes specified in the process ontology while
hose cases within a same type of chemical process can be further
lassified into the second level SCBs by the equipment types speci-
ed in the equipment ontology. Cases inside a second level SCB can
till be divided into the third level SCBs according to the deviation
ypes specified in the HAZOP ontology. This hierarchical case struc-
ure can be regarded as a knowledge-based indexing method where
AZOP domain-specific knowledge is applied, important features

or quick and accurate retrieval of past cases (Barletta, 1991).
Each case in the case base is defined by indexes of four major

ategories: equipment with its design parameters, materials con-
ained in the equipment, operating conditions, and stream context
onditions. The equipment design parameters such as design pres-

ure and design temperature describe the equipment where the
eviation being analyzed occurs. The equipment type must be
vailable in the equipment ontology. Each case contains a list
f materials present in the equipment. Hazardousness related
hysical–chemical characters of materials such as flash point, boil-

(

Fig. 5. Similarity algorithms for diff
Engineering 33 (2009) 371–378 375

ng point and toxicity are distilled from MSDS to represent the
aterial characters. Operating conditions include parameters such

s operating temperature, pressure and level. The stream context
onditions reflect the equipment types of both up stream and down
tream of the equipment.

According to the standard IEC61882, the case solution which
s the HAZOP analysis results should include information such as
he deviation’s root causes, adverse consequences, the safeguards
vailable in the P&IDs, the recommendations for hazard mitigation.

.3.2. CBR engine module
The CBR engine module (CEM) is the core of the indispensable

hase of CBR systems, i.e. retrieval. When a new deviation analysis
roblem is presented to the system, the CBR engine is activated.
he engine starts from selecting the corresponding SCB that fits
he problem through the hierarchical indexing mechanism. Within
he chosen SCB, all past cases are compared with the new problem,
nd scored based on the similarity-based case retrieval algorithm
hat is described in the following to find the closest-matching cases.
o define the similarity between the past case and new problem,
measure is needed first to assess the closeness between the

ttributes belonging to them.
Basically there are five types of attributes for each case: object

uch as equipment, string such as the material name, numeric such
s operating temperature of equipment, interval-numeric such as
esign parameters and set object such as materials. Fig. 5 shows
ifferent similarity algorithms that are employed in this paper to
alculate the similarities of different types of attributes.

1) The similarity of string attributes is simply calculated by string
matching algorithm. If string attributes are same, then their
similarity is 1, otherwise 0.

2) In a HAZOP case, all numeric attributes are transformed to non-
negative values. For example, the temperature unit is Kelvin
temperature while the absolute pressure is used to represent
pressure attributes.

The mathematics similarity formula for non-negative
numeric attributes xi and yi is:

sim(xi, yi) =
1 −

∣∣xi − yi

∣∣
max(xi, yi)

(1)
3) Similarity between sets
Usually, there is more than one material involved in a piece

of process equipment. Comparison of HAZOP cases usually
requires comparison of the material sets present in the equip-
ments where the cases originate. We proposed a new approach

erent types of case attributes.
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done, the caption of button is changed to “Show similar cases”.
PetroHAZOP also has a user menu for project management, public
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(Set-Similarity method) to compute the material set similarity
between different cases. The approach is expressed as follow.

Assume there are two material sets A and B, which belong
to two different cases, respectively. Set A contains m materials:
MA1, MA2, . . ., MAm, and set B contains n materials: MB1, MB2,
. . ., MBn. Then the similarity of A and B could be computed by
Eq. (2).

sim(A, B) =

N∑

i=1

Si

max(m, n)
(2)

where

N = Min(m, n)

Si is the maximum similarity between the ith material in one
set and each material in the other material set, 1 ≤ i ≤ N.

if N = m then,

Si =
n

Max
j=1

{sim(MAi, MBj)} (3)

if N = n then

Si =
m

Max
j=1

{sim(MAj, MBi)} (4)

In Eqs. (3) and (4), sim(MAi,MBj) represents the similarity
between material MAi and material MBj, which can be computed
by Eq. (5)

sim(MAi, MBj) =
K∑

k=1

(Wksim(attAik, attBjk)) (5)

where K represents the number of index attributes of a material,
Wk represents the weight of the kth index attribute, 1 ≤ k ≤ K,
attAik, attBik are respectively the kth numeric index attributes of
materials MAi and MBj, and sim(attAik, attBik) can be calculated
by Eq. (1).

4) The similarity algorithm of interval-numeric feature is
extended-Euclidian algorithm. Suppose there are two interval-
numeric attributes A = [a1,a2], B = [b1,b2], then their similarity
can be calculated as follows:

sim(A, B) = (a1b1 + a2b2)

max((a1)2 + (a2)2, (b1)2 + (b2)2)
(6)

5) Object similarity

HAZOP cases have object attributes such as equipment and
aterials. The object similarity calculation takes advantage of the

ntologies described in Section 3.2. Ontology based similarity algo-
ithms have been reported in literature. In this paper, the path
ength measure is used to calculate the object similarity (Pedersen,
akhomov, Patwardhan, & Chute, 2007). It essentially computes the
imilarity between two object nodes by counting the numbers of
odes on the shortest path between them in the ontology hierarchy.
he shortest path includes both the object nodes. Mathematically,
he similarity of two object nodes A and B using the path-length

easure (path) is defined as:

im(A, B) = 1
(7)
p

here p is the number of nodes on the shortest path between A and
within an ontology hierarchy.

For example, in the equipment ontology, if equipment A is a
ubclass of equipment P (subclass is equivalent to a is-a relationship

d
v
m
C
n

Engineering 33 (2009) 371–378

n ontology), and equipment B is a subclass of equipment Q while
quipment P and equipment Q are two subclasses of equipment
. The shortest path from equipment A to equipment B is A-P-O-
-B. There are five nodes on the path. Therefore, the similarity of
quipment A and equipment B is 1/5 (see Fig. 5).

Finally the case similarity is the sum of each case attribute sim-
larity multiplied by its weight which is determined by domain
xperts. The weights are adjustable through the knowledge main-
enance module which is described below.

.3.3. Knowledge maintenance module
The effectiveness of a CBR system depends largely on the qual-

tative and quantitative richness of its stored cases which are the
nowledge repository of past experiences. That is to say, the more
uality cases stored in the case base, the more effectively the sys-
em reasons. Initially, there are few cases in the case base. Through
he knowledge maintenance module (KMM), cases from the past
AZOP analysis records can be manually input to the subordinate
ase bases to facilitate CBR.

Case retaining is another feature of KMM. Revised cases can be
onverted to new cases and retained in the corresponding subor-
inate case bases. Before a new case is stored, term translation
ased on ontology is to be done if necessary. For example, “tem-
erature too high” and “high temperature” will be translated into
more temperature” in the case base.

Since weight factors used in the similarity based case retrieval
re predefined according to the knowledge of authors and a few
xpert consultants, it will not be surprised that there is a need to
ustify them according to the feedbacks of users in industrial prac-
ices. A user interface is designed in KMM to modify the weight
actors through a certain level of authorization.

.3.4. Graphical user interface (GUI) module
The GUI module contains graphical user interfaces to perform

he following functions:

Creating HAZOP analysis project
Specifying equipment
Specifying materials
Selecting parameters and HAZOP guidewords
Editing HAZOP analysis results
Retrieving and reusing similar cases
Retaining cases
Reporting HAZOP analysis results
Administrating users

Fig. 6 is a snapshot of a main GUI of PetroHAZOP. On its left-
and side is a treeview like the Microsoft’s Windows Explorer tree.

t displays a hierarchical collection of labeled items such as nodes,
quipments, process variables and deviations. On its right-hand
ide is the area where causes, consequences, risk, safeguards, sug-
estions and comments for a certain deviation can be edited by
sers or automatically loaded from selected similar cases. Case
earching button on the top-right corner of the snapshot implies
hat the system is searching similar cases based on the speci-
cations of the deviation being analyzed. Once the searching is
ata entry and user administration. On the bottom of the tree-
iew, there are two more nodes, i.e. materials and report. In the
aterials node, the process materials can be specified by users.

ustomizable HAZOP reports can be generated by using the Report
ode.
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Fig. 6. Snapshot of a main grap

. Application examples

PetroHAZOP is programmed with Java allowing concurrent mul-
iple users to manipulate the system through intranet. This multiple
ser mode greatly improves the work efficiency of the HAZOP
eam. Recently, PetroHAZOP has been successfully installed and
mplemented at one of the largest oil companies in China. There

ere more than 900 cases in the case base at the time when this
aper was written. The following examples demonstrate how the
roposed HAZOP expert system PetroHAZOP can help with both
routine” and “non-routine” analysis.

.1. Example 1: “non-routine” analysis

Acrylonitrile production process is a highly hazardous process
n the petrochemical industry. Most of the 16 materials involved in
he process including raw materials, intermediate products, prod-
cts and by-products are flammable, toxic or/and volatile. There
re about 14 major equipments such as reactor, chilling tower,

bsorption column, recycle column, distillation columns. The whole
rocess was divided into six nodes. Totally 87 deviations of 59 key
arameters had been analyzed by a HAZOP team. We transfer the
esults through the knowledge maintenance module into cases,
esulting in 87 cases in the case base.

H
t
s

Fig. 7. Snapshot of case ‘Ignition failure
user interface of PetroHAZOP.

The vinyl chloride production process (VCPP) is another highly
azardous chemical process which consists of three sections: chlo-
ine/hydrogen processing section (CHPS), hydrochloride synthesis
ection (HSS) and vinyl chloride synthesis section (VCSS). One
xample of the ‘non-routine’ analysis of this process was ‘ignition
ailure of the HCl synthesis furnace’ since it is hard to be modeled
r generalized with rules. With PetroHAZOP, a similar case ‘ignition
ailure of acrylonitrile startup furnace’ from the case base was auto-

atically retrieved with the similarity degree of 0.602. The found
ase is analogous in the equipment type in the equipment ontol-
gy and the deviation type in the HAZOP ontology. If the user clicks
n the button “Show similar cases”, he/she can find out the causes
nd consequences of similar case (Fig. 7). This similar case can be
eused if the button “Reuse” on Fig. 7 is pressed. Here reuse means
hat the causes and consequences are automatically loaded to the
auses and consequences of the new case. The user then can edit
he causes and consequences if necessary.

.2. Example 2: “routine” analysis
Another example is the completeness checking even for routine
AZOP analysis by means of CBR. A HAZOP team was assigned

o HAZOP a polymer production process. Node 1 containing a
tirred tank was analyzed first and it took the team about 2 days to

of acrylonitrile startup furnace’.
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omplete its analysis. In the third day, the team started the analysis
f Node 2 which also contained a stirred tank. When the team
as about to close the analysis of the ‘Low Pressure’ deviation in

he stirred tank of Node 2, the leader asked the recorder who was
esponsible for manipulating PetroHAZOP to retrieve similar cases
o check if anything was missed. A similar case ‘Low pressure in the
tirred tank of Node 1’ was discovered in the case base and one of its
auses, ‘axial sealing leak’, was not considered for the current case.
he consequence of the cause was “oxygen entering the stirred tank
eading to contamination and deactivity of the catalyst in the tank”.
ince the cause and consequence could also happen in the current
ase, they decided to reuse the found case, and minor modification
uch as change of the catalyst name was made for the new case.

. Conclusions

HAZOP analysis requires high accuracy, consistency and com-
leteness because any ignorance would lead to catastrophic losses.
herefore, the HAZOP team must ensure that it would not lose
ny resources that are available to help them meet the above
equirements. As a solution, this article offers an integrated solu-
ion for the complex problems in the path of automating HAZOP.
he proposed HAZOP expert system PetroHAZOP not only facili-
ate “routine” analysis but also “non-routine” analysis due to its
earning capability by which the HAZOP analysis quality can be
ontinuously improved during practice. Due to the adoption of
BR mechanism, PetroHAZOP can map past experiences to the new
ases. Therefore, it is more adaptive in HAZOP analysis and greatly
ases the knowledge management and knowledge dissemination.
ven though HAZOP has been widely practiced in the CPI of devel-
ped countries, it just starts to get recognized by the practitioners
n China. Lack of HAZOP experts hinders the wide implementation
f HAZOP in the chemical plants. Hopefully, PetroHAZOP can facili-
ate the industrial exercises of HAZOP in China and contribute to the
oss prevention in the largest developing country where chemical
ccidents are posing a serious threat to its fast development.

Automatic adaptation for HAZOP analysis is an outstanding task

hat could be addressed by introducing other artificial intelligence
echnologies to CBR. Layered digraph model (LDG) has been pro-
osed by authors to perform both “non-routine” and routine HAZOP
nalysis (Cui, Zhao, Qiu, & Chen, 2008). Future work will be oriented
o integrate CRB with LDG based reasoning.

Z
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