
Article

Distributed conflict
resolution among
cooperating expert systems

Faruk Polat
Shashi Shekhar
University of Minnesota, Computer Science
Department, Minneapolis, MN55455, USA

H. Altay Guvenir
Bilkent University, Department of Computer
Engineering and Information Science, Bilkent, 06533
Ankara, Turkey

Abstract: Cooperating experts approach attempts to
integrate and coordinate the activities of multiple
specialised problem solvers that come together to solve
complex tasks such as design, medical diagnosis, business
management and so on. Due to the different goals,
knowledge and viewpoints of agents, conflicts may arise at
any phase of the problem-solving process. Managing
diverse expertise requires well-organised models of conflict
resolution. In this paper, a model for cooperating experts is
described which openly supports multi-agent conflict
detection and resolution. The model is based on the idea that
each agent has its own conflict knowledge which is
separated from its domain level knowledge, and each agent
has its own conflict resolution knowledge which is not
accessible and known by others. Furthermore, there are no
globally known conflict resolution strategies. Each agent
involved in a conflict chooses a resolution scheme
according to its self interest. The model is described by
using an example in the domain of office design and it is
compared with other systems.

1. Introduction

Distributed Artificial Intelligence (DAI) is a subfield of AI
which attempts to integrate existing problem-solving methods
used in classical AI in order to develop systems that benefit
from multiple agents' points of view. A solution developed by
multiple agents incorporates aspects of each agent's problem
solving capabilities and perspectives rather than just the view
of an individual agent's analysis of the problem (Cammarata et
al. 1983; Chaib-Draa et al. 1992; Durfee et al. 1989; Gasser
1991; Malone & Crowston 1991; Polat & Guvenir 1991a;
Smith & Davis 1988). One of the application domains of DAI
is cooperating expert systems. The cooperating expert system
approach is concerned with solving complex tasks which re
quire diverse expertise to generate comprehensive solutions.

Applications of cooperating expert systems can be seen in
human problem-solving tasks such as design, medical diag
nosis, research, business management and human relations.
Several systems reflecting the cooperating expert systems ap
proach such as Hearsay-II (Erman et al. 1980), Contract Net
(Smith & Davis 1988), Distributed Vehicle Monitoring Test
bed (Lesser & Corkill 1988), MDX (Chandrasekeran 1982,
Gomez & Chandrasekeran 1984) and Coop (Shekhar &
Ramamoorthy 1992) are described in the literature. Manag
ing diverse expertise is difficult because one has to take into
account the problems which will arise in working out solu
tions in the face of conflicting goals, constraints, viewpoints
and knowledge of heterogeneous experts.

In this paper, we describe a mod.el in which a set of knowl
edge-based agents cooperates to solve design problems. The
model is based on the resolution of conflicting solutions gen
erated by experts having different goals, priorities and evalu
ation criteria. Existing approaches to conflict management
(Adler et al. 1989; Klein & Lu 1989; Lander & Lesser 1990;
Werkman et al. 1990) rely on coordinated resolution strate
gies which require resolution of a conflict based on a globally
agreed strategy. In existing systems, conflict resolution
knowledge is either maintained centrally or replicated by all
agents. In any case, one of the disputants is given the power to
take control of the conflict and use a resolution scheme known
to everybody. In the approach described in this paper, how
ever, agents are free to choose the most appropriate action,
given their understanding of the global and local situations
and their own capabilities. They maintain their own set of
conflict resolution knowledge which is not globally known.
Using their own conflict knowledge, the participants may
reach an agreement on a revised solution.

There are several reasons why there is a need for resolving
conflicts by means of agents' private conflict resolution
knowledge instead of global knowledge about conflict resolu
tion. First of all, this is much more similar to the resolution of
conflicts that occur among human beings in solving complex

Expert Systems, November 1993, Vol. 10, No 4 _________________________ 227

problem tasks in domains like design, diagnosis and business
management. When a conflict is detected, it is not resolved by
a central authority with global conflict resolution knowledge;
rather, specialists involved in the conflict negotiate a revised
solution that will be acceptable to all of them, using their own
conflict resolution knowledge and perspectives. Second,
forming global conflict resolution knowledge requires merg
ing the conflict resolution knowledge of each agent obtained
through knowledge acquisition in a consistent manner. This
makes the maintenance of the global knowledge difficult be
cause, when a new agent is added to or removed from the
system, or the conflict resolution knowledge of an agent is
revised, the global conflict resolution knowledge must be re
built accordingly. The last reason is related to the advantages
of having distributed knowledge at all agents for reliability
and fault-tolerance, instead of maintaining this knowledge in
a centrally organised manner.

In Section 2, an overview of conflict management in coop
erating expert systems is presented and the existing ap
proaches are summarised. Section 3 describes a new model
for cooperating experts and explains how the problem solving
proceeds within this model. Section 4 describes how conflict
resolution takes place in the new model. Section 5 includes a
design example to illustrate how problem solving proceeds in
this approach. Finally, Section 6 summarises the new model,
emphasising its characteristics.

2. Conflict detection and resolution among
cooperating experts

In the cooperating experts approach, several specialised
agents combine to solve a common problem. During any
phase of the problem-solving process, conflicts might appear
as a result of incorrect and incomplete local knowledge, dif
ferent goals, priorities and solution evaluation criteria. When
there are several conflicting proposed solutions for a
(sub)problem, the agents involved in a conflict must either
agree to choose one proposal, cooperatively revise one, or
search for a new solution that will be acceptable to everyone.

A common practice in building knowledge-based systems is
to avoid potential conflicting situations by analysis and
checking the consistency of the knowledge base at develop
ment time (Gingberg 1988; Nguyen et al. 1987; Polat & Gu
venir 1991 b; Rousset 1988; Vignollet & Ayel 1990). This ap
proach, although effective, is very costly as the amount and
diversity of knowledge increases. Resolving all conflicts, no
matter how unlikely, at development time can be prohibi
tively time-consuming. Moreover, dividing the domain
knowledge into smaller internally consistent collections is
difficult.

The problems encountered when resolving conflicts in de
velopment time can be avoided by allowing conflicts to occur
and be resolved at run-time. In other words, participating
agents are allowed to generate conflicting solutions to the
subproblems at run-time. In case of a conflict, a set of strate-

gies could be used to resolve the conflict. Some examples of
strategies include backtracking, compromise negotiation (a
solution is iteratively revised by sliding a value or set of val
ues along some dimension until a mutually acceptable middle
point is found), integrative negotiation (identify the most im
portant goals of each agent and find a solution which fulfils all
of them), constraint relaxation, case-based and utility rea
soning methods, etc. (Adler et al. 1989; Klein & Lu 1989;
Lander & Lesser 1990; Polat & Guvenir 1992; Sycara 1989;
Werkman et al. 1990). Work in this class comes closest to
providing conflict resolution expertise with first class status.

Next, we will summarise studies which emphasise the use of
conflict resolution within a cooperating expert systems para
digm. The first is conducted by Klein & Lu (1989), who pro
pose a model for cooperative design that emphasises the par
allel interaction of design agents. This work addresses the
problem of how conflicts among different experts can be re
solved. In their model, there are design experts and a particu
lar conflict resolution expert. Given a design problem, design
experts solve the subproblems relevant to their expertise.
When a conflict is detected, the conflict resolution expert
takes control and tries to resolve it. This expert maintains the
global conflict management knowledge which contains con
flict classes and corresponding resolution strategies.

The second work is introduced by Lander & Lesser (1990),
who propose a Cooperating Expert Framework (CEF) to sup
port cooperative problem-solving among sets ofknowledge
based systems. The participating agents solve subproblems
relevant to their specific expertise and integrate their efforts
using conflict resolution strategies that are appropriate to the
problem-solving context. All of the agents have a global
knowledge of conflict resolution strategies. When a conflict is
detected, agents involved in the conflict propose their alterna
tive resolution strategies. Eventually they agree on a resolu
tion scheme. Later, the conflict is resolved by one of the cho
sen agents based on that scheme.

Werkman et al. (1990) developed a system called Design
Fabricator Interpreter (DFI) which is a framework for dis
tributed cooperative problem-solving among construction
agents. The DFI system reflects the distributed nature of the
construction industry by providing a multi-agent architecture
that models design, fabrication and erection processes. Con
flicting recommendations issued by design agents are re
solved by a third-party arbitrator agent, which makes sugges
tions based on the globally known conflict resolution knowl
edge. It operates in both passive and active mode. In passive
mode, the arbitrator monitors the agent proposal process and
intercedes when a problem is evident; in active mode, it medi
ates during the agent's proposal process when called upon by
the agents.

Adler et al. (1989) discuss methods of conflict resolution in
the domain of telephone network traffic control. A homogene
ous group of agents has geographically divided responsibili
ties with no overlap. The basic problem that the agents are to
solve is excessive demand for the resources in some parts of

228 ------------------------ Expert Systems, November 1993, Vol. 10, No 4

the network. Two negotiation protocols are described: con
flict-driven plan merging, a bottom-up approach to resolving
a conflict that has already occurred, and shared plan develop
ment, a top-down approach to avoiding conflicts as plans are
developed and refined. Their research addresses how con
flicts on the usage of resources could be resolved.

3. A distributed conflict resolution-based model
for cooperating experts

The cooperating experts environment is organised as a com
munity of cooperating problem-solving agents, where each
agent is represented as a fully functional and autonomous
knowledge-based system. The model is designed for solving
problems in the domain of design. This model is based on the
idea that each design agent has its own conflict resolution
expertise separate from its domain-level design expertise, and
that in the context of particular conflicts this expertise can be
instantiated into specific advice for resolving these conflicts.
The model allows a new problem-solver to be added or an
existing one to be removed without requiring any modifica
tion to the rest of the system. The model can therefore be
considered to achieve Open Systems Semantics (Open Sys
tems deal with large quantities of diverse information and
exploit massive parallelism) (Hewitt 1986, 1991) in the sense
that it not only allows scaleability (ability to increase scale of
commitments) but also robustness (ability to keep commit
ments in face of conflicts) - two primary indicators of Open
Systems Semantics.

3. 1. Architecture of the model

The cooperative design environment (Figure 1) is composed
of a set of design agents, which are fully functional knowl
edge-based systems, and a shared blackboard. The agents
communicate by posting assertions in a shared language. This
requires translation capabilities to be included within the
agents. The shared blackboard is a public repository available
to all agents; this gives one the ability to store 'global' infor
mation, although the information can only be used locally by
the agents. Alternatively, it would be possible to convey infor
mation directly through point-to-point communication chan
nels or reserved-spot communication (Winston 1984). The
shared blackboard is partitioned into four chunks, allowing
fast access, delete and update operations of units. They are
called problem, solution, proposal and conflict areas.

The problem area of the shared blackboard contains the in
itial problem definition and overall requirements that must be
taken into account by the design agents. A problem instance is
a tuple of the form P = <0, G, C, l>, where O denotes the
problem originator (an agent that defines the problem to be
solved); G is the set of goals that must be satisfied for a design
to be accepted; C is the set of constraints that design agents
should not violate (some of the constraints may be violated
through negotiation with the problem originator); and / de-

SHARED BLACKBOARD

l • •

~ ' '

Agent 1 Agent 2 Agent n

Figure 1: The architecture of the problem-solving
environment.

notes the initial problem information (such as the layout of a
room if the problem is to design an office). The solution area
of the shared blackboard includes the evolving design tem
plate to which non-conflicting design commitments produced
by agents are added.

The proposal area includes partial and incomplete solutions
at several layers of abstraction issued by design agents. De
sign agents assert their solutions as proposals into this area. A
proposal instance is a tuple of the form Q = <0, A, R, Cc>,
where O denotes the owner of the proposal; A is the set of
proposed actions to update the current design template; R con
sists of the reasons justifying each of the actions in A (R could
be empty because an agent may not provide reasons for its
proposal due to its inaccurate or incomplete knowledge); and
Cr is the confidence factor that indicates the confidence of the
owner in generating such a proposal. This information would
be useful for other agents if the owner utilised inaccurate or
incomplete knowledge in producing its solution.

Conflict area is the place where agents put their critiques
related to a new design commitment. A portion of this area
provides a communication medium with agents that are in
volved in a conflict situation. This area holds evaluation re
sults and conflict resolution recommendations issued by de
sign agents. An evaluation result instance is a tuple of the form
ER= <0, Q, Ac, Ra, Re>, where O denotes the owner of the
evaluation result tuple; Q is the identity of the proposal evalu

ated; Ac is the set of actions criticised (Ac i;;;; A in Q); Ra is the
set of ratings (evaluation results) for each action in Ac; and Re
is the overall result of the proposal Q which is either 'conflict
ing proposal' or 'nonconflicting proposal'. A conflict resolu
tion instance is a tuple of the form CR= <0, Q,Ar,Rr>, where
0 is the owner of the conflict resolution tuple; Q is the identity
of the related proposal; Ar is the set of refinements for those
conflicting actions of Q; and Rr includes the reasons for the
proposed refinements.

A description of the internal structure of an agent in the
model is given in Figure 2. An agent supports a knowledge
base, a database and a general controller. The knowledge base

Expert Systems, November 1993, Vol. 10, No 4 ________________________ 229

includes domain and control knowledge, just like in a classi
cal knowledge-based system. It also contains conflict resolu
tion knowledge to be used in cooperatively managing con
flicts with other agents. This knowledge is not known globally
and varies with respect to the agent's beliefs and under
standing of the environment. The database includes facts,
goals and constraints specific to the domain of that agent.
Agents also maintain two types of history information related
to the solution generation phase and conflict resolution phase.
This not only makes backtracking possible but also allows
case-based information to be used later for solving similar
problems encountered. The general controller includes proce
dures for generating and evaluating design commitments,
managing conflicts and translating messages into the com
mon language.

KNOWLEDGE BASE DATABASE GENERAL
CONTROUER

Control Knowtedge Goal1 Proposal GaneraUon

Constraints Proposal Evaluatlon
Domain Knowledge

Facts
Conrllct RasoluUon

Handler
Conflict RasoluUon
Knowledge Histories Translallon

Procedures

Figure 2: Internal structure of a design agent in the
model.

The agents in the model are actually heterogeneous agents in
the sense that they might use different knowledge repre
sentation techniques and inference mechanisms. Each agent
is assumed to generate proposals (solutions for subproblems)
according to its knowledge. They cooperate to achieve the
common goal of solving the global problem. The model can
be augmented to support special agents like database systems.
For the time being, we assume that each agent is a knowledge
based system which offers to solve subproblems (produce
proposals) and cooperates with others in resolving conflicts
through negotiation. Local knowledge is represented in what
ever language desired and cannot be accessed by any agent
except its owner. Several knowledge representation tech
niques have been developed for the domain of design (Akman
et al. 1990; Gero 1988; Goel & Pirolli 1989; Smithers &
Troxell 1990; Sriram & Adey 1986; Tokoro & Ishkawa 1984).
If the internal language is not the same as the shared language,
translation procedures are incorporated within agents. In case
of a conflict, agents might make some or all of their goals,
constraints and even knowledge available to others.

3. 2. Problem-solving phases

The problem-solving in the model is initiated by one of the
agents asserting a problem definition P = <0, G, C, I> into
the problem area of the shared blackboard. All interested
agents are instantiated after examining the problem definition
and they start producing design proposals related to their ex-

pertise, knowledge and viewpoints. When a design agent gen
erates a design proposal Q = <0, A, R, Ct>, it is put into the
proposal area. The agent producing this proposal also in
cludes explanation information that indicates which of the
agent's goals and constraints caused such a proposal. This
explanation allows other agents to understand why such a
proposal has been asserted.

After the generation of a proposal, all of the agents are sig
nalled. An agent does not interrupt its proposal generation
process if it is already working on another proposal, but it
immediately awakens another process - the evaluation
process - that will run in parallel with the proposal genera
tion process. The evaluation process first informs the owner
of the proposal whether it is going to criticise the proposal. If
not, it will go to sleep and wait for another proposal to be
asserted. If the agent is interested in the proposal, it evaluates
and posts the result ER = <0, Q, Ac, Ra, Re> on the conflict
area of the blackboard. The owner of the proposal also evalu
ates its proposal, usually as part of the solution generation
process. It is necessary for the owner to indicate its confidence
because it might use incomplete or inaccurate knowledge in
producing its solution. The evaluation process results in a rat
ing to be produced which shows the 'quality' of a solution
with respect to the goal criteria used to judge. The agents use
their internal evaluation criteria and therefore may not share a
common rating scale for their findings.

After all the interested parties finish evaluating the newly
asserted proposal, those agents which identify the proposal
under consideration as conflicting with their beliefs come to
gether to resolve the conflict (those interested agents that put
ER's in which Re part is 'conflicting proposal'). Agents in our
model do not have a global knowledge of conflict resolution
strategies, though in existing systems agents are assumed to
be knowledgeable about the global conflict resolution exper
tise. In our model, each agent has its own conflict resolution
knowledge that allows it to participate in the process of con
flict resolution. The result of conflict resolution is either revi
sion or abandonment of the proposed solution.

When none of the interested agents detect any conflict re
lated to a proposal, the partial design template residing in the
solution area is updated by using the design contribution ex
isting in the proposal. The process continues until the design
template meets requirements specified by the agent that put
the initial problem definition in the problem area of the shared
blackboard. The design process may also be terminated, al
though the agent that put the problem definition is not satis
fied. This may happen in cases where none of the agents can
generate a non-conflicting design proposal any more.

4. Conflict resolution in the model

When an agent detects a conflict, it participates in the resolu
tion process based on its own conflict resolution knowledge.
Each agent may utilise different conflict resolution strategies.
For example, suppose that we are given the problem of de-

230 ------------------------ Expert Systems, November 1993, Vol. 10, No 4

signing an office. The functionality agent suggests that the PC
desk be put close to the window so that a PC user could have a
took outside when bored. On the other hand, the computer
specialist, detecting a conflict, argues that sunshine could
damage the PC. The computer specialist uses a conflict reso
lution strategy which says 'put electrical devices far away
from windows'. The functionality agent, however, uses a do
main-independent resolution scheme 'try other subgoal alter
natives'. Eventually two experts revise the proposal such that
the PC desk is put into a place in the office which is not ex
posed to sunshine, by using different resolution schemes. In
deciding which strategy to apply, an agent uses information
gathered up to the time the conflict has occurred as well as its
conflict knowledge. This information includes:

• Explanation embodied within the proposal (this will al
low other interested agents to understand the intent of
such a proposal).

• Critiques made by the interested parties to the proposal
(after examining outcomes of evaluation procedures of
other agents, an agent chooses an appropriate resolution
strategy taking into account different viewpoints).

• The relevance of the agent to a particular problem being
solved (if an agent is more knowledgeable and capable
compared to others, it should participate in resolution of
a conflict according to its relevance).

• Flexibility of agents involved in conflicts (this is impor
tant for an agent to decide how to behave in a compro
mise type of conflict resolution).

• Behaviour and actions of other agents in resolving the
conflict (by examining this information, an agent might
decide to alter,the conflict resolution strategy it has been
using).

• Conflict resolution history information (if a similar con
flict situation was encountered beforehand, an agent
could utilise history information in resolving the con
flict. This allows case-based reasoning in conflict reso
lution).

• Number of agents involved in the conflict (depending
on the domain, if the number of agents involved in a
conflict situation exceeds a certain amount then some of
the agents, thinking that they coµld not be effective for
resolving the conflict compared to others, may continue
to generate alternative solutions rather than participate
in conflict resolution).

• Available problem-solving resources.

When a proposal is issued, each interested agent evaluates it
to detect whether or not any conflicting recommendations ex
ist in the proposal. For understanding the kind of conflict that
has occurred, each agent examines its conflict knowledge to
see which of its conflict situations match (not necessarily a
perfect match) the current conflict (if existing). Upon decid
ing on the conflict situation, an agent uses its conflict resolu
tion knowledge to overcome the conflict from its perspective.
Conflict resolution knowledge is composed of general strate-

gies (domain-independent) and specific strategies (domain
dependent). Domain dependent strategies are gathered during
the knowledge acquisition phase. Agents prefer to use the
most specific strategies first for resolving a conflict. General
strategies are resorted to last since they are computationally
expensive and may lead to poor solutions.

When an agent detects a conflict and chooses a strategy for
resolving the conflict, it does not mean that the agent may not
alter the resolution strategy it has chosen. That is, upon ob
serving the actions of other agents during conflict resolution
phase, it may improve its understanding of the overall prob
lem and the particular conflict encountered. This allows
agents to alter strategies if they think that they will benefit
from doing so. When an agent proposes a revised solution
based on its resolution scheme, it also explains why the new
solution is a good candidate. This enables other agents in
volved in conflict to choose the most appropriate action on
behalf of the resolution process.

5. A cooperating experts' problem: office design

The following example is taken from the domain of office
design to exemplify the problem solving process of the coop
erating experts that is used in our implementation. The reason
for choosing this example is that it is in a concrete rather than
an abstract domain and it can be understood easily because of
its suitability for simple two-dimensional graphical repre
sentation. Here, we present a simplified layout problem for an
office design and describe design agents and their interac
tions. A well-designed office encompasses different areas of
expertise concerning aesthetics, functionality, energy effi
ciency, etc. In this example, we have incorporated four agents
in the problem-solving framework. They are

• the client agent;
• the functionality agent;
• the electricity agent;
• the cost agent.

The client agent is the one that puts forth the problem defini
tion specifying general constraints and the global design goal
to be satisfied. This agent may be the one to use the office
being designed or be the department chairman who is having
the office designed for a prospective faculty member. The
functionality agent uses specific heuristic search techniques
in the area of space planning. The electricity agent is con
cerned with all the electrical and electronic devices and wir
ing including computers, telephones, facsimile systems, etc.
The cost agent is required to control the overall cost of the
design and avoid wasteful use of resources. When a proposal
is generated, each interested agent evaluates it to detect a pos
sible conflict from its own perspective. A conflict is detected
when an agent finds a conflict situation (upon examining its
knowledge base) that matches the proposal under considera
tion. In this domain, some possible conflict situations are lo
cation of an object, dimensions of an object, quality of an

Expert Systems, November 1993, Vol. 10, No 4 ________________________ 231

object, cost of an object, usage of an object, existence of an
object and so on.

The design process is initiated by the client agent who puts
the following problem definition into the problem area of the
shared blackboard:

Problem Definition=

< Client-Agent,

{ goal: (design office)

subgoals: ((minimize amount-of-walking)

(customize components-to-the

size-of-office)

(maximize efficiency)

(must-have PC) ...))) ,

{ constraints: ((to-be-used-by faculty-member)

(number-of-occupants 1)

(cost-of-design< $6000) ...)),

{ layout:

shape: rectangular

dimensions: ((length 10) (width 8) (height 2.5))

coordinates: (upper left (x O y O))

window:

type: ((frame wood) (glass glass!))

dimensions: ((height 1))

coordinates: ((x0y3) (x0y5))

door:

type: ((made-up-of wood))

dimensions: ((height 2))

coordinate: ((x 8 y 7) (x 8 y 8))

electrical-plug:

coordinates: ((x 6 y 0))

phone-plug:

coordinates: ((x 6.5 y 0))

) >

Figure 3a shows the global layout of an office. In this exam
ple, we ignore the third (z) dimension; instead the height at
tribute of objects is used when necessary. Also, we are not
concerned with the precise locations of objects. After examin
ing the problem definition, all of the interested parties start
producing design commitments. First, the functionality
agent, according to its expertise and understanding of the
problem, asserts the following proposal into the proposal area
of the shared blackboard which updates the template as
shown in Figure 3b.

Proposal-0 =<Functionality-Agent,

{ (put : object des kl : type desk : location (2 2)),

(put :object chairl :type chair :location (3 0.5)),

(put :object pcdeskl :type pcdesk :location (2.5 6)),

(put :object chair2

{ (utilize sunshine)

(have better-view)

nil >

:type chair :location (3 5))),

The functionality agent has decided to put a desk and a PC
desk along with two chairs nearer to the window so that the
occupant can not only have a good view but also utilise the

(0,0) plug

-
6m 4m -X

3m

;:: 6m
0 2m "O
C:
'i

3m
0
0

10m 2~ 'O

Ir y

(3,0.5) Q chair!

(2,2)EJ
deskl

(3,5)
Qchair2

(2.5,6)

lpcdeskl I
(b)

(a)

Figure 3: (a) Global layout of the office; (b) Layout of
the office after Proposal-0.

sunshine. In generating this proposal the agent used the fol
lowing piece of its domain knowledge:

if number of occupants is 1 and

the occupant of the room is academic person

then activate SINGLE-ACADEMIC-KB

SINGLE-ACADEMIC-KB (only utilized piece of knowledge)

find a place to put a desk (desk!)

if the occupant is to use computer

then include a computer desk (pcdeskl) and

find a place to put the computer desk (pcdeskl)

if a desk (desk!, pcdeskl) is to be put

then put it near to the window

reasons: utilize sunshine

have a better view

This proposal triggers the evaluation procedures within
other interested agents. The client agent detects a conflict af
ter evaluating the proposal. With this configuration, the client

232 ------------------------- Expert Systems, November 1993, Vol. 10, No 4

agent notices that occupants must walk too much because
they might need to use the PC (which will be put on the PC
desk) a lot. The functionality and client agents combine to
resolve the conflict encountered. The client agent uses a spe
cific resolution scheme which states 'keep frequently used
objects close to each other', and the functionality agent uses a
general conflict resolution strategy which is 'try other loca
tion alternatives'. The client agent has two alternatives to re
solve the conflict from its perspective; it may put the PC desk
either to the left or to the right of the other desk. Taking into
account the explanation within the functionality agent's pro
posal, the client agent proposes to put the PC desk to the left
of the other desk so that the PC desk will be close to the
window and hence the occupant can utilise sunshine and have
a better view. The revised and agreed solution is shown in
Figure 4a. Below is the description of how conflict is detected
and resolved by both agents:

Conflict Detection Tuple=

< Client-Agent, Proposal-a, { (all-actions) } ,
{ (increased amount-of-walking) },
"Conflicting-Proposal">

The Client Agent:
Conflict Situation: Location of Objects

Resolution : If the objects involved in
conflict are to be used
very often

then try to keep them close
to each other

The Functionality Agent:
Conflict Situation: Location of Objects
Resolution : try other configuration

alternatives

The agreed resolution actions:
(move :object deskl :position (3. 5 2))

(move :object chairl :position (4 0. 5))

(move :object pcdeskl :position (0. 8 2))

(move :object chair2 :position (1 0. 5))

Then the cost agent realises that there is no need to have two
chairs close to each other. The cost, client and functionality
agents decide to remove one of the chairs as shown in Figure
4b. In the resolution phase, agents agree on rotating the PC
desk such that a chair could be used for both desks:

Conflict Detection Tuple=

<Cost-Agent, Proposal-0',
{ (existence-of :object chair2) },

{ }, "Conflicting-Proposal">

The Cost Agent:
Conflict Situation: Cost of Objects

Resolution : remove them

The Client Agent:

Conflict Situation: Existence of Objects

Resolution : If existence of some objects
causes some problems

then remove them

(1,0.5) (4,0.5)
<:)chair2 (::)chairl

(0.8,2) (3.5,2)

1pcdeskl 1 B

(a)

(0.5, l) (4 1) [I] . ochairl

"'
(3.5,2.5)

B

(b)

Figure 4: (a) Layout of the office after resolving the
conflict in Proposal-0. (b) Layout of the office
after resolving the conflict in Proposal-0'.

The Functionality Agent:
Conflict Situations Location of Objects -

Existence of Objects
try other configuration

alternatives
Resolution

upon removing unwanted objects

The agreed resolution actions:

(remove :object chair2)
(move :object deskl :location (3.5 2.5))

(move :object chairl :location (4 1))

(rotate :object pcdeskl -90)

(move :object pcdeskl :location (0.5 1))

Later, the electricity agent decides to put the PC on the PC
desk and use an extension cord to connect the PC to the plug,
and puts a proposal related to these modifications into the
proposal area (Figure 5a):

Proposal-1 =<Electricity-Agent,
{ (put :object pcl :type ibmpc

:location (0.7 1.5)),
(put :object cordl :type cord :path

((0.8 1.5) (0.8 0.5) (6 0.5) (6 0.5)) },
{ },

nil >

Expert Systems, November 1993, Vol. 10, No 4 _________________________ 233

The knowledge used to generate Proposal-1:

if there is a suitable place (pcdeskl) to put

an electrical device (pell on top of

then put the electrical device (pell on top of it

(pcdeskl)

if an electrical device (pell is not connected to

the plug and

the electrical device's (pcl's) own cable

is short

then use an extra and long enough cord (cordl)

to connect

the electrical device (pell to the plug

The cost agent detects another conflict related to the elec
tricity agent's proposal, which is the cost of using an exten
sion cord. The electricity, cost and functionality agents are
involved in the resolution of the conflict. The cost agent de
cides to remove the extension cord and is very inflexible in its
decision. The functionality agent does not have a specific
resolution scheme in its mind, but uses a general one and

(6,0)

(0.8,0.5' :
r--J--------------------·c6.o.5)

l!lpcl O chm,!

pcdeskl B

(a)

(6,0)

(5.5,0.5) ·----~
(3,1) (5,1) fril (6,0.5)

(2,3) Q_,, ~pc!

B pcdeskl

(b)

Figure 5: (a) Layout of the office after Proposal-I. (b)
Layout of the office after resolving the conflict
in Proposal-I.

decides to put PC desk to the right of the other desk. Although
the functionality agent knows that it is better to keep the PC
desk close to the window for reasons of utilising sunshine and
having a better view, it does not insist on this preference for
resolving the conflict. The electricity agent has a domain spe
cific resolution strategy which states 'keep all of the electrical
devices close to the plugs'. Below is how this particular con
flict is detected and resolved:

Conflict Detection Tuple=

< Cost-Agent, Proposal-1, I (cost-of :object cordl)),

I), "Conflicting-Proposal">

The Cost Agent:

Conflict Situation Cost of an Object

Resolution - remove the object

The Electricity Agent:

(preferred resolution

alternative)

- if some other object of the

same type but cheaper

exists

then try to remove the

expensive one

- if there exists some other

unnecessary or less

important object in

the template

then try to remove that object

Conflict Situations: Location of Objects and

Existence of Objects

Resolution - try other configuration

alternatives

upon removing unwanted

objects

- if an electrical device

(pell is to be put

then put the device (pell

close to the plug

(preferred resolution

alternative)

The Functionality Agent:

Conflict Situations: Location of Objects and

Existence of Objects

Resolution try other configuration

alternatives

The agreed resolution actions:

(remove :object cordl)

(move

(move

(move

(move

:object deskl

:object chairl

:object pcdeskl

:object pcl

:location (2 3))

:location (3 1))

:location (5 1))

:location (5.5 1.5))

(plug-in :object cord of pcl :to plug)

By explaining their resolution steps the three agents come to
an agreement to put the PC desk close to the plug, as shown in
Figure 5b. Later, the electricity agent connects the PC's cable
to the plug without using an extension cord. The design pro-

234 ---~--------------------- Expert Systems, November 1993, Vol. 10, No 4

ceeds in this manner until reaching the requirements specified
by the client agent.

In this example, we only gave a segment of the problem
solving process, emphasising the resolution of conflicts with
out considering precise locations of objects.

6. Conclusions

The cooperating experts' approach has an important role in
the field of Distributed Artificial Intelligence because many
of the problems that are being encountered in real life require
the application of complex and diverse expertise. One of the
important problems faced in a cooperating community of ex
perts is how to detect and resolve conflicts occurring at any
phase of problem solving. Existing approaches to conflict
resolution rely on coordinated conflict resolution strategies
(Adler et al. 1989; Klein & Lu 1989; Lander & Lesser 1990;
Werkman et al. 1990). In these approaches, each agent is as
sumed to have a global knowledge of conflict resolution in
formation. When conflicts happen, agents agree on a conflict
resolution scheme and one agent resolves the conflict using a
globally agreed resolution strategy.

In this paper, we introduce a new cooperating experts envi
ronment for solving problems that openly support multi-agent
conflict detection and resolution. In this environment, each
agent is free to choose the most appropriate action, given its
understanding of the global and local situation and its own
capabilities. Each agent has its own conflict resolution knowl
edge which is not accessible and known by others. Further
more, there are no globally known conflict resolution strate
gies. Each agent involved in a conflict chooses a resolution
scheme according to its self-interest. Agents might use differ
ent strategies of their own and might still agree on a solution.

The model achieves flexibility in its problem-solving, which
is the most compelling argument for building modular multi
agent systems. Anew agent can be added or an existing one can
be removed without any modification of the rest of the system.
This characteristic of the model satisfies the requirements of
Open Systems Semantics. However, in the existing approaches,
addition or removal of an agent requires that the global conflict
resolution knowledge be reformed accordingly.

This approach is very similar to conflict resolution in human
problem-solving. Existing approaches are too restrictive and
applicable only to the problems where experts must agree on
a known strategy for resolving conflicts. The new approach
also allows agents to alter strategies in the resolution phase if
they think it is wise to do so. The model also requires agents to
explain why a particular action is made in order for other
agents to reason about it. This means that agents may explain
the reasoning behind their proposed actions in putting their
proposals and in detecting and resolving conflicts.

Currently, we are implementing the model on intercon
nected SUN-4 workstations. All the problem-solvers -
agents - are modelled as processes running on different
workstations that communicate over Ethernet. In order to ii-

lustrate the problem-solving phases in the model, we have
chosen to solve design problems. We will test the conflict
resolution-based model on various other examples in the do
main of design and medical diagnosis.

References

ADLER, M.R. et al. (1989) Conflict resolution strategies for non-hi
erarchical distributed agents, Distributed Artificial Intelligence,
2, M.N. Huhns, pp. 139-161.

AKMAN, V., P.J.W. TEN HAGEN and T. TOMIYAMA (1990) A funda
mental and theoretical framework for an intelligent CAD system,
Computer-Aided Design, 22(6), 352-367.

CAMMARATA, S., D. McARTHUR and R. STEEB (1983) Strategies for
cooperation in distributed problem solving, in Proc. Int. Joint
Conf Artificial Intelligence, Karlsruhe, Germany, August. pp.
767-770.

CHAIB-DRAA, B. et al. (1992) Trends in distributed artificial intelli
gence, Artificial Intelligence Review, No.6, pp. 35--66.

CHANDRASEKERAN, B. (1982) Decomposition of domain knowledge
into knowledge source: The MDX approach, Fourth National
Conf of Canadian Society for Computational Studies of Intelli
gence, Canada.

DURFEE, H.D., V.R. LEsSER and D.D. CORKILL (1989) Trends in
cooperative distributed problem solving, IEEE Transactions on
Knowledge and Data Engineering, 1(1), March, 63-83.

ERMAN, L.D., F. HAYES-ROTH, V.R. LESSER and D.R. REDDY (1980)
The Hearsay-II speech understanding systems: integrating
knowledge to resolve uncertainty, Computing Surveys, 12, June,
213-253.

GASSER, L., (1991) Social conceptions of knowledge and action:
DAI foundations and open systems semantics, Artificial Intelli
gence, 41, 107-138

GERO, J.S. (Ed.) (1988) Artificial Intelligence in Engineering De
sign, Elsevier, UK.

GINGBERG A. (1988) Knowledge base reduction: a new approach to
checking knowledge bases for inconsistency and redundancy,
AAA/.

GoEL, V. and P. PIROLLI (1989) Design within information-processing
theory: the design problem space, Al Magazine, Spring, 19-36.

GoMEZ, F. and B. CHANDRASEKARAN (1984) Knowledge organiza
tion and distribution for medical diagnosis, Technical Report,
84-FG-FGBC, Department of Computer and Information Sci
ence, The Ohio State University.

HEwm, C. (1986) Offices are open systems, ACM Transactions on
Office Information Systems, 4(3), 271-287.

HEwm, C. (1991) Open information systems semantics for distrib
uted artificial intelligence,Artificial Intelligence, 47, 79-106.

KLEIN, M. and S.C-Y. Lu (1989) Conflict resolution in cooperative
design, Artificial Intelligence in Engineering, 4(4), 168-180.

LANDER, S. and V.R. LESSER (1990) Conflict resolution strategies for
cooperating expert agents, International Conference on Cooper
ating Knowledge-Based Systems, Keele University, October.

LESSER, V.R. and D.D. CORKILL, (1988) The distributed vehicle
monitoring testbed: a tool for investigating distributed problem
solving networks, in R.S. Engelmore and A. Morgan (Eds.),
Blackboard Systems, Addison-Wesley, pp. 353-386.

MALONE, T.W. and K. CROWSTON (1991) Towards an interdiscipli
nary theory of coordination, Technical Report, CCS-TR-120,
Center for Coordination Science, MIT, Cambridge, MA.

NGUYEN, T.A. et al. (1987) Verifying consistency of production sys
tems, in Proceedings of the Third Conference on Artificial Intel
ligence Applications, pp. 4-8.

POLAT, F. and H.A. GUVENIR (1991a) Coordination issues in distrib
uted problem solving, in Proceedings of the Sixth International

Expert Systems, November 1993, Vol. 10, No 4 ________________________ 235

Symposium on Computer and Information Sciences, Elsevier,
Vol. 1, Antalya, pp. 585-594.

POLAT, F. and H.A. GUVENIR (1991b) A unification based approach
for knowledge base verification, Expert Systems, 8(4), 251-259.

POLAT, F. and H.A. GUVENIR (1992) A conflict resolution based co
operative distributed problem solving model, in Proceedings of
AAAI-92 Workshop on Cooperation among Heterogeneous In
telligent Agents, San Jose, CA, July.

RoussET, M.C. (1988) On the consistency of knowledge bases, in
Proceedings of European Conference on Artificial Intelligence.

SHEKHAR, S. and C.V. RAMAMOORTHY (1992) Coop: a self-assess
ment based approach to cooperating expert systems, Interna
tional Journal on Artificial Intelligence Tools, 1(2), 175-204.

SMITH, R.G. and R. DAVIS (1988) Frameworks for cooperation in
distributed problem solving, in A.H. Bond and L. Gasser (Eds.),
Readings in Distributed Artificial Intelligence, Morgan Kauf
mann, pp. 61-70.

The authors

SMITHERS, T. and W. TROXELL (1990) Design is intelligent behav ·
but what's the formalism? AI EDAM, 4(2), 89-98. iour

SRIRAM, D. and R. ADEY (1986) Applications of Artificial Intel[".
gence in Engineering Pr~bl~ms? Vols._ 1-2,. Springer-Verlag. 1

SYCARA, K.P. (1989) Negotiation m design, m Proceedings of th
MIT-JSME Workshop on Cooperative Product Developmen7
MIT, Cambridge, MA. '

TOKORO, M. and Y. ISHKAWA (1984) An object-oriented approach to
knowledge systems, in Proc. of the Int. Conj on Fifth Generation
Computer Systems, pp. 623--031.

VIGNOLLET'. L. and M. A YEL (1990) SYCOJECT: A tool for building
automatically sets of test for knowledge bases, Applications of
Artificial Intelligence, No. 8, pp. 192-201.

WERKMAN K. et al. (1990) Design and fabrication problem solving
through cooperative agents, NSF-ERC-ATLSS Technical Re
port 90--05, Lehigh University, Bethlehem, PA.

WINSTON, P.H. (1984) Artificial Intelligence, Addison-Wesley.

Faruk Polat

Faruk Polat is a PhD candidate in Computer Engineering
and Information Science at Bilkent University in Ankara,
Turkey. He has been working on his dissertation as a visit
ing NATO science scholar at the University of Minnesota,
Minneapolis, for the 1992-93 academic year. His research
interests include knowledge-based systems, knowledge
base verification and distributed artificial intelligence. He
received his BS in Computer Engineering from the Middle
East Technical University, Ankara, in 1987 and his MS
degree in Computer Engineering ·and Information Science
from Bilkent University in 1989.

H. Altay Guvenir

H. Altay Guvenir is an Assistant Professor of Computer
Engineering and Information Science at Bilkent University
in Ankara, Turkey. His research interests include expert
systems, machine learning and computational linguistics.
He received his MS in Electrical Engineering from Istanbul
Technical University in 1981 and his PhD in Computer
Science from Case Western Reserve University in 1987. He
is a member of AAAI, ACM, ACM SIGART and the Inter
national Association of Knowledge Engineers.

Shashi Shekhar

Shashi Shekhar received the B.Tech degree in Computer
Science from the Indian lnstituJe of Technology, Kanpur,
India in 1985, and the MS degree in Business Administra
tion and the PhD degree in Computer Science from the
University of California, Berkeley in 1989. He is currently
an Assistant Professor in the Department of Computer Sci
ence at the University of Minnesota, Minneapolis. His re
search interests include databases, artificial intelligence and
software engineering with emphasis on important applica
tions such as manufacturing. Dr Shekhar is a member of the
IEEE Computer Society, ACM and AAAI.

236 ------------------------- Expert Systems, November 1993, Vol. 10, No 4

	MX-M316NV_20190222_101402_Page_1_2R
	MX-M316NV_20190222_101402_Page_2_1L
	MX-M316NV_20190222_101402_Page_2_2R
	MX-M316NV_20190222_101402_Page_3_1L
	MX-M316NV_20190222_101402_Page_3_2R
	MX-M316NV_20190222_101402_Page_4_1L
	MX-M316NV_20190222_101402_Page_4_2R
	MX-M316NV_20190222_101402_Page_5_1L
	MX-M316NV_20190222_101402_Page_5_2R
	MX-M316NV_20190222_101402_Page_6_1L

