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Abslract--DIJEST (Diagnosing Jaundice Expert SysTem) is a medical expert system which produces a 
differential diagnosis of a patient presenting with jaundice. DIJEST is written in Prolog. and illustrates 
the use of the language for clearly expressing knowledge. Specifically, the expert system contains explicit 
declarative knowledge of anatomy and physiology which is used by clinicians when diagnosing obstructive 
jaundice. The inference engine matches patient records against expected manifestations of symptoms in 
diseases. Novel m DIJEST is the uncertainty reasonmg scheme, using contribution and absence factors, 
which places equal importance to symptoms present, absent and unknown in the patient's medical record. 
Domain specific reasoning and domain specific knowledge are clearly separated from general inference 
capabilities and knowledge representation schemes. DIJEST has performed well in preliminary tests, being 
particularl2, impressive for patients with multiple diseases. 

I. I N T R O D U C T I O N  

Research in medical expert systems, a major  application area of  AI, has led to the development 
of, and experimentation with, new schemes for representing knowledge. No universal tool or 
technique has emerged. Each research group has its own style affected by the problem domain and 
the medical expertise being used. 

This paper describes a new medical expert system, DIJEST (Diagnosing Jaundice Expert 
SysTem), which is concerned with the differential diagnosis of  patients with obstructive jaundice. 
DIJEST evolved with its major objective to explore present knowledge representation techniques 
and to introduce a declarative style for modelling clinical problem solving. Subsequently another 
issue became critical, namely the modelling of  uncertainty reasoning during the many stages of  
consultation and diagnosis of  a disease. 

DIJEST has yet another frame based scheme for knowledge representation and reasoning with 
uncertainty. It is developed using Prolog. We are able to combine different knowledge represen- 
tation techniques in a single framework due to the flexibility of  Prolog in the design of different 
data structures for the system. Specifically features of  frame-based and rule-based representations 
were integrated with a new calculus for uncertainty reasoning. General medical knowledge about 
the domain was easily represented in Prolog declaratively. It also enabled a clear representation 
of inference as a specialized interpreter handling the data structures. 

Our scheme for uncertainty reasoning is novel due to a strong dependence on the interpretation 
of  present and absent data, information that is known to exist, known not to exist and information 
that is unknown at the time of consultation with the program. This was a constraint imposed by 
our medical experts. It allows context-dependent evaluation of the patient data. The scheme uses 
contribution and absence factors which are attached to particular manifestations of  a disease. These 
factors constitute a numerical representation which complements the qualitative descriptions in 
DIJEST. These qualitative descriptions mirror the medical experts' definition of the characteristics 
of  manifestations. 

Our work has been influenced by the famous medical expert systems, MYCIN,  Internist and PIP. 
The representation of  knowledge using frames is similar to PIP's [I]. The concept of  contribution 
and absence factors evolved from investigation of the confidence factors of  MYCIN [2] and the 
evoking strengths and frequencies in Internist [3]. In addition, representing common-sense 
knowledge in DIJEST is affected by the representation of  properties in Internist [4] and the use of  
logical decision criteria in PIP [5]. 

The basic system was designed to be expanded and enhanced to incorporate the stages of  clinical 
reasoning during the course of  a patient 's treatment. DIJEST has been tested on sample patient 
cases taken from medical textbooks and patient records. It performs at an acceptable level 
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according to our experts. An interesting feature is its handling of  multiple diseases contributing 
to the jaundice. 

The paper is organized as follows. After a brief overview of DIJESTs scope, we present DIJESTs 
architecture and the multi-layered knowledge representation in the system. The next section 
describes the uncertainty reasoning mechanism which underlies the modelling of diagnosis, 
followed by our conclusions. We emphasize in this account how Prolog can be used to develop 
an expert system. 

2. SCOPE OF DIJEST 

2. I. The problem of obstructit.'e jaundice 

Jaundice is the yellow pigmentation of the skin or sceleras by bilirubin. This in turn is a result 
of  elevated levels of bilirubin in the blood stream [6]. There are several reasons for this elevation. 

Most of  the bilirubin is derived from the catabolism of  hemoglobin present in the red blood cells. 
The bilirubin is transformed into bile and the liver plays a central role in this metabolism of the 
bile pigments. The derangements of this metabolism cause several diseases which have jaundice as 
a common symptom. 

The elevation of the bilirubin might be related to pathogenetic mechanisms or disease processes. 
We are concerned about a subset of these diseases which cause obstructieejaundice. This is jaundice 
due to the mechanical obstruction of the biliary radicles or functional factors that cause impaired 
hepatic excretion of bilirubin into bile. 

Figure I is a simplified diagram of the organs that are related to the flow of bile to the intestine 
after its excretion from the liver. The enlargement of any organ near the bile ducts can block the 
flow of bile, thereby causing obstructive jaundice. The principal examples are inflammation of the 
gallbladder, liver or pancreas, a tumor or a cystlike mass in the head of the pancreas. Obstructive 
jaundice can also be caused by gallstones leaving the gallbladder, lodging in the bile ducts and 
blocking the flow. Diagnosing the most common causes of obstructive jaundice as mentioned above 
is the primary focus of  DIJEST. Specifically, DIJEST considers viral hepatitis, alcoholic hepatitis, 
cirrhosis, cholecystitis, choledocholithiasis, pancreatitis, pancreatic cancer and pancreatic pseudo- 
cyst. Hepatitis is the inflammation of the liver. We are concerned with two types of  hepatitis, one 
is caused by excessive consumption of alcohol and the other by virus. Cirrhosis is the chronic 
irreversible injury of the liver. Cholecystitis is the inflammation of the gallbladder where 
choledocholithiasis refers to the obstruction of  the bile duct by gallstone(s). Pancreatitis is 
inflammation of the pancreas. Pancreatic cancer refers to a cancerous growth, while pancreatic 
pseudo cyst refers to the cystlike masses at the head of the pancreas. 

It is critical to differentiate the mechanism that causes the obstruction and the site of the 
obstruction in clinical practice. Therefore, DIJEST is designed to produce possible diagnosis by 
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Fig. I. The anatomy of organs participating in the bile flow. 
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Fig. 2. The architecture of DIJEST. 

indicating the likelihood of each of these diseases and the differentiating factors that leads to the 
diagnosis. 

2.2. Architecture of DIJEST 

DIJESTs system structure as initially planned is shown in Fig. 2. The system is constructed 
around its most important component, the specialized interpreter that we call the MATCHER. In 
this section we describe the function of the system components. 

The boxes above the MATCHER indicate the knowledge used by DIJEST. Diseases are 
represented by disease descriptors. The candidate diseases are the list of diseases that are to be 
considered for differential diagnosis. The patient profile consists of all the knowledge related to 
a particular patient. 

The MATCHER analyzes the patient producing an evaluation of the patient and likelihood 
estimates for candidate diseases. The MATCHER evaluates the current mixture of known, 
uncertain, partially satisfied and unknown findings of a patient with respect to the candidate 
diseases. The evaluation of each patient includes any contradictory evidence and suggestions for 
additional tests that should be performed. The results will provide feedback for the next stage of 
diagnosis, More details of the MATCHER are given in Section 4. 

A full evaluation of the output of the MATCHER was intended to be considered by the screening 
process. Currently the patient profile is examined for the manifestations expected by the disease 
descriptors. The screening process would also evaluate significant patient data that is not explained 
by the differential diagnosis. 

3. KNOWLEDGE REPRESENTATION IN DIJEST 

The knowledge base of DIJEST consists of medical knowledge about jaundice and information 
about the patient. Knowledge of jaundice is divided into descriptions of the diseases which cause 
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disease_history(noL_appl, 
disease_desc(choledocholithiasis, 
history(noL.appl, ~previous illness 

not_appl, ~pre~ious tests 
not.appl, %e~osed_to 
not_appl, ~family_background 
[ %symptoms 
(pain ,[site(abdomen,S), 

severity(none_to_severe,I), 
continuity(intermittent,S), 
duration(short,3), 
coupled_by(nausea, 1 I, 
coupled_by(vomiting, 1 I, 
threshold(131]. 
contribution_absence_factors(0.9,-O. 111, 

normalization J'actor(O.gl], 
not.appl, ~obser~ations 
not_appl, J~drng.use 
not_appl ~surgery 
1, 

clinical( 
[(jaundice,[pace(fast,2), 

pace(medium_slow, 1.31, 
threshold(1.31], 
contribution_absence_factors(0.6,-2.011, 

(gallbladder,present,contribution_absence.factors(O.9,-2.011 , 
(tender_abdomen,[site(upper.quadrant,S I, 

condition(attacks,S), 
threshold(lO)], 
contribution_absence_factors(0.7,-2.0)), 

normalization.Saetor(2.21] 
1, 

labtests( 
[(obstructive.tests,disease_related,contribution_absence_factors(O.7,-2.011, 
(gallbladder, gallstones(presentl,contribution_absence_factors(0.8,0.211, 
(common.bile_duct, obstruction(presentl,contribution_absence_factors(O.9,-2.0/), 
(common.bile_duct, dilatation(abnormal),contribution_absence_factors(O.CJ,-2.0/), 
normalization.factor(2.7)/] 
1. 

Fig. 3. Disease descriptor of choledocholithiasts. 

jaundice, and general medical knowledge. This section describes the significant points in our 
representation. 

3. I. Disease descriptors 

The diseases that have jaundice as a common symptom are represented individually in DIJEST 
by disease descriptors or DDs. A D D  describes the prototypical characteristics of a patient who 
has the disease and it is represented by a framelike structure in Prolog. Figure 3 shows the disease 
descriptor for choledocholithiasis. 

Each disease descriptor is a quadruple indexed by the disease name. The expected characteristics 
related to the history, clinical examination and the laboratory tests are the components of this 
structure. We will refer to those three components as contexts. Each context consists of a number 
of slots that show the logical subdivision within that context. For example, the history context has 
eight slots showing previous diseases, previous tests, environmental and clinical factors which 
suggest the disease if the patient has been exposed to them, facts that are related to family 
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background, expected previous symptoms, expected physical observations, usage of particular 
drugs and previous abdominal surgery, respectively. The contexts for both clinical examination and 
laboratory tests have only one slot. Slots that are not applicable for a specific disease are shown 
by no_appl as illustrated by Fig. 3. 

Each slot consists of  specific characteristics related to the slot. They are called elements. They 
are indicated by slanted uppercase letters in Fig. 3. An element is either a single characteristic or 
a disjunction of  characteristics. 

A single characteristic is called a key tuple and is indexed by a key. A key is the smallest 
component of this layered structure and it can be either a direct key or an extractable key. 
A key tuple consists of  key attributes, and a pair containing a contribution factor and an absence 
factor. The key attributes of a key tuple show the characteristics of  a key which are related 
to the disease. They are defined with respect to the key type. The contribution and absence 
factors are related to the uncertainty reasoning handled by the MA TCH ER and will be dis- 
cussed in the next section. They are represented as contribution~absence_factors(CF, AF) for clarity 
in Fig. 3. 

The type of  a key determines how the diagnosis is handled by DIJEST. The different 
key types are known by the MATCHER and handled differently. They are described 
below. 

!. Direct keys. A simple concept or a finding is represented by a direct key. The key attri- 
butes of a direct key are given by a list of  qualitatit,e characteristics defining the key. For 
each attribute, a number showing the importance of  this qualitative description with respect 
to the key is given as an integer between I and 5. It is called the significance ~,alue of  
the attribute. The qualitative descriptions along with significance values describe the concept 
or finding fully. For example, pain is a direct key, but its severity, duration or location 
differs from one disease to another as well as their relative significance for defining the pain. 
In Fig. 3, the respective attribute values of pain for choledocholithiasis are shown. For 
example, a patient is expected to have pain with intermittent continuity. Since intermittent 
pain is an important indicator for choledocholithiasis, it is given a significance value of 5. 
Every direct key is defined with a threshold that is used by the MATCHER for uncertainty 
reasoning. 

If. Extractable keys. An extractable key represents a medical concept that can not be described 
as a simple finding. The concept needs to be extracted from the patient data, In order to simplify 
their representation, they are shown as a single key in the disease descriptors. They are divided 
into four categories to simplify the diagnosis: 

(i) Some of the keys represent anatomical or physiological states or concepts. The 
patient is expected to be in or have such states if he is likely to have the disease. 
For example, gallbladder is a key in the laboratory tests context, and the 
presence of  gallstones is its defining attribute as shown in Fig. 3. The value of 
this attribute is used as an aid for determining the site, or the exact condition 
for such a key. Since there may be many tests that would determine whether 
the patient has the specified state, this representation allows the MA TCH ER to 
determine the necessary diagnostic tests that would indicate the condition given 
in this key. 

(ii) The names of blood tests are used as keys in DIJEST to show the tests 
required in the diagnosis, for example bilirubin, amylase and sgot. The 
analysis of the results of a particular blood test is disease dependent. The 
same blood test may indicate different likelihoods of  the presence of  a 
disease for different diseases. Possibili O, distribution cun,es are used to 
represent those ranges of results of  blood tests. They are separate from the 
disease descriptors and were provided by our medical experts. How they 
are used with respect to the disease descriptors will be covered in the next 
section. 

(iii) Some keys refer to a collection of  simple or complex findings. The individual 
findings in the collection might not be very significant on their own or affect the 
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(iv) 

diagnostic process. However, their combination constitutes a medical concept 
and should be considered as a composite finding. We call such keys compound 
keys. The collection of individual findings are represented in separate tables for 
each compound key. Compound keys are represented as a combination of  direct 
or extractable keys, but the contribution and absence factors are defined for the 
composite meaning. Prodrome is an example of a compound key which is used 
for diagnosing hepatitis. Figure 3 does not contain an example of a compound 
key. 
Some keys represent rules that DIJEST has to activate in order to check the 
presence of a disease. They are used by the MATCHER to evaluate the patient 
data that are related to different contexts or to compare the tests results. For 
example, inflammation and obstructive tests are two rule names. The latter is 
shown in Fig. 3. The key attributes for this kind of key are not used since the 
concept to which they refer is embedded in the rules. 

3.2. Patient data 

The information about a patient is given as input to DIJEST. All the information related to a 
patient is indexed by a unique patient number. It is given in four different frames, analogous to 
the contexts in the disease descriptors. We refer to the information about the patient as the patient 
profile. 

I. Patient ID record. Consists of identification information. 
2. Medicalhistorv. This frame is similar to the history context o f a  DD. An example 

frame for a patient is shown in Fig. 4. It consists of six different slots 
corresponding to the first six slots in a DD. Drug and surgery information are 
represented as separate slots in the knowledge base if the patient has relevant data. 

medical.history(lO001, 
% pre~ious diseases 

[(jaundice,[occur rence(negative)]), 
(alcoholism,[occurrence(negative)I)], 

previous_tests 
[(wbc,[date(2.2,1987),site(blood),result(10200)])], 

%exposed to 
[(hepatotoxins,[exp_to(negative)]), 
(jaundiced_people,[exp_to(negative)])], 

~famzly background 
[Cjau ndice, [occurrence(negative)])], 

%symptoms 
[(pain ,[date(15,1,1987), 

site(abdomen), 
severity(severe), 
continuity(intermittent), 
duration(6, days), 
coupled_by(nausea), 
coupled_by(vomiting)I). 

(.a-sea.[date(iS,1,198Z)]), 
(vomiting,[date(15,1,1987),cause(la rge_clinner)]), 
(intolerance_fatty_foods,[reaction(negative)])], 

%observations 
[(skin,[color(yellow)I), 
(u rine,[color(d ark)I), 
(stool ,[color(llght.brown)])])). 

Fig. 4. Medical history for patient IO00l. 
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Only simple findings with their related attribute values are represented in this 
frame. The attributes have both quantitatit,e and qualitatit,e descriptions. For 
example, the attribute duration for the key pain shows how long the patient has 
been in pain, and might have the value "6 days". 
Clinical examination. This frame consists of two slots: the knowledge related to 
the actual physical examination of the patient and the results of the cardiovascular 
tests routinely taken. As in the history frame of the patient, the simple findings 
are represented as binary key tuples. 
Tests. Each test frame for a patient is indexed by the test name and the patient 
ID number. It consists of information about the date of the test and its result with 
respect to the site where it is taken. For tests such as ultrasound, the results are 
given as a collection of findings related to a site, its state and its condition, because 
those tests are used to determine the condition of different parts of the body. For 
blood or urine tests, their specific site is indicated along with a single result. 
Examples for patient 10001 are shown below. 

test(10001 ,date (2,3,1987),soot, [ (blood,80) ] ). 

test (10001 ,date (2,3,1987),alk_phosp, [ (blood,120)] ). 
test (10001 ,date(2,3,1 987),ultrasound, [ (gallbladder,edema,present), 

(common_bile_duct,dilations,s) 
(gallbladder,gallstones, present), 
(pancreas,swelling,normal), 
(pancreas_head,dilatation,normal), 
(pancreas,state,normal) ] ). 

3.3. General medical knowledge 

Medical knowledge in DIJEST is represented independently from any particular patient. 
Examples of such knowledge are the general characteristics of jaundice, what the available tests 
measure along with their possible sites, the restricted anatomy of the human body that concerns 
the domain diseases, the domain specific qualitative representation of quantitative terms and the 
possibility distribution curves of blood test results. This knowledge is used by the MATCHER 
when creating the differential diagnosis. For example, ultrasound is used to determine the presence 
of gallstones in the gallbladder or the size of the bile ducts, or sgot is a blood test and its primary 
function is to detect liver injury. This information is represented declaratively in DIJEST and 
illustrated below with a few examples. 

lab_test(ultrasound, [ (gallbladder,gallstones, [ present,a bsent] ), 
(gallbladder,edema, [present,absent] ), 
(pa ncreas_head,dilation, [normal,s,inc] ), 
(extra hepatic_d ucts,dilatation, [ normal,s, inc] ), 
(intrahepatic_d ucts.dilatation, [ normal,s, inc] ), 
(liver, hepatic_texture, [ homogen,not homogen ] ), 
(pancreas,swelling, [head,diffuse, normal] ), 
(pancreas,state, [atrophic,ind urated,cyst, normal] )] ). 

lab_test (u ribirilogen, [ (u rine,excretion_bile, [present.absent.decreased,increased] )] ). 

4. PATIENT EVALUATION IN DIJEST 

4. !. A Prolog-based MA TCHER 

As its name suggests, MATCHER compares a patient profile with the disease descriptors present 
in the system. It is a special interpreter written in Prolog which compares the frame structures, takes 
into account present, absent and unknown factors and establishes likelihood scores for the presence 
of a disease. The findings of a disease, namely its DD, is matched against a patient's profile in the 
three different contexts of history, clinical exam and laboratory test data. A likelihood score is 
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calculated for each context, and the overall likelihood score for the disease is computed as the 
average of  the scores for the three contexts. 

diagnose( Patient, History,Clinical,Tests,disease( Disease, DiseaseProb) ) ,-- 
disease_desc(Disease, DH,DC, DT), 
eval_history(Disease, Patient, History, ClinicaI,Tests, D H,H ist Prob), 
eval_clinical (Disease, Patient.H istory,ClinicaI,Tests, DC,ClinicalProb). 
eva I_tests ( D isease, Patient, H istory. C li n icaI,Tests, DT,Tests Prob), 
combine_prob(Hist Prob,ClinicaIProb,TestsProb, DiseaseProb). 

combine_prob(H P.CP,TP, FinalProb) ,- 
FinalProb is (HP+CP+TP)/3.0. 

Looking at the sample disease descriptor in Fig. 3, and a patient's medical history record from 
Fig. 4, it should be clear that the matching is not a direct unification of  expected values of attributes 
for keys for a slot in a particular context. Nevertheless, the interpreter uses unification to determine 
key types to handle different type of keys. Details of  the MATCHER will be covered in the 
follo~.ing sections. 

The findings of a patient are evaluated with respect to a list of domain diseases, called the 
candidate disease list. The candidate disease list in the current version of DIJEST is all the known 
diseases that are present in the knowledge base. Heuristic rules could be added as a front-end to 
generate a shorter list. For example, some sets of symptoms suggest very strongly viral hepatitis 
and nothing else. At the moment, all the candidate diseases are processed in a straightforward 
manner and for each DD on the candidate disease list, a likelihood score is calculated which 
represents the possibility that a patient has the disease. 

4.2. Calculation oJ" likelihood scores 

A cot!fidence measure (CM) is calculated separately for each slot in a context. The likelihood 
score for the context is a weighted sum of the CM for all the slots in the context. The weighting 
is affected by the number of  relet,ant slots in a context. The relevance of  a slot is disease-dependent. 
For example, the family background of  the patient is not relevant for choledocholithiasis as shown 
in Fig. 3 and it is indicated by a not_appl value of  the slot. 

The CM for a slot is calculated from the CMs of all the elements in the slot. The confidence 
measure for an individual slot element represents how much the patient profile satisfies the 
requirements of  that element of the disease descriptor. The calculation of individual CMs is tied 
to our use of contribution and absence factors to be described below. 

Recall that an element is either a single key tuple or a disjunction of  them. The CM calculation 
of a key tuple is determined by the key type, and the requirements satisfied by the patient profile 
which is related to the contribution and absence factors. The CM of a disjunction of key tuples 
is the largest CM of one of the disjuncts. 

If the MATCHER can find the manifestations defined for a key tuple that are expected to be 
present in a patient with a particular disease, then this key tuple is t, alidated. If only some of the 
findings are existent, then this key is partially ~,alidated. When the patient profile is known not to 
have those findings or there is evidence against the presence of the findings, then the key is 
im'alidated. The MATCHER considers the keys to be unknown if it can not find the related 
attributes from the patient profile in the case of a direct key, or extract it in the case of extractable 
keys. Further details about the validation process are presented after the discussion of the use of 
contribution and absence factors. 

4.3. The role of contribution and absence factors 

Contribution and absence factors are the essence of the mechanism for reasoning under 
uncertainty in DIJEST. A contribution factor (CF) and an absence factor (AF) are defined for each 
key in exert, key tuple of a slot in the DD. The CF determines the degree of importance of  the 
presence of the specific concept represented by the key name to the slot in which it occurs. It 
indicates the expectation that a patient has the specific disease when the information in his/her 
profile validates the requirements of this key. The contribution factor is defined as a real number 
between 0 and I, inclusive. For example, the contribution factor of  the direct key pain is 0.9 for 
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choledocholithiasis as shown in Fig. 3. It shows that the presence of pain as defined by its respective 
values is very important for choledocholithiasis. 

The AF determines the importance of the absence of the concept in the patient profile. It 
effectively measures the likelihood of a patient to have or not to have a disease given the absence 
of the key. It is represented on a scale of ( - . ~ ,  I). The wide scale of absence factors is used to 
influence the importance of a specific key to the entire slot within which it is defined. For example, 
the absence factor of pain is -0 .1  as shown in Fig. 3. CF values for a key are always greater than 
the AF values. 

The analysis to determine whether the patient has the disease depends purely on CFs and 
AFs. Our scheme is similar to the scoring mechanism in PIP where the scores are given in the 
frames [I]. The CFs and AFs are actually the quantitative representation of  the qualitative terms. 
such as "usually present", "confirming", "'critical", "'more likely", "'less likely" and "'contra- 
dicting", that were used by our medical experts. The terms have been distributed on two different 
scales by using CFs and AFs. 

Each application has a base value, BV, which partitions the contribution factors into two sets, 
those above the BV and those below it. The BV is used as a point of  reference for the distribution 
of  contribution and absence factors of  the keys. For DIJEST, a BV of  0.5 was used. 

Two principles underly our choice of  values for contribution and absence factors from their 
respective scales for specific keys: 

• CF/> BV indicates that the key is important to establish that the patient has the 
disease under consideration. 

• AF < 0 indicates that the absence of  the key is important to contradict that the 
patient has the disease under consideration. 

Confidence measure values are classified into four categories based on these two principles: 

I. C F > B V ,  AF~>O. These keys are confirming. A confirming key in the patient 
profile contributes significantly to the likelihood score. Its validation will lead to 
a high score. However even if the key is not validated, the disease may still figure 
prominently in the final differential diagnosis. 

2. CF>~ BV, AF (O. These keys are critical. Critical keys have the most impact on 
determining the likelihood score. The validation of a critical key contributes to 
a high score. The invalidation of a critical key contributes negatively to the score 
by using the AF. If a critical key is unknown, a neutral position is taken. 

3. CF ( B V .  AF < O. These keys are contradicting. The validation of a contradicting 
key does not strongly confirm the existence of the disease. The invalidation of a 
contradicting key can lead to a very low likelihood score. 

4. CF < BV, AF i> O. These keys are minor. Minor keys are used for fine tuning the 
differential diagnosis and will play a greater role in the future screening process. 

This classification scheme approximately corresponds to the following use of eroking strength 
and frequency values in Internist's scoring mechanism. 

• Critical keys: eroking strength, 4 frequency 4. 
• Contradicting keys: et,oking strength, l frequency 4. 
* Confirming keys: et,oking strength, 4 frequency 2. 
• Minor keys: et'oking strength, 2 frequency I. 

Each element in a slot list is evaluated according to the above classification. The MATCHER 
determines how well the patient profile fits the structure that is determined for this element. Using 
the state of the patient profile with respect to the attributes of  each element in this slot list and 
using the CF and AF factors, the matcher determines the CM of  this element. Repeating this 
iterative process, all CM values of the elements in a slot list are accumulated and normalized by 
the unique normalization_factor for the slot. The overall sum of the slots determines the score of 
a particular context and then the likelihood score of the disease. 

The matching process for the slot values is illustrated below. In the code, Context refers to the 
current name of  the context, Hypothesis refers to the name of the disease currently investigated 
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and PatientSlot has all the values that are currently known for the Patient for a particular slot, 
such as symptoms. The first clause illustrates that the slots which are not applicable are not skipped 
over, with the assumption that they are completely satisfied for probability calculations. 

satisfy_slots(Context, Hypothesis, Patient, PatientSlot, noLappl,1.0). 
satisfy_slots(Context, Hypothesis,Patient, PatientSlot, Slot,SlotProb) ,- 

Slot' = = not_appl, 
satisfy_slot (Context, Hypothesis, Patient, PatientSlot, Slot,Slot Prob,O). 

satisfy_slot (Context,Hypothesis, Patient, PatientSlot,[normalization_factor(N F)], 
SlotProb,AccProb) *- 

SlotProb is AccProb/NF. % normalize for a slot 
satisfy_slot (Context, Hypothesis, Patient, PatientSlot, [ Keyl Key List], Slot Prob,Acc Prob) ,-- 

Key = = normalization_factor(NF), 
satisfy_key(Context, Hypothesis, Patient, PatientSlot, Key,CM), 
accumulate (Acc Prob,C M,AccProbNext), 
satisfy_slot (Context,Hypothesis, Patient,PatientSlot, KeyList, SlotProb,AccProbNext). 

satisfv__key determines whether a key is a single key or a disjunction of keys. 

The code for processing single keys is given below. The find predicate extracts the values for a 
particular key from the patient profile. 

handle_single_key(Context,  Hypothesis,  Patient, PatientSlot,Key, KeyValues,C F,AF, CM) ,--- 
i s_cl i recLkey ( C o n text, Key, KeyVal u es), 
find (Key, PatientVals, PatientSIot), 
direct_key (Context, H ypot  hesis, Patient, PatientVals, Key, KeyValues, C F,AF, C M). 

hand•e-sing•e-key( C•ntext'Hyp•thesis•Patient•PatientS••t•Key'Key•a•ues'•F•AF'CM) ,-- 
not is_direct_key(Context, Key, KeyValues), 
extract_from (Context, Hypothesis, Patient. PatientSlot, Key, KeyValues, CF,AF,CM). 

hand•e-sing•e-key( C•ntext•Hyp•thesis•Patient•Patients••t•Key•Keyva•ues•CF•AF•CM) .-- 
base_value(BV), 
not_known (Context, Hypothesis, Patient, Key, KeyValues, BV, C F,AF, CM) 

direct_key( Context, Hypothesis, Patient, PatientVals, Key, KeyValues, CF,AF,CM). 
check_whether_absent(PatientVals), 
absent_key(Hypothesis,Patient,PatientVals, Key,KeyValues, CF,AF,CM), 

direcLkey(Context, Hypothesis, Patient, PatientVals, Key, KeyValues, CF,AF,CM) .-- 
check_whether_present(PatientVals), 
match_compare (Context, Hypothesis, Patient, PatientVals, Key, KeyValues, CF,AF,CM). 

4.4 Calculating confidence measures for keys 
This subsection describes how the individual CMs are calculated for individual keytuples. Both 

direct keys and extractable keys are treated in detail. Our description here is qualitative in nature. 
The exact formulae used can be found in Ref. [7]. 

The confidence measure of a direct key is calculated through an extended comparison of the 
values in the key attribute list of the DD with the patient values as shown below. The first stage 
is to calculate the patient sum. that is a score indicating how well the patient values match the 
attribute values. Patient sums are only calculated for keys which actually appear in the patient 
profile. 

match_compare (Context, Hypothesis, Patient, PatientVals, Key, KeyVals, C F,AF, C M ) ,-- 
compute_patient_sum (Context, Hypothesis, Patient, PatientVals,CF,AF, 

Key, KeyVals,O,PatientSum,Contradiction Flag), 
member (threshold (Threshold),KeyVals), 
find_normalization (KeyVals,Norm Factor), 
compute_key_prob(Contradiction Flag, PatientSum,Norm Factor,Threshold,CF,AF,CM). 

The MATCHER calculates patient sums as follows. First the terms used in the patient profile, 
which may be a mixture of qualitative and quantitative terms such as 6 days, are converted to the 
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domain dependent qualitative terms which are used in the DDs, for example short or medium. The 
terms are then compared with the actual terms in the DD and exact matches and contradictions 
are noted. The terms which exactly match are summed using weights which are given in the DD 
with respect to each attribute. This is illustrated with the code presented below. 

compute_patient-sum (Context, Hypothesis, Patient, PatientVals, CF,AF, 
Key, [threshold (T) ] ,TotalSu m,TotalSum,no). 

compute_patient_sum (Context, Hypothesis, Patient, PatientVals, CF,AF, 
Key, [ ElementIKeyVals] ,InterSum,NextSum,Contradiction Flag) ,-- 

Element'.,. = = threshold(T), 
match ( PrevContrad iction Flag, Context, Hypothesis, Patient, Key, PatientVals, Element, 

InterSum,TotalSum), 
check_contradiction (PrevContradiction Flag,Context, Contradiction Flag,Hypothesis, 

C F,AF, Key,TotalSum,NextSum). 

match (no,Context, Hypothesis, Patient, Key, PatientVals, Element, I nterSu m,AccSum) 4-- 
match-single_val(Hypothesis, Element, PatientVals,AttrContr), 
AccSum is InterSum + AttrContr. 

match (yes, Context, Hypothesis, Patient, Key, PatientVals, Element, lnterSum,AccSum) ,- 
is_a_contradiction (Hypothesis, Patient, Key, PatientVals), 
record_contradiction (Context, Hypothesis, Patient, Key). 

match_single_val ( H ypothesis,site (Site, Contr),AIIValues, Contr) ,- 
member(site(Patsite),AIIValues), 
appropriate_.site(Hypothesis, Patsite). 

match_single_val (AnyConcept, Parameter,AIIValues, Contr) ,- 
%generalized matching 
Parameter =.. [Name, ParVaI,Contrl, 
FindVal = .. [Name,SomeVal], 
member(FindVaI,AIIValues), 
match_from_tables(AnyConcept, Name, ParVaI,SomeVal). 

% Sample facts 
appropriate_site(choledocholithiasis, righLupper_quadrant). 
appropriate_site (choledocholithiasis,epigestrium). 
match_from_tables(_,duration, DAYS,short) *- 

number(DAYS), DAYS > =1, DAYS < 11. 
match_from_tables(_,duration, DAYS,moderate) ,- 

number(DAYS), DAYS > 10, DAYS < 36. 
match_from_tables(_,duration, DAYS,long) ,- 

number(DAYS), DAYS > 35. 

Every direct key has a threshold, which is the minimum value of  the patient sum considered to 
adequately match the key. The second stage of  the MA TCH ER is to compare the patient sum with 
the threshold set for this key. On the basis of  this comparison, the MATCHER concludes whether 
the patient profile satisfies the attribute values completely, partially, or contradicts them, and 
calculates the CM accordingly. 

If the patient sum exceeds the threshold value, then we say that the direct key has been t'alidated. 
The CM value is this case is the CF value. For example, the attribute values of  the patient in Fig. 4 
indicates a sum of 13 points. This is equal to the threshold value for this key, therefore the direct 
key pain is validated for this patient. The CM is then set to 0.9. 

If the patient sum is less than the threshold, and no contradiction has been noted, the key has 
been partially z,alidated. The confidence measure is a normalized fraction of the CF value. This is 
handled by compute-key_prob. More details are in Ref. [7]. 

If a contradiction has been noted, the value of the CM differs depending whether the absence 
factor of  the key is positive or negative. If the AF is negative, it is returned as the CM. Otherwise 
the CM is the negative of  the CF value. This is handled by check_contradiction. 
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We describe each of the four categories of extractable keys in turn, where the key appears in 
the patient profile: 

(i) Special-purpose knowledge is used to handle the anatomical or physiological states that 
are indexed as a key, such as common bile duct obstruction as in Fig. 3 or swelling of the pancreas. 
Some sample facts are given below. 

extract_from(Context, Hypothesis, Patient, PatientSlot, Key,KeyValuas, CF,AF,CM) ,- 
anatomy(Key), 
anatomy_test (Context, Hypothesis, Patient, PatientSIot, Key, KeyValues,CF,AF,CM). 

anatomy (Key) ,- organ (Key). 
anatomy(Key) ,-- system (Key, SystemComponents). 
anatomy (Key) ,- system (Sys, SystemComponents), 

part_of (Key,SystemComponents). 

system (intra hepatic_ducts, [left_intra hepatic_duct,rig ht_intra hepatic_d uct] ). 
system (extra hepatic_ducts, [common_bile_duct,cystic_duct,pancreatic_duct] ). 

anatomy_test (Context, Hypothesis, Patient, PatientSIot,Organ,present,CF,AF,CF) ,- 
organ(Organ), 
surgery(Patient,SurgeryList), 
not taken (SurgeryList,Organ). 

anatomy_test (Context, Hypothesis, Patient, PatientSIot,TestContext, 
(Specification,FacttoDetermine),C F,AF,CM) ,- 

test_illustrates (TestContext, Specification, ListofTests), 
prioritize(ListofTests,FinalTests), 
patient_satisfies (Hypothesis, Patient, PatientSIot,TestContext, 

Specification.FacttoDetermine, FinalTests, CF,AF,CM). 

For each state, the set of relevant tests is determined along with their order of preference. The 
representation of anatomical knowledge in DIJEST has been designed to allow the MATCHER 
to find the necessary tests that would indicate the presence of the specified state. For example, the 
MATC HER  finds that ultrasound and CT tests are indicative for understanding the condition of 
the common bile duct when checking choledocholithiasis [7]. 

After the necessar,v tests are found, it is determined whether the patient has taken the test. If 
he has not, the CM for this key is calculated using the CF and AF values, and varies depending 
in which of the four categories the CF and AF values lie. If the patient has taken the test, domain 
specific knowledge is used to determine whether the patient's test results satisfy the specified state. 
If so, the CM is set to the CF. Otherwise, the CM is equated to AF because a conflict exists between 
the expected condition of the patient and the patient profile. There is no possibility to partially 
validate these keys. For example, the results of the ultrasound for the patient in Fig. 4 are compared 
with the expected outcomes for the key common bile duct. For the test results [7], it is found that 
the common bile duct of the patient is very dilated. Therefore, CM is equated to 0.9. The ultrasound 
also shows there are gallstones in the gallbladder. CM for this key is set to 0.8. 

Planning optimal order of tests, prioriti-e, is a complicated issue, and could be the domain of  
another expert system that would perform in parallel to DIJEST. Currently, the tests are checked 
in sequential order. Studies in decision analysis for developing clinical strategies similar to the one 
for the diagnosis of extrahepatic obstructive jaundice can be useful for the development of this 
module. Especially, the sensitivity, specificity, complications and the cost of the individual tests 
have been investigated to devise different adaptive strategies for tests taking, represented as decision 
trees in Ref. [8]. We have used a~ailability as our criteria for ordering. 

(ii) Keys referring to blood tests, such as amylase and bilirubin, are evaluated using possibility 
distribution curves which are graphs provided to us by our experts. First the MATCHER checks 
whether this is a key that requires curve fitting analysis by seeing whether a patient has taken the 
particular test. If not, the calculation of  the CM is carried out by considering the four classes of  
CF and AF values as for the anatomical states. If the patient has the test, the patient value is 
checked by a disease specific possibility distribution curve, where each curve estimates the 
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likelihood that a patient with the particular test value has the disease being considered. The 
resulting possibility value is used along with the CF and AF to determine the CM of this key. For 
example, if the patient's test result shows a particular positive possibility, this value is used to 
normalize the CF specified for this key. Normalization is needed since the importance of this test 
result is specified with the CF, and how well the patient's result fits the expected value for the disease 
is determined by the curve. If the patient's test result contradicts the presence of the disease, 
invalidating the key, then the full AF value is used as the CM value. Curve fitting is actually not 
very suitable with Prolog if speed and accuracy is required. It should be implemented as an external 
procedure. 

extract_from (Context, Hypothesis, Patient, PatientSlot, Key, KeyVals, CF,AF, CM) ,-- 
possibility_curve( Key), 
curve_fitting (Hypothesis, Patient, PatientSIot, Key, KeyVals,C F,AF, CM). 

possibility_curve(Key) ,-- blood_test(Key). 

curve_fitting(Hypothesis, Patient, PatientSIot, Key, KeyVals, eF,AF, eM)  ,-- 
blood_test_analysis( Hypothesis, Patient, PatientSIot, Key, CF,AF, CM ). 

blood_test_analysis(Hypothesis, Patient,PatientSIot, BloodTest, CF,AF, CM) ,-- 
(get_patient_val(BloodTest,serum,PatientSIot, Result); 
get_patient_val(BloodTest, blood,PatientSIot, Result)), 
blood_test (BloodTest, Hypothesis, Result, Prob), 
calculate_CM (Prob. Hypothesis, Patient, BloodTest, eF,AF, eM).  

(iii) Recall that compound keys refer to a collection of findings, for example prodrome. Their 
analysis requires the MATCHER to consider each finding in the collection similar to the 
consideration of each attribute of a direct key. Each finding for compound keys, though, has to 
be analyzed separately similar to an element of a slot. The collected result of all the findings 
determines the overall CM for this key. 

extract_from (Context, Hypothesis, Patient, PatientSIot, Key, KeyValues, C F,A F,C M ) ,- 
concepLtable(Context, Key, Keyeoncepts), 
satisfy_concept (Context, Hypothesis, Patient, PatientSIot, Keyeoncepts, Prob), 
concept_prob(Prob,CF,AF, CM). 

The sum of all the confidence measures of the findings that are related to this key is denoted 
CMs. CMs is tested with respect to an interval [0,Threshold) where the value of the threshold for 
compound keys is application-dependent. If CMs lies within this interval, the presence of a finding 
can be neither validated nor invalidated, and is considered to be unknown. If the value is to the 
left of this region, the finding is invalidated and the overall CM is set to the AF. Otherwise, it is 
considered to be fully validated and the overall CM is set to the CF. This is handled by 
concept _prob. 

(iv) The rule names that are used within key tuples are evaluated by activating each rule, for 
example for li~'er tests and obstructit,e tests. These rules, which represent for example a group of 
tests, need to be evaluated considering domain specific dependencies of the tests. Each rule is 
interpreted separately and the CM calculation varies for each. Default behavior if the patient has 
not taken the test is similar to the default behavior for anatomical states and blood tests. For 
example, the rule obstructit'e tests in Fig. 3 is activated for the patient in Fig. 4. The values of the 
tests of this patient is found to be sufficient for this rule. Therefore, the CM for this key is set to 
the CF value, which is 0.7. 

extract_from (Context, Hypothesis, Patient, PatientSIot, Key, KeyValues, C F,AF, C M) ,-- 
call_proc ( [ Key, Context, Hypothesis, Patient, PatientSIot, KeyValues, C F,A F,C M ] ). 

/*CALL ANY PROCEDURE PASSED AS PARAMETER'/  
call_proc([ProcNamelList]) ,-  Proc = .. [ProcNamelList],Proc. 

The MATCHER has a default behavior for evaluating keys which are not covered by the above 
discussion, for example a direct key in the DD which does not appear in the patient profile, or 
a compound key for which no information is known. The CMs of these keys are determined with 
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respect to the four categories of  CF and AF values. The crucial categories of critical keys and 
contradicting keys are chosen so as not to contribute to the overall sum. The confidence measure 
CM is calculated as follows: 

noLknown (Context, Hypothesis, Patient, gey, KeyVals, BV,CF,AF,CM) ,-- 
% minor keys 
CF < BV 
AF>  =0, 
CM is(CF + AF)/2. 

not_known (Context, Hypothesis, Patient, Key, KeyVals, BV, C F,A F,0) ,- 
% critical keys 
CF > = BV, 
A F < 0 ,  
record_question ( [ Context, H ypothesis, Patient, Key, KeyVals] ). 

not_known (Context, Hypothesis, Patient, Key, KeyVals, BV,CF,AF,0) ,- 
% contradicting keys 
AF<O, 
CF < BV 
record_possible_contra (Context, Hypothesis, Patient, Key). 

not_known( Context, Hypothesis,Patient, Key, KeyVals, BV, CF,AF,AF) ,- 
% Confirming keys 
AF> = 0  
CF> = BV, 
record_u nknown ( Context, Hypothesis, Patient, Key). 

For example, the exact location of the obstruction can not be determined by ultrasound for the 
patient in Fig. 4 [7]. This key is a critical key. Therefore, the CM value is set to 0 by the default 
values as described above. 

4.5. Orerall likelihood score 

The o~erall likelihood score of  a slot Ls~o,, as mentioned earlier, is the sum of the CM for each 
key and normalized by the specific normalization factor of  the slot. The normalization factor, NF, 
is defined as follows ~here n is the number of  elements in a slot. We assume that not all absence 
factors are zero. 

" ,~AF,, AF >/0, 
NF=Ef=, -I.CF,, A F < 0 .  

The weighted sum, WS,, can be defined as the best case where all the elements of  the slot i is 
validated. Thus, WS, = E~'= t CF,. Therefore, NF, ~< WS,. With this relation, the normalization helps 
to increase the contribution of slot i to the likelihood of the overall context. The score might be 
greater than I with data that confirms all the expected values of a slot in a disease descriptor. The 
overall likelihood of a context is thus defined as 

N \  

T Ls o~, 
L c =  J=l 

NV 

where NV equals the number of  valid slots in a context. 
Let us illustrate this calculat,on b~ using the example disease in Fig. 3 and the patient in Fig. 4. 

If the lab_tests slot is considered, it is seen that the normalization_factor. 2.7 is calculated as 
described above. The calculation of CMs for each of the keys in this slot is illustrated in Section 4.3. 
Respective b ,  the~ are 0.7, 0.8, 0 and 0.9. The sum of these CMs is 2.4. Using these values, Lsk,,, 
is set to 0.89. Since there is only one slot in this context, L~b_, .... is equal to 0.89. 

4.6. The patient anaO,sis 

When the M A T C H E R  calculates the likelihood scores of  a disease, special information related 
to the patient with respect to each disease is recorded along with the likelihood scores, This 
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information is used to produce an evaluation report about the status of a patient. It consists of 
the list of findings which are expected but not present in the patient data, which are contradictory to 
the evaluated disease, and the important concepts which have not been validated during the analysis 
of the MATCHER. The findings of the evaluation are divided into four categories, questions, 
contradictions, possible contradictions and unknowns. To record this information, again the four 
categories of CF and AF values are used. The code in the previous section is suitably adapted. 

The evaluation report can be used to guide the subsequent stages of clinical diagnosis in the 
screening process shown in Fig. 2. For example, the missing necessary tests to check a specific 
condition that have not been performed are suggested by questions for a disease. Contradictions 
are the set of facts in the patient profile that contradict the existence of the disease. Possible 
contradictions are the unknown classes of information which might be critical. They can contradict 
the disease if their definite absence is proven. Unknowns is the category of data that can be used 
for confirmation but are unknown at the time of evaluation, 

5. P E R F O R M A N C E  OF DIJEST 

The development time for DIJEST was about nine months including our learning about aspects 
of jaundice, the diseases and the related anatomy and the physiology. The knowledge represen- 
tation scheme and the uncertainty reasoning mechanism reflect our perception of medical concepts 
and clinical reasoning provided by our experts. 

DIJEST has been tested with cases taken from medical text books and real patient records. For 
example, Table I shows a differential diagnosis produced by DIJEST for a patient with 
choledocholithiasis. The medical history of this patient is shown by Fig. 4. During testing, the 
evaluation of all the domain diseases were included. In clinical use, a threshold may be used to 
inhibit unlikely diseases. 

The analysis shows that choledocolithiasis is given the highest likelihood score by DIJEST, even 
though it does not get the highest score in each context. The score for acute cholecystitis shows 
the way large absence factors can prevent a disease from being considered seriously as explaining 
the jaundice. The scores from the contexts of clinical examination and lab tests strongly suggest 
that cholecystitis could explain the jaundice, more so than choledocolithiasis, but the patient's 
history strongly contradicts the disease. 

The evaluation report of this patient points out for example the lack of information about critical 
findings of hepatitis, such as the presence of a prodrome, or the exposure to the use of needles in 
the past. The evaluation report is not shown here. 

Later on in the course of the disease, the same patient contracted pancreatitis, directly caused 
by the choledocholithiasis. We added new test results to the patient profile and re-ran DIJEST. 
The result of the second differential diagnosis is given in Table 2. The only changed scores are of 
those diseases related to the pancreas. Note especially that the likelihood score of pancreatitis has 
significantly increased. 

Table 2 demonstrates the ability of DIJEST to cope with multiple diseases. Knowledge is still 
necessary, for example, to realize that hepatitis and choledocholithiasis do not in general co-exist, 
whereas choledocholithiasis may cause pancreatitis. Such reasoning, which would form part of the 
screening process, allows us to place more significance on the score for pancreatitis than for 
hepatitis even though it is actually marginally lower. 

Table l Table 2 

Likelihood Scores for Patient I0001 

Disease History Clinical 
choledocholithissis i .00 0.84 
viral hepatitis -0.05 0.99 
hepatitis -0.75 0.99 
acute cholecystitis -1.50 1.17 
pancreatitis 0.28 0.20 
pancr, pseudo cyst 0.16 0.00 
cirrhosis 0.89 0.90 
paJncreatic cancer -0.50 0.17 

Tests Total Score 
0.89 0.91 
0.81 0.58 
1.00 0.41 
1.08 0.25 
0.21 0.23 
0.13 0.10 

-1.50 0.03 
-0.87 -0.40 

II II Likelihood Scores for Patient 10001 
Disease History Clinical Tests Total Score 
choledocholithiasis 1.00 0.84 0.89 ().91 
viral hepat, itis -0.05 0.99 0.81 0.58 
pancreatitis 0.28 0.20 1.06 0.51 
hepatitis -0.75 0.99 1100 0.41 
acute cholecystitis -1.50 1.17 1.08 0.25 
cirrhosis 0.69 0.90 -1.50 0.03 
pancr, pseudo cyst 0.16 0.00 -0.30 -0.05 
pancreatic cancer -0.50 0.17 -1.23 -0.52 
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DIJEST was implemented by using Prolog constructs which are standard in almost all Prologs. 
It currently runs under Sicstus and Quintus Prologs. In terms of speed, producing a table such as 
above and the evaluation report takes only a few seconds on the average. 

6. C O N C L U S I O N S  

The features of  DIJEST in its current state can be summarized as follows. 
Medical knowledge is represented declaratively. The domain specific knowledge and domain 

specific reasoning is clearly distinguished from domain independent knowledge by the M A T C H E R  
by using different types of  keys. The complex medical knowledge related to the diseases, the 
characteristics of  different testing procedures and the basic anatomical and physiological structure 
of  the body are all represented independently of  patient information and illustrate characteristics 
of  jaundice. Using Prolog enabled us to reach our objective, to have this separation and write a 
specialized interpreter very easily. The interpreter has also been generalized to handle domains 
other than DIJEST by customizing the general matching capabilities of  the interpreter. 

Representing the likelihood estimates by using two separate factors, contribution and absence 
factors, can distinguish between valid, invalid, unknown and absent data. 

DIJEST presents very realistic likelihood estimates of  the presence of  the candidate diseases by 
evaluating the patient profiles, which may be incomplete. Of  special importance is the calculation 
of likelihood scores of  the individual contexts and their effect on the final diagnosis. DIJEST also 
emphasises significant factors in the evaluation of each disease. Contradictory findings and 
important  data which may be required for further evaluation of the patient are noted. 

DIJEST is very promising in the early detection of  co-existing diseases in a patient and provides 
good likelihood estimates in the cases with multiple diseases. 

The most difficult task in DIJEST is to obtain the contribution and absence factors for different 
keys. Especially, representing the experts" qualitative view of  the subject by using those factors 
needs successive experiments and adjustment. 

A weakpoint of DIJEST is its neglect of  unexplained factors that are contained in the patient 
profile. The presence of a screening process for presenting the results of  M A T C H E R  in a 
user-oriented manner and for removing redundant information would enhance the performance of 
DIJEST. The consistency checking is also only partially complete. 

At this stage, however, DIJEST is encouraging in its expressive power for medical knowledge 
and by providing useful likelihood estimates to indicate the presence of domain diseases. It has 
potential for detecting the co-existence of multiple diseases. It is unique in both its knowledge 
representation scheme and reasoning with uncertainty. 
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