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A B S T R A C T  

An approximate reasoning f ramework  is suggested f o r  the development o f  an 
expert system prototype to aid management in planning inventory capacities. The 
development is considered to be a stage that comes after the analysis o f  a 
stochastic model  Such a model would provide the requisite insight and knowledge 
about the inventory system under specific assumptions. As  a consequence, the 
model builder(s) would act as expert(s). The restructuring process f rom the 
stochastic model into the approximate reasoning framework  is described in a case 
study analysis f o r  a Markovian production model. The stochastic model considers 
a relatively simplified production process: one machine, constant production rate, 
a compound Poisson demand process f o r  the product together with the reliability 
feature comprising the machine failure process and the ensuing repair action. In 
this context, the authors propose an approximate reasoning framework  and 
describe (1) the identification o f  the managerial decision-making rules, which 
usually contain uncertain (vague, ambiguous, fuzzy)  linguistic terms; and (2) the 
specification o f  membership functions that represent the meaning o f  such linguistic 
terms within context-dependent domains o f  concern. They then define a new 
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universal logic incorporating these rules and functions and apply it to inventory 
capacity planning. Two case examples and a simulation experiment consisting of  
21 cases are summarized with a discussion o f  results. 

KEYWORDS: expert system, knowledge acquisition, approximate reason- 
ing, inventory capacity planning, simulation experiments 

1. INTRODUCTION 

The purpose of this paper is to suggest a possible approach to bridging the 
communication gap between stochastic model builders and the managers of 
inventory capacity planners. We use an approximate reasoning framework 
based on fuzzy logic for the development of an expert system prototype that 
can serve as an aid to managerial decision making in manufacturing. 

It is generally known that although stochastic models provide valuable 
insights into a system's behavior under specific assumptions and identify useful 
guidelines, more often than not they are not implemented, either because 
managers do not understand the basic assumptions of the model, or because 
they are too complex, or because the precise information required to determine 
the values of the model parameters cannot be obtained or are not available. 
Hence, such models are, by default, inadequate to help managers to cope with 
the natural behavior of many real-life systems. 

However, stochastic model builders are often experts who can interpret the 
results of their models and can express their insightful expert knowledge about 
such system behavior in a natural language that usually contains vague, 
ambiguous, uncertain, fuzzy linguistic terms. Such linguistic terms provide (1) 
a flexible expression of the system behavior subject to various uncertainties and 
imprecisions and at the same time (2) help model builders communicate their 
complex results to management in an appropriate natural language context. 

Such concerns lead us to suggest the development of expert system proto- 
types via an approximate reasoning framework based on fuzzy logic but 
relying on insights obtained from stochastic models with the model builders 
acting as the experts. 

In order to explain in detail how such a development would and could take 
place, we first summarize briefly both the approximate reasoning framework 
and the stochastic model under consideration in this paper. 

Approximate Reasoning 

Informally, approximate reasoning is the process or processes by which a 
possible imprecise conclusion is deduced from a collection of imprecise 
premises (Zadeh [1]). A number of alternative approaches are available for 
reasoning in the design of knowledge-based systems (Turksen [2], Turksen and 
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Zhong [3]). Before we discuss the details of an alternative approach, let us first 
review the structure of a possible knowledge-based system that may be used in 
prototype studies. (Clearly, the following is just a skeleton; other relevant 
aspects of the development of such a system are omitted in this paper.) 

1. Factual knowledge (observed system state) ("facts"): 

X t is A* AND X 2 is A T A N D . . -  AND X n is A* (1) 

for short: 

A* = A* AND A* A N D . . -  AND A* 

The user of an expert system inputs the factual knowledge, choosing 
the appropriate linguistic terms A T, A* . . . .  A* that describe the 
observed states of the system. Users may be given the option to state the 
meaning of these linguistic terms by specifying membership values 
and/or functions. Alternatively, they may be given the option to rely on 
the definitions provided by the domain experts. 

2. Rule base (expert rules) ("rules"): 

I F X  1 is A l A N D X  2 is A 2 A N D . . . A N D X  n is A n, 

THEN Y is B (2) 

for short: 

A ~ B ,  where A = A  l A N D A  2 A N D . . . A N D A  n 

Domain experts (for this discussion, stochastic model builders) pro- 
vide such rules during the knowledge acquisition phase, where A~, 
A 2 . . . . .  A n and B are the appropriate set of linguistic terms specified 
by the domain experts. The domain experts must also provide the 
meaning of these linguistic terms by specifying their membership values 
and/or functions over the domain of discourse. Rules are then encoded 
into the knowledge base by a knowledge engineer during the design and 
development phase. 

3. Expert system advice ("response"): 

Y is (should be) B* (3) 

The expert system "response" is provided to a user after the inference 
subsystem operates on the " ru les"  and the given "fac ts"  in accordance 
with an inference scheme. 

In the current literature of fuzzy sets, it may be observed that the meanings 
of linguistic terms and their logical combinations are generally represented by 
"point-valued" membership assignments. However, it has been observed that 
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membership values obtained from domain experts and their logical combina- 
tions usually turn out to be "interval-valued" in most measurement experi- 
ments (Turksen [4-6], Chameau and Santamarina [7]). 

In this paper we start out with a knowledge representation scheme based on 
point-valued membership functions obtained from experts (the stochastic model 
builders). That is, A 1, A 2 . . . . .  A n, B; A T, A* . . . . .  A* will all be repre- 
sented by point-valued membership functions. However, the representation of 
the logical combination of AND and the logical implication I F . . .  THEN will 
be computed with the disjunctive and conjunctive normal forms, DNF and 
CNF, respectively. These representations and computations will be further 
discussed in appropriate sections in the remainder of the paper. 

FRAMEWORK The basic approximate reasoning framework used in this paper 
consists essentially of the following: 

(i) An interval-valued fuzzy set representation of " ru les"  and "facts"  
(ii) A search for the " ru les"  closest to the " fac ts"  based on a similarity 

measure 
(iii) An inference based on the implication of the " ru les"  found in (ii) and 

the " fac ts"  
(iv) An advice based on the linguistic approximation of the result(s) found 

in (iii) 
The details of approximate reasoning methodology and its framework may 

be found in Turksen [2, 4 -6 ,  8, 9]. 

Stochastic Model  

Production/inventory/reliability models have been at the focus of produc- 
tion modeling for a long time now. The rule of inventory is to accommodate 
fluctuations from the demand side, and the fundamental problem is to relate the 
production process to the demand process so that, on the one hand, shortages 
are kept at a desirable low level but, on the other hand, no excessive inventory 
is built up. 

An important but frequently neglected element in such systems is the 
imperfection of production systems. Posner and Berg [10] studied a model that 
incorporates reliability (or, indeed, unreliability) factors into the analysis and 
obtained closed-form analytical results under certain assumptions on the nature 
of the randomness in the production inventory system and the reliability 
factors. 

MODEL ASSUMPTIONS We consider a Markovian production model in which 
a single machine produces items at a constant production rate 1 (without loss of 
generality) up to a level N, the inventory capacity. The production is halted 
whenever the inventory level reaches N and is resumed at the next demand 
epoch. 
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The demand process is compound Poisson: Demands arrive according to a 
Poisson process at rate X, and order sizes are i.i.d, random variables exponen- 
tially distributed with a mean /x -~. There is no backlogging of demand, so 
excess demand beyond the available inventory is lost. The operating time of 
the machine is exponentially distributed with parameter 0. Thus 0 is the failure 
rate of the operating machine. The repair time of the failed machine is 
exponentially distributed with mean a -~. 

ANALYTICAL RESULTS Let X( t )  be the inventory level at time t, and set 
W(t) -= N - X( t )  to be the slack storage capacity at time t. Clearly, W(t) 
[O, N] .  We introduce the variable W(t) because to deal with X(t )  directly is 
less convenient than to deal with W(t), but at the same time these two 
variables are equivalent to our understanding of the behavior of this system. 
The limiting density and distribution function of W = l imt~o  W(t) are f ( . )  
and F(-) ,  respectively. 

Since the knowledge of W alone does not indicate whether or not the 
machine is in repair, a supplementary variable approach is implemented 
through the generalized technique of "system point" in level-crossing analysis 
(Brill and Posner [11, 12]). W should be partitioned into two parts, W o and 
W 1, where W 0 indicates the portion of W while the machine is not under 
repair, and W~ is the portion of W while the machine is under repair. 
Correspondingly, both f ( . )  and F ( . )  should be partitioned into two parts, 
denoted by fo ( ' ) ,  f l ( ' )  and F0(.), FI(.) ,  respectively. Naturally we have the 
following two equations: 

f ( ' )  = f o ( ' )  + f , ( ' )  

F ( ' )  = Fo(- ) -t- F1(" ) 

It is to be observed that aside from the partial densities with respect to the 
state of the machine, there is also a probability mass f o -  Pr(W0 = 0) 
associated with a full inventory accompanied by production shutoff, and 
f ~  = Pr(W 1 = N)  associated with an empty inventory and no active produc- 
tion. 

The result of the mathematical analysis due to Posner and Berg [10] is 
summarized in the Appendix. 

The inventory capacity level N is the decision variable through which a 
desirable level of "the fraction of satisfied customer demand" p can be 
achieved. For computational convenience we define a surrogate decision 
variable. 

N - N  o 
v - (4) 

No 
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where N O is the existing inventory capacity. V is thus the fraction of increase 
in the existing inventory capacity needed to achieve P0, the desirable level of 
p. 

For specificity, we shall set Po = 0.95 and let N O -- 1.5. Setting N O --- 1.5 
means an inventory capacity of 1.5 " lo t s , "  where a lot corresponds to a 
prespecified number of  items. This unit is also used in the definition of # -  t, 
the mean size of demand. Another basic unit here is the unit of time that is 
used in the definition of the parameters X, a ~, and 0. The production rate is 
based on both units and their standardized form, which corresponds to produc- 
ing 1 lot per unit of time. 

K N O W L E D G E  A C Q U I S I T I O N  

The analytical result provides us with a thorough understanding of this 
production/inventory/reliability system. It is, however, not very practical 
from the point of view of management. The exactness of the system parameters 
is unnecessary to the managers, and furthermore it does not provide managers 
with insights into the operation of this system, which is of vital importance to 
the effective management of such a complex system. Many analytical models 
bear the same language barriers. Even though these models clearly depict the 
characteristics of a system for the well-trained model builders and their results 
could be effectively interpreted by their builders, they are usually inappropriate 
for managerial implementation and use. 

An important, and at times critical, step in the design and development of an 
expert system prototype is knowledge acquisition in the form of rules and their 
components. 

Preliminary Considerations 

In accordance with the analytical model, we have decided to use the fraction 
of satisfied customer demand p as our performance criterion and the inventory 
capacity N as the decision variable, with other parameters tacitly assumed to 
be outside our control. Furthermore, in agreement with the approximate 
reasoning rule form (2), we opt for the following rule structure: 

I F X i s  A I A N D / ~ - 1 i s  A2 A N D 0 i s  A3 

AND a -  i is Z 4 AND p is high 

T H E N  take action B (with respect to N or, equivalently, V) 

The Ai, i = 1 . . . . .  4, and B stand for sets of relevant linguistic descrip- 
tors. A basic set of descriptors for each of the A i in this case is low, 
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medium, high (Turksen [2]). (If necessary, this categorization can be made 
finer by adding linguistic descriptors such as very low or moderately high, as 
shown in the simulation experiments.) 

Thus, an example of  the rules we aim to construct is: 

I f  the demand arrival rate )x is low, and the mean demand size /x i is 
medium, and the failure rate of  the machine 0 is low and its repair rate a -  ~ is 
high, then in order to have a high fraction of  satisfied demand p, increase N 
moderately (or, equivalently, set a moderate value for V). 

The linguistic descriptors such as low, medium, and high are imprecise, 
but these are terms that a manager not only understands but is also generally 
willing to give a meaning representation to by specifying a membership 
function (Zysno [13], Turksen [4-6] ,  Norwich and Turksen [14], Zimmerman 
and Zysno [15]). In contrast, to use the exact model (i.e., the stochastic model) 
as is, the manager would be required to substitute exact figures for the 
parameters - -  a responsibility he or she may be reluctant to assume because of  
the ever-acute shortage of  data and the often encountered statistical inference 
difficulties, and so on. 

We thus sacrifice some of  the exactness of  the original model in order to 
turn it into an implementable decision-making tool whenever we are confronted 
with either a lack of  data or a limited amount of  data. Indeed, the exact 
analysis can be viewed in this framework as a building block in the construc- 
tion of  this manageral aid (the expert system) where the other building blocks 
relate to the qualitative/quantitative interpretations of  the linguistic descriptors 
as represented by the corresponding membership functions and inferencing 
methods, and so on. The detailed development of  this procedure for the 
production/inventory/reliability case under consideration is described in the 
next section. 

INTERPRETATION Before we turn to the actual construction of  the rules, it is 
useful to review some of  our interpretations regarding the regions of  their 
applicability. The parameter N,  the inventory capacity, is the sole decision 
variable by means of  which we want to achieve a desirable level Po for the 
fraction of  satisfied customer demand. While p = p(N) is an increasing 
function of  N,  it is not at all clear, or indeed true, that any desirable P0 can be 
achieved by merely increasing N or V [because we may very well have 
p(oo) < Po]- This is likely to happen when the effective production rate is 
small compared to the demand rate )~/x-l, because in this case inventory does 
not build up fast enough to allow changes on N relevant to our goal of  
reaching Po- (By effective production rate we mean the theoretical production 
rate 1 minus the lost production rate due to machine unreliability.) 

At the other extreme, we have the cases where even a much smaller level of  
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N than the present N O is good enough to achieve P0. Generally speaking, a 
very low demand rate relative to the effective production rate makes a 
relatively small N sufficient to generate a high enough p. 

When the demand rate is close to the production rate 1, the objective V and 
the action on N are very sensitive to the failure rate, particularly if the mean 
repair time o-~ is high, because a greater or smaller failure rate can make all 
the difference between adequate supply and the occurrence of a shortage. Note 
that this statement refers not only to the expectation of the shortage but also to 
its variability. Thus, in the Poisson process, which in our theoretical model 
characterizes the failure process, the mean number of failure events per unit of 
time is proportional to the variance of this random quantity, and therefore a 
high failure rate can significantly increase the range of required changes on N,  
thereby detrimentally affecting the stability of the expert system's responses. 
This undesirable effect can be avoided by limiting the set of rules to low failure 
rates. Such a restriction is justified by the fact that machines with medium or 
high failure rates are, with a high possibility, not likely to be retained by the 
management. Consequently, rules involving medium or high failure rates will 
be eliminated from the system development. 

Linguistic Descriptors 

In order to design and develop an expert system that operates with the 
principles of approximate reasoning and performs a task heuristically equiva- 
lent to the analytical model considered earlier, we require that the model 
builders not only provide us with the linguistic descriptors that identify the 
aggregate patterns of behavior but also provide us with "meaning representa- 
tion" for these linguistic descriptors. As suggested in the previous section 
these linguistic terms were identified as 

L, low; M, medium; H, high 

for each of the system (independent) parameters; that is, 

Demand rate k A 1 

Demand size #-1 A 2 

Failure rate 0 A 3 

Repair rate o -  l A4 

Turning to the set of actions B on N (or, alternatively, on V) that will yield 
the desirable performance level p, we consider the following four possible 
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actions: 

Low (L) Increase N a bit (which includes the case of 
no increase at all) or, equivalently, set a low 
value for V. 

Medium (M) Increase N moderately or, equivalently, set 
a moderate value for V. 

High (H) Increase N a lot or, equivalently, set a high 
value for V. 

Very high (VH) Increase N quite a lot or, equivalently, set a 
very high value for N.  

(The term "increase"  is interpreted in these actions in percentage terms.) 
In practice, the meaning representations of these membership functions are 

specified either by an expert of the production system under consideration or 
by its manager, in accordance with universally accepted forms and on the basis 
of relevant considerations (as delineated above for the failure rate). For this 
exercise, we have determined the membership functions in a cooperative effort 
between the operations research (OR) specialist and the knowledge engineer. 
Due to the context-dependent nature of the curves, these functions need to be 
adjusted and modified for a given production system. For all parameters, we 
have kept the convention of scaling the parameter's ranges into the [0, 1] 
interval by normalizing each base variable with its maximum in the following 
manner: 

Normalized demand rate: DR = k/kma x , (5a) 

Normalized demand size: DS = # -  l//Zmalx, (5b) 

Normalized failure rate: FR = 0/0ma x (5c) 

Normalized repair rate: RR -- a -  J/Om-alx (5d) 

Normalized decision variable: DV = V~ Vma x (5e) 

where the maximum values are set to 

)kma x 1.0 - l  = , ~tma x = 1.0, 0ma x = 0.05, 

Un~alx --- 5 . 0 ,  Vma x = 7.0 

MEMBERSHIP FUNCTIONS The notion of crossover point (Zadeh [16]) with 
the membership value of 1/2 plays an important role in determining the 
membership functions. For each variable, we must first identify the points that 
are significant enough to divide the interval of the universal set [0, 1] into 
corresponding linguistic subintervals of low (L), medium (M), and high (H) or 
very high (VH), varying according to different system states, in order to 
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Table 1. Subintervals of Linguistic Terms 

Variable Low Medium High Very high 

DR [0, 0.3] (0.3, 0.7] (0.7, 1.0] 
DS [0, 0.3] (0.3, 0.7] (0.7, 1.01 
RR [0, 0.3] (0.3, 0.8] (0.8, 1.0] 
FR [0, 0.1] (0.1, 0.6] (0.6, 1.0] 
DV [0,0.15] (0.15,0.35] (0.35,0.54] (0.54, 1.0] 

acquire meaningful membership functions for every linguistic term. Again 
these subintervals are identified by experts as shown in Table 1. 

It should be noted that the separation point between regions is the crossover 
point of the two curves representing the membershp functions of the two 
corresponding linguistic terms, and the membership grade (MG) of this point 
has the largest uncertainty (Kosko [17]) for both of these fuzzy sets. For 
example, consider DR. The point separating the low and medium subintervals 
is 0.3: 

MGLow(0.3 ) = MGMedium(0.3 ) = 0.5 

An element of a fuzzy set with a membership grade greater than 0.5 is more 
likely to belong to this set than not, while a membership grade less than 0.5 
indicates that an element is less likely to belong to this set. For example, the 
interval [0, 0.3] of DR is intended to be regarded as a low-level demand rate 
rather than a medium-level demand rate by experts. Therefore 0.3 is chosen as 
the point separating the low-level and medium-level intervals of DR, and 
accordingly a membership grade of 0.5 is assigned for the fuzzy sets of both 
low DR and medium DR. The membership curves are shown in Figures 1-5. 

A different case is the fuzzy set of Very High for the service level, as shown 
in Figure 5. Even though the VH curve does not intersect the H curve except at 
the extreme right side of the figure, it still has a membership grade of 0.5 at 

MG 
l L M H 1 

0.0 ' - ~ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
Figure 1. Four membership functions of VL, L, M, H for DR. 
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MG 

L M H 

0.5 

0.1 0.2 0.3 0.4 0.5 0,6 0.7 0.8 0.9 1.0 

Figure 2. Four membership functions of L, M, AAM, H for DS. 

MG 

' L M H 
1 

0.0 c Vc~.~ 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09  1.0 

Figure 3. Four membership functions of L, M, LBH, H for RR. 

MG 

L M H 
1 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 4. Three membership functions of L, M, H for FR. 

point 0.54, which separates intervals of H and VH, following the same 
philosophy as we discussed above. 

Each of these meaning representations of the membership curves needs to be 
further justified by the expert in an appropriate manner. For example, note the 
steep slope near FR = 0. This is due to the sensitivity of the notion of '"low 
failure rate" to even moderate (absolute) increases; thus, whereas a 0.05 
failure rate may look to the manager to be low with a degree of determination 



234 I.B. Turksen and M. Berg 

MG 

M H 
1 

0.5 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 J' V/Vm~ 

Figure 5. Four membership functions of L, M, H, VH for DV. 

0.95, a 0.1 failure rate is assigned a degree of determination 0.5, indicating the 
highest level of entropy in the assessment (Kosko [17]). However, with a 
parameter like the demand rate DR, such sensitivity is unlikely, because 
demand volatility is anticipated anyway because of its dependence on human 
choices (as opposed to machine performance, for which a relatively high 
degree of precision is expected). Similar considerations help determine the 
shapes of all the membership curves (Figures 1-5). Some figures include the 
membership curves for additional linguistic terms that will be needed for the 
case study examples discussed later (after we present the inference procedure). 

Structure of  the Rule Base 

Let us now proceed to the actual construction of the basic set of rules of the 
expert system. In principle, we should have 81 basic rules, since each of the 
A i is assigned three linguistic terms. However, as mentioned earlier, rules 
involving "above- low" failure rates are impractical because the machine is not 
likely to be used. Hence, fixing the failure rate input state to " l o w "  reduces 
the number of input state vectors to the manageable size of 27. 

Suppose a manager assesses all parameter values to be low. This will 
correspond to an input state vector 

I = ( L , L , L , L )  

where the first, second, third, and fourth components of I correspond to the 
normalized parameters DR, DS, FR, and RR, respectively. The question is 
what (minimal) action on N,  or equivalently on V--L,  M, H, or VH-- i s  
required to achieve the desired performance level Po (0.95 in the illustration 
here). 

To answer this question we again require expertise. The expertise needed 
now is of a more general nature. Such expertise should be valid for an entire 
class of production/inventory systems (with machine imperfection incorpo- 
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Table 2. Midpoints of Linguistic Subintervals (Normalized) 

Variable Low Medium High 

DR 0.15 0.5 0.85 
DS 0.15 0.5 0.85 
RR 0.15 0.55 0.9 
FR 0.05 

rated), and it could be obtained, for example, from production/inventory/reli- 
ability system managers. In our case, however, the source of this expertise is 
again the OR experts who derived the mathematical results and interpreted 
them with the following simulated analysis. 

For each independent variable DR, DS, RR, FR, choose the midpoint of the 
three linguistic subintervals (L, M, H) as a representation of this linguistic 
term. These points are shown in Table 2. It should be noted that a decision to 
consider only the Low failure rates means that FR is set at 0.05 for L. 

First, the expert chooses these midpoints as a representation of the linguistic 
terms in deciding the formation of the left-hand side of the rules. Next, the 
corresponding values of these midpoints are determined by (5a)-(5d) and 
substituted into the analytical solution procedure that is shown in the Appendix 
to compute the corresponding inventory level and hence by Eq. (4) the service 
level. The service level in turn is converted to the corresponding subinterval by 
(5e), which identifies the value of the base variable in Figure 5 and determines 
the linguistic term for the response. Thus, the linguistic term is determined for 
the right-hand side of the rule. All 27 rules are determined in this manner; the 
results are presented in Table 3. 

R E P R E S E N T A T I O N  A N D  I N F E R E N C E  

Observe from Table 3 that each rule is a fuzzy relation, with the left-hand 
side of the rule being an AND combination among three variables, connected 
with the right-hand side of the rule by an I F . . .  THEN (implication) relation. 

In order to carry out the operation of AND combination and I F . . .  THEN 
relation, a number of finite support points for each linguistic term must be 
identified in Figures 1-5. The values of the support points for each term are a 
compromise between the efficiency of computation and the accuracy of the 
inference results. In this study we choose seven points for each term as shown 
in Table 4. 

Recall from the Introduction that in this paper the linguistic combinations are 
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Table  3. The Rule Base for Three Independent Variables a 

Rule 
Variable Independent Variables Decision 

No. DR DS RR DV 

1 L L L L 
2 L L M L 
3 L L H L 
4 L M L M 
5 L M M M 
6 L M H M 
7 L H L M 
8 L H M M 
9 L H H M 

10 M L L L 
11 M L M L 
12 M L H L 
13 M M L M 
14 M M M M 
15 M M H M 
16 M H L H 
17 M H M H 
18 M H H H 
19 H L L L 
20 H L M L 
21 H L H L 
22 H M L M 
23 H M M M 
24 H M H M 
25 H H L VH 
26 H H M VH 
27 H H H VH 

aRecall that the failure rate FR is set to L only. 

based on the disjunctive and conjunctive normal forms, DNF and CNF, 
respectively, which are extensions of the canonical forms in Boolean logic. 

A N D  C o m p o s i t i o n  

The DNF and CNF for AND combination are 

ONF(  A AND B) = A I"1 B (6) 

C N F ( A  A N D B )  = ( A  U B )  CI ( A  U B  c) ¢3 (A ~UB) (7) 
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Table 4. Typical Linguistic Descriptors and Their 
Membership Values for Each Fuzzy Set 

DR: 
VL = (1.0/0.0, 0.4/0.25, 0.32/0.3, 0.0/0.5, 0.0/0.7, 0.0/0.8, 0.0/1.0) 
SL = ~1.0/0.0, 0.57/0.25, 0.25/0.3, 0.0O64/0.5, 0.0/0.7, 0.0/0.8, 0.0/1.0) 

LBL = ~1.0/0.0, 0.87/0.25, 0.71/0.3, 0.28/0.5, 0.0/0.7, 0.0/0.8, 0.0/1.0) 
L = (1.0/0.0, 0.76/0.25, 0.5/0.3, 0.08/0.5, 0.0/0.7, 0.0/0.8, 0.0/1.0) 

M = (0.0/0.0, 0.24/0.25, 0.5/0.3, 1.0/0.5, 0.5/0.7, 0.2/0.8, 0.0/1.0) 
QBM = (0.0/0.0, 0.057/0.25, 0.25/0.3, 1.0/0.5, 0.25/0.7, 0.04/0.8, 0.0/1.0) 

H = ~0.0/0.0, 0.0/0.25, 0.0/0.3, 0.08/0.5, 0.5/0.7, 0.8/0.8, 1.0/1.0) 
DS: 

L = (1.0/0.0, 0.76/0.25, 0.5/0.3, 0.08/0.5, 0.0/0.7, 0./0.8, 0.0/1.0) 
M = (0.0/0.0, 0.24/0.25, 0.5/0.3, 1.0/0.5, 0.5/0.7, 0.2/0.8, 0.0/1.0) 

QBM = (0.0/0.0, 0.1/0.25, 0.24/0.3, 1.0/0.5, 0.3/0.7, 0.15/0.8, 0.0/1.0) 
H = (0.0/0.0, 0.0/0.25, 0.0/0.3, 0.08/0.5, 0.5/0.7, 0.8/0.8, 1.0/1.0) 

VH = (0.0/0.0, 0.0/0.25, 0.0/0.3, 0.0/0.5, 0.25/0.7, 0.64/0.8, 1.0/1.0) 
RR: 

VL = (1.0/0.0, 0.64/0.25, 0.25/0.3, 0.0/0.55, 0.0/0.8, 0.0/0.86, 0.0/1.0) 
L = (1.0/0.0, 0.8/0.25, 0.5/0.3, 0.01/0.55, 0.0/0.8, 0.0/0.86, 0.0/1.0) 

NM = (1.0/0.0, 0.73/0.25, 0.5/0.3, 0.0/0.55, 0.5/0.8, 0.74/0.86, 1.0/1.0) 
M = (0.0/0.0, 0.27/0.25, 0.5/0.3, 1.0/0.55, 0.5/0.8, 0.26/0.86, 0.0/1.0) 
H = (0.0/0.0, 0.0/0.25, 0.0/0.3, 0.01/0.55, 0.5/0.8, 0.8/0.86, 1.0/1.0) 

LBH = (0.0/0.0, 0.0/0.25, 0.0/0.3, 0.17/0.55, 0.8/0.8, 1.0/0.86, 1.0/1.0) 
VH = (0.0/0.0, 0.0/0.25, 0.0/0.3, 0.0/0.55, 0.25/0.8, 0.64/0.86, 1.0/1.0) 

DV: 
L = (1.0/0.0, 0.5/0.15, 0.2/0.25, 0.09/0.35, 0.0/0.5, 0.0/0.54, 0.0/1.0) 

M = (0.0/0.0, 0.5/0.15, 1.0/0.25, 0.5/0.35, 0.13/0.5, 0.04/0.54, 0.0/1.0) 
H = (0.0/0.0, 0.06/0.15, 0.18/0.25, 0.5/0.35, 0.95/0.5, 1.0/0.54, 1.0/1.0) 

VH = (0.0/0.0, 0.0/0.15, 0.02/0.25, 0.1/0.35, 0.32/0.5, 0.5/0.54, 1.0/1.0) 

where f3, U, and superscript c are used in the set notation to correspond to 
the intersection, union, and complementation operators, respectively. 

All the fuzzy sets we have defined so far are point-valued. However, by 
applying Eqs. (6) and (7) for AND combination, interval-valued fuzzy sets are 
generated, with CNF(.) and DNF(.) being the upper and lower bounds, 
respectively. This is certainly not a surprise, as it is argued in Turksen [4-6] 
that most of the linguistic combinations would be interval-valued when impre- 
cise knowledge is extracted from experts. That means that our four indepen- 
dent variables and one decision variable could most probably have been 
interval-valued fuzzy sets. For ease of computation we adopt a point-valued 
approach and choose the midpoint of an interval for fuzzy relations whenever 
such an interval is given or is generated by DNF and CNF operations. 

Let us choose rule 6 from Table 3 as an example to explain these calcula- 
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tions. The left-hand side of this rule is 

RLM H = DR L AND DS M AND RR H (8) 

A finite support membership value is chosen from each of these three fuzzy 
sets, say a i ~ DRL, bj E DS M , c k ERR H, 1 _< i, j ,  k _< 7. Let us also choose 
Max and Min operations, denoted by v and A, to correspond to the U and f) 
in the set notation of CNF and DNF in Eqs. (6) and (7) and throughout this 
paper. This choice is needed because there are a large collection of operators 
that correspond to U and O (Turksen [4-6]). 

Hence the membership grades (MGs) for the first two variables are com- 
puted as 

MG(DNF(DR L AND DSM) ) = a i A  bj (9) 

MG(CNF(DR L A N D D S M )  ) = ( a i v b j )  A ( a i V b f ) A ( a C v b j )  (10) 

where the complementation is chosen to be the pseudocomplement: 

c =  1 - a i, b f =  1 - b j ,  c ~ =  1 - cg a i 

The midpoint Gj of the interval-valued fuzzy set 

R LM -~ DR L AND DS M 

is computed as 

rii = ( 1 / 2 ) [ M G ( D N F ( . ) )  + MG(CNF( . ) ) ]  (11) 

Next rij is used to compute the CNF and DNF of AND with c k similarly 
determining rijk, which is the midpoint of the interval-valued fuzzy set of 
RLM H in Eq. (8). RLM is a 7 × 7 matrix, and RLM n is a 7 × 7 × 7 matrix. 
Altogether we have 27 such matrices, since we have 27 rules in our rule base. 

An c~-cut for each matrix or each rule needs to be computed by 

a = V ( r i j  k A r/~,), 1 _< i, j ,  k _< 7, (12) 

to satisfy the sufficiency condition required for the generalized modus ponens 
(Turksen [2]). Thus, we have 27 ot's in all, that is, a , ,  1 _< n < 27, which are 
then used to truncate the decision space as discussed next. 

I F . . .  THEN Composition 

The 27 three-dimensional matrices are then combined with the right-hand 
side of each rule, the decision space, by I F . . .  THEN composition to construct 
the fuzzy relation of each rule in Table 3. But we must first truncate the 
decision space by c~-cuts, where the o~'s are given by Eq. (12). For example, 
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suppose we have t~ 6 = 0.5. Rule 6 shows that DV should be M, with the 
following finite support: 

DV M : (0.5, 1 , 0 . 5 , 0 . 1 3 , 0 . 0 4 )  

After truncation, we get 

D v(T) (0.5,  1,0.5)  v M 

Those elements that are less than c¢ 6 are discarded, because they are insignifi- 
cant in carrying the information through this inference procedure (Turksen 
[2-61). 

Now we are ready to do DNF and CNF evaluation of the I F . . .  THEN 
relation between R and DV. The DNF and CNF expressions of I F . . .  THEN 
composition are 

D N F ( A ~ B )  = (A  A B )  U (A  C A B )  tO (A c A B  ¢) (13) 

CNF(A --} B) = A c O B (14) 

In the membership domain, again with the application of Max and Min 
operators, we get 

rij~, = (1/2)[MG(DNF(RLM~I ~ DV~)))  + MG(CNF(RLM n ~ DV~ )))] 

(15) 

where riik t is the midpoint of the interval-valued fuzzy sets in matrix RLMHM , 
that is, 

R LMHM = R LMH ~ ~--Ml')~ur (T)  

Equation (15) will reduce interval-valued membership grades to point-valued 
ones. 

The 27 matrices generated in this manner are represented in four-dimen- 
sional matrices with membership values. So far we have constructed a set of 
rules and the database that is the set of these matrices, which are required for 
the inferences in approximate reasoning. 

I n f e r e n c e  P r o c e d u r e  

A number of alternative procedures are available for the approximate 
reasoning approach (Turksen [2, 9], Turksen and Zhong [3]). In this paper, we 
discuss Zadeh's composition rule of inference [16]. In addition, from among 
the many approximate reasoning modes, we choose the modus ponens known 
as the generalized modus ponens (GMP) in our discussion. 

For GMP, compositional inference is written as 

R* o (R ~ DV) = DV* (16) 

where o is the compositional rule of inference; R* is an AND combination of 



I. B. Turksen and M. Berg 

observed states of the system, DR*, DS*, RR*; and R ~ DV is a rule to be 
selected from the rule base with a suitable distance or similarity measure. DV* 
is the expert system advice (response) to be provided to a user for the 
combined observed system state R*. Such expert system responses are deter- 
mined in the following manner. 

Suppose a user inputs DR*, DS*, and RR* (the observed states); then the 
inference engine first computes 

R'LOWER = DNF(DR* AND DS* AND RR*) 

R'UPPER ~--- CNF(DR* AND DS* AND RR*) 

MG(R*)  = (1/2)[MG(R~.oWER) + MG(R~ppER) ] 

Next the closeness of R* is checked against R, the left-hand side of each of 
the 27 rules. Among the many distance measures (Zwick et al. [18]), we 
choose the Hamming distance as the closeness measure for this paper, which is 

d H ( R -  R*) = Z rijk-- r*'kl (17) 
ijk 

The rule whose left-hand side R has the minimum distance among the 27 rules 
to the observed system state R* is chosen for GMP computations. 

The compositional rule of inference is applied for the rule so chosen. For 
example, suppose the rule so chosen has left-hand side and right-hand side 
denoted by R* and DVd', respectively; then 

R* o (R~ --} DV*) = DV* (18) 

By substituting DNF and CNF operations of R* ~ DV* into Eq. (18), we can 
obtain the DNF and CNF of DV* and the midpoint of this interval as 

MG(DV*) = (1 /2) [MG(DNF(DV*))  + MG(CNF(DV*)I (19) 

Since DVg' in Eq. (18) is already truncated in the implication composition 
by a0 given by Eq. (12), DV* has only those elements corresponding to the 
truncated DV*. 

Finally, DV* is compared to all the linguistic terms in the decision space, 
that is, D e { L ,  M,H,  VH} to find the closest linguistic term based on the 
distance measure, in this study the Hamming distance d n given by Eq. (17), 
that is, 

dH(DV*,DV ) = ~ IMG(DV*) - MG(DV)I 

Thus, the closest linguistic term is taken as the linguistic approximation to 
DV*. The output of the fuzzy inference engine is this linguistic term so 
chosen. 
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Please note that when we make the distance comparison between DV* and 
the linguistic terms in decision space, DV d' is truncated by the a0-cut [Eq. 
(12)]. Thus, we should truncate the linguistic terms in the decision space 
accordingly in order to calculate the Hamming distance properly. 

To indicate the closeness between DV* and DV we may choose another 
measure, besides the distance measure, which is somewhat more general in the 
sense that it is in the interval [0, l] and is independent of any particular 
situation. This measure is called the similarity measure (Turksen and Zhong 
[3]) and is defined as 

1 
S -  

l + d  

where d is a distance measure. In our c a s e ,  d H is the Hamming distance; 
therefore, 

1 
S - (20) 

1 + d n  

When d n = O, S = 1, indicating that the two linguistic terms are exactly the 
same; and when d H = oo, S = O, meaning that the two terms are very far 
apart. It should be noted that d n and S are equivalent measures of closeness. 

Simulat ion Experiment 

The proposed approximate reasoning approach was programmed in LISP 
and was run on an Apollo workstation in a UNIX environment for two 
simulation experiments with 21 hypothetical case data shown in Table 6. The 
membership values of the linguistic variables are shown in Table 4. The first 
experiment was run with the application of max-min operators, the second with 
the application of bold union/intersection operators. The results of these 
experiments are shown in Tables 7 and 8. 

Before we discuss the outcome of these experiments, let us illustrate the 
inference procedure described in the previous subsection with two examples. 

EXAMPLE 1 If  the state of the system we have observed matches exactly to 
one of the left-hand sides of the 27 rules--for  example; DR* is L, DS* is M, 
and RR* is M, that is, rule 5 in Table 3 and/or case 11 in Table 6-- then 

R* = R L M  M and dH(R*, RLMM) ----- 0. 
If  we input R* into the fuzzy inference engine, we get DV* = DVd', which 

is M. Thus, M is the linguistic term we should choose according to this 
observed state of the system. This process is illustrated in Table 5. The output 
is M with a similarity measure of 1. The result is what we should have 
expected, because the observed state is exactly the left-hand side of rule 5. The 
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Table 5. Inference Procedure 

Observed states 

DR* = (1.0, 0.76, 0.50, 0.08, 0.0, 0.0, 0.0) 

DS* = (0.0, 0.24, 0.50, 1.0, 0.50, 0.20, 0.0) 

RR* = (0.0, 0.27, 0.50, 1.0, 0.50, 0.26, 0.0) 

R* = DR* AND DS* AND RR* 

min[ R* - R I = 0 identifies R~ of rule 5, with a 5 = 0.5. Hence, DV~' is M. 

DV* = R* o(R~ --* DV~) 

DV* = (0.5, 1., 0.5) 

and 

dH(DV ~, DV*) = 0 

1 
S = - - = I  

1 + d  H 

fuzzy inference engine does certainly produce, as it should, an output that is 
the right-hand side of  rule 5. 

This example illustrates the fact that an expert system based on our inference 
procedure produces the expected result when there is an exact match between 
the observed system state and the left-hand side of  a rule in the rule base. 
However,  the real power of  our approximate reasoning has a bit more 
intelligence built into it in the following sense. Suppose there is no exact match 
between the observed system state and the left-hand side of  any rule in the rule 
base. Then the question is, What can our approximate reasoning procedure 
provide for the user? We show in the next example that even when there is not 
an exact match, our approximate reasoning has the power to generate appropri- 
ate advice for the users. 

EXAMPLE 2 I f  the state of  the system we have observed is an arbitrary 
one- -say ,  DR* is very low, DS* is quite a bit medium, and RR* is a little 
bit high--then the inference procedure is as follows. 

I f  they are not available in the system already, the expert (the model builder) 
should give us meaning representations of  all the allowable linguistic terms 
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T a b l e  6. Simulation Inputs: Observed System States 

Case Linguistic Descriptors of Input Parameters 

No. DR* DS* RR* 

1 L M H 
2 VL QBM LBH 
3 VL M VH 
4 VL QBM VL 
5 SL QBM VL 
6 SL QBM VH 
7 VL M NM 
8 L L L 
9 M M M 

10 H H H 
11 L M M 
12 VL L VH 
13 VL L VL 
14 H L VH 
15 H L LBH 
16 LBL L H 
17 M H VL 
18 M H LBH 
19 M VH VL 
20 QBM H VH 
21 QBM H VL 

such as very low (VL), quite a bit medium (QBM), a little bit high (LBH), 
specifying their membership functions. (For the case study, our expert identi- 
fied these membership functions as shown in Figures 1-3  and as defined in 
Table 4.) 

Thus, DR* is VL, DS* is QBM, RR* is LBH, that is, case 2 in Table 6. 
Observe that this does not match the left hand-side of  any of  the rules in Table 
3. First R* = DR* AND DS* AND RR* is computed by DNF and CNF 
expressions of  AND combination. Then the nearest R,  denoted by R*, is 
chosen from among the 27 left-hand sides of  the rules in the rule base. In this 
case, rule 6 is selected; hence, DV d' is M. With the GMP and an c~-cut of  0.5, 
we get 

DV* = R* o (R*  --* DV~') 

The result is DV* = (0.5/0.15,  1.0/0.25,  0.5/0.35) .  
The comparison of  distance between DV* and other linguistic terms in 
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decision space D can be summarized as follows: 

Decision Space D Hamming Distance 
Measure [DVd' - DV* [ Similarity 

L 1.21 0.45 
M 0.0 1.0 
H 1.26 0.44 
VH 3.14 0.24 

Therefore,  the linguistic term M is the response of  the expert  system for the 
observed system state. That is, when the demand rate is very low, the demand 
size is quite a bit medium, and the repair  rate is a little bit high, we should 
expect the service level to be medium. 

SIMULATION EXPERIMENTS Let us now look at the two simulation experi-  

T a b l e  7. Simulation Experiments Resu l t s - - (a )  Simulation with Max-Min 
Operators;  (b) Simulation with Bold Union/Intersect ion Operators 

Selected Rule Linguistic Descriptor 
Number of System Response Case 

No. (a) Co) (a) (b) 

1 6 6 M M 
2 6 6 M M 
3 6 6 M M 
4 4 4 M M 
5 4 4 M M 
6 6 6 M M 
7 5 6 M M 
8 1 1 L L 
9 14 14 M M 

10 27 27 VH VH 
11 5 5 M M 
12 3 3 L L 
13 1 1 L L 
14 12 12 L L 
15 12 12 L L 
16 3 3 L L 
17 16 16 H H 
18 18 18 H H 
19 16 16 H H 
20 18 18 H H 
21 16 16 H H 
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Table 8. Simulation Experiments--Comparison of DV* for Max-Min and 
Bold Operator with or-Cut of  0.5 

Case No. DV*, Max-Min DV*, Bold 

2 (0.50, 1.00, 0.50) (0.65, 1.00, 0.65) 
3 (0.50, 1.00, 0.50) (0.50, 1.00, 0.50) 
4 (0.50, 1.00, 0.50) (0.506, 1.00, 0.506) 
5 (0.50, 1.00, 0.50) (0.646, 1.00, 0.646) 
6 (0.50, 1.00, 0.50) (0.646, 1.00, 0.646) 
7 (0.75, 1.00, 0.75) (1.00, 1.00, 1.00) 

12 (1.00, 0.50, 0.00) (1.00, 1.00, 0.00) 
13 (1.00, 0.50, 0.00) (1.00, 1.00, 0.00) 
14 (1.00, 0.75, 0.00) (1.00, 1.00, 0.00) 
15 (1.00, 0.75, 0.00) (1.00, 1.00, 0.00) 
16 (1.00, 0.50, 0.00) (1.00, 1.00, 0.00) 
17 (0.95, 1.00, 1.00) (1.00, 1.00, 1.00) 
18 (0.95, 1.00, 1.00) (1.00, 1.00, 1.00) 
19 (0.95, 1.00, 1.00) (1.00, 1.00, 1.00) 
20 (0.95, 1.00, 1.00) (1.00, 1.00, 1.00) 
21 (0.95, 1.00, 1.00) (1.00, 1.00, 1.00) 

ments based on the 21 cases shown in Table 6. Both of these experiments were 
run using the Hamming distance measure and the associated similarity measure 
as defined by Eq. (20) in identifying the rule to be selected and in identifying 
the linguistic descriptor to be displayed as the system response. It is observed 
in Table 7 that, with the exception of case 7, there were no differences in the 
rule selection. In particular, for case 7, we observe that max-min operators 
selected rule 5 but bold union/intersection selected rule 6. Furthermore, there 
were no differences in the system response in terms of the linguistic descriptors 
on the surface. However, if we look at the internal value of DV* vectors 
before it is approximated to a linguistic descriptor via the use of Hamming 
distance and similarity measures, we observe some differences (see Table 8). 
Hence, we realize that the similarity measures have a smoothing effect on the 
system response in terms of the linguistic descriptors. Whether such a smooth- 
ing effect is desirable or not may be context- and domain-dependent. There- 
fore, a system designer in cooperation with the users can decide whether to 
output the system response in terms of just the linguistic descriptors or just 
DV* or both. It should be noted that in Table 8 we list only cases 2 -7  and 
12-21, where the observed system states do not match the left-hand side of any 
rule in the rule base. Since cases 1, 8, 9, 10, and 11 have an exact match, we 
have no reason to list those cases. As explained in Example 1, the system 
response corresponds to the right-hand side of the rule as expected. 
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Let us now reconsider cases 2 -7  and 12-21. They were selected randomly, 
and case 2 is explained in detail in Example 2. It is rather interesting to note 
that cases 2 -7  describe an observed system behavior around "medium" and 
the system response is "medium,"  corresponding to our expectations. Simi- 
larly, when the system behavior is around " l o w , "  as in cases 12-16, the 
system response is " l o w , "  and when it is around "h igh"  as in cases 17-21, 
the system response is "h igh , "  again corresponding to expectations. This is an 
indication of robust system behavior. Clearly these results support the hypothe- 
sis that approximate-reasoning-based expert systems would better serve the 
operations managers of such robust systems. 

Finally, these simulation experiments appear to suggest that once the rule is 
identified with the help of a similarity measure we could directly fire the rule, 
that is, give the right-hand side of the rule as a response linguistic variable. 
This needs to be validated theoretically and experimentally in the future. If this 
finding is true, then there would be no need for a compositional rule of 
inference. This would be analogous to modus ponens in two-valued logic. 
Could this be true for the case of robust systems? 

CONCLUSIONS 

In this paper, we have described our approximate reasoning approach for an 
expert system design and development as an aid to management confronted 
with a production/inventory capacity problem. We have attempted to show 
how operations research and approximate reasoning can be synthesized for the 
solution of real-life problems in the era of knowledge-based systems. Opera- 
tions research methodologies can generate valuable insights into the under- 
standing of problem domains. Approximate reasoning provides a framework 
where the insight gained from OR models could be restructured for real-life 
problems either where there is insufficient information to identify parameters 
of the system at hand or where such data are not available owing to various 
factors and uncertain environmental conditions. Hence, the best we can do is 
rely on OR experts' assessments and the interpretation of real system behavior 
via model analysis. Since such assessments can best be expressed in a natural 
language setting with linguistic terms providing flexibility of expression in 
human judgments, and since approximate reasoning based on fuzzy logic can 
handle such linguistic uncertainties and imprecision, it appears that the mar- 
riage of operations research and approximate reasoning is inevitable with the 
advance of expert systems. 

Approximate reasoning with linguistic variables and their terms provides 
aggregation of human knowledge as well as user friendliness. Thus, approxi- 
mate reasoning is a reasonably good analog to human reasoning. This was 
illustrated with the second example in the last section. Furthermore, the 
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simulated cases 2 -7  and 12-21 discussed in the previous section indicate and 
support the commonsense reasoning that managers in charge of robust systems 
would get the appropriate support without detailed precision with the aid of 
approximate-reasoning-based expert systems. The approximate reasoning shows 
an advantage over analytical models in that it allows a certain degree of 
freedom from accuracy in the information and knowledge acquisition. This 
freedom and flexibility combined with the power of the aggregation due to 
linguistic variables allows expert system designers and developers to summa- 
rize the available knowledge in terms of far fewer rules than if one were to 
design expert systems that require precise information leading to rule explo- 
sion. 

On the other hand, the extra intelligence provided in the inference procedure 
gives us a way to cope with situations not explicitly included in the rule base 
and hence with unforeseen future conditions in the observed system behavior. 
This means that the use of an expert system is not confined to the set of rules 
provided in the knowledge base. 

There are certain issues that need more elaboration. Some of these are: 
1. Throughout our discussion, point-valued fuzzy sets are employed instead 

of interval-valued ones, with the exception of CNF and DNF expres- 
sions, which creates interval-valued results for the logical combinations. 
However, by taking the average of the upper and lower bounds, respec- 
tively, we reduce the intervals to points. However, several experimental 
results obtained so far suggest that interval-valued fuzzy sets represent 
experts' assessment more naturally. Even though we have shown that 
interval-valued inference is quite possible, computations required for 
interval-to-interval inference are a lot more complex and costly at this 
point in our research (Turksen [9], Turksen and Zhong [3]). 

2. In the inference procedure, we have used GMP and the Hamming 
distance and a similarity measure based on this distance measure. This 
choice needs justification. It is known that there are other distance 
measures and other similarity measures (Zwick et al. [18], Turksen and 
Zhong [3]). However, the choice of a distance and a similarity measure is 
still an open question. Until we identify the context-dependent effects of 
these distance and similarity measures, we cannot know how to choose 
an appropriate measure. 

These issues are left for future research. 
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A P P E N D I X  

fo(W) = A ( e - ~ W -  re-~2~,) 

A[ r ] 
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+ ( . -  x-/3,) ( .  ~ ,~;~/32)  e"N 

e-81N e-B2N 
+ - -  

- ~ ~ - / 3 2  

B = - A r  

and 

(~ - X -  / 3 , ) / ( ~  - / 3 , )  
r =  

(# - x - / 3 2 ) / ( ~ ,  - / 3 2 )  

where A,  B, /3~, /3, and r are intermediate parameters used in the analytical 
solution procedure. 

A main concern of management is the fraction of satisfied customer de- 
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mands. This can be expressed in terms of  the model parameters as 

# [  1 - e - ~ l N r  ] 
p= ~ A  fl, ~ ( I - e  -~2N) 
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