
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

153 | P a g e

www.ijacsa.thesai.org

Fuzzy Logic Driven Expert System for the

Assessment of Software Projects Risk

Mohammad Ahmad Ibraigheeth
1
,

Syed Abdullah Fadzli

2

Faculty of Informatics and Computing, Universiti Sultan ZainalAbidin, 21300 Kuala Terengganu, Malaysia

Abstract—This paper presents an expert risk evaluation

system developed and based on up-to-date empirical study that

uses a real data from huge number of software projects to

identify the most factors that affect the project success. Software

project can be affected by a range of risk factors through all

phases of the development process. Therefore, it has become

necessary to consider risk concerns while developing the software

project. Risk assessment and management play a significant role

in avoiding failure of the software project, and can help in

mitigating the effect of the undesirable events that could affect

the project outcomes. In this paper, the researchers have

developed a novel expert fuzzy-logic tool that can be used by

project decision makers to evaluate the expected risks .The

developed tool helps in estimating the risk probability based on

the software project’s critical success factors. A user-friendly

interface is created to enable the project managers to perform

general risk evaluation during any stage of the software

development process. The proposed tool can be helpful in

achieving effective risk control, and therefore improving the

overall project outcomes.

Keywords—Risk assessment; critical success factors; fuzzy

expert systems; fuzzy rule-base; risk probability

I. INTRODUCTION

Risk is a probable event that might lead to undesirable
impact on software project outcomes. Software risk is an
unexpected problem occurs during software operations that
might cause software failure [1]. Project risk assessment and
management can help in mitigating the effect of the
undesirable events. Identification of probable risk factors is one
of the major issues in software project management. Today, the
software systems are widely used by people to control and
manage their daily routines, due to this fact; it has been a must
to consider risk concerns when developing any software
project.

Developing tools to assess and manage software risks have
become increasingly important for measuring the health of the
software project during all phases of the software development
process. All organizations should focus on managing risks
related to their software projects. When risk factors are
reported, risk mitigation strategies should be developed in
order to avoid potential project failure. Although considering
software risk concerns has become critical, there is a limited
number of developed tools that can be used by the project
decision makers in evaluating and mitigating the probable
risks.

This paper aims to develop a new expert fuzzy tool that can
help project managers to evaluate the expected project risk.

This tool evaluates the project risk probability based on ten
critical success factors. Using fuzzy set theory is advantageous
for recording linguistic variables that are usually used by
project managers to describe parameters in the project
development environment.

A fuzzy based user-friendly tool to evaluate “risk
probability” of the software project is developed to support
general software project risk assessment through any phase of
the software development process. The percentages of presence
of ten success factors identified in CHAOS report are used as
input to the model. A linguistic variable used for each input,
and two membership functions are defined: NO and YES.
Fuzzification process then is used to map the crisp values
specified by the model users to the fuzzy space Mamdani
interference system with rules base includes 1024 if-then rules
used to evaluate the project risk as a fuzzy number. Finally,
Defuzzification module converts this number into crisp value
that represents risk probability of the software project.

The developed model can be used as a tool to guide the
software project decision makers in making critical decisions
in early stages throughout the software development process,
and in identifying alternative strategies to avoid the software
probable risks.

This research presents two contributions: First, it develops
an expert risk evaluation system based on up-to-date survey
conducted by Standish organization that uses a real data from
50,000 projects to identify the most factors that affect the
project success. Second, it provides general and easy-to-use
tool with user-friendly interface that enables project managers
to assess the project risk during any phase of software
development process.

The rest of this paper is organized as follow: Section 2
describes software project success factors. Section 3 reviews
the related literature. Section 4 explains the proposed model.
Section 5 describes the risk evaluation tool design. Section 6
provides experimental work and analyses the behavior of the
system. Section 7 concludes the research, describes its
limitations, and suggests future work.

II. SOFTWARE PROJECT SUCCESS FACTORS

Many software project success and failure factors have
been described in the literature [2-5]. In this paper, we
investigate the effect of project success factors identified in
CHAOS report. The report identifies ten software project
success factors ranked according to their influence on the
project success as shown in Table 1 [6].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

154 | P a g e

www.ijacsa.thesai.org

TABLE I. SOFTWARE PROJECT SUCCESS FACTORS

Factors of Success Impact

Executive Sponsorship 15%

Emotional Maturity 15%

User Involvement 15%

Optimization 15%

Skilled Resources 10%

Standard Architecture 8%

Agile Process 7%

Modest Execution 6%

Project Management Expertise 5%

Clear Business Objectives 4%

The CHAOS success factors presented in Table 1 can be
defined as a following [6]:

 Executive sponsorship: when the executives provide a
suitable financial and emotional supports, they will
increase the opportunity to implement a successful
software project.

 Emotional maturity: this relates to project environment
and how the project team work together. Having the
skills to manage relationships, self-managed and
socially aware, can help in producing more successful
projects.

 User involvement: when users are not involved, the
project will perform poorly. User participation in
project decision making, and through requirements
understanding phase has a major positive effect on
project success.

 Optimization: optimization of some project aspects can
maximize the project efficiency. This includes
optimization the scope based on the project sponsorship
capabilities, and identifying the optimal team size.

 Skilled resources: the project success is made up by
staff who have the necessary skills to understand and
perform the project requirements.

 Standard architecture management environment
(SAME): SAME is defined by the Standish Group as a
collection of consistent behaviors including the
integration of services, practices, and products in
software development process.

 Agile process: it describes a set of values including
adaptive planning, flexible response to change, early
delivery, and continuous improvements. These
principles support producing successful projects.

 Modest execution: it takes place when the process has
few and simple moving parts, and when the tools used

in project development process have few features used
sparingly.

 Project management expertise: is the use of knowledge,
skills, procedures and techniques in the project
development activities to achieve the desired project
goals, and meet the organization requirements.

III. RELATED WORK

Numerous techniques have been used to address and
manage the software risks. A software risk management
framework is proposed by Boehm [7]. He defined list of top
software risks depending on his experience. There were some
limitations in his study. No theoretical foundations were
presented in his work. Also, as he identified the risks in 1991,
these risks have become inadequate as the software
development environment has increasingly become more
complex and diverse.

Another survey was conducted by Barki et al. [8]. A list of
23 software risks is identified and classified into five sets. The
complexity of assessment scale that was used for each risk
posed a limitation.

Schmidt et al. [9] also conducted a survey by integration of
many experts opinion to identify 53 software risks. These risks
were grouped into 14 sets. As the experts were from different
countries, the study declared that the list could be affected and
have become inapplicable.

Wallace et al. [10] defined 27 software risks and classified
them into 6 dimensions (i.e., user, requirements, complexity,
planning, staff, and development environment) by performing
cluster analysis to develop model that measure the software
project risk.. Performing cluster analysis is helpful in finding
variable similarities to perform accurate prediction.

Artificial intelligent approaches also used widely to counter
and manage the software risks. A regression analysis method
is used in research proposed by Jiang and Klein [11] to define
the most risk factors that affect the process of project
development. The impact of applying a certain management
activities on the software project outcomes is considered [12].
A genetic algorithm combined with decision trees is an
approach for risk prediction by using certain software metrics
developed by Xu z et al. [13]. A fuzzy logic is used in
developing system to evaluate the software risks through
earlier phase of software development cycle [14]. Yavari et al.
[15] proposed a method based on Wallace’s [10] work to
assess software risk using fuzzy logic. Neural networks are
used to identify software projects with high risk [16]. Hu Y et
al. [17] proposed a framework for risk analysis based on risk
causality using Bayesian networks. Each of these techniques
has its own advantages. For example, regression analysis is
suitable for risk prediction as it can find the relationships
between variables. Applying decision trees is fast and simple
while neural network is suitable when the relationships
between the system variables are non-linear. Applying
Bayesian network with considering causality dependencies can
perform better prediction.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

155 | P a g e

www.ijacsa.thesai.org

The main advantage of our approach is developing a novel
tool for software risk assessment based on critical success
factors. The primary objective of our work is to perform
general risk evaluation that can be done through any stage of
software development life cycle (SDLC). The proposed tool
can be helpful in achieving effective risk control, and therefore
improving the overall project outcomes.

IV. PROPOSED SOFTWARE RISK ASSESSMENT MODEL

In this paper, ten success factors that are identified in
CHAOS report [6] are used (refer to Table 1). Fig. 1 shows our
model. The final output of this model is the software risk
probability due to the mentioned ten factors.

Fuzzy Logic toolbox in MATLAB is used to implement
Mamdani inference system. The following steps (shown in
Fig. 2) explain how the model works:

Step 1: Fuzzification

In this step, crisp values (within the range of 0 to 100) for
the ten input variables are measured. A scale mapping then
performed for these inputs to obtain their membership values
within the range of 0 to 1.Two trapezoidal membership
functions (similar to Fig. 3). We might interpret NO as: input
percentage of presence below 50%, and YES as: input
percentage of presence higher than 50%.

Fig. 1. Risk Evaluation Model.

Fig. 2. Risk Evaluation Steps.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

156 | P a g e

www.ijacsa.thesai.org

Fig. 3. Trapezoidal Membership Functions (Trapmf).

Step 2: Rules Evaluation

The rule base includes 1024 IF-THEN rules. The following
are samples of the created rules:

 Rule 1:If (Executive_Sponsorship is YES) and
(Emotional_Maturity is YES) and (User_Involvement is
YES) and (Optimization is YES) and
(Skilled_Resources is YES) and (Standard_Architecture
is NO) and (Agile_Process is YES) and
(Modest_Execution is YES) and
(Project_Management_Expertise is YES) and
(Clear_Business_Objectives is YES) then
(RiskProbability is NONRISKY)

 Rule 10: If (Executive_Sponsorship is YES) and
(Emotional_Maturity is YES) and (Us)

 er_Involvement is YES) and (Optimization is YES) and
(Skilled_Resources is YES) and (Standard_Architecture
is NO) and (Agile_Process is NO) and
(Modest_Execution is YES) and
(Project_Management_Expertise is YES) and
(Clear_Business_Objectives is NO) then
(RiskProbability is NONRISKY)

 Rule 127: If (Executive_Sponsorship is YES) and
(Emotional_Maturity is YES) and (User_Involvement is
YES) and (Optimization is NO) and (Skilled_Resources
is NO) and (Standard_Architecture is YES) and
(Agile_Process is NO) Optimization is YES) and
(Skilled_Resources is YES) and (Standard_Architecture
is NO) and (Agile_Process is NO) and
(Modest_Execution is NO) and
(Project_Management_Expertise is YES) and
(Clear_Business_Objectives is YES) then
(RiskProbability is RISKY)

 Rule 397:If (Executive_Sponsorship is YES) and
(Emotional_Maturity is NO) and (User_Involvement is
NO) and (Optimization is YES) and (Skilled_Resources
is YES) and (Standard_Architecture is NO) and
(Agile_Process is NO) and (Modest_Execution is NO)
and (Project_Management_Expertise is YES) and
(Clear_Business_Objectives is YES) then
(RiskProbability is RISKY)

 Rule 1024:If (Executive_Sponsorship is NO) and
(Emotional_Maturity is NO) and (User_Involvement is

NO) and (Optimization is NO) and (Skilled_Resources
is NO) and (Standard_Architecture is YES) and
(Agile_Process is NO) and (Modest_Execution is NO)
and (Project_Management_Expertise is NO) and
(Clear_Business_Objectives is NO) then
(RiskProbability is RISKY)

The fuzzified inputs that are obtained in step 1 are applied
to the antecedent parts of rules in the rule base. As the fuzzy
rule has multiple antecedents, we apply AND operator, with
product (prod) method to produce single value that represents
the evaluation of each rule antecedent parts .A fuzzy
implication operator (minimum method) then is applied to clip
the membership values of the rule consequent parts based on
membership values of antecedents. The model output is
categorized in two linguistic variables that are Risky and Non-
Risky. Also, two linguistic variables are used for each input,
namely: NO and YES.

Step 3: Outputs aggregation

In this step, the previously truncated membership functions
of rule consequents are combined to obtain single fuzzy set.

Step 4: Defuzzification

Defuzzification is used to calculate the output as numerical
value. Centroid method is applied to obtain the value that
represents the software project risk probability.

Fig. 4 shows the model’s fuzzy inference system (FIS)
represented by using MATLAB FIS editor. It includes ten
input variables, and one output named RiskProbability.

Fig. 4. FIS Input and Output Variables.

V. TOOL DESIGN

The graphical user interface (GUI) shown in Fig. 5 is
developed to enable software project decision makers to easily
access our risk assessment tool. The user first specifies
percentages of presence of the ten items (inputs) in his project,
and then he presses “Estimate Risk Score” button to evaluate
the project risk probability.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

157 | P a g e

www.ijacsa.thesai.org

Fig. 5. Software Risk Assessment.

It is strongly recommended that the tool to be used earlier
or during any phase of the project development process to
determine the current state of the software project and to
identify the possible improvements to mitigate risk and avoid
the project failure. The goal of this tool is assigning one of the
following labels to the project under evaluation:

 Low risk (LOW): If the risk probability is less than
40%, this indicates that the project is healthy and
expected to be successfully completed. However, there

are no fully guaranteed successful projects, therefore
project managers should be aware of individual items
with low scores, and these items should be tracked and
controlled during all stages of the project development
process.

 Medium risk (MED): If the risk probability in range of
40 to 60%, the project should be identified as a medium
risk, and efforts must be made to avoid occurrence of
the undesirable events. Improvement should be applied
to those individual items with low scores that can
mitigate the overall project probability of risk.

 High Risk (HIGH): If the risk probability is greater than
60%, this indicates that the project has run into serious
risks that can cause failure if process improvement
methods are not applied. The stakeholder should be
reported that there is imminent danger of project failure.
All project phases have to be kept under monitoring,
and a quality reports should be regularly carried out. If
the risk is still high after applying mitigation methods, it
could be better to decide not to proceeding with this
project implementation.

VI. EXPERIMENTAL WORK AND DISCUSSION

To analyze the behavior and sensitivity of our risk
assessment tool, we assumed that it is applied on eight virtual
projects. Descriptions of these projects and results of their
assessments by the risk tool are presented in Table 2.

TABLE II. TOOL ASSESSMENT RESULTS FOR EIGHT SOFTWARE PROJECTS

Success Factor

Project ID

Project A Project B Project C Project D Project E Project F Project G Project H

Executive

Sponsorship
80% 47% 88% 55% 40% 80% 80% 40%

Emotional

Maturity
75% 38% 90% 50% 35% 90% 40% 40%

User Involvement 75% 60% 85% 53% 30% 80% 33% 30%

Optimization 70% 50% 86% 40% 40% 77% 30% 30%

Skilled Resources 85% 70% 70% 70% 40% 60% 71% 60%

Standard

Architecture
80% 66% 70% 55% 48% 63% 45% 63%

Agile Process 60% 55% 50% 50% 44% 44% 40% 33%

Modest Execution 85% 70% 50% 80% 70% 50% 66% 70%

Project

Management

Expertise

87% 55% 60% 72% 70% 60% 46% 60%

Clear Business

Objectives
80% 50% 60% 75% 72% 40% 51% 61%

Risk Probability 20.63% 48.62 20.05 50 60.92 29.3 56.8 62.44

Risk Classification LOW MEDIUM LOW MEDIUM HIGH LOW MEDIUM HIGH

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 10, No. 2, 2019

158 | P a g e

www.ijacsa.thesai.org

Fig. 6. Effect of “Executive Sponsorship” on the Project Risk Probability.

In all projects, we observed that some factors have higher
impacts on the project risk than others. For example in project
E, even it has some factors with high score (i.e. factors with
percentage of presence higher than 60%), namely, Modest
Execution Project Management Expertise, and Optimization.
Similarly, the risk probability for project F is “LOW” even it
has six factors with low scores (i.e. factors with percentage of
presence lower than 60%). This is due to the high scores of the
first four factors that have higher effect on the project success.

Also, a sensitivity analyses can be performed for the
individual factors. Fig. 6 presents sensitivity analysis for
“Executive Sponsorship” factor to show its effect on the total
project risk probability. The percentage of presence of the
considered factor is changed within the range of 0 to 100%
while all other input parameters are kept fixed.

VII. CONCLUSION

In this paper, a fuzzy based user-friendly tool to assess
“risk probability” for the software projects is presented. This
tool is developed based on software project success factors
identified by Standish organization. These factors correspond
to real data collected through survey involved about 50,000
projects.

The developed tool supports a general assessment of
project risk at any phase of development process. The
percentages of presence of ten success factors are used as input
to the system that produces a numerical value which presents
the total project risk probability. The result can be used to
assign one of three labels namely: low, medium, or high risk to
the software project. The developed tool can be used to guide
the decision makers in making critical decisions early to avoid
undesired events that might cause project failure. The system
behavior and sensitivity are analyzed using eight virtual
projects and the impacts of various factors are observed.

The presented tool has two limitations. First, the proposed
approach did not consider correlations between factors. For
example, the percentage of presence of “User Involvement”
factor may be correlated with the percentage of presence of

“Clear Business Objectives” factor. Second, we have not
applied the tool to actual software projects. Even though our
model is implemented based on actual empirical data to be a
supportive tool that can be used for observing the current state
of the project “during development process” (i.e. this tool is not
designed to be applied on already released projects), it might
be useful to involve software companies to verify the results of
the proposed tool.

Future research work will investigate how the system
prediction accuracy can be improved by using learning
algorithms based on historical data from previous projects.

REFERENCES

[1] Xu Z, Khoshgoftaar TM, Allen EB, Application of fuzzy expert systems
in assessing operational risk of software, Info.Soft. tech., 45 (7) (2003)
373-388.

[2] Ewusi-Mensah, K. (2003). Software Development Failures: Anatomy of
Abandoned Projects. Cambridge: MIT Press.

[3] GAO Report (14-705T). (2014). Preliminary Results of Undercover
Testing of Enrollment Controls for Health Care Coverage and Consumer
Subsidies Provided Under the Act.

[4] The Standish Group. (2013). The Chaos Manifesto.The Standish Group.

[5] Ibraigheeth, M., & Fadzli, S. A. (2019). Core Factors for Software
Projects Success. JOIV: International Journal on Informatics
Visualization, 3(1).

[6] Hastie S, Wojewoda S. , Standish group 2015 chaos report-q&a with
Jennifer Lynch, (2016).

[7] Boehm BW, Software risk management: principles and practices, IEEE
software 8(1)(1991), 32-41.

[8] Barki H, Rivard S, Talbot J.,Toward an assessment of software
development risk, J. manag. Info. sys, 10(2) (1993) 03-25.

[9] Schmidt R, Lyytinen K, Keil M, Cule P, Identifying software project
risks: An international Delphi study”. J. manag. Info. Sys,17(4) (2001)5-
36.

[10] Wallace L, Keil M, Rai A, How software project risk affects project
performance: An investigation of the dimensions of risk and an
exploratory model, Deci. sc., 35(2)(2004) 289-321.

[11] Jiang JJ, Klein G. ,Risks to different aspects of system success, Info.
&Manag., 36(5) (1999) 263-272.

[12] García MN, Román IR, Peñalvo FJ, Bonilla MT, An association rule
mining method for estimating the impact of project management policies
on software quality, development time and effort. Exp. Sys. App., 34(1)
(2008)522-529

[13] Xu Z, Yang B, Guo P, Software risk prediction based on the hybrid
algorithm of genetic algorithm and decision tree.in Int. Conf. on
Intelligent Computing, Berlin, 2007(Springer, Berlin, Heidelberg)pp.
266-274.

[14] Xu Z, Khoshgoftaar TM, Allen EB, Application of fuzzy expert systems
in assessing operational risk of software, Info.Soft.Tech., 45(7)
(2003)373-88.

[15] Yavari A, Golbaghi M, Momeni H, DAssessment of Effective Risk in
Software Projects based on Wallace's Classification Using Fuzzy Logic,
Int. J. Info. Eng. Electronic Bus., 5(4) (2013) 58

[16] Neumann DE. , An enhanced neural network technique for software risk
analysis, IEEE Trans. on Software Eng.,28 (9) (2002) 904-912.

[17] Hu Y, Zhang X, Ngai EW, Cai R, Liu M. ,Software project risk analysis
using Bayesian networks with causality constraints, Deci.Sup. Sys., 56
(2013) 439-49.

