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ABSTRACT 

Inconsistency frequen@ exists in a rule-based expert system. Detecting the existence 
of  inconsistency in a fuzzy rule-based environment is difficult and may be different 
from that of  traditional rule-based systems. An  affinity measure, which is based on 
the similarity measure, is introduced to determine the likeness of  two fuzzy terms. By 
using the affinity measure, the techniques for consistency checking in a non-fuzzy 
environment can be easily applied to a fuzzy environment. A consistency checker 
(CCFE) is implemented to detect possible inconsistency in a mixed fuzzy and non-fuzzy 
environment. 

KEYWORDS: Expert  system, fuzzy  theory, inconsistency, possibility 
distribution 

I. INTRODUCTION 

In the development of a rule-based expert system, the knowledge 
engineering process is an iterative one. The knowledge base needs to be 
refined many times. When new rules are added or the existing rules are 
altered, inconsistency in the knowledge base frequently occurs. 

Although Hayes-Roth [1] pointed out that a missing key feature of 
rule-based systems is "a suitable verification methodology or a technique 
for testing the consistency of completeness of a rule set," many software 
tools such as TERIRESIAS [2], ONCOCIN's rule-checker [3], INSPEC- 
TOR [4], and ESC [5] have been developed to identify inconsistencies in 
non-fuzzy knowledge bases. The consistency checking tools help both the 
domain experts and knowledge engineers to build the expert systems more 
easily, accurately, and quickly. 

However, checking inconsistency in a fuzzy rule-based environment 
[6-8] is not as simple as that in a non-fuzzy environment and may also be 
different from that of traditional rule-based systems. Let "height" be a 
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fuzzy object having three fuzzy terms (tall, medium, short) as its possible 
values. If  the user enters the following two rules: 

Rule 1" IF height is tall THEN C 
Rule 2: IF height is short THEN C 
Does redundancy occur? 
Consider another case: 
Rule 3: IF A THEN height is more-or-less tall 
Rule 4: IF A THEN height is not very tall 
Does conflict occur? 
Thus, it would be better if we could apply a quantitative measure on the 

two fuzzy terms (e.g., tall, not short) in order to determine to what extent 
these two fuzzy terms mean the same thing. An "affinity" measure based 
on the similarity measure [6] is created to determine the degree of 
matching between two fuzzy expressions. Using the affinity measure, the 
techniques for consistency check in a non-fuzzy environment can be 
transported to a fuzzy environment. 

The following section summarizes different kinds of inconsistencies that 
exist in a rule-based environment. Section 3 introduces the similarity and 
affinity measures. Section 4 describes a consistency checker, CCFE, imple- 
mented for fuzzy rule-based expert systems. Its results in detecting incon- 
sistency in a fuzzy environment are illustrated by an example and discussed 
in the fifth section. 

2. INCONSISTENCY IN RULE-BASED SYSTEMS 

There are several kinds of inconsistencies in a non-fuzzy rule-based 
environment [9-12]. The summary is given as follows: 
Let us consider the rules: 

Rule 1: IF A1 THEN B1 (CF1) 
Rule 2: IF A 2  THEN B2 (CF2) 

where A1 and A2  may be any combination of propositions, B1 and B2 are 
single propositions, and CF1 and CF2 are the certainty factors, ranging 
from 0 to 1, of rule 1 and rule 2 respectively. 

2.1. Redundant  Rules 

• Two rules succeed in the same situation and have the same results. 
i.e., i, A1 = A2  & B1 = B2 & sign(CF1) = sign(CF2) 
or ii, A1 = A2  & B1 ~ B2 & sign(CF1) ~ sign(CF2) 

• The two rules may cause the same information to be counted twice, 
leading to erroneous increases in the certainty factor of the conclusion. 
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• Condition ii above may not be redundant if the expert wants to 
confirm one value (e.g., B1 with CF1 > 0) and at the same time 
disconfirm another value (e.g., B2 with CF2 < 0) of the conclusion. 

2.2. Conflicting Rules (Contradiction) 

• Two rules succeed in the same situation but with conflicting results. 
i.e. i, A 1  = A 2  & B1 = B2 & sign(CF1) --/: s ign(CF2) 
or ii, A 1  = A 2  & B1 --/: B2  & sign(CF1) = sign(CF2) 

• It is a common occurrence in rule sets. However, it may cause no 
problems (inconsistency) because the expert may want to conclude 
different values with different certainty factors. 

• For example, the following are the rules extracted from a medical 
expert system ESROM [8]: 

(Rule ml7a  
IF (((mdcs is anycd) OR 

(mdcs is gmd)) 
AND (gestation > = 30) 
AND (gestation < = 34)) 
THEN management is delivery 
Certainty is 0.7 

(Rule m18 
IF (((mdcs is anycd) OR 

(mdcs is gmd)) 
AND (gestation > = 30) 
AND (gestation < = 34) 
THEN management is observation 
Certainty is 0.3 

Management  is a single-valued object with expected values (delivery, 
observation). The two rules listed above have the same antecedent 
part but with conflicting conclusions. However, they are set on pur- 
pose by the expert and by no means a mistake. 

2.3. Subsumed Rules 

• Two rules have the same result, but one contains additional restric- 
tions on the situation in which it will succeed. Whenever the 
more restrictive rule succeeds, the less restrictive rule also succeeds, 
resulting in redundancy. 
i.e., ( A1  c A 2  or A 2  c A1)  & B1 = B2 
or ( A 1  c A 2  or A 2  c A 1 ) & B 1  4~ B2  

• e.g., in ESROM 

(Rule iol  
IF (diagnosis is unrupt) 
THEN cx is uninf) 
Certainty is 0.8 

& sign(CF1) = sign(CF2) 
& sign(CF2) ~ sign(CF1) 

(Rule iil0 
IF ((diagnosis is unrupt) 
AND (ctg is reactive)) 
THEN cx is uninf) 
Certainty is 0.95 

Whenever rule iil0 is triggered, rule iol will also be triggered. Thus, 
there is redundancy. 
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• However, the knowledge engineer may want to write these kinds of 
rules so that the more restrictive rules will add weight to the conclu- 
sions. Thus, the experts should be warned and requested to clarify 
their meanings. In the above example, if the expert 's intention is to 
give more weight to "cx is uninf" when "ctg is reactive" is also true, 
then the certainty factor of rule iil0 should be changed to 0.75. If both 
"diagnosis is unrupt"  and "ctg is reactive" are true, the certainty of 
conclusion "cx is uninf" becomes 0.95 after both rules are fired and 
the evidence combination calculation is applied [6]. 

2.4. Sub-contradiction Rules 

It is a special case of contradiction. Two rules have different results, but 
one contains additional restrictions on the situation in which it will 
succeed. Whenever  the more restrictive rule succeeds, the less restrictive 
rule also succeeds: 

i.e., ( A 1  c A 2  or A 2  c A 1 )  & B1 4 : B 2  & sign(CF1) = s ign(CF2) 

or ( A 1  c A 2  or A 2  c A 1 )  & B1 = B2  & s ign(CF2)  4: s ign(CF1) 

2.5. Unnecessary IF Conditions 

• Two rules have the same conclusion, an IF condition in one rule is in 
conflict with an IF condition in the other rule, and all other IF 
conditions in the two rules are equivalent. 
e.g., ( A 1  = p / x  q), ( A 2  = p A -1 q), B1 = B2 & CF1 = CF2 

• The example described above actually indicates that only one rule is 
necessary. The second IF conditions (q and -1 q) of both rules are 
unnecessary. Although it will not cause any error  in consultation, it 
would be better  to integrate the two rules into one: IF p T H E N  
B I ( C F 1 )  

• e.g., ( A 1  = p A q),  ( A 2  = ~ q), B1 = B2 & CF1 = CF2 
The second IF condition in the first rule is unnecessary, and the two 
rules could be combined into: IF p V -1 q T H E N  B I ( C F 1 )  

• If CF1 4: CF2, no unnecessary IF condition occurs because the expert 
may want to conclude a value with different certainty factors in 
different situations, e.g., in ESROM 

(Rule m20 
IF (((wcc > 10) AND (wcc < 15)) 

OR ((crp > 20) AND (crp < 40) 
and (gestation > = 32))) 

T H E N  management is delivery) 
Certainty is 0.8 

(Rule m21 
IF (((wcc > 10) AND (wcc < 15)) 

OR ((crp > 20 )AND (crp < 40) 
and (gestation < 32))) 

T H E N  management is delivery) 
Certainty is 0.5 
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The condition (gestation > = 32) in rule m20 is conflicting with the 
condition (gestation < 32) in rule m21. However, the expert wants to 
assign different certainty factors to different situations. 

2.6. Circular Rules 

A set of rules is circular if the chaining of these rules in the set forms a 
cycle. 

i.e., A1 = B2 &A2 = B2 & sign(CF1) -- sign(CF2) 

2.7. Self-referring Rules 

The condition and conclusion clauses of a rule refer to the same subject. 

e.g., IF A = 0 T H E N  A = 1 (for A is not a multi-valued object) 

2.8. Inconsistent IF -Clause  

The clauses in the condition are contradictory to each other. 

e.g., IF A = 1 and A = 2 T H E N  B (for A is not a multi-valued object) 

In 2.7 and 2.8, if A is a multi-valued object, it cannot be concluded 
that inconsistency occurs because a multi-valued object can have more 
than one value at anytime 

The above discussion only mentions superficial inconsistency between 
two rules. However, inconsistency may arise after a sequence of infer- 
ring steps, e.g., 

R u l e l :  I F A T H E N B  (CF1 >0)  
Rule 2: IF B T H E N  C (CF2 > O) 
Rule 3: IF C T H E N  D (CF3 > O) 
Rule 4: IF A T H E N  D (CF4 > O) 
Redundancy occurs between rule set (1-3)  and rule 4. 
Moreover,  the detection of circular-rule chains is affected by the 

threshold. The certainty factors may cause a circular chain of rules to be 
"broken"  if the certainty factor of conclusion falls below the threshold 
(e.g., 0.2). 

e.g., 
Rule 1: 
Rule 2: 
Rule 3: 
Rule 4: 

IF A T H E N  B (CF = 0.4) 
IF B T H E N  C (CF = 0.7) 
IF C T H E N  D (CF = 0.7) 
IF D T H E N  A (CF = 0.8) 

As (0.4)(0.7)(0.7) = 0.19 < 0.2, the circular-rule chain is broken. 
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3. CONSISTENCY CHECKS IN A FUZZY ENVIRONMENT 

First, let us consider the possibility, necessity, and similarity measures in 
possibility theory, and then the affinity measure of two fuzzy terms will be 
introduced. Let the fuzzy terms be represented by a list of 11 real numbers 
that are grades of membership of the points on an imaginary psychological 
continuum with an interval scale. The fuzzy terms "tall," "medium," and 
"short" are represented as follows: 

tall: 0 0 0 0 0 0 .0280 .1176 .3277 .6561 1 
medium: 0 0 0 .0588 .328 1 .328 .0588 0 0 0 
short: 1 .6561 .3277 .1176 .0280 0 0 0 0 0 0 

Hedges like "very" or "more-or-less" may be applied to the above fuzzy 
terms to form fuzzy expressions such as "very tall" and "more-or-less 
short." A square and a square root functions are the fuzzy concepts 
handling functions for the hedges "very" and "more-or-less" respectively 
[13]. The modified representations are shown: 

very tall: 0 0 0 0 0 0 .0008 .0138 .1074 .4305 1 
more-or-less 
short: 1 .8100 .5725 .3429 .1673 0 0 0 0 0 0 

The membership values described above can be viewed as a possibility 
distribution [14]. But this distribution has only an indicative or subjective 
meaning and may not be interpreted directly. Figures 1-3 depict the 
curves of the above fuzzy terms/expressions. Note that the curves are 
normalized and convex. 
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Figure 1. Possibility distribution for the concepts "tall" and '"very tall." 
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Figure 2. Possibility distribution for the concepts '"short" and "more-or-less" short. 

3.1 Possibility and Necessity 

The formulae of the possibility (P )  and necessity ( N )  measures between 
a fuzzy datum and a fuzzy pattern are given as follows [15]: 

P ( F [ F ' )  = max(min(~F(W), I.LF,(W))) 

N ( F I F ' )  = 1 - e ( ~  F I E ' )  
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Figure 3. Possibility distribution for the concept "medium." 
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where 

P(FIF') is the possibility of the fuzzy datum F '  given the fuzzy pattern 

F ,  and 
N(F[F') is the necessity of the fuzzy datum F '  given the fuzzy pattern F. 

/~(w) is the membership function of w in the universe of discourse, and 

~ F is the complement of F.  

The possibility measures the degree of overlapping between the datum 
and the pattern; or in other words, it measures the non-emptiness of 
FAF' .  

For example: 

P(tall~very tall) = 1 

P(shortlmore-or-less short) = 1 

P(talllmedium) = 0.028 

P(shortltall) = 0 
Possibility is an optimistic measure: it only means something is possi- 

ble but does not guarantee it will happen. On the other hand, necessity 
is a drastic measure that is equal to the impossibility between two 
opposite events. 

For  example: 

N(tall~very tall) = 0.6561 

N(shortlmore-or-less short) = 0.4275 

N(talllmedium) = 0 

N(shortltall) = 0 
Under  normal circumstances, the necessity has the following 

properties: 

IF N(FIF') > 0.5 T H E N  

F '  has a more concentrated or narrower distribution than F. 

e.g., tall and very tall. 

IF N(FIF') < 0.5 T H E N  

F '  has a more dilated or broader  distribution than F. 

e.g., short and more-or-less short, 

tall and medium. 

IF N(FIF') = 0.5 T H E N  

F has the same distribution as F. 
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Also from the definition of both possibility and necessary, it can be shown 
that: 

i, P(AIB)  = P(BIA)  .... (1) 
ii, P(AIB u C)  - -  max(P(AIB), P ( A I C ) )  .... ( 2 )  

iii, N(AIB U C)  -- min(N(AIB), N(AIC)) .... (3) 
iv, N(AIA)  > =  0.5 .... (4) 

3.2. Similarity 

The similarity M is calculated by the following algorithm [6]: 

IF N(FIF')  > 0.5 

THEN M = P(F[F') 

ELSE M = (N(FIF')  + 0.5)*P(FIF') 

where * denotes multiplication. 
That means when necessity is greater than or equal to 0.5, the similar- 

ity between pattern and datum is saturated and is forced to equal the 
possibility. If the similarity is not saturated (necessity is less than 0.5), the 
similarity should depend on both possibility and necessity. 

The similarity measure is proven to be a useful tool to determine the 
similarity between the fuzzy data in a fact base and the fuzzy patterns in 
the premise part of a rule [8]. However, there is one shortcoming in 
similarity; it is not commutative, i.e, M(plq) ~ M(qlp). 

For example, 

P(not mediumltall) = 1 and P(mediumltall) = 0.0588 

N(not mediumltall) = 1 - 0.0588 = 0.9412 

Therefore, M(not medium ltall) = 1. But 

P(talllnot medium) = 1 and P(not talllnot medium) = 1 

=* N(talllnot medium) = 1 - 1 = 0 

Therefore, M(talllnot medium) = 0.5. 
Hence, the order of rule checking will influence the value of similarity. 

Owing to this limitation, the affinity (A) measure is introduced. 

3.3. Affinity 

The Affinity of two simple propositions p and q is defined as follows: 

A ( p , q )  = M ( p  A q[p v q) 

where Izp ̂  q(W) = min(tzp(w),  tZq(W)), 

tzp v q(W) = max(tZp(W), tZq(W)) and 

/z(w) is the membership function of w in the 
universe of discourse. 
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A(p, q) measures the similarity of p v q given p A q. That is, to what 
extent does the whole part of both p and q (p  v q) match the shared part 
of them (p  A q). The following are some properties of the affinity 
measures: 

i, If p and q are identical, A(p, q) will be equal to 1 (because 
p V q = p A q ) .  

ii, A(p, q) is commutative, i.e., A(p, q) = A(q, p). 
B e c a u s e p A q = q A p a n d p  V q = q V p .  

iii, A(p, q) = min(M(plq), M(qlp)) .... (5) 

Proof of  assertion (iii): 

Consider the possibility first 

P(p Aq]p V q) 

=max(min(IXp^q(W),lXpvq(W))) 

= max(I.£pAq(W)) 

= max(min( i.tp(w), tXq(W))) 

= P(plq) 

= P(qlp) 

and 

Now consider 

Similarly, 

N(p  A qlp V q) 

= min (N(p  A qlp), N(p  A qlq)) 

N(p  A qlp) 

= l - - P ( ~ ( p A q ) I p )  

= 1 - P ( p [ ~  ( p A q ) )  

= 1 - P ( p l ~ p  V ~ q )  

= 1 - max(P(p[  ~ p), P(p[ ~ q)) 

= 1 - m a x ( P ( ~  pip), P( ~ qlp))  

= min(N(p[p), N(q[p)) 

N(p  A qlq) 

= min(N(qlq), N(plq)) 

[by eqn (1)] 

.... (6) 

[by eqn (3)] 

[by eqn (1)] 

[by eqn (2)] 

[by eqn (1)] 
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So that 

N(p /x qlp v q) 
= min(N(plp), N(p]q), N(q]p), N(qlq)) 

.... (7) 
By eqn (4), it can be concluded that N(plp) and N(qlq) are both 

greater than or equal to 0.5. 
Now, we consider all four cases: 

case 1: 

If both N(p[q) and N(qlp) > = 0.5, 

then M(plq) = P(plq) = P(q[p) = M(qlp) = 
min(M(plq), M(qlp)) [by eqn (6)] 

and N(p A qlP V q > = 0.5 [by eqn (7)] 

Thus Z(p ,q )  = M(p A qlp V q) = P(p A qlp V q) = e(plq) = 
P(qlp) = min(M(plq), M(qlp)) [by eqn (6)] 

Thus, the assertion (eqn (5)) holds. 

case 2: 

If N(plq) < 0.5 and N(qlp) > 0.5, 
then N(p A qlp V q) = N(plq) < 0.5 
and A(p, q) = (N(p[q) + 0.5)*P(p[q) = M(plq) (minimum of M(plq) 

and M(q[p)) 

case 3: 

If N(qlp) < 0.5 and N(p[q) > 0.5, 
then N(p A qlP v q) = N(qlp) < 0.5 
and A(p, q) = (N(qlp) + 0.5)*P(q[p) = M(q]p) (minimum of M(pJq) 

and M(q[p)) 

case 4: 

If both N(plq) and N(qlp) < 0.5, 

then N(p A qlP V q) = min(N(p[q), N(qlp)) 

So A(p, q) 

=M(p  A qlp v q) 

= (N(p m qlp v q) + 0.5)*e(p m qlp v q) 

= (min(N(plq), N(qlp)) + 0.5)*P(plq) 

= min(M(plq), M(qlp)) 

Therefore,  A(p, q) = min(M(plq), M(q]p)) holds for all cases. 

[by eqns (6) & (7)] 
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Implementing A(p,q)  using our definition (ie., A ( p , q ) =  M(p A ql 
p v q)) will result in two comparisons, two additions, and one multiplica- 
tion less than that of using A(p, q) = min(M(plq), M(qlp)) each time. 
Hence the former is actually used for implementation in our system. 

Among the above properties, the commutative one is the most impor- 
tant because it implies that the order of rule-checking has no influence on 
the value of the affinity. 

In order to investigate the suitability of affinity in consistency checks, we 
compute all the results of the affinity for different values of p and q on a 
fuzzy object such as "height." Hedges like "very" and "more-or-less" and 
logical negation "not"  are added to the possible fuzzy terms of the object. 
So the values of p and q could be 

[not] [very Imore-or-less] {tall Imedium Ishort} 

where the choice inside the [ ] is optional. (Although the expressions like 
"more-or-less medium" or "very medium" are not very meaningful, we 
include them to complete the investigation.) 

The results of the affinity of any two fuzzy expressions p and q can be 
divided into four groups. 

(1) A(p,q)  = 1 
e.g., A(tall, tall) = 1 

A(very medium, medium) = 1 
(2) A(p, q) > 0.5 

e.g., A(tall, very tall) = 0.9305 
A(more-or-less short, short) = 0.9275 
A(more-or-less medium, very medium) = 0.9273 

(3) A(p,q)  = 0.5, P(p /x qlp v q) = 1 and N(p A q[p v q) = 0 
e.g., A(tall, not medium) = 0.5 

A(not short, medium) = 0.5 
A(not very tall, more-or-less short) = 0.5 

(4) A(p,q)  < 0.5, P(p A qlp V q) < 1 and N(p A qlp V q) = 0 
e.g., A(tall, not tall) = 0.1720 

A(more-or-less tall, medium) = 0.0837 
A(short, tall) = 0 

The affinities of groups (1) and (2) are both greater than 0.5. This means 
that their degrees of matching are greater than their differences. There- 
fore, we conclude that the two fuzzy concepts being compared are the 
same or similar (to some extent). The affÉnities in group (4) are less than 
0.5, we say that the two terms are different. The affinities in group (3) 
equal to 0.5 which means that the truth and falsity of the likeness between 
two fuzzy terms cannot be indicated by the affinity measure. As a conclu- 
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sion, if the affinity between two fuzzy terms is greater than 0.5, they can be 
treated as equal. For case (3), we could swing to either side depending on 
the implementation. 

The definition of affinity could be extended to detect the likeness of the 
antecedent part of two rules. 

Let P1 and P2 be the antecedent parts of two rules that contain 
multiple propositions connected by AND operators, i.e., 

P1 -- P l l  A P12 A P13 A "'" A Plk 

P2 = P21 A P22 A P23 A .-- A P2k 

Then A(P1,  P2) = f i  A(Plk ,  P2k) 
k = l  

If Plk and P2k are non-fuzzy and Plk = P2k, then A(Plk,  p2k)=  1; 
otherwise, A(Plk,  P2k) = 0. The affinity of an antecedence is equal to the 
product of the affinity of its propositions. 

4. A CONSISTENCY CHECKER IN FUZZY ENVIRONMENT 

Using affinity, we could detect inconsistency in a fuzzy environment. The 
detection methods can be the same as those used in a nonfuzzy environ- 
ment except that we use affinity to measure the degree of matching of two 
fuzzy expressions. 
i.e., (P1 = P2) and (P1 4: P2) could be replaced by A(PIIP2) >_>_ 0.5 and 
A(PIIP2) < 0.5 in a fuzzy environment respectively. 

A consistency checker in a fuzzy environment (CCFE) has been imple- 
mented to check the rule bases built from a fuzzy expert system shell Z-III 
that allows any mix of fuzzy and non-fuzzy terms in the rules [8]. CCFE is 
implemented using Turbo C 2.0 in a microcomputer environment. Affinity 
measure is employed to determine the degree of matching of two fuzzy 
propositions. At the first stage of the development of CCFE, we set the 
following assumptions: 

(a) Only one proposition is allowed in the consequence part of each 
rule. 

(b) Disconfirmation of a consequent proposition is represented by a 
negative certainty factor to a rule. 

i.e., For the rule: 

IF height is tall 
THEN weight is not light 
certainty is 0.8 
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(c) 
(d) 

(i) 

can be represented as follows: 

IF height is tall 
THEN weight is light 
certainty is - 0.8 

Single-valued objects are assumed. 
CCFE only searches for the following most common inconsis- 
tencies: 
Redundancy 
Let: 
rule 5: IF P1 THEN C1 (CF1) 
rule 6: IF P2 THEN C2 (CF2) 
where P1 and P2 may be any combination of propositions, and CF 
stands for the certainty factor of a rule. 

Redundancy may occur when: 

A(PI lP2)  > 0.5 &A(ClJC2) > 0.5 & sign(CF1) = sign(CF2) 

or A(PIIP2)  > 0.5 &A(CIlC2)  < 0.5 & sign(CF1) 4~ sign(CF2) 

(ii) Contradiction 
Contradiction may occur when: 

A(PI lP2)  > 0.5 &A(CIlC2)  > 0.5 & sign(CF1) v~ sign(CF2) 

or A(PI lP2)  > 0.5 &A(CIlC2)  < 0.5 & sign(CF1) = sign(CF2) 

(iii) Subsumption 
A special case of redundancy. The details have been described in 
section 2. 

(iv) Sub-contradiction 
A special case of contradiction. The details have been described in 
section 2. 

A decision table is used for verification of the rule base. A decision table 
facilitates the testing of a set of rules for inconsistent conditions. Each 
column of a decision table represents the conditions of a rule. Building 
a decision table from the rules is relatively simple [5]. CCFE creates a 
decision table by parsing the rules stored in the rule base, entering each 
corresponding value in the appropriate row and column. The table 
is implemented using arrays of pointers. Thus, the storage for the table is 
dynamically allocated. Besides, a dynamically allocated one-dimensional 
array is created to store the certainty factor of each rule. 
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Table 1. A Sample Rule Set 
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(rule rl 
(if (height is tall 
then weight is heavy) 

certainty is 0.7 

(rule r3 
(if (eating is much) 
and (activity is little) 
then weight is moreorless heavy) 

certainty is 0.9 

(rule r2 
(if (height is tall) 
and (eating is very much) 
then weight is very heavy) 

certainty is 0.65 

The algorithm for creating the decision table and the array storing the 
certainty factors is as follows: 

Read all the rules from a file into the rule base. 
Count the total number of objects and rules in the rule base. 

Allocate spaces for the table and the certainty factors. 

Initialise all the cells in the table to UNOCCUPIED.  

For all the rules in the rule base 
Parse the rule and enter the values to the corresponding row and 

column. 
Set that cell to OCCUPIED. 

For instance, from the rules in Table 1, CCFE will create the corre- 
sponding decision table and the array storing certainty factors as shown in 
Figure 4. 

height 

eating 

activity 

weight 

rl  r2 r3 

tall tall 

very much much 

little 

heavy very heavy moreorless heavy 

Certainty factor 07 I 065 I 
Figure 4. The sample decision table. 

0.9 
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After constructing the decision table, all the rules are checked for 
inconsistencies. Affinity measure is employed to determine the likeliness 
between two expressions, either fuzzy or non-fuzzy. The following is the 
algorithm for consistency checking: 

For i = 1 to no. of rules - 1 
For j = i + 1 to no. of rules 

case compare(antecedence(i), antecedence(j)) 

EQUAL: 
if (same(consequence(i), consequence(j)) then 

if (sign(CF(i)) = sign(CF(j))) then 
report redundancy 

else 
report contradiction 

else 
if (sign(CF(i)) = sign(CF(j))) then 

report contradiction 
else 

report redundancy 
endif 
continue 

SUBSET: 
if (same(consequence(i), consequence(j)) then 

else 

if (sign(CF(i)) = sign(CF(j))) then 
report subsumption 

else 
report sub-contradiction 

if (sign(CF(i)) = sign(CF(j))) then 
report sub-contradiction 

else 
report subsumption 

endif 
continue 

DIFFERENT: 
continue 

endcase 
endfor 

endfor 

where compare is a function using affinity measure to determine whether 
two antecedences are the SAME, DIFFERENT,  or one of the ante- 
cedence is a SUBSET of the other. 
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same is a Boolean function using affinity measure to determine whether 
two consequences are the same. 

sign returns the sign of the certainty factor. 

5. RESULTS AND DISCUSSIONS 

CCFE is used to verify the consistency of fuzzy rule bases. The following 
rule base with fuzzy and non-fuzzy objects is verified by CCFE and the 
results are presented. (The example is an inconsistent testing case, so some 
rules may not make too much sense.) 

Let 

height is a fuzzy object with possible values (tall, medium, short). 

weight is a fuzzy object with possible values (heavy, fit, light). 

eating is a fuzzy object with possible values (much, balanced, little). 

sleeping is a non-fuzzy single-valued object with possible values 
(enough, fair, bad). 

sport is a non-fuzzy single-valued object with possible values (big-2, 
football, basketball). 

Rule Base: 

(rule rl  

If (height is tall) 

then weight is heavy) Certainty is 0.7 

(rule r2 

if ((height is tall) 

and (eating is much)) 

then weight is very heavy) Certainty is 0.75 

(rule r3 

if (height is tall) 

then weight is balanced) Certainty is -0 .5  

(rule r4 

If ((eating is much) 

and (sport is big-2)) 

then weight is very heavy) Certainty is 0.6 
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(rule r5 

if (eating is very much) 

then weight is light) Certainty is 0.5 

(rule r6 

if (eating is very much) 

and (sport is big-2) 

and (sleeping is not bad) 

then weight is very heavy) Certainty is -0 .7  

(rule r7 

if (eating is much) 

and (sport is big-2) 

and sleeping is enough) 

then weight is heavy) Certainty is 0.6 

(rule r8 

If (sleeping is not enough) 

then weight is light) Certainty is 0.5 

(rule r9 

If (sleeping is bad) 

then weight is light) Certainty is 0.4 

Diagnosis: 

Warning 1: Subsumption between rules rl and r2 

Warning 2: Redundancy between rules rl  and r3 

Warning 3: Subsumption between rules r2 and r3 

Warning 4: Sub-contradiction between rules r2 and r5 

Warning 5: Sub-contradiction between rules r4 and r5 

Warning 6: Sub-contradiction between rules r4 and r6 

Warning 7: Subsumption between rules r4 and r7 

Warning 8: Subsumption between rules r5 and r6 

Warning 9: Sub-contradiction between rules r5 and r7 

Warning 10: Contradiction between rules r6 and r7 

Warning 11: Redundancy between rules r8 and r9 
Total, 11 warnings. 
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From the results, we can see that affinity is useful to determine the 
degree of matching of two fuzzy expressions for consistency checking. 
The techniques used in a non-fuzzy environment can be easily trans- 
ported to a fuzzy environment. However, in an environment full of 
mixtures of approximate and exact reasonings, there are no absolute 
definitions of consistency as discussed in sections 2 and 3. A fuzzy 
consistency checker such as the one implemented can only serve as a 
provider for warnings of possible inconsistency to aid better knowledge 
engineering. The levels of warnings can be adjusted by varying parame- 
ters such as the threshold affinity in the definition and levels of tracking. 

6. CONCLUSION 

Using affinity, it has been demonstrated that we can detect possible 
inconsistency in a fuzzy environment. The detection techniques are very 
similar to those used in a non-fuzzy environment except that we use. 
affinity to measure the likeness of two fuzzy expressions, i.e., for two 
non-fuzzy expressions A1 and A2, A1 = A2 and (A1 v~ A2) could be 
replaced by A(A1, A2) > 0.5 and A(A1, A2) < 0.5 respectively for fuzzy 
expressions A1 and A2 in a fuzzy environment. The commutative property 
of affinity makes the checking order of new and old rules totally indepen- 
dent. The affinity measure has been proven to be a good tool to measure 
the likeness of two fuzzy terms. The consistency checker CCFE has been 
successfully implemented for aiding knowledge engineering in a heteroge- 
neous fuzzy environment with mixed fuzzy and non-fuzzy terms. 
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