UiO ¢ University of Oslo

Havard Kvamme

Time-to-Event Prediction
with Neural Networks

Thesis submitted for the degree of Philosophiae Doctor

Department of Mathematics
Faculty of Mathematics and Natural Sciences

2019




© Havard Kvamme, 2019

Series of dissertations submitted to the
Faculty of Mathematics and Natural Sciences, University of Oslo
No. 2346

ISSN 1501-7710

All rights reserved. No part of this publication may be
reproduced or transmitted, in any form or by any means, without permission.

Cover: Hanne Baadsgaard Utigard.
Print production: Reprosentralen, University of Oslo.



Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The thesis is a collection of
four papers with the common theme of time-to-event prediction with neural
networks. Their chronological order is representative of my understanding of the
field. Although I have a background in statistics from the Norwegian University
of Science and Technology, I have always found the empirical mindset of machine
learning to be closer to my way of thinking. It has, therefore, been interesting
to work at the intersection of statistical survival analysis and a part of machine
learning that originated in computer science.

I am deeply grateful to my three supervisors Ornulf Borgan, Ida Scheel, and
Kjersti Aas, as they allowed me the freedom to explore my ideas, but managed to
always be available with knowledge, assistance, and encouragement. In particular,
I want to thank my main supervisor and main collaborator @rnulf. His incredible
knowledge of survival analysis has been invaluable for our work, and his rigor
and attention to detail has caught more of my mistakes than I care to admit. I
want to thank Ida for always having time for my questions, no matter how little
time she had available. I want to thank Kjersti for having multiple interesting
projects available for me when I started in 2016, and for getting us through the
revisions and publishing process of our first paper. I am also grateful to my
other co-authors Nikolai Sellereite and Steffen Sjursen. Additionally, I want to
thank Nikolai for showing me the KKBox churn prediction data set which ended
up being an important part of two other papers he was not a part of.

During my time as a research fellow, I got to visit Trevor Hastie at Stanford
University for six months, and I am very grateful to him for including me in his
research group. His students, in addition to the rest of the Stanford statistics
students and staff, made my stay very enjoyable. I am grateful to Biglnsight
for providing me with necessary funding for the stay, in addition to the funding
for all other research-related trips. I want to thank all my colleagues at the
Section of Statistics and Data Science at UiO and at the Norwegian Computing
Center, in addition to Gudmund Horn Hermansen and Erlend Aune for inspiring
conversations and conference trips.

Finally, I want to thank my friends and family for making my time outside
the university so great. In particular, I am grateful to Amalie for her patience,
understanding, and for never questioning the time I spent on my research, even
when it came at the expense of our time together.

eHavard Kvamme
Oslo, December 2019






List of Papers

Paper |

Havard Kvamme, Nikolai Sellereite, Kjersti Aas, and Steffen Sjursen. Predicting
Mortgage Default Using Convolutional Neural Networks. Fzpert Systems with
Applications, 102: 207-217, 2018.

Paper Il

Havard Kvamme, @rnulf Borgan, and Ida Scheel. Time-to-Event Prediction with
Neural Networks and Cox Regression. Journal of Machine Learning Research,
20(129): 1-30, 2019.

Paper lll

Havard Kvamme and @rnulf Borgan. Continuous and Discrete-Time Survival
Prediction with Neural Networks. Submitted for publication.

Paper IV

Havard Kvamme and @rnulf Borgan. The Brier Score under Administrative
Censoring: Problems and Solutions. Submitted for publication.






Contents

Preface i
List of Papers iii
Contents v
1 Introduction 1

1.1 Neural Networks and Statistical Models . . . . . . . .. .. 2

2 Neural Networks 5
2.1 A Brief Historical Perspective . . . . . .. ... ...... 5

2.2 The Multilayer Perceptron . . . . . ... ... ... .... 7

2.3 Training Networks . . . . . . . ... ... ... ... 8

0

2

24 Overfitting and Regularization . . . . . ... .. ... ... 1
2.5 Convolutional Networks . . . . . . . ... ... ... .... 1
3 Time-to-Event Prediction 17
3.1 Event-Time Modeling . . . . . .. ... ... ... ..... 17
3.2 Regression Models . . . . . . . ... ... 22
3.3 Evaluation of Survival Estimates . . . . . . ... ... ... 26
4 Summary of Papers 29
4.1 Paper I . . . . . .. o 29
4.2 Paper IT . . . . . . . . o 30
4.3 Paper IIT . . . . . . . . . o o 31
4.4 Paper VI . . . . . . .. ... 32
5 Discussion 33
5.1 The Survival Methods . . . . . . . . . .. ... ... .... 33
5.2 Can We Trust Individual Predictions? . . . . . . .. . ... 34
5.3 Extensions of the Methods . . . . . ... ... ... .... 35
5.4 Evaluation of Survival Estimates . . . . . . . .. ... ... 43
5.5 Time-to-Event Prediction and Machine Learning . . . . . . 45
Bibliography 47
Papers 56






Chapter 1
Introduction

As the title of this thesis suggests, we investigate how machine learning, and
in particular neural networks, can be applied for time-to-event prediction. The
topic of time-to-event prediction is a subfield of survival analysis predominately
concerned with when in the future an event will occur. So, contrary to the
rest of survival analysis research, we make little effort to understand why the
event occurred. The event in question can be a mortgage default, as in Paper I;
customers stopping their subscription to a service, as in Paper II; the failure
time of a mechanical system; an actual death from a disease; or any other
suitable event. In the context of this thesis, the term neural networks refers to
a set of machine learning algorithms, also known as artificial neural networks,
connectionist systems, or deep learning, and are not to be confused with the
eponymous biological networks.

So, when are we willing to trade some of the understanding of the event-
time process for improved predictive performance? Often, we are interested in
both. Take customer relationship management as an example. One would, of
course, like to know why customers are churning (leaving the service). But to
retain current customers, a viable strategy can be to simply identify customers
that are likely to churn and provide them some discount or offer. Even if we
are primarily interested in understanding the effect of the variables, valuable
insights might be obtained by studying methods purely focused on prediction.
If such a “prediction-focused” model has much better predictive performance
than our “understandable” model, the latter is clearly not using the available
information to its full potential and might require some modifications. This way
a “prediction-focused” model can be used to benchmark our “understandable”
model.

The thesis essentially consists of three parts: the first is mainly about finding
a good neural network model for a specific problem, the second part explores
how methods from survival analysis can be combined with neural networks
for improved predictive performance, and the third part is concerned with the
evaluation of such predictions. The three topics represent the chronological
progress of my research, as each of them was motivated by experiences
encountered in the previous topic. In the first project, we created a neural
network model for predicting mortgage defaults for Norway’s largest commercial
bank. We later understood that such time-to-event problems could benefit from
combining methodology from survival analysis and machine learning. Then,
while developing such methodology, we found that some of the evaluation criteria
did not behave as expected and could, possibly, give misleading results. So,
naturally, we continued by investigating the performance metrics.

To make one’s research accessible to others, it is import to provide the



1. Introduction

necessary details in a usable format. Code has, therefore, been an essential
addition to the papers. This has resulted in a python package that contains
implementations of the proposed methods, data sets, simulations, and evaluation
metrics in Papers II, III, and IV. The package is built on the popular
deep learning framework PyTorch (Paszke et al., 2017) and is available at
github.com/havakv/pycox.

The thesis is structured as follows: In Chapter 2, I will give an introduction
to neural networks in the context of our papers, as all the predictive methodology
is built on neural networks. This chapter is most relevant for Paper I, as it is
concerned with finding a network model that is suitable for time-series modeling.
The three remaining papers, on the other hand, consider the networks as general
function approximators that minimize some objective function and is more
concerned with the survival methodology.

In Chapter 3, I will give a brief introduction to the field of survival analysis
while focusing on predictive modeling. I will introduce the statistical models that
are the foundations of Papers II and III, in addition to similar methods in the
literature. In short, most of the approaches are classical statistical models where
a linear predictor function is replaced by a neural network. This chapter also
addresses some of the common criteria for evaluating the predictive performance
of time-to-event models. Here I will briefly discuss some of the problems that
led us to the investigations in Paper IV.

A summary of the four papers is given in Chapter 4. In Chapter 5, I will
discuss some natural extensions of the proposed methods. Also, I will use the
opportunity to address some shortcomings of the papers and proposed methods.

1.1 Neural Networks and Statistical Models

A substantial part of this thesis is about improving the predictive performance of
classical statistical models with methodology from machine learning. To illustrate
the general approach, I will start by explaining how the Logistic Regression
model for binary classification can be extended with neural networks. This
should also provide the reader with the necessary terminology for understanding
Chapter 2 on neural networks.

Consider an individual ¢ with covariates x; € RP and response y; € {0,1}.
We assume that y; is an observation of the random variable Y; ~ Bernoulli(r;),
where the parameter m; depends on the covariates,

Logistic Regression assumes that the relationship between x; and 7; is given by
the logistic function
1

m—o(x) = ——— 1.1
50 = 14 el —o(x,) .
where ¢(x;), typically, is the linear predictor function ¢(x;) = wlx; with

parameters w € RP. For a data set of n individuals, we can estimate the

2


https://github.com/havakv/pycox

Neural Networks and Statistical Models

parameter values w by minimizing the negative log-likelihood of Bernoulli data

n

loss = — Z (yZ loglo(x;)] + (1 — y;) log [1 — o(x;)] ), (1.2)

i=1

with respect to the parameters w. For a new individual j, 7; = &(x;) is the
estimated probability of Y; = 1, and 7, can be used to make a prediction of the
response ;.

The terminology in machine learning differs slightly from that of classical
statistics. The response y; is often called a label or target, and the parameters
w are called weights. The logistic function in (1.1) is referred to as the sigmoid
function, and we rarely address its inverse; the link function that is so common in
statistics. The data set is typically split into multiple subsets that serve different
purposes, and the subset used to minimize the loss function (1.2) is called the
training set.

A model generalizes well if it has accurate predictions and we often refer to
the topic as predictive performance. Consequently, we are typically not interested
in minimizing the loss (1.2) with respect to the training set, but instead, we want
the loss to be small for data we have not yet seen. This can be approached by
considering the loss of a held-out subset, called a validation set, which essentially
serves the same purpose as in cross-validation. Finally, we use a held-out test
set to quantify the predictive performance of the model.

If we now refer to the linear predictor ¢(x;) = wlx; as a neural network, we
have left the field of classical statistics and are instead doing machine learning.
This is because a neural network is simply a parametric model such as ¢(x;),
though we are typically interested in more complex functions than w’x;. A
neural network consists of a set of transformations of the covariates that are
applied in sequence. Consider three such transformations denoted h1, ho, and hs.
A network can then be defined as ¢(x;) = h3(ha(h1(x;))). The transformations
are typically referred to as layers, and each layer’s outputs are the values obtained
from the transformation. We refer to the number of layers as the depth of the
network, and the term deep learning refers to deep networks. There is, however,
no formal depth requirement for a network to be considered deep. The structure
of the network is often called the network architecture and refers to the general
design of the network.

Returning to the Logistic Regression, but with neural network terminology,
we find that the linear predictor ¢(x;) is a single-layer network (depth of
one), consisting of a single dense, or fully-connected, layer. If we include the
sigmoid function (1.1) as a part of the network, we can call o(x;) a two-layer
network where ¢(x;) is a hidden layer. It is, however, more common to refer to
transformations without parameters, such as the sigmoid, as activation functions,
and we typically consider them part of a parametric layer. One can also consider
the loss function (1.2) a part of the network, as it is conceptually no different from
the other layers. This interpretation is mostly useful for illustrative purposes.

The most standard neural network structure is the multilayer perceptron
(MLP). Tt consists of multiple dense layers on the form h(z) = g(Wz), where g is

3



1. Introduction

an activation function, W is a matrix of parameters or weights, and z represents
the output of the previous layer. For layers hy, ho, and hg, with parameters
W; € R¥*P, Wy € R™*? w3 € R", and sigmoid activation functions (applied
element-wise), we have the network

o(x;) = WSTJ<W2 G[Wlxi]) (1.3)

If we replace the linear predictor in the Logistic Regression with this network,
we will have a much more flexible model. We do, however, also have many more
parameters. To train the model, we apply some version of the gradient descent
algorithm. The gradients are obtained with the back-propagation algorithm which
is, essentially, application of the chain rule of differentiation.

It should now be clear that neural networks can be applied to many statistical
models simply by replacing the linear predictor w”x of the classical statistical
model with a network such as in (1.3).

The network architecture of modern MLP’s differs slightly from the example
in (1.3). This is one of the topics of Chapter 2, together with gradient descent,
back-propagation, other layer types, and more.



Chapter 2
Neural Networks

The field of neural networks is a branch of machine learning concerned with
gradient-based optimization of models composed of sequences of transformations.
It is commonly referred to as deep learning, artificial neural networks, or even
artificial intelligence. One might argue that these terms actually represent
different research areas or subcategories, a distinction that will be ignored in
this thesis as I will simply use the term neural networks.

Recently, neural networks have received much attention, both from academia
and the industry. This has resulted in impressive results in areas such as image
recognition (Krizhevsky et al., 2012; Szegedy et al., 2015; He et al., 2015a),
image segmentation (Long et al., 2015; He et al., 2017), language modeling and
language translation (Wu et al., 2016; Gehring et al., 2017; Vaswani et al., 2017;
Radford et al., 2018, 2019), and image and audio generation (Goodfellow et al.,
2014; Oord et al., 2016; Brock et al., 2018; Razavi et al., 2019). In part, the
successes of neural networks are owed to the modularity of the back-propagation
algorithm for automatic gradient computation (Kelley, 1960; Rumelhart et al.,
1986). While back-propagation is essentially the chain rule of differentiation, in
practice it allows for modular implementations of the desired transformations.
This makes the networks very applicable, as it is easy to extend or change
existing network structures.

In the following, I will first give a brief overview of the development of neural
networks, starting from the late 1950s. I will then present multilayer perceptrons
(MLP’s), which are the most basic networks, and I will cover how they are
trained and regularized. At the end of the chapter, I will describe convolutional
neural networks, which are an important part of Paper I.

2.1 A Brief Historical Perspective

The development of neural networks dates back to the perceptron by Rosenblatt
(1958) and ADALINE by Widrow and Hoff (1960), both of which are binary
classifiers with linear decision boundaries. Both methods were heavily criticized,
especially by Minsky and Papert (1969), for their limited ability to express
richer functions, and received limited academic attention. More than a decade
later, Rumelhart et al. (1985, 1986) reestablished interest in neural networks
by presenting the benefits of applying multiple perceptrons sequentially with
non-linear functions in between them. This directly addressed the concerns raised
by Minsky and Papert (1969). Furthermore, Hornik et al. (1989) established the
notion that these multilayer perceptrons (MLP) are universal approximators in
the sense that they can “approximate any Borel measurable function from one
finite dimensional space to another to any desired degree of accuracy, provided

5



2. Neural Networks

sufficiently many hidden units are available.” At the same time, LeCun (1989)
introduced convolutional neural networks, or CNN’s, that are essentially a
sparse version of the MLP with some parameters in the network forced to be
identical (called weight sharing). This idea was tailored to the grid structure of
images represented by pixels and was found to be quite successful in recognizing
handwritten digits for the US Postal Service (LeCun et al., 1989). The networks
were, however, very computationally expensive and somewhat unpractical to
train.

This period also includes the development of the generative models:
Boltzmann machines (Ackley et al., 1985), Belief networks (Neal, 1992), and
the Helmholtz machine (Dayan et al., 1995), in addition to Recurrent neural
networks (Rumelhart et al., 1986) and Long Short-Term Memory networks
(Hochreiter and Schmidhuber, 1997) for processing sequential data. At the time,
the methods were quite computationally expensive, and it was problematic to
train deeper networks. As a result, other methods such as Random Forests and
Support-Vector Machines received more attention.

Renewed interest in the field came with the breakthrough of Hinton et al.
(2006) who were able to efficiently train deep Belief networks by greedy layer-wise
pre-training. Shortly after, Bengio et al. (2007) and Poultney et al. (2007) showed
that other deep network structures could be trained with the same strategy.
Furthermore, they were able to show that both unsupervised pre-training and
deeper networks improved generalization. With this new focus on depth, neural
networks were rebranded as “deep learning” (Allen, 2015; Goodfellow et al.,
2016), which marks the beginning of modern neural network research.

The following period was marked by three important discoveries. The first
was that graphical processing units (GPUs) could massively speed up the training
process of the networks (Mohamed et al., 2009; Raina et al., 2009), which enabled
researchers to faster explore new networks and allowed for more parameters
in the networks. The second discovery was that better non-linear activation
functions and better parameter initialization made the optimization problem
much nicer (Jarrett et al., 2009; Glorot and Bengio, 2010; Nair and Hinton,
2010; Glorot et al., 2011). This had a large impact on both training time and
generalization error. The third discovery was the importance of large labeled
data sets. While this might seem obvious, researchers had, to some extent, been
focusing on marginal improvements on smaller data sets. Faster computers and
much “nicer” networks, enabled networks to be fitted to much larger data sets.

The most prominent example of the importance of large data sets is likely
the 2012 computer vision contest ILSVRC (Russakovsky et al., 2015). Here the
convolutional network by Krizhevsky et al. (2012) achieved a top-5 error rate of
15.3% (compared to the second place of 26.1%). Their network architecture was
actually quite similar to the architectures proposed a decade earlier by LeCun
et al. (1998), but deeper and with the advancements discussed above. Although
there had been increasing interest in neural network research since 2006, the
entry by Krizhevsky et al. (2012) was, in fact, the only neural network entry
to the competition that year. Their success, however, marks a turning point in
the popularity of neural networks and the competition has since only been won

6



The Multilayer Perceptron

by neural network entries. In the years after 2012, there have been numerous
success stories of neural networks for a variety of applications, some of which
were mentioned in the introduction to this chapter.

For a more detailed historical overview, see, e.g., the blog series by Andrey
Kurenkov?!, or the book by Goodfellow et al. (2016).

2.2 The Multilayer Perceptron

Multilayer perceptrons, or MLP’s, are the simplest and, arguably, the most
fundamental network structures. MLP’s were briefly covered in the context
of Logistic Regression in Section 1.1, but we will here provide a more general
overview of the topic.

To fit a standard MLP, we need input covariates x € R?, targets y € R™,
and a differentiable loss function loss(4(x),y), where ¢(x) denotes the output of
the MLP. The loss function can, for instance, be the mean squared error, or the
negative log-likelihood of Bernoulli data (binary cross-entropy). An MLP consists
of one or more dense, or fully-connected, layers of the form h(x) = Wx + b,
where W € R?7*P and b € R? are learnable parameters. It is common to refer
to the parameters W as weights and b as biases. The biases b are sometimes
excluded from the model, as we did in Section 1.1.

For ¢(x) to be a non-linear function of x, we need to add non-linear
transformations to the network. These transformations are called activation
functions and are commonly applied to the output of a dense layer. In fact,
activation functions are so common that we typically consider them part of the
layer, meaning we have the layer h(x) = ¢ (Wx + b). The most commonly
used activation function is the rectified linear unit, or ReLU, defined as
g(z) = max{0,z}. There are, however, many proposed alternatives to this
function, such as the ELU (Clevert et al., 2015), PReLU (He et al., 2015b), and
SELU (Klambauer et al., 2017). Up till the late 2000s, it was more common
to use the sigmoid function g(z) = 1/(1 + exp[—z]) or g(z) = tanh(z), as these
more closely mimic the on/off behavior of a biological neural network. Both
were, however, found to work rather poorly as the resulting gradients become
very small when z is not close to 0. Nevertheless, they are still useful in other
settings; the sigmoid is, for instance, commonly used to scale the final output of
a network to be in [0, 1] for classification tasks.

This brings us to the final layer of the MLP, the output layer. This is often
a dense layer, but with an output activation that is suited to the loss function.
For instance, for binary classification we can use the sigmoid activation, for
multi-class classification we can use the softmax g;(z) = exp(z;)/ > r—; exp(zx),
for j = 1,...,m, and for regression one can simply use the identity g(z) = z.
Conventions here vary, but sometimes the output activation is implicitly included
in the loss function to ensure numerical stability. This is, however, most relevant
for the implementation and usage of a method, and often less relevant for
descriptive purposes.

Landreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning


http://www.andreykurenkov.com/writing/ai/a-brief-history-of-neural-nets-and-deep-learning/

2. Neural Networks

Output P(x) = hy(z)
Hidden z = h(x)
Input X

Figure 2.1: Simple MLP illustration with three covariates, a hidden layer with
five units, and a single output.

Figure 2.1 shows the typical illustration of a one-hidden-layer MLP. Although
the figure does not provide much additional insights compared to simply writing
the model as ¢(x) = ha(hi(x)), it illustrates that it is common to think of
a neural network as a computational graph. In particular, frameworks for
working with neural networks, such as Theano, Tensorflow, and PyTorch, are
typically built on this graph representation. The nodes represent values and
the arrows represent the matrix multiplication with the parameters. As the
activation functions are considered part of the layers, the hidden layer is actually
hi(x) = g1 (Wx + b), and the output layer is hy(z) = g (W'z).

It can be shown that with a sufficiently “wide” hidden layer h(x), an MLP
can approximate any function (Hornik et al., 1989). In practice, however, it is
typically better to stack multiple hidden layers sequentially, giving networks
such as ¢(x) = hz(h2(h1(x))).

2.3 Training Networks

The parameter values of a neural network ¢(x) are generally found by minimizing
the loss function with some version of gradient descent. In the example of the
Logistic Regression in Section 1.1, the loss function was the negative log-likelihood
of Bernoulli data, and we will generally consider negative log-likelihoods as loss
functions in this thesis.

Consider the network ¢(x) with parameters denoted by w for simplicity, i.e.,
w contains all the parameters of all the layers. For a training set of n individuals,
each with covariates x;, we want to obtain the minimizers

wh = argminz loss (p(x;), ¥i) (2.1)

W=l



Training Networks

which, for a negative log-likelihood loss, corresponds to the maximum likelihood
estimates. In practice, we find the parameter estimates by some version of
gradient descent, meaning we calculate the partial derivatives of the loss with
respect to the parameters, and move the parameter values in the negative
direction of these partial derivatives. With « denoting a step size, a somewhat
informal notation for this is

W< w—aVy (Z loss (¢(x;), yl)> .

By repeating this gradient step multiple times, we will eventually reach a
minimum of the loss function.

Usually, we perform each gradient step by only considering a small subset of
the data set at a time. This subset is called a batch and is changed for every
gradient update. In the neural networks literature, we refer to this procedure
as stochastic gradient descent or just SGD, and it comes in many flavors such
as Adagrad (Duchi et al., 2011), RMSprop (Hinton et al., 2012), and Adam
(Kingma and Ba, 2014). Their distinction is not important for the understanding
of this thesis.

If we have a model with many parameters compared to the size of the data
set, the optimal parameters in (2.1) are probably overfitted to the training set,
meaning that they generalize poorly. It is, therefore, common to monitor the
loss on a held-out validation set, and stop the optimization procedure when this
validation loss stops improving.

This is known as early stopping and is just one of many regularization
techniques, a topic we will further investigate in Section 2.4.

2.3.1 Back-propagation

For all but the simplest neural networks, it can be cumbersome to derive the
gradients of all the parameters. To this end, back-propagation, an application of
the chain rule of differentiation, was developed to efficiently obtain the gradients
of the parameters in neural networks.

Consider the neural network ¢(x) = hy,(hm—1(...(h1(x)))), consisting of
the transformations z; = hy(x), z2 = ho(z1),...,2m = hm(Zm-1), each with
parameters denoted wq, wo, ..., W,,. We require that each transformation in the
network can calculate the partial derivatives of its output z; with respect to its
parameters wj and its input z;_;. Informally written, this means that layer k
needs to calculate 0zy /0wy and 0zy/0zk—1. By the chain rule of differentiation,
the gradients of the parameters with respect to the loss can be obtained by

Oloss(¢(x), y) _ Oloss(¢(x), y) Oz,

oWy, 0zy, Owy,
_ Oloss(¢(x),y) 0z, 0Zk+1 Oz,
B 8Zm amel azk 8wk'



2. Neural Networks

Obtaining the gradients of all parameters in the network is called a backward
pass while calculating the loss is called a forward pass.

It should now be clear that modifying or replacing a layer z;, = hy(zx—1) only
requires redefining 0z, /0wy, and 0z, /0z—1, and the rest of the implementation
is left untouched. This modularity is rather powerful as it greatly simplifies
experimentation with new layers and network structures. In fact, in Paper IT and
1T, we propose methods based on standard neural network structures, but with
new loss functions, which can be viewed as the final layer of the computational
graph.

The development of neural network methodology is further simplified by
frameworks such as Tensorflow (Abadi et al., 2015), Keras (Chollet et al., 2015),
PyTorch (Paszke et al., 2017), Torch (Collobert et al., 2002), Caffe (Jia et al.,
2014), and Theano (Bergstra et al., 2010). Some of these also perform automatic
differentiation, meaning one only needs to implement the transformations and
not the partial derivatives. For a more in-depth discussion of back-propagation,
see, e.g., Chapter 6.5 of the book by Goodfellow et al. (2016).

2.4 Overfitting and Regularization

Neural networks are generally overparameterized. Rumelhart et al. (1986) found
that networks with just enough connections to perform a given task tend to
get stuck in local minima that are far worse than the global minima, and that
“adding a few more connections creates extra dimensions in weight-space and
these dimensions provide paths around the barriers that create poor local minima
in the lower dimensional subspaces” So, creating a neural network is not simply
about finding the right number of parameters in the network. Typically, the
best model, in terms of generalization error, is an appropriately regularized
large model (Goodfellow et al., 2016). There is, of course, much literature on
regularization, and in the following, we will investigate some of the most relevant.

2.4.1 Weight Decay

Neural networks aside, regularization in statistics and machine learning is
typically associated with penalization of the loss with respect to the size of
the parameter values. Consider a model ¢(x) with parameters w. The loss
penalized by the L? norm is then

1
loss, = loss(¢(x),y) + 7§||W||§,

where v is a hyperparameter. The gradient updates with vanilla gradient descent
will then take the form

w < w — aVloss,,
or, equivalently, as V3||w||3 = w,

w ¢+ (1 — avy)w — aVloss(¢(x),y). (2.2)

10



Overfitting and Regularization

For expression (2.2), we can interpret the gradient update as performing the
regular non-penalized update w < w — aVloss(¢(x),y), but we shrink the
weights w by a constant factor (1 — a7y) at every iteration. As a result, L>-
regularization is referred to as weight decay in the neural network literature.
In fact, generally, we do not calculate the penalty ||w||3 directly but, instead,
consider the weight decay a part of the optimization scheme.

2.4.2 Ensemble Learning and Dropout

A common approach to improving the generalization of a model is to train an
ensemble of models and combine their predictions. Bagging (Breiman, 1996)
and Random Forest (Breiman, 2001) are two well-known methods built on this
principle, and both average the predictions of many tree models. Averaging
of multiple predictions reduces the variance and, consequently, improves the
generalization error of methods with high variance and low bias. As neural
networks are high variance, such ensemble strategies are applicable.

There are many different approaches to ensemble learning for neural networks
as one can bootstrap or subsample the training set (such as in bagging), use
subsamples of the covariates, combine randomly initialized homogeneous network
structures, etc. In Paper I, we found that averaging the predictions of networks
fitted to subsets of the covariates (individual time series) substantially improved
the performance over combining all covariates in a single network. We also
averaged predictions from multiple randomly initialized networks for further
improvements. Similar approaches are commonly used by the winning entries in
prediction competitions such as the ILSVRC (Russakovsky et al., 2015).

Dropout (Srivastava et al., 2014) can be thought of as a computationally
efficient alternative to training an ensemble of neural networks and is one of
the most commonly applied regularization strategies for deep neural networks.
The idea is to randomly “drop” units from the network (represented by nodes in
Figure 2.1), and thus train an ensemble of all possible subnetworks. With ¢.,(x)
denoting a subnetwork  obtainable with dropout, we want to minimize the
expected loss over all possible subnetworks E., [loss(¢~(x),y)]. This is, however,
typically intractable, so we instead minimize an unbiased estimate by sampling
5.

In practice, dropout is applied by multiplying the output of a layer with a
mask of iid 0/1 variables drawn from a Bernoulli(p) distribution (at every batch
iteration), where p is a hyperparameter. The ensemble prediction can then be
obtained by computing the average over a sample of masks

1 m
¢ensemble (X) - E Z ¢’Yk (X)
k=1

A more common, less computationally expensive, alternative is to scale the
output of each dropout layer by the dropout-probability p, meaning we compute
an estimate of the expected output of that layer. This approach, called weight
scaling, has limited theoretical justifications but works well in practice.

11



2. Neural Networks

2.4.3 Data Augmentation

Possibly the simplest way to improve the generalization of a machine learning
model is by increasing the size of the training set (assuming the quality of the
data is reasonable). Obtaining more data if often hard or expensive, so data
augmentation techniques instead attempt to artificially increase the size of the
training set. The most basic form of data augmentation is to introduce noise to
the covariates (Sietsma and Dow, 1991), in which case dropout can be viewed as
an augmentation scheme.

For image recognition, data augmentation has become an important
consideration when training networks. There has been great success in artificially
augmenting data sets by subjecting images to label-preserving transformations
such as rotation, translation, scaling, and mirroring. Krizhevsky et al. (2012)
emphasize this approach as an important part of their winning entry to the
LSVRC-2012 competition (Russakovsky et al., 2015).

In Paper I, we explore how data augmentation can be applied to time-series
data by considering multiple overlapping windows of the same time series per
individual. This is found to have a substantial impact on the performance of
our models.

2.4.4 Other Approaches to Regularization

Three other common regularization techniques are batch normalization (Ioffe and
Szegedy, 2015), though its main objective is to improve optimization; cyclical
learning rates (Loshchilov and Hutter, 2016), to find better local minima; and
early stopping of the optimization routine based on a held-out validation set.

Finally, an alternative approach to regularization is to change the structure of
the neural networks. If one tailor the network architecture to a specific problem,
one can potentially reduce the number of parameters without sacrificing the
network’s ability to model the objective. Two such approaches are the use of
sparse layers, meaning that many weights are set to zero; and the use of shared
parameter values, meaning multiple parameters are fixed to be identical. The
most prominent application of these two techniques is the development of the
convolutional networks by LeCun (1989).

2.5 Convolutional Networks

The name neural networks is from biology, as some of the first learning algorithms
were modeled after the brain. It is, however, hard to argue that modern networks
are more than loosely inspired by biological networks. Still, convolutional
networks claim to capture some of the same properties as the primary visual
cortex (LeCun et al., 2010; Goodfellow et al., 2016). Convolutional networks,
convolutional neural networks, ConvNets, and CNN’s are all terms we use to
describe neural networks where convolutional layers are a crucial part of the
network architecture. LeCun (1989) is considered the inventor of CNN’s, though
he was heavily inspired by the works of Fukushima (1980) and Lang (1988). The

12



Convolutional Networks

i C3:f. maps 16@10x10
: feature maps S4: f. maps 16@5x5
INPUT 6@26x28 ps 16@

A 82 f. maps r C5:layer fg: jayer OUTPUT
r r 120 84 10

B@14x14
rl_ r

|
| Full anecﬂon | Gaussian connections
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Figure 2.2: The LeNet-5 architecture from LeCun et al. (1998)

main motivation of CNN’s was to reduce the number of free parameters in a
network by tailoring its architecture to the grid structure of an image represented
by pixels. By enforcing sparsity and weight sharing, LeCun could accomplish
this reduction without necessarily reducing the size of the network.

In Figure 2.2, you can see the CNN proposed by LeCun et al. (1998) for
recognizing digits (even though the figure use the character A as an example).
In the figure, convolutions are represented by the small square on the input
image. By applying this square to different parts of the input image one obtains
the outputs in “C1: feature maps”. The small squares represent convolutional
kernels and are often referred to as filters. This is because each filter is “looking’
for a pattern in the image, and its output (C1: feature maps) is a map describing
which parts of the input image that contain the filter pattern. For example, a
filter might look for horizontal lines in the image, while a second filter might look
for vertical lines. Figure 2.2 also contains other layers than the convolutional
layers, but for now, we only note that the last layers are an MLP as described
in Section 2.2.

Images are not really part of this thesis, but in Paper I, we used CNN’s for
time-series classification. Therefore, when describing the convolutions in detail,
I will phrase them in terms of time series. The reader should, however, note that
the following generalizes to images.

Convolutional layers are, essentially, the discrete convolution operation known
from mathematics (see, e.g., Goodfellow et al., 2016). We do, however, prefer
to think of a convolution as a filter w applied to a patch X of the time series x,
where w is a vector of parameters. In this case, the convolution takes the form
of the cross-correlation ¢ = w’%. The same filter w is then applied to numerous
patches from the time series, denoted X;, which results in a vector of outputs
c. We can alternatively express this operation as ¢ = Ax, where x is the full
time-series and A is a sparse diagonal-constant matrix (Toeplitz matrix) with w
descending along the diagonal. This means that the convolution can be viewed
as a fully-connected layer, but with sparse weights and weight sharing.

The new feature series c tells us something about the correlation between the
time series and the filter w. In other words, ¢ tells us where in the time series
we find patterns close to that of the filter w. As w can only express a single

)

13



2. Neural Networks

4 days
[N

365 days
365 days

32 feature series

9 days
Al
\
|

b LT e

1 series 32 feature series
conv filter

Figure 2.3: Tllustration from Paper I of a convolutional layer applied to a time
series. Only the first part of the full network is included. From left to right the
figure shows a time series, a convolution operation with the resulting features,
and pooling operation with the resulting features.

pattern, we repeat the operation with ¢ different filters {w1, wa, ... w,}, giving
the corresponding feature series {c1, co, ...c,}. This is illustrated in Figure 2.3
where we have a time series of length 365 and apply 32 different filters of size 9.

Each filter w consists of randomly initialized parameters and is fitted in
the same manner as the dense layers in the MLP’s. After the convolutional
layers, we typically add an MLP that performs the final transformations. When
trained, the different filters can extract various information that is useful for
minimizing our loss function. When we build a neural network consisting of
multiple convolutional layers applied in sequence (with non-linear activation
functions in between), the network can learn a hierarchy of representations. This
is hard to illustrate for time series, but it is quite common to view for images (see,
e.g., Simonyan et al., 2013; Zeiler and Fergus, 2014). For images, we generally
find that the first layers only learn to recognize simple patterns such as edges
with different orientations, while the subsequent layers are able to detect more
complex patterns such as corners and textures. The last layers can find whole
objects such as faces, text, and animals.

2.5.1 Controlling the Feature Space

Consider a time-series input of length m and a filter of length v. If we slide the
filter across the time series one index at a time, the resulting output will be of
length m — v + 1. For deeper networks (many convolutional layers), the output
might become very short. Zero padding can be applied to prevent this shrinkage
from occurring and works by adding zeros to the beginning and end of the time
series, thus making the time series longer. The typical argument for applying
zero padding is, however, that it preserves the information at the borders of the
series.

14



Convolutional Networks

On the other hand, it can be beneficial to reduce the length of the convolved
features, as larger feature spaces require more computations and are more prone
to overfitting. We can, therefore, use downsampled convolutions, or strided
convolutions, where we move the filter by s indices at a time. This will reduce
the size of the output by a factor 1/s.

An alternative to downsampled convolutions is to use some version of pooling.
Pooling summarizes an area of the input (i.e., input to the pooling operation)
by computing a simple function such as the average or maximum. This creates
a representation that is approximately invariant to small translations in the
input and is, therefore, particularly useful when the existence of a pattern is
more important than the exact location of that pattern. If we apply pooling to
non-overlapping patches, we reduce the length of the output. This is illustrated
in Figure 2.3, where we perform non-overlapping max pooling over 4 features
(days) at a time and, consequently, reduce the feature length by a factor of 4.
Correspondingly, an example of pooling for images is shown in Figure 2.2 where
pooling is referred to as subsampling.

2.5.2 CNN'’s for Time Series

In Paper I, we applied CNN’s to the time-series classification problem of mortgage
default. At that time, there were limited literature on CNN’s for time series,
as recurrent neural networks (RNN’s), such as the long short-term memory
networks (Hochreiter and Schmidhuber, 1997), were the preferred architectures
for processing sequential data. This is, in a sense, surprising as the predecessor
of the CNN’s, the time-delay neural networks (Lang, 1988) can be considered
convolutions applied to time series. Although versions of RNN’s continue to be
the most popular architecture for time series, CNN’s have the benefit of being
more computationally efficient. Therefore, CNN’s for time series is an active
research area, and there have been multiple examples CNN’s claiming to have
better performance than RNN’s (Zhang et al., 2015; van den Oord et al., 2016;
Bai et al., 2018; Elbayad et al., 2018).

15






Chapter 3
Time-to-Event Prediction

Time-to-event prediction is a subfield of survival analysis concerned with
prediction of future events. In classical statistics, survival analysis tends to
focus on understanding how variables affect the event-time distribution. We
here distinguish us from the majority of the statistical survival literature, as we
will make no claim of understanding the survival process. Instead, we model
the event-times as a “black box” that produces estimates of the event-time
distribution.

In the following, we will start with a basic introduction to survival analysis
to make it clear how we can model the event-time distributions. Next, we will
look at some classical regression models and see how they can be extended with
neural networks. At the end of the chapter, we will discuss some of the typical
evaluation criteria used for evaluating survival predictions.

3.1 Event-Time Modeling

In this chapter, individuals are generally denoted by ¢ and their covariates by x;.
But in the following basic introduction to survival analysis, the covariates are
disregarded for simplicity of notation and, instead, only a single individual is
considered.

Let f(t) be the probability density function (PDF) of the continuous-time
event time T*. In survival analysis, it is common to study the survival function
S(t), which gives the probability of survival beyond time ¢

S(t) = P(T* > t).

The hazard rate h(t) is also quite commonly studied and, for continuous time, it
is defined by the conditional probability

Pt<T*<t+At|T* >t
h(t) = lim E=T" <t AT 21)
At—0 At

This means that the hazard tells us something about the immediate likelihood
of an event, given that the event has yet to occur,

h(t)At =Pt <T* <t+ At|T* > t).
Note that the density, the survival function, and the hazard rate are all
representations of the same distribution, so knowing one is sufficient to obtain

the other two. So, with F(t) and H(¢) denoting the cumulative distribution

17



3. Time-to-Event Prediction

Density: f(t) Survival: S(t) Hazard: h(t)
0.150 o 06 1 7
0.125 051
0.100 - 0.4 4
0.075 0.3 1
0.050 4 0.2 4 P
0.025 ] 0.1 A /,/’/
0.000 ; ; ; ; 0.0 ; ; ; ; 00 £
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Time Time Time

Figure 3.1: Hlustration of the density, survival, and hazard for two individuals.

function and cumulative hazard rate
t
F(t) = [ fw)du
0
t
H(t) = / h(u) du,
0

we have that

1) = =S'(t) = h(t) S(@),
S(t) = 1= F(t) = expl—H(1)
[t) _dlog[S()]

MO=50 =" a

An illustration of these three representations of the event-time distribution is
shown in Figure 3.1 for two individuals (blue and orange). Clearly, the three
functions give contrasting views of the survival distribution, and it is reasonable
to study all three. In the four papers of this thesis, the objective was to obtain
estimates of the survival function and we will, therefore, consider estimation of
the survival function the objective of this thesis as well. The hazard and density
are, however, very useful means to this end.

3.1.1 Censoring and Truncation

In Figure 3.1, one might notice that the survival functions S(¢) do not drop
below approximately 0.2, but it looks like both would continue to decrease if we
extend the time axis beyond 10. If we are only able to make observations in the
interval between the start and 10, we say that individuals are censored at time
10. Censoring, and the related topic truncation, do, however, extend far beyond
this illustrative case, and is a fundamental part of survival analysis.

Let C* denote a right-censoring time. C* is typically considered a random
variable, though that may not always be the case. I will only use the notation

18



Event-Time Modeling

End of Study

________ O |
------------------ ) bromesmmeeo @
----- ° boe--@
_______________ @) S
———————— ° poeeeee-- @

Time i Calendar Time i

@ Event O Censoring

Figure 3.2: Example of administrative censoring (progressive type I) for five
individuals (two censored and three observed events). The left figure represents
the time scale in which we model the event times. The right figure represents
the same individuals, but in the calendar time in which the data was collected.

C* for the censoring time, and the reader is expected to understand from context
whether or not it is a random variable.

Let us first consider random censoring, where C* is a random variable with
density fo-(t) and survival function Se-(t) defined in the same manner as for
the event time T™. A typical example of random censoring is when an individual
1 decides to no longer be part of a study and, consequently, we only know that
the individual had still to experience the event at time C}. As both C; and T
are random variables, we are only able to observe the shorter of the two. We,
therefore, define the observed time 7T; and event indicator D; as follows,

T, = min{T;,C} (3.1)
D, = 1{T; < C}}. (3.2)

In Papers II and III, we consider observations on this form.

Administrative censoring, or progressive type I censoring, is an alternative
where the right-censoring times C} are known for all individuals. So we know
C; even when T;" < C. Administrative censoring often occurs in studies where
individuals have different times of entry to the study (in calendar time) with a
defined end date of the study. This is illustrated in Figure 3.2, where the left
figure shows the event and censoring times in the study, while the right figure
shows the calendar times at which the individuals were recorded. As an example,
the figure could illustrate the time to mortgage defaults, such as in Paper I,
where the mortgages are started on different dates and the end date of the study
is today. The censoring time C; will, in this case, be the difference between the
entry date and the end-of-study date. The observations are still given by (3.1)
and (3.2), but we now also know all C}’s.

As the time of entry can be considered random, it is common to consider
C; random in these data sets too. Also, researchers tend to disregard the
additional information provided by C; and treat the problem as we did for
non-administrative censoring.

19



3. Time-to-Event Prediction

Only right-censored observations were considered in the papers that constitute
this thesis. Left-truncation is, however, also quite common in survival data. As
an example, for a left-truncation time V;, we will only observe individual 7 if
T > V;. This means that if 7;" < V; we might not even know that the individual
ever existing. Consequently, we are limited to model the distribution conditioned
on the truncation time, or we can make sufficiently strong assumptions on the
distribution of V; to model the full event times. As an example of left-truncation,
Klein and Moeschberger (2003) consider the age at death of residents at a
retirement center. Individuals need to survive to a sufficient age to enter the
retirement center, meaning all individuals that died before this time never entered
the study.

The topic of left-truncation will be revisited in Chapter 5. For a more
extensive review of other types of censoring and truncation, see, e.g., Chapter 3
of the book by Klein and Moeschberger (2003).

3.1.2 Discrete-Time Survival

Thus far, we have considered the time scale to be continuous. Sometimes, it
can, however, be more appropriate with a discrete time scale. As an example of
discrete-time survival data, we can consider the event of leaving a subscription
service where each subscription payment lasts for a full month at a time. This
means that the events can only occur after month number 1,2, 3, etc., even
though the decision to leave might happen sometime between the discrete time
points. It is also quite common to have events that occur in continuous-time,
but we are only able to make observations at discrete points in time.

Let 0 =79 < 71 < ... denote the discrete time scale. The probability mass
function (PMF), the survival function, and the discrete hazard are defined as

f(rj) =P(T" = 75),
S(rj) =P(T" > 1) =) f(m),

k>j
f(75)

W) =P(T" =71, |T" > 71j_1) = m
i

Consequently, we also have that

f(1;) = 8(7j-1) = S(75),
S(rj) = [1 = h(rj)] S(rj—1) = [][1 = h(m)].
k=1

Assuming the same time scale for the censoring distribution, we denote the
corresponding PMF and survival fo-(7;) and Sc«(7;).

In Paper III, we are concerned with discrete-time models, and we also address
how the discrete-time models can be applied to continuous-time data. Both
discretization schemes for continuous-time data and interpolation schemes for
obtaining continuous-time survival estimates are considered.

20



Event-Time Modeling

3.1.3 The Likelihood for Right-Censored Event Times

Continuing with the discrete time-scale and right-censored observations of the
form

T, = min{T}, C}},
D, = T} < C7),

we will derive the likelihood. For observations ¢ and d, the probability of the
observations is

P(T=t,D=d)=P(T" =t,C" > )" P(T* >t,C* =t)' "

If the observed censoring time c is deterministic, then d = 1 implies that t < ¢,
and d = 0 implies that ¢t = ¢. This gives us

P(T=tD=d) =P(T" =t)"P(T* >t)" "= f()!s@t)" " (3.3)

It is, however, more common to consider random censoring C*. If we assume
that 7% and C* are independent, we obtain the probability

P(T =t,D=d)=[P(T* =t)P(C* > )] [P(T* > t)P(C* =1)]'*
= [£(t) (Sc= () + fo- (D)) [S(#) fo- (1)
= [r@* s [ ' (Sc- (1) + - 1))

Now, assuming f(¢) does not depend on the parameters of fo«(t), we can view

[for ()% (Se-(t) + fo- (t))] as a constant and only consider the proportional
expression

P(T=tD=d) x f(t)*S@t) ™,

which is identical to the expression with deterministic censoring in (3.3). So, in
both cases, for individuals denoted by 4, with covariates x;, observed times t;,
and event indicators d;, we consider the likelihood

L= Hf(ti |x:) % S(t; | x;)" %, (3.4)

If we substitute the PMF with the PDF in (3.4), we obtain the corresponding
likelihood for continuous-time data. As both the PMF and PDF are denoted
f(t;| %), the expression is unchanged. The derivations are also very close to
that of (3.4).

The likelihood for right-censored event times in (3.4) is the foundation for
many survival methods, some of which will be addressed in the next sections. In
fact, the survival methods presented Papers IT and IIT are built on this likelihood.
However, if we have, e.g., truncated or left-censored data, some alterations need
to be made. This is somewhat outside the scope of this thesis, so I will refer the
interested reader to Chapter 3.5 of the book by Klein and Moeschberger (2003).

21



3. Time-to-Event Prediction

3.2 Regression Models

The application of regression models in survival analysis typically involves
maximization of the survival likelihood (3.4). Tt is, however, more common
to phrase the likelihood in terms of the hazard rate h(t;|x;), rather than
the PMF /PDF f(t;|x;). Considering continuous-time data, with individuals
denoted by 7 with covariates x;, observed times t;, and event indicators d;, we
can rewrite (3.4) to

L= Hh(ti | xi) " exp [~ H (t; | x:)] . (3.5)

Correspondingly, for discrete-time we have

L= H hits %)% (1= h(t: |x)]% T 0= hr %)) ] (3.6)

g7 <t

Many survival models have been proposed by defining a parameterization
of h(t|x), but we will here only consider the most relevant for the work in
Papers II and III. A more general overview is given in the book by Klein
and Moeschberger (2003), and Tutz and Schmid (2016) provide an overview of
discrete-time regression models.

3.2.1 Cox Regression

The Cox proportional hazards model assumes that the continuous-time hazard
rate is defined as

h(t|x) = ho(t) exp[g(x)], (3.7)

where ho(t) is a non-parametric function and ¢(x) is a parametric function,
typically g(x) = BTx. Note that the hazard ratio between two individuals ¢ and
J is constant with respect to time

:> = exp[g(x:) — 9(x;)],

which explains why we call it a proportional hazards model.

We want to fit this model with the likelihood (3.5), but the likelihood can be
made arbitrarily large by letting ho(t) be zero except for close to the observed
event times {¢; : d; = 1} where we let it peek higher and higher. We, therefore,
assume a cumulative baseline hazard Hy(t) in the form of a step function with
steps at the event times. With 7; denoting the increase in Hy(t) at time ¢;, we
have

szw

i t; <t

22



Regression Models

Under this extended model, the likelihood (3.5) takes the form

L = [T (nexplg(xi)))™ exp (~Ho(t:) explg(xi)]) - (3:8)

The maximizer of (3.8) with respect to n; can be shown to be
. di
i = )
ZjeRi exp[g(xj)]
where R; = {j : t; > t;} is the set of individuals still at risk at time ¢;.
Correspondingly, we have
. d;
Ho(t) = :
i<t ZjeRi explg(x;)]

(3.9)

which is known as the Breslow estimator. By inserting these maximizers into (3.8)
we obtain the profile likelihood

d;
_ explg(x;)] o | 4
" 1:[ (Zjeni eXp[g(Xj)]> P l Zi:dl]
exp(g(x;)]
simn 2jer, Plo(x)]

x (3.10)

The expression in (3.10) is known as the Coz partial likelihood and can be
maximized to obtain parameter estimates of g(x). With such estimates §(x),
survival estimates can be obtained with

S(t|x) = exp[~H(t|x)] = exp[~Ho(t) §(x)].

In summary, we have shown that Cox regression maximizes the survival likelihood
for right-censored event-times (3.5), by considering a cumulative baseline hazard
Hy(t) in the form of a step function. Note that the estimates above do not
directly provide us with estimates of the baseline hazard hg(t). However, we are
rarely interested in these estimates anyway.

For a more rigorous derivation of the partial likelihood as a profile likelihood,
see Johansen (1983) or the book by Aalen et al. (2008, p. 204). The connection
between the partial likelihood and the survival likelihood emphasizes the
relationship of Cox regression to the other methods discussed in this chapter. It
is, however, an uncommon way to introduce Cox regression, and a more standard
approach is given in Paper II.

The Cox model can be made more flexible by considering other versions
of the parametric function g(x) in (3.7). For instance, we can let g(x) be
parameterized by a neural network. Faraggi and Simon (1995) were the first
to propose this approach, though with limited improvements over regular Cox
regression. However, with modern deep neural networks, numerous papers have

23



3. Time-to-Event Prediction

shown improved predictive performance of this approach (Katzman et al., 2018;
Ching et al., 2018; Yousefi et al., 2017; Zhu et al., 2016; Zhu et al., 2017). In
Paper II, we propose an even more flexible relative risk model without the
proportionality constraint of the Cox model. In short, this proposed Coz-Time
method is made possible by allowing the parametric function to depend on
time, meaning we have g(t,x). This time-dependence makes the partial log-
likelihood (3.10) quite computationally expensive, so the partial log-likelihood is
approximated with techniques from nested case-control studies. A proportional
hazards version of this method is also proposed which is referred to as CoxCC
and Cox-MLP (CC) in Papers II and III.

3.2.2 Discrete-Time Regression

What we today know as Cox regression was originally proposed in the paper
by Cox (1972), one of the most cited statistical papers of all time. Tt is,
however, less known that the same paper also proposed a discrete-time hazard
parameterization by considering the sigmoid (inverse logit) of the linear predictor

¢;(x) = a; + B'x,
1

") = T e a, Gl

(3.11)

Cox considered this an ad hoc modification of his continuous-time model
and, therefore, proposed an estimation procedure analogous to the partial
likelihood (3.10). Brown (1975) later showed that we can estimate the parameters
of h(7;|x) in the same manner as a regular Logistic Regression. By defining the
labels y;; = 1{r; = t;,d; = 1}, the likelihood (3.6) can be written as

L=1] I nGlx)" [ = h(r[x:)]' 7",

i giTi<t

which we recognize as the Bernoulli likelihood. Brown (1975), therefore, named
this approach the Logistic-Hazard model, but it is now also referred to as Logistic
Discrete Hazard and Partial Logistic Regression.

The logistic function (3.11) is still very commonly used, though there are
alternatives such as the probit link, log link, and clog-log link (Tutz and Schmid,
2016, Chapter 3). There have also been proposed different versions of ¢;(x) and,
to the best of my knowledge, Biganzoli et al. (1998) were the first to let ¢;(x) be
parameterized by a neural network. Gensheimer and Narasimhan (2019) later
parameterized ¢;(x) with modern deep neural networks.

An alternative to the Logistic-Hazard is to instead parameterize the PMF
f(7j]x;) in (3.4). This was the approach of the DeepHit method proposed by
Lee et al. (2018). However, Lee et al. (2018) assume all individuals experience
an event within a finite time scale 71,...,7,,. This is an assumption we find
unnecessary, so in Paper III we propose a similar version that allows for survival
past time 7,,.

24



Regression Models

In Paper III, we compare the Logistic-Hazard and PMF approach to
parameterizing the survival likelihood. Furthermore, we investigate how they
can be applied to continuous-time data by discretization of the time scale and
interpolation for continuous-time survival estimates.

3.2.3 The Piecewise Exponential Model

The piecewise exponential model was first proposed by Holford (1976) and
later extended by Friedman (1982). For a defined set of times 0 = 79 < 71 <
-+ < T, = T, assume that the hazard is constant in each interval, meaning
h(t ‘ X) = nj(X) for t € (ijl, ’Tj]. Now, deﬁning Yij = l{tz S (ijl, Tj], d; = ].}
and

Tj — Tj—1, ifti>’7'j
Atij: ti_ij].? iij,1<ti§Tj
0, ift; <7151,

the likelihood in (3.5) can be written as

L=1T TI [(A&;n;6a)]" exp [-Ati;n;(xi)] -

Q j:TjSti

This is proportional to the likelihood of independent Poisson-distributed variables
y;; with expectations p;; = At;;m;(x;). So if we define n;(x) = exp[d;(x)], we
can use GLM software for the optimization procedure. Fornili et al. (2014)
extended this methodology by parameterizing ¢;(x) with a neural network.
In Paper III we revisit this method, but with modern frameworks for neural
networks and some modifications to the link function.

3.2.4 Binary Classifiers

Outside the survival literature, a common approach to event-time prediction is
to frame the problem as binary classification. For a time 7, we want to estimate
the probability of experiencing an event before this time, meaning we want
to estimate P(T; < 7). By disregarding individuals censored before time 7,
meaning that we remove individuals with C < min{T}", 7}, we can fit a binary
classifier to the remaining individuals with labels y; = 1{¢; > 7}. This was our
approach in Paper I for predicting mortgage defaults.

If we want to obtain predictions for more than a single point in time, we can
either repeat the steps above for multiple 7;’s, or we can create a model that
does this implicitly. The latter can be achieved with a neural network with an
output for every 7;. This approach was applied in Paper IV.

Clearly, estimates obtained from such methods are dependent on the censoring
distribution. However, for a negligible amount of censoring, the estimates of the
survival function will be close to those of a method that accounts for censoring.
Furthermore, if we are only interested in discrimination, meaning well-calibrated
estimates is not important, the binary classifier can be a reasonable approach.

25



3. Time-to-Event Prediction

There are of course some benefits to using a survival method in this case too, as
the ranking can be affected by the censoring bias. But, at least in my experience,
these differences are smaller than those of the evaluation metrics that also
consider the calibration of the estimates.

3.3 Evaluation of Survival Estimates

A substantial part of the machine learning literature is based on empirically
verifying that a new method performs better than competing methodology for
some evaluation criteria. So, when we combine survival methodology with
methods from machine learning, it is crucial that we have suitable evaluation
criteria for quantifying the performance of the proposed methods.

A good evaluation metric for survival methodology needs to account for
censored observations. This is quite problematic as popular metrics typically
depend on the censoring distribution. If the scores are affected by the researcher’s
assumptions on the censoring distribution, it is not obvious to what degree we
can trust the results. To stress this point, consider the analogous situation
in classification where there are missing labels (responses) in our test set. An
evaluation metric, such as accuracy, will need to make some assumptions on the
distribution of the missing labels. For example, we can assume that the labels
are missing at random and simply disregard the missing labels. If, in fact, the
probability of a label being missing is correlated with the label itself, the scores
would be biased as the class proportions would be wrong.

Returning to survival data, a seemingly obvious choice for evaluating survival
predictions is to use the likelihood for right-censored event times in (3.4) and (3.5).
The likelihood is, however, not very well suited for comparing estimates from
different approaches, such as discrete and continuous time, and is, therefore,
rarely used.

An alternative metric, that we use in Papers II, III, and IV, is the Brier
score. If there is no censoring, the Brier score is essentially the mean squared
prediction error between our survival estimates S(¢|x;) and the current state of
the individuals 1{T} > ¢},

n

BS(t) = []1{T; >t} — 8(t] xi)]Q. (3.12)

S|

i=1

Therefore, the Brier score is a function of the time ¢. In practice, to obtain
a single number for the score, we can calculate the integrated Brier score by
numerically approximating the integral

1 2
IBS = / BS(u) du,

to—t1 J,,
for a suitable time interval [t1, to].

26



Evaluation of Survival Estimates

3.3.1 Inverse Probability of Censoring Weighting

For right-censored event times, the Brier score can be approximated by a
weighting scheme that preserves the expectation of the score. Graf et al. (1999)
proposed to weight the Brier score (3.12) by the inverse probability of censoring,

n N 2
12 S(t]x;) ]l{t <td—1}+[ —S(t|x)] 1{t; > t,}
nis Se-(ti = | xi) Se(t]xi)

BSipcw ()

b

where t;— denotes the time right before ¢;. They proposed to use the Kaplan-
Meier estimator to obtain censoring estimates S¢ (t]x), meaning one assumes
that the censoring distribution is independent of the covariates. Gerds and
Schumacher (2006) extended the idea to covariate-dependent censoring estimates.

The Brier score is obtained directly from the survival estimates. This makes
the Brier score attractive for comparing any methods that produce survival
estimates, which is the case for most survival methods. A drawback is that
the scores are dependent on our estimate of the censoring distributions, which
can be as difficult to estimate as the event-time distributions. If the censoring
distributions substantially affect the scores, it can be hard to make any strong
claims based on the results. In Paper IV, we discuss some of the issues when
this scheme is applied to administratively censored times, in particular when
covariates are very informative of the censoring times.

The TPCW scheme is more general than the Brier score and can be applied
to any suitable function. For example, in Paper II, we use the same weighting
scheme for the binomial log-likelihood, as proposed by Graf et al. (1999).

3.3.2 Concordance

The Harrell Jr et al. (1982) concordance index, or C-index, is a commonly used
evaluation metric in the predictive survival literature. For uncensored data, it
can be interpreted as the relative frequency of concordant pairs, meaning, for a
given time ¢, it provides an estimate of

C(t) = P(S(t|x:) < S(t|x;) | Ty < 7). (3.13)

This is particularly useful for “one-to-one” corresponding models, defined by
the property S(t|x;) < S(t|x;) <= S(s|x;) < S(s|x;) for all s and ¢,
as the concordance is not dependent on the time, i.e., C(t) = C(s). The Cox
proportional hazards model is an example of a “one-to-one” corresponding model,
as the survival functions are given by S(f|x) = Sy ()™,

For models that are not “one-to-one”, it is somewhat common to replace
the survival functions in (3.13) with summary statistics M (x), as this results
in a single score that is not a function of the time. In this case, M(x;) is
meant to represent the ranking of individual ¢’s “predicted event time”, and can,
for example, be the integral of the survival function, M (x fo (t]x)dt.
This approach might suppress some drawbacks of model restrlctlons such
as proportional hazards, but the interpretability of a single number for the

27



3. Time-to-Event Prediction

concordance might be worth it. Alternatively, one can, of course, integrate
the concordance scores in (3.13) with respect to the time ¢ by some numerical
approximation.

For censored data, the concordance is dependent of the censoring distribution,
making the scores harder to interpret. It is, however, still quite common to use
it. To retain the original interpretation, Uno et al. (2011) and Gerds et al. (2013)
proposed an IPCW concordance in a similar manner to that of the Brier score
in Section 3.3.1.

Antolini et al. (2005) proposed a version of the concordance that instead
estimates

which they showed is equivalent to a weighted ROC AUC over time. This metric
is attractive because it provides a single score (without integrating over time)
while still considering the time dependence of the estimates. Furthermore, for
“one-to-one” corresponding models it is equivalent to the Harrell Jr et al. (1982)
concordance index. In Paper II, we show that by using the concordance of Antolini
et al. (2005) for hyperparameter tuning of Random Survival Forests (Ishwaran
et al., 2008), we obtain better predictive performance than that obtained by
the Harrell Jr et al. (1982) concordance, both in terms of discrimination and
calibration.

28



Chapter 4
Summary of Papers

4.1 Paper |

Havard Kvamme, Nikolai Sellereite, Kjersti Aas, and Steffen Sjursen.
Predicting Mortgage Default Using Convolutional Neural Networks.
Ezxpert Systems With Applications, 102: 207-217, 2018.

This paper is concerned with predicting defaults of private mortgages at
Norway’s largest bank DNB. In contrast to similar work in the literature,
we only use the state of each customer’s checking account, savings account,
and credit card, while disregarding all other information about the customers.
Hence, the aim of the paper is twofold: to show that the transaction data holds
information useful for estimating the risk of a mortgage, and how to extract this
information.

No survival methodology was considered in this paper. Instead, the problem
was approached as time-series classification. As was argued in Section 3.2.4, it is
reasonable to apply a binary classifier to survival data if there are relatively few
censored observations. Although this was not addressed in the paper, the binary
classifier only considers mortgage defaults in the span of one year, meaning there
was very little censoring.

The data set consists of the daily balances of the checking accounts, the
savings accounts, and the credit cards, in addition to the daily number of checking
account transactions and the total amount transferred to the checking account.
For each customer, a full year of data was used as covariates. Convolutional
networks were applied to the times series and it was found better to fit individual
networks for each of the time series, rather than fitting a single network with all
the time series as input. At the time of this project, it was not very common
to apply convolutional networks to time series, and most literature instead
considered recurrent networks for this purpose. We found, however, that the
convolutions performed better than such recurrent networks, and in the years
since, we have seen an increase in the use of convolutions for these types of
problems.

The training set only consisted of 13,000 individuals. Hence, an augmentation
technique was proposed. The scheme uses multiple “windows” of a customer’s
time series, and was shown to improve predictive accuracy substantially. In
relation to this, empirical studies found that increasing the size of the training
set would likely improve the performance of the classifier. This suggests that
we were not able to take advantage of all the information available in the time
series.

In conclusion, the proposed methodology was able to extract valuable

29



4. Summary of Papers

information from the transaction time series. We do, however, believe that
by combining this research with other data sources, further improvements would
be possible.

4.2 Paper Il

Havard Kvamme, Ornulf Borgan, and Ida Scheel. Time-to-Event
Prediction with Neural Networks and Cox Regression. Journal of
Machine Learning Research, 20(129): 1-30, 2019

In this paper, we propose new ways to apply neural networks to survival data.
The task is approached by extending the well-known Cox regression. There
are numerous papers on parameterizing a Cox regression with neural networks,
but we distinguish us from them by proposing a model with non-proportional
hazards. This is achieved by allowing for interactions between the covariates
and the time. In particular, the hazard model is h(t|x) = ho(t) exp [g(¢,x)],
where hg(t) is a non-parametric function and g(¢,x) is parameterized by a neural
network. This model is actually a relative risk model rather than a Cox model.
Regardless, we refer to the method as Coz-Time, as the name is likely more
familiar to most readers.

Training the proposed Cox-Time method with the Cox partial log-likelihood
would be very computationally expensive. By instead using an approximation of
the partial log-likelihood from nested case-control studies, we are able to fit the
model in reasonable time. Prediction with the Cox-Time method can, however,
still be quite computationally expensive. Some suggestions were proposed to
alleviate the cost, but further research is warranted.

A proportional Cox model, fitted with the same approximation, is also
proposed. The method is referred to as CoxCC or Cox-MLP (CC), where CC
refers to the case-control approximation of the partial log-likelihood. The validity
of the approximation was verified through simulation studies, and we found that,
in general, very few control samples were needed.

The proposed methodology was compared with other methods from the
literature in a study of five data sets. Four of the data sets were obtained from
the survival literature, each consisting of 1,000 to 10,000 individuals. The fifth
was created with data made available by the Kaggle KKBox Churn Prediction
Challenge. Although not originally intended for time-to-event prediction, we
were able to create a data set of more than 2 million individuals. As neural
networks typically excel with larger data sets, we wanted to have at least one
large data set in our experiments. Our proposed Cox-Time method was found
to perform well compared to competing methods, in particular in terms of the
Brier score and binomial log-likelihood, both weighted by the inverse probability
of censoring.

30



Paper IlI

4.3 Paperlll

Havard Kvamme and OQrnulf Borgan. Continuous and Discrete-Time
Survival Prediction with Neural Networks. Submitted for publication,
2019

This paper is, in some ways, a continuation of Paper II. However, the semi-
parametric Cox model is abandoned, and we instead direct our attention to fully
parametric approaches that directly optimize the likelihood of right-censored
event-times. The explored methods either assume a discrete time-scale or
consider the time-scale to be divided into intervals. Consequently, we need to
address the issue of how discrete-time models can be applied to continuous-time
data sets. Two discretization schemes are considered; one that splits the time
scale into equidistant intervals, and one that uses the quantiles of the estimated
event-time distribution to split the time scale. To obtain continuous-time
predictions from the discrete-time models, we consider two interpolation schemes;
one that assumes a constant density function in each interval (linear interpolation
of survival estimates), and one that assumes constant hazard rates (exponential
survival function in each interval).

For smaller data sets, a coarse discretization grid can be beneficial as it
reduces the number of parameters in the neural networks. This was verified
in a simulation study. It was also found that the discretization grid based on
quantiles was especially useful for the small data sets. Larger data sets, on the
other hand, allows for finer discretization grids, meaning the differences between
the two discretization and interpolation schemes decrease. It was, generally,
found that the granularity of the discretization grid had a much larger impact
on the predictive performance than the discretization and interpolation schemes.

The paper compares the two approaches to discrete-time modeling discussed
in Section 3.2.2, i.e., the Logistic-Hazard and the PMF method. In terms of
predictive performance, the two methods are very close, but we find that the
Logistic-Hazard generally gives more stable performance, while the PMF method
is more sensitive to hyperparameter configurations.

In this paper, we also propose a continuous-time method that assumes
constant hazards in each interval. This is essentially the piecewise exponential
model described in Section 3.2.3, but with modern neural networks and a softplus
function replacing the regular exponential function in h(7; | x) = exp[¢;(x)]. We
find that its performance is competitive with the two other methods discussed
in this paper, in addition to other methods found in the literature. In general,
the methods described in this paper seem to perform slightly better than the
Cox-Time methods proposed in Paper II.

31



4. Summary of Papers

4.4 Paper VI

Havard Kvamme and Ornulf Borgan. The Brier Score under Ad-
ministrative Censoring: Problems and Solutions. Submitted for
publication, 2019

This paper is an investigation of the Brier score, which is commonly used
to evaluate survival predictions. In short, the Brier score is the mean squared
difference between the survival estimates and the state of the individuals at a
given time denoted 1{T;* > ¢}. For right-censored event-times, the Brier score
can be weighted by the inverse probability of censoring, called IPCW. The paper
shows that if the censoring times can be identified from the covariates, then the
IPCW Brier score might be biased. Furthermore, this bias is equivalent to the
bias of the binary classifiers in Section 3.2.4 and, therefore, benefits the binary
classifiers. This is also verified through a simulation study where we show that
a binary classifier can obtain better IPCW Brier scores than the true survival
function. The paper also addresses that estimation of the censoring distribution
can be problematic, especially if the distribution is dependent on the covariates.

Under administrative censoring, meaning all censoring times are observed,
we propose the administrative Brier score which does not require estimation of
the censoring distribution and does not have the bias of IPCW scores when the
censoring times can be identified from the covariates. This is verified through a
simulation study.

The KKBox churn prediction data set from Paper II is administratively
censored and is, therefore, used as a case study in the paper. We find that
the data set exhibits the traits we produced with simulations, meaning the
covariates are likely to hold information about the censoring times of a subset of
the customers. We show that the IPCW Brier score is substantially affected by
the estimated censoring distribution. For the highest times, meaning the highest
proportion of censored customers, binary classifiers outperform the Logistic-
Hazard method. However, for the administrative Brier score, we get that the
Logistic-Hazard performs better than the binary classifiers, as we would expect.

32



Chapter 5
Discussion

In this thesis, we have investigated how neural networks can be used to improve
the predictive performance of existing survival methods. As this topic is
still somewhat unexplored, there are almost limitless extensions that could
be addressed here. I have tried to choose a relevant subset and instead provide
some more details. I will, also, use the opportunity to discuss some of the
weaknesses of the discussed methodology, in addition to my experiences working
with each of the proposed methods. Instead of addressing each of the four
papers individually, the following is a general discussion of the machine learning
methodology for time-to-event prediction.

5.1 The Survival Methods

In Papers IT and III, the predictions by various survival methods are compared
using metrics such as the concordance and the Brier score. After working with
numerous approaches to survival prediction, I would like to take the opportunity
to address some of my experiences that are not as easily quantifiable and share
some of my thoughts on the methods.

Random Survival Forests (RSF) by Ishwaran et al. (2008) is by far the
simplest method to use. As with other Random Forest methods, very little
preprocessing of the data is required (if any at all), it is easy to find a good set
of hyperparameters, and as it is fully non-parametric, there are no numerical
issues. This means that it is easy to get good and stable performance. However,
in my experience, RSF is very slow to train on larger data set and, in general, it
took many times longer to train than the neural networks. I do not know if this
is because the method is very computationally expensive or if it was just the
implementation I used that was slow.

The Cox-Time method generally performs better than the Cox methods with
proportional hazards, but obtaining predictions is much more computationally
expensive. This was discussed in Paper II.

Comparing the proportional CoxPH method and CoxCC method, where the
first minimizes the negative partial log-likelihood as described in Section 3.2.1
and the latter minimizes an approximation of this negative partial log-likelihood,
we found that CoxCC has slightly less stable performance than CoxPH. It is
also worth mentioning that the implementation of CoxCC is more complicated
than that of CoxPH. However, the CoxCC method has a validation loss that
is more comparable with the training loss which gives better insights to the
training process.

In Paper I11, we found that the Logistic-Hazard and PC-Hazard were generally
the two best-performing methods. Compared to Cox-Time, predictions are

33



5. Discussion

much less computationally expensive and, compared to all the semi-parametric
Cox methods, the implementation is much simpler. In fact, considering the
implementation, the Logistic-Hazard method is probably the simplest, as it
requires only a few lines of code to implement it in a deep learning framework.
Also, it is likely one of the more intuitive methods for those without a background
in survival analysis. The downside of the Logistic-Hazard and PC-Hazard is
that they require discretization of the time scale, which introduces additional
hyperparameters. RSF and the Cox-Methods, on the other hand, all handle the
continuous time non-parametrically.

5.2 Can We Trust Individual Predictions?

The methods discussed in Papers II and III give predictions in the form of
survival estimates. These estimates were evaluated with multiple performance
metrics such as the concordance index and the Brier score. However, these
scores only verify that the survival estimates work well on average and do not
address the individual predictions. As none of the methods produce uncertainty
estimates, can we really trust the survival estimate for a single person?

To illustrate this concern, I have created a simple simulation study with
constant and covariate independent hazard, meaning that all individuals have
the same survival function. I then include a single covariate that is a monotone
function of the administrative censoring time. This is supposed to illustrate a
scenario where we have covariates that contain a lot of information about the
censoring times, just as in Paper IV. If we fit a Cox model with proportional
hazards to this data set, it would simply learn to disregard this covariate and
give survival estimates close to the true survival function. The non-proportional
methods discussed in Papers IT and III, on the other hand, have more difficulties
with this estimation.

In Figure 5.1, I have plotted the survival estimates of various methods,
obtained by training on 1,000 samples from the simulation study. The vertical
dotted red line in each plot gives the censoring time. Note that this censoring
time represents the covariate used to obtain the survival predictions in each
plot. The blue line in each plot represents the true survival function we want to
estimate and, as it is independent of the censoring time, it is the same in all the
six plots.

As expected, for times smaller than the censoring time (left of the vertical
red line), all methods are able to estimate the survival function reasonably well.
However, the methods clearly struggle with understanding that all individuals
have the same survival function. As a result, the methods are not concerned
with the survival estimation after the censoring time, as this is never considered
in the likelihood. At least this is my interpretation of the results.

In a sense, these results are perfectly reasonable, as we should not predict for
longer time horizons than what is available in the training set for a given set of
covariates. However, usage of such methods clearly requires the practitioner to
be aware of what time horizon that is applicable for each individual. This could

34



Extensions of the Methods

— True —— Cox-Time —— Logistic-Hazard —— PC-Hazard — PMF - Censor-timel

0.75
=) 1
& 050

0.25 A

0.00 4

1.00 { : 1 : 1

0.75 A

=) 1
% 050

0.00 4

o
N
u
L

T T
0 20 40 60 80 1000 20 40 60 80 1000 20 40 60 80 100
Time Time Time

Figure 5.1: Comparison of survival estimates by various survival methods. The
only covariate is a monotone function of the censoring time, which is represented
by the vertical red dotted lines. The blue line is the true survival function, which
is independent of the covariate. Hence, the true survival function is identical in
all six plots.

be handled by also estimating the censoring distribution and only use survival
estimates for times ¢ that satisfies Sc- (t]|x;) > &, where £ is some positive
threshold. Estimation of the censoring distribution is, in itself, a survival
problem censored by the event times. This means that we need to know the
time horizons that are reasonable for our censoring estimates.

The point I am trying to make is that one needs to be careful when using the
individual survival estimates of these methods. Especially, as the methods can
give survival predictions for much longer time horizons than what is reasonable
for a particular individual. Uncertainty estimates would highly benefit these
methods, though they may be hard to obtain. A reasonable starting point could
be to consider estimates of the censoring distribution.

5.3 Extensions of the Methods

The methods discussed in Papers IT and IIT are somewhat basic, in the sense
that they only consider right-censored event times. DeepHit (Lee et al., 2018) is
the exception as it also handles multiple event types. Natural extensions of the
methods would be to account for other types of censoring and truncation (left,
right, interval), competing risks, dynamic prediction (time-dependent covariates),
recurrent events, and multistate models. These are all topics addressed in the
statistical survival literature. In the following, we will investigate how a few of
these extensions can be approached for the methods in Papers IT and III. We

35



5. Discussion

will here use the same notation as presented in Chapter 3, meaning that, for
individual ¢ with covariates x;, the event time is T}", the censoring time is C},
and the potentially right-censored time is T; with D; denoting if it is an event
or censored observation.

5.3.1 Left Truncation

Section 3.5 of the book by Klein and Moeschberger (2003) addresses how the
survival likelihood changes with censoring and truncation of the types left, right,
and interval. This is a good starting point for extending the methods that
directly optimize the survival likelihood, such as Logistic-Hazard, the PMF
method, and PC-Hazard. For the corresponding extension of Cox regression, see,
e.g., Pan and Chappell (2002) and Rennert and Xie (2018). In the following, I
will shortly address the case of left truncation, as it the most common of the
truncation types.

If we have left-truncated data, our estimates will be conditioned on these
left-truncation times. So, for v denoting a left-truncation time, we can estimate
S(t|v) =P(T* > t|T* > v). Note that this conditioning is similar to the hazard
specification. This makes the hazard suitable for working with left-truncated
data.

Consider a discrete time scale. In the same manner as in Section 3.1.3, we
can derive the probability distribution of 7" and D, but now conditioned on the
left-truncation time v < t,

P(T=t,D=d,T >v)
P(T >v)
_ P(T'=t,D=4d)
- P(T* >v)P(C* >v)
_ [f(t)d S [fo* 0" (Sc- (1) + fe- (1)

P(T=t,D=d|T>v)=

S(v) Sex(v)

F*s@
Sw)

X

This means that the “regular” likelihood contribution of an individual (3.4),
is scaled by the inverse of the survival probability at the left-truncation time.
For an individual ¢ with left truncation time v;, the discrete-time likelihood
contribution is then

Fti %)™ St | %)~

S(vi | xi)

L=

Written in terms of the hazard, this is equivalent to
d;
Li = h(t; | %)% [1 = h(t; | %)) H h(tj | %:)],

36



Extensions of the Methods

where the 7;’s denote the discrete time scale, and (t;) is the index corresponding
to time t;, meaning t; = 7.(;,). These two ways of expressing the likelihood
contribution can be used to extend the Logistic-Hazard and PMF method in
Paper III to account for left-truncated event-times.

For continuous time, the likelihood contribution can still be expressed by (5.1),
but with f(¢;]|x;) denoting the event-time density function instead of the
probability mass function. Written in terms of the hazards, the continuous-time
likelihood contribution is

Li = h(t; | %)™ exp [H(vi | xi) — H(t; | x;)] .

This can be used to extend the PC-Hazard method in Paper III to account for
left-truncated event times.

For Cox regression, the left-truncated event times can be handled by modifying
the risk set in Section 3.2.1 to R; = {j : v; < t; < t;}, as explained in the book
by Aalen et al. (2008, p. 32). This should also work for the proposed Cox-Time
and CoxCC in Paper II.

For all the methods discussed here, the survival functions are monotone.
Hence, the estimates of S(t|x) are dependent on the estimates up till time ¢.
Left truncation can cause a data set to contain very few individuals that are
followed from time zero, so if we estimate the survival from time zero, poor
estimation at the lower times might ruin the later survival estimates. It is,
therefore, more reasonable to estimate the conditional survival

S(t|vy, x) =P(T" > t|T* > vy, x), (5.2)

for a lower time vy at which the set of individuals we follow, {i : v; < 1y}, is of
reasonable size.

5.3.2 Dynamic Prediction

The KKBox data set explored in Papers II and IV contains the subscription
histories of KKBox’s customers. We created a simple data set for predicting
churn, with stationary covariates obtained from each customer’s first subscription.
This means that we considered the starting point ¢ = 0 to be the time of the
first subscription for each customer. In practice, however, it is probably more
interesting to make dynamic predictions in calendar time, meaning that from
a given calendar date t we want to predict the probability of churn for each
time ¢ + v. This is more in line with the original KKBox Kaggle competition,
as they wanted churn predictions from a given date, and not from the time of
each customer’s first subscription. Explicitly, for time-dependent covariates x(t)
and a given date ¢, we want to predict time v into the future, conditioned on
all information up till time ¢. Using the notation of (5.2), we can express the
conditional survival as

S(t+v]t, {X(“)}u§t> =P(T">t+0|T" >t, {X(“)}ugt)~

37



5. Discussion

One approach to this objective is to jointly model the event-time distribution and
the distribution of the time-dependent covariates. While there is an extensive
statistical literature on this topic (e.g., Ibrahim et al., 2010; Lawrence Gould
et al., 2015), it requires estimation of the covariate process.

A more straightforward approach is that of landmarking (Van Houwelingen,
2007; van Houwelingen and Putter, 2011). In its simplest form, one creates K
data sets, one for each landmarking time s, by truncating individuals with
T; < s, and fit individual models to each of the K data sets. This way, model
k can predict

S(sk +v| sk, x(sg)) =P(T* > s +v|T* > sk, x(s)),

where x(sy) is the covariates at time s;. This approach requires one model for
each landmarking time sj, which is problematic for a large K. It is, therefore,
desirable to combine all these K models into a single model. This can be
approached by conditioning on the landmarking time in the sense that we
consider s, a covariate. Also, it is probably better to let the covariates be
some function of all previous information, ensuring that the covariate space is of
constant dimensions p. We denote these covariates X(s;) € RP, as they are a
function of the landmarking times and all previous information, giving

%(51) = g (50, {x(0)} 1z, )

Partly conditional modeling (Zheng and Heagerty, 2005) closely resembles
landmarking, but considers the residual time v instead of £ + v. This means that
we reset the time at every landmark s;. For a set of landmarking times {sk}szl,
we substitute individual i by a set of “fake” individual i, one for each s, with
covariates X;(sy) and observed time v;, = t; — s. This means that we can fit the
methods in Papers II and III with no alterations and their survival predictions
will represent S(v | sk, X(sx)). This approach was used by Martinsson (2016)
who considered v | sy, X(s;) to be Weibull distributed, and constructed x(sy)
with a recurrent neural network over {x(u)}, ., -

To my understanding, we are, technically, not restricted to use the same
landmarking times for all individuals, and one could have a different set for each
individual. However, I have not seen anyone address this in the literature.

By following the reasoning of landmarking or partially conditional modeling,
it should be possible to extend the methods in Papers II and III to work for
dynamic prediction. Note, however, that this section should be considered a
starting point, as I have not tested any of the approaches, and there may be
issues I have failed to address.

In Paper I, we proposed an augmentation scheme for artificially increasing the
size of the mortgage default data set. In short, for each individual, we extracted
data from multiple time periods in a similar manner to that of partial conditional
modeling. However, the objective was to classify mortgage defaults within one
year, and we only used covariates from one year of data. This means that,
for each landmarking time sy, we estimated S(365 | sk, {x(u)},%, _s45), Where

38



Extensions of the Methods

the data {x(u)},%, 545 was processed by a convolutional network. Paper I
could benefit from a partial conditional modeling approach, as the specific time
of each mortgage default holds more information than the binary labels, and
building on an established approach is likely more reasonable than our ad hoc
data augmentation scheme.

5.3.3 Competing Risks

In this thesis, I have only considered situations where there is only one event
type for each data set. In some situations, there can, however, be multiple
competing event types. For example, there are multiple diseases a patient can
die from. We typically think of these types of events as competing processes
where we only observe the event type with the shortest event time. The survival
literature, therefore, refers to these situations as competing risks.

In the following, we will investigate possible extensions of the methods in
Papers II and III to enable them to handle multiple event types. To this end, we
need the random variable R € {0,...,n,} for denoting the event type with n,
possible event types and R = 0 denoting a censored time. As before, the lower
case letters represent the corresponding observations, meaning an observation
consist of the tuple (¢;,7;), and we let d; be the event indicator d; = 1{r; > 0}.

The cumulative incidence functions

F.(t|x)=P(T* <t,R=r]|x).

are commonly reported in competing risk studies and we will consider the
estimation of these functions our objective.

5.3.3.1 Logistic-Hazard

From the statistical literature on discrete-time survival analysis, we know that a
natural extension of the Logistic-Hazard model is the Multinomial Logit Hazard
model. The following is a derivation of the Multinomial Logit Hazard model,
based on the presentation by Tutz and Schmid (2016).

The event-specific hazard at the discrete time 7; is

he(rj|x) =P(T" =7, R=7|T" > 75,%),

and the overall hazard is
hrj|x) =P(T* =7, | T* > 75,%) = Y _ he (7| %)
r=1
This gives the survival function and event probability

S(rjl2) =P(T" > 7 |x) = || [1 = b7 [%)],

-

bl
Il
—_

fr(tj|x)=P(T" =1;,R=r

x) = hy (15[ %) S(7j-1]%).

39



5. Discussion

The cumulative incidence functions can be expressed as

Fo(ri|x) = folri | x). (5.3)
k=1

For a function ¢(x) € R™*"", such as a neural network with an output node for
each combination of the time and the event type, we define the event-specific
hazards as

exp[¢;r(x)]
1+ 3700, explgjk(x)]

he(j | %) = 04 (%) =

and we let
1

1+ 37kl expléjn(x)]

denote the conditional survival. Note that oj,(x) is the softmax function with
the statistical convention of a reference class ¢;o(x) = 0.

Recall that d; = 1{r; > 0}. Disregarding x for simpler notation and assuming
that the censoring time is independent of the event time (given covariates), the
probability of T and R is

Jjo(X) :P(T* > T |:Zvk > Tj,X) =

P(T'=t,R=r)
= [P(T* =t,R=r)P(C* > )] [P(T* > t)P(C* =1)]'*
xP(T* =t,R=r)"P(T* > t)' .

This means the likelihood contribution of individual 4 is

Li = fr(ti| %)™ S(ti | %) " (5.4)
ti)—
= h, (ti| Xi)di (L —h(t; |Xz H h(rj %)l

where #(t;) denotes the index corresponding to time ¢;, meaning that t; = 7,.¢,).
By introducing labels

]].{ti:’rj,’l’i:’l"}, ifr>0
Yijr = d; e
1{t; > 7;}™, ifr=0,

such that Z?;o Yijr = 1, we can write the negative log-likelihood as

N(ti)
1

loss:—znzz
i=1

Yijr IOg[Gjr (Xi)]'
—1 j=1 r=0

r=
We recognizer this as the negative of the multinomial log-likelihood, also known
as the categorical cross-entropy. This is one of the most commonly used loss
functions for neural networks (e.g., for image classification) and should, therefore,
be available in any deep learning framework.

40



Extensions of the Methods

5.3.3.2 PMF

For the discrete-time PMF method, Lee et al. (2018) have already proposed a
competing risks version expressed by the event probabilities

folrj|x) =P(T" =7;,R=r]|x).

To my understanding, however, they assume S(7,,, | x) = 0. We will, therefore,
investigate a version without this restriction. By considering observations on

the discrete time scale 71, ..., T, we simply let
ZZfT(Tj |X) + S(Tm | x) =1,
j=1r=1
with S(7,, |x) € [0,1]. In the same manner as in Paper III, for j € {1,...,m}
and r € {1,...,n,}, we let the risk-specific PMF be defined by the softmax
exp|¢r (x)]
fr(Ti %) = ;
! L+370 Z 2, exporq(x)]
1
S(Tm [ x) =

L+ 3700 >0n explong(x)]
The survival function can then be written as
S(rj|x) = Z Zfr (7 | %) + S (7 | %).
k=j+1r=1

The negative log-likelihood corresponding to (5.4) can now be written as

loss = — Z d;log[fr, (ti | x;)]

i=1

m

—Zl— Jog | > ifr(Tk|Xi)+5(Tm|Xi)

k=r(t;)+17r=1

This does not correspond to any commonly used loss function, meaning
implementation requires some more work than for the competing risks version of
the Logistic-Hazard. The cumulative incidence functions can be obtained from
the risk-specific PMF f,.(7; | x) with (5.3).

5.3.3.3 PC-Hazard

For continuous time, the cumulative incidence functions take the form of the
integral

Fr(t\x):/0 fr(u\x)du:/o hy(u]x) S(u| %) du. (5.5)

41



5. Discussion

The continuous-time PC-Hazard method in Paper III can be extended to
competing risks by considering the cause-specific hazards. With x(¢) now
denoting the interval of time ¢, meaning that ¢ € (Tn(t),l, T,i(t)}, the cause-
specific hazard is constant in each interval

hy (t | X) = Nk(t) T(X)'

The continuous-time survival function can be expressed as (Prentice et al., 1978)

S(t|x) =exp [—i/olhr(Mx)du] )

and, by following the same line of reasoning as in Paper III, we can write the
survival function as

Ny t) 1
S(t|X)=H eXP[—m(t)r(X)( K(t)— 1 H eXp nﬂ" AT]] s
r=1
where At; = 7; — 7;_1. The continuous-time likelihood contribution,

corresponding to (5.4), is then

Ly = hy (ti | %)% S(t: | x:)
e

ti)—
d;
:nﬁ(ti)m(xi) H eXp[_nm(ti)r(Xi)(t Tr(ty)— H —Njr XZ)ATJ]

r=1

and the negative log-likelihood follows.

We can, alternatively, represent the likelihood as a Poisson-likelihood.
This is achieved by considering independent Poisson-distributed variables with
expectation p;; = Al;jn;j,, as described in Appendix C of Paper II1.
5.3.3.4 Cox-Time

The Cox proportional hazards model can be extended to competing risks by
considering the cause-specific hazard

he(t]x) = hor(t) expld,(x)],
and the partial likelihood (Holt, 1978; Prentice et al., 1978)

1{r;=r}
PL = HH( exp[q»(xmxj)]) |

reliel jGRq‘, exp[ng(

where R; = {j : t; > t;} and r; = 0 for censored times. Here ¢(x) € R"
can be parameterized by a neural network with an output node for each event
type. The cause-specific baseline hazards can be obtained with the Breslow

42



Evaluation of Survival Estimates

estimator (3.9), and the cumulative incidence functions can be expressed in
terms of the risk specific hazard increments (Cheng et al., 1998). The Cox-Time
method proposed in Paper II can be extended to competing risks in the same
manner by considering

1{r;=r}
PLco = H H ( e}fp ¢T(t’baxl)] )]) 7

reliel ]E’R eXP[¢T(tlaXJ

where R; C R;.
In summary, it should be possible to make competing risks version of the
methods in Papers IT and III.

5.4 Evaluation of Survival Estimates

Neural networks can represent much more flexible models than classical statistical
models, but this added flexibility can introduce new issues not really relevant
for the simpler models. As an example, in Paper IV we discuss how the IPCW
Brier score is biased for the KKBox churn data set. For simpler models than
ours, this bias is likely not an issue, but by introducing neural networks, we find
that these biases needed to be addressed.

A substantial part of machine learning research is concerned with empirical
evaluation of methods on various data sets. To some degree, for prediction,
it does not matter if your method is reasonable as long as it achieves good
scores. Combining machine learning methodology with survival analysis is
somewhat problematic, as censoring and truncation cause the test set to have
incomplete observations. We typically account for censoring and truncation
by making assumptions about their distributions and relationship to the event-
time distribution. When these assumptions are essential for the evaluation
metric, the choices made by the researcher may substantially affect the results.
Phrased differently, we have missing data in our test set and the score accounts
for the missing data by assuming something about its distribution. Different
assumptions may lead to different results.

The IPCW Brier score in Paper IV can be biased if the covariates contain
information that can identify some of the censoring times. Interestingly, the bias
is in favor of the bias of a binary classifier that disregards individuals as they
are censored. By choosing a method based on “best performance” in terms of
the IPCW Brier score, we can end up choosing a binary classifier over a method
that accounts for censored observations in a reasonable manner. For someone
not familiar with survival analysis, the aforementioned binary classifier can seem
to be a reasonable approach. To convince this audience to move to survival
methodology, we need to be able to show the benefits of survival approaches.
Rather than arguing that survival methodology is better suited for time-to-event
prediction than binary classifiers, we need to provide evaluation metrics that
verify this empirically.

43



5. Discussion

5.4.1 The Concordance Index

Recall the that the concordance index is a metric for evaluating the discriminatory
performance of survival estimates S(¢|x). It aims at estimating the probability

O(t) = P(S(t|x;) < 8(t|x;) | T} < T}),

which can be somewhat problematic for right-censored observations. Uno et al.
(2011) and Gerds et al. (2013) handle right censoring by inverse probability of
censoring weighting (IPCW) of the concordance in a similar manner to that of
the Brier score in Section 3.3.1. For administrative censoring with identifiable
censoring times, this IPCW score might suffer from the same problems as the
Brier score addressed in Paper IV. Therefore, a similar study to that of Paper IV
is warranted and, depending on the findings, one could create an administrative
concordance index by following the same line of reasoning as for the Brier score.

The concordance by Antolini et al. (2005), discussed in Section 3.3.2, estimates

C' = P(S(T; | x;) < S(T; | x;) | Ti < Ty, D = 1),

which has the benefit of giving the score as a single number instead of a function
of t. Unfortunately, the C*? is dependent on the censoring distribution, leaving
the interpretation somewhat unintuitive. It would be desirable to find a scaling,
such as IPCW, that accounts for the censoring distribution in a manner that lets
us instead estimate P(S(T} | x;) < S(T}7 | x;) | T < T7). If one could manage
to create such a score, it would also be reasonable to investigate the impact of
administrative censoring with identifiable censoring times.

5.4.2 On the Administrative Brier Score

The administrative Brier score, presented in Paper IV, is useful when the
censoring times C} can be identified from the covariates x;. This is because
the IPCW Brier score requires a censoring distribution with Se-(t]x;) > 0, but
with sufficient information about the censoring time, we approach Sc-(t|x;) =
1{C; > t}.

In short, the administrative Brier score BSx(¢) disregards all individuals
with a censoring time C} < t. Note that we observe the censoring time for
all individuals, meaning we remove both individuals that are censored and
individuals that have experienced the event prior to time t.

For future survival prediction, it is problematic to use covariates that can
predict the censoring time, as this essentially means that the covariates of future
individuals are different from the covariates in our training set. Extrapolation is
generally hard, and we want to avoid it if possible. It is, therefore, reasonable
to remove covariates that are closely connected to the censoring times. If this
substantially changes the predictions, one has at least learned something about
the non-stationary behavior of the data set.

Note that if we are able to remove covariates closely related to the censoring
time, we can use the IPCW Brier score instead, as we now have Sc«(t|x;) > 0.

44



Time-to-Event Prediction and Machine Learning

This will require estimation of the censoring distribution, but the interpretability
of the IPCW score can be worth this disadvantage. If one prefers the IPCW
scores, the administrative score can still be useful for understanding the data set
and could be applied to verify that the IPCW scores are reasonable.

5.5 Time-to-Event Prediction and Machine Learning

I believe there is great potential in combining methodology from machine learning
with that of survival analysis. This research field is relatively new, and the
approaches discussed in this thesis are only concerned with a minor subfield
of survival analysis. There are still parts of the survival literature that could
benefit from machine learning methodology and at the point of writing there
are plenty of “low-hanging fruits”. For example, in this chapter, we have briefly
addressed the topics of left-truncation, competing risks, dynamic prediction, and
extensions of the concordance index.

Returning to the mortgage defaults in Paper I, this problem could benefit
from a survival approach to the default modeling. Interestingly, there are actually
multiple levels of delinquencies before a customer defaults on their mortgage.
By considering a multistate model appropriate for the delinquencies, one could
provide the model with more information than the simple binary responses of
the defaults. Such multistate models have not been addressed in this thesis and
would be an interesting direction for future research.

For the customer churn data sets in Papers IT and IV, the customers can
start and stop their subscription to KKBox multiple times. This means that
individuals can move between two states (customer and non-customer) multiple
times. This type of data is reasonable to consider with recurrent events models
or multiple-spell modeling (Tutz and Schmid, 2016, Chapter 10). This is also a
widely studied topic in survival analysis that has received limited attention with
machine learning methodology.

A substantial part of machine learning research compares methods by
empirical evaluation on a held-out test set. For event-time prediction, there
are, however, very few large data sets and the current literature generally relies
on somewhat small data sets. The resulting variance in the evaluation scores
makes it hard to compare methods. In Paper II, we contribute to this issue by
modifying the existing KKBox Kaggle data set, resulting in an event-time data
set with more than 2 million individuals. We do, however, need more large data
sets for the further advancement of the field.

I hope that the research I have been a part of can help to draw some attention
to this field, and maybe inspire someone to further improve on the methodology
for time-to-event prediction.

45






Bibliography

Odd Aalen, @rnulf Borgan, and Hakon Gjessing. Survival and Event History
Analysis: A Process Point of View. Springer Science & Business Media, 2008.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
TensorFlow: Large-scale machine learning on heterogeneous systems, 2015.

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning
algorithm for Boltzmann machines. Cognitive Science, 9(1):147-169, 1985.

Kate Allen. How a Toronto professor’s research revolutionized artificial
intelligence. The Star, Apr 2015.

Laura Antolini, Patrizia Boracchi, and Elia Biganzoli. A time-dependent
discrimination index for survival data. Statistics in Medicine, 24(24):3927-3944,
2005.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. An empirical evaluation of
generic convolutional and recurrent networks for sequence modeling. arXiv
preprint arXi:1805.01271, 2018.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy
layer-wise training of deep networks. In Advances in Neural Information
Processing Systems, pages 153-160, 2007.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan
Pascanu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and
Yoshua Bengio. Theano: a cpu and gpu math expression compiler. In
Proceedings of the Python for Scientific Computing Conference (SciPy),
volume 4. Austin, TX, 2010.

Elia Biganzoli, Patrizia Boracchi, Luigi Mariani, and Ettore Marubini. Feed
forward neural networks for the analysis of censored survival data: a partial
logistic regression approach. Statistics in Medicine, 17(10):1169-1186, 1998.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
Leo Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for
high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

47



Bibliography

Charles C Brown. On the use of indicator variables for studying the time-
dependence of parameters in a response-time model. Biometrics, 31(4):863-872,
1975.

S C Cheng, Jason P Fine, and L J Wei. Prediction of cumulative incidence
function under the proportional hazards model. Biometrics, 54:219-228, 1998.

Travers Ching, Xun Zhu, and Lana X Garmire. Cox-nnet: An artificial neural
network method for prognosis prediction of high-throughput omics data. PLoS
Computational Biology, 14(4):e1006076, 2018.

Francois Chollet et al. Keras. https:/keras.io, 2015.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate
deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

Ronan Collobert, Samy Bengio, and Johnny Marithoz. Torch: A modular
machine learning software library, 2002.

David R Cox. Regression models and life-tables. Journal of the Royal Statistical
Society. Series B (Methodological), 34(2):187-220, 1972.

Peter Dayan, Geoffrey E Hinton, Radford M Neal, and Richard S Zemel. The
Helmholtz machine. Neural Computation, 7(5):889-904, 1995.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121-2159, 2011.

Maha Elbayad, Laurent Besacier, and Jakob Verbeek. Pervasive attention: 2d
convolutional neural networks for sequence-to-sequence prediction. arXiv
preprint arXiv:1808.03867, 2018.

David Faraggi and Richard Simon. A neural network model for survival data.
Statistics in Medicine, 14(1):73-82, 1995.

Marco Fornili, Federico Ambrogi, Patrizia Boracchi, and Elia Biganzoli. Piecewise
exponential artificial neural networks (PEANN) for modeling hazard function
with right censored data. In Computational Intelligence Methods for
Bioinformatics and Biostatistics, pages 125-136, 2014.

Michael Friedman. Piecewise exponential models for survival data with covariates.
The Annals of Statistics, 10(1):101-113, 1982.

Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for

a mechanism of pattern recognition unaffected by shift in position. Biological
Cybernetics, 36(4):193-202, 1980.

48


https://keras.io

Bibliography

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 1243-1252.
JMLR. org, 2017.

Michael F Gensheimer and Balasubramanian Narasimhan. A scalable discrete-
time survival model for neural networks. PeerJ, 7:¢6257, 2019.

Thomas A Gerds and Martin Schumacher. Consistent estimation of the
expected Brier score in general survival models with right-censored event
times. Biometrical Journal, 48(6):1029-1040, 2006.

Thomas A Gerds, Michael W Kattan, Martin Schumacher, and Changhong Yu.
Estimating a time-dependent concordance index for survival prediction models
with covariate dependent censoring. Statistics in Medicine, 32(13):2173-2184,
2013.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 249-256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Geoffrey Gordon, David Dunson, and Miroslav Dudik,
editors, Proceedings of the Fourteenth International Conference on Artificial
Intelligence and Statistics, volume 15, pages 315-323, 2011.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial
nets. In Z Ghahramani, M Welling, C Cortes, N D Lawrence, and K Q
Weinberger, editors, Advances in Neural Information Processing Systems 27,
pages 2672-2680. Curran Associates, Inc., 2014.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016.

Erika Graf, Claudia Schmoor, Willi Sauerbrei, and Martin Schumacher.
Assessment and comparison of prognostic classification schemes for survival
data. Statistics in Medicine, 18(17-18):2529-2545, 1999.

Frank E Harrell Jr, Robert M Califf, David B Pryor, Kerry L Lee, and Robert A
Rosati. Evaluating the yield of medical tests. Journal of the American Medical
Association, 247(18):2543-2546, 1982.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 770-778, 2015a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. In
Proceedings of the IEEE International Conference on Computer Vision, pages
10261034, 2015b.

49



Bibliography

Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask r-cnn. In
Proceedings of the IEEE International Conference on Computer Vision, pages
2961-2969, 2017.

Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm
for deep belief nets. Neural Computation, 18(7):1527-1554, 2006.

Geoffrey E Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for
machine learning: Lecture 6a: Overview of mini-batch gradient descent, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 1997.

Theodore R Holford. Life tables with concomitant information. Biometrics, 32
(3):587-597, 1976.

John D Holt. Competing risk analyses with special reference to matched pair
experiments. Biometrika, 65(1):159-165, 1978.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural Networks, 2(5):359-366, 1989.

Joseph G Ibrahim, Haitao Chu, and Liddy M Chen. Basic concepts and methods
for joint models of longitudinal and survival data. Journal of Clinical Oncology,
28(16):2796, 2010.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In Proceedings of The
32nd International Conference on Machine Learning, pages 448-456, 2015.

Hemant Ishwaran, Udaya B Kogalur, Eugene H Blackstone, and Michael S Lauer.
Random survival forests. Annals of Applied Statistics, 2(3):841-860, 2008.

Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, and Yann LeCun.
What is the best multi-stage architecture for object recognition? In 2009
IEEFE 12th International Conference on Computer Vision, pages 2146-2153,
Sep. 2009.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional
architecture for fast feature embedding. In Proceedings of the 22nd ACM
International Conference on Multimedia, pages 675—-678. ACM, 2014.

Sgren Johansen. An extension of Cox’s regression model. International Statistical
Review, 51(2):165-174, 1983.

Jared L Katzman, Uri Shaham, Alexander Cloninger, Jonathan Bates, Tingting
Jiang, and Yuval Kluger. Deepsurv: personalized treatment recommender
system using a Cox proportional hazards deep neural network. BMC' Medical
Research Methodology, 18(1):24, Feb 2018.

50



Bibliography

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):
947-954, 1960.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Glunter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter.
Self-normalizing neural networks. In Advances in Neural Information
Processing Systems, pages 971-980, 2017.

John P Klein and Melvin L Moeschberger. Survival Analysis: Techniques for
Censored and Truncated Data. Springer, New York, 2. edition, 2003.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pages 1097-1105, 2012.

Kevin J Lang. The development of the time-delay neural network architecture
for speech recognition. Technical Report CMU-CS-88-152, 1988.

A Lawrence Gould, Mark Ernest Boye, Michael J Crowther, Joseph G Ibrahim,
George Quartey, Sandrine Micallef, and Frederic Y Bois. Joint modeling of
survival and longitudinal non-survival data: current methods and issues. report
of the dia bayesian joint modeling working group. Statistics in Medicine, 34
(14):2181-2195, 2015.

Yann LeCun. Generalization and network design strategies. Technical Report
CRG-TR-89-4, University of Toronto, 1989.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural Computation, 1(4):541-551, 1989.

Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):
2278-2324, 1998.

Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional networks
and applications in vision. In Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, pages 253-256. IEEE, 2010.

Changhee Lee, William R Zame, Jinsung Yoon, and Mihaela van der Schaar.
Deephit: A deep learning approach to survival analysis with competing risks.
In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 3431-3440, 2015.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with
warm restarts. arXiv preprint arXiv:1608.03983, 2016.

51



Bibliography

Egil Martinsson. WTTE-RNN : Weibull Time To Event Recurrent Neural
Network. Master’s thesis, Chalmers University Of Technology, 2016.

Marvin Minsky and Seymour Papert. Perceptrons: An introduction to
computational geometry. MIT press, 1969.

Abdelrahman Mohamed, George Dahl, and Geoffrey Hinton. Deep belief
networks for phone recognition. In Nips Workshop on Deep Learning for
Speech Recognition and Related Applications, volume 1, page 39. Vancouver,
Canada, 2009.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 807-814, 2010.

Radford M Neal. Connectionist learning of belief networks. Artificial Intelligence,
56(1):71-113, 1992.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray

Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

Wei Pan and Rick Chappell. Estimation in the Cox proportional hazards model
with left-truncated and interval-censored data. Biometrics, 58(1):64-70, 2002.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
Automatic differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

Christopher Poultney, Sumit Chopra, Yann L. Cun, et al. Efficient learning of
sparse representations with an energy-based model. In Advances in Neural
Information Processing Systems, pages 1137-1144, 2007.

Ross L Prentice, John D Kalbfleisch, Arthur V Peterson Jr, Nancy Flournoy,
Vern T Farewell, and Norman E Breslow. The analysis of failure times in the
presence of competing risks. Biometrics, 34(4):541-554, 1978.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. URL hitps://s3-us-west-2.
amazonaws. com/openai-assets/researchcovers/languageunsupervised/language
understanding paper. pdf, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAl
Blog, 1(8), 2019.

Rajat Raina, Anand Madhavan, and Andrew Y Ng. Large-scale deep
unsupervised learning using graphics processors. In Proceedings of the 26th
Annual International Conference on Machine Learning, pages 873-880. ACM,
2009.

52



Bibliography

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-
fidelity images with vq-vae-2. arXiv preprint arXiv:1906.00446, 2019.

Lior Rennert and Sharon X Xie. Cox regression model with doubly truncated
data. Biometrics, 74(2):725-733, 2018.

Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386, 1958.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
internal representations by error propagation. Technical report, California
Univ San Diego La Jolla Inst for Cognitive Science, 1985.

David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning
representations by back-propagating errors. Nature, 323:533-536, 1986.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,
Alexander C Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252,
2015.

Jocelyn Sietsma and Robert JF Dow. Creating artificial neural networks that
generalize. Neural Networks, 4(1):67-79, 1991.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and saliency
maps. arXiw preprint arXiv:1312.6034, 2013.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.
Going deeper with convolutions. In Computer Vision and Pattern Recognition
(CVPR), 2015.

Gerhard Tutz and Matthias Schmid. Modeling Discrete Time-to-Event Data.
Springer, 2016.

Hajime Uno, Tianxi Cai, Michael J Pencina, Ralph B D’Agostino, and L. J Wei.
On the c-statistics for evaluating overall adequacy of risk prediction procedures
with censored survival data. Statistics in Medicine, 30(10):1105-1117, 2011.

Aédron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol
Vinyals, Alexander Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

53



Bibliography

Hans van Houwelingen and Hein Putter. Dynamic Prediction in Clinical Survival
Analysis. CRC Press, 1st edition, 2011.

Hans C Van Houwelingen. Dynamic prediction by landmarking in event history
analysis. Scandinavian Journal of Statistics, 34(1):70-85, 2007.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Advances in Neural Information Processing Systems, pages 5998-6008,
2017.

Bernard Widrow and Marcian E Hoff. Adaptive switching circuits. Technical
report, Stanford Univ Ca Stanford Electronics Labs, 1960.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey,
et al. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiw preprint arXiv:1609.08144, 2016.

Safoora Yousefi, Fatemeh Amrollahi, Mohamed Amgad, Chengliang Dong,
Joshua E Lewis, Congzheng Song, David A Gutman, Sameer H Halani, Jose
Enrique Velazquez Vega, Daniel J Brat, et al. Predicting clinical outcomes
from large scale cancer genomic profiles with deep survival models. Scientific
Reports, 7(11707), 2017.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818-833, 2014.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional
networks for text classification. In Advances in Neural Information Processing
Systems, pages 649-657, 2015.

Yingye Zheng and Patrick J Heagerty. Partly conditional survival models for
longitudinal data. Biometrics, 61(2):379-391, 2005.

Xinliang Zhu, Jiawen Yao, and Junzhou Huang. Deep convolutional neural
network for survival analysis with pathological images. In 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM), pages
544-547, 2016.

Xinliang Zhu, Jiawen Yao, Feiyun Zhu, and Junzhou Huang. Wsisa: Making
survival prediction from whole slide histopathological images. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
68556863, 2017.

54



Papers






57







Expert Systems With Applications 102 (2018) 207-217

Contents lists available at ScienceDirect

Expert Systems With Applications s

journal homepage: www.elsevier.com/locate/eswa

-
Expert
Systems

with
Applications
An ntemational

Predicting mortgage default using convolutional neural networks )

Havard Kvamme?*, Nikolai Sellereite®, Kjersti Aas®, Steffen Sjursen®

Check for
updates

2 Department of Mathematics, University of Oslo, Niels Henrik Abels hus Moltke Moes vei 35, Oslo 0851, Norway
b Statistical Analysis, Machine Learning and Image Analysis, Norwegian Computing Center, Gaustadalleen 23a, Oslo 0373, Norway

©Group Risk Modelling, DNB ASA, Dronning Eufemias gate 30, Oslo 0191, Norway

ARTICLE INFO ABSTRACT

Article history:

Received 15 August 2017

Revised 17 February 2018
Accepted 18 February 2018
Available online 19 February 2018

Keywords:

Consumer credit risk
Machine learning

Deep learning
Mortgage default model
Time series

We predict mortgage default by applying convolutional neural networks to consumer transaction data.
For each consumer we have the balances of the checking account, savings account, and the credit card,
in addition to the daily number of transactions on the checking account, and amount transferred into the
checking account. With no other information about each consumer we are able to achieve a ROC AUC of
0.918 for the networks, and 0.926 for the networks in combination with a random forests classifier.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The ability to discriminate bad customers from good ones is im-
portant for banks and other lending companies. A small improve-
ment in prediction accuracy may result in a large gain in profitabil-
ity. Early identification of high risk consumers may aid the pre-
vention of loan defaults and help the consumers to better manage
their personal economy.

In credit scoring, one builds a model for the correspondence be-
tween default and various loan obligor characteristics based on a
relevant sample of people, and use this model to predict the prob-
ability that a person will repay his debts.

There is an extensive literature on credit scoring, both for as-
sessing private loans (Butaru et al., 2016; Chi & Hsu, 2012; Khan-
dani, Kim, & Lo, 2010; Sousa, Gama, & Branddo, 2016) and corpo-
rate loans (Jones, Johnstone, & Wilson, 2015; Ravi Kumar & Ravi,
2007). Some recent work include Abellan and Castellano (2017);
Chen, Zhou, Wang, and Li (2017); Xia, Liu, Li, and Liu (2017), and
Barboza, Kimura, and Altman (2017). For an overview and com-
parison of papers, see Garcia, Marqués, and Sanchez (2014) and
Lessmann, Baesens, Seow, and Thomas (2015).

All the papers above attempt to model delinquencies and de-
faults by applying machine learning algorithms to a set of ex-
planatory variables. While there are variations in the information

* Corresponding author.
E-mail addresses: haavakva@math.uio.no (H. Kvamme),
nikolai.sellereite@nr.no (N. Sellereite), kjersti.aas@nr.no (K. Aas),
sasjurse@gmail.com (S. Sjursen).

https://doi.org/10.1016/j.eswa.2018.02.029
0957-4174/© 2018 Elsevier Ltd. All rights reserved.

that is available to researchers (see e.g. Lessmann et al., 2015), the
constructed explanatory variables tend to be quite similar. Papers
typically use information from credit bureaus, such as number of
outstanding accounts, delinquent accounts, and balance on other
loans; individual account characteristics, such as current balance
of the individuals accounts and monthly income; and demographic
data, such as age and marital status. Butaru et al. (2016) also in-
clude macroeconomic variables, such as interest rates and unem-
ployment statistics, as an attempt to make the delinquency model
generalize better over longer periods of time.

As all these papers use similar explanatory variables, the re-
searchers commonly explore differences between scoring models
rather than the benefit of adding new explanatory variables. There
are however some exceptions: Khandani et al. (2010) explore the
benefit of adding information from detailed purchase volumes to
their models. This includes travel expenses, gas station expenses,
bar expenses, etc. Chi and Hsu (2012) also introduce consumer
transaction data through an aggregated measure called average uti-
lization ratio of credit.

In this paper we further investigate how transaction data can be
used for credit scoring. In a joint research with Norway's largest
financial service group, DNB, we use transaction data to predict
mortgage defaults. In 2012, the average Norwegian made 323 card
transactions, where 71% of the value transferred was through debit
payments (Norges-Bank, 2012). Hence, transactional data may pro-
vide a useful description of user behavior, and subsequently con-
sumer credit risk.

The transaction information consists of the daily balances on
consumers’ credit, checking, and savings accounts, in addition to



208 H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217

the daily number of transactions on the checking account, and the
amount transferred into the checking account. Our dataset is thus
a collection of time series for each customer. We do not use any of
the common covariates mentioned above, as our goal is to investi-
gate the value of the information available in the time series data.
In a production setting, our model can be combined with existing
risk models to improve the overall performance.

The idea behind this paper is to use deep learning, or deep
neural networks (LeCun, Bengio, & Hinton, 2015), to predict mort-
gage defaults. Deep learning have had a dramatic impact in fields
like image classification, text mining, and speech recognition. Com-
mon to these three fields is that the data is unstructured. Thus, the
original data (pixels, letters, words, frequencies) needs to be trans-
formed into meaningful covariates before they can be passed to a
classical algorithm. Until recently, such tasks have been solved by
the manual creation of informative covariates from the data. Deep
neural nets, on the other hand, process the data in a sequential
manner, learning multiple levels of abstraction. Hence, a deep net
use data to “learn” how to create good explanatory variables for
the problem at hand.

In this paper we apply a type of deep neural networks denoted
convolutional neural networks (CNNs). To the extent of our knowl-
edge, we are the first to apply CNNs to consumers’ account bal-
ances to predict mortgage defaults. Transaction data has previously
been used for credit scoring, see e.g. Khandani et al. (2010). How-
ever, most existing work relies on heuristic hand-crafted feature
design. It is often hard for us humans to figure out appropriate
features or covariates for credit scoring. Hence, the purpose of this
study is to use a convolutional neural network to automate fea-
ture engineering from the raw time series, in a systematic way. The
learned features resulting from such a model may be viewed as the
higher level abstract representation of the low level raw time se-
ries signals.

There have been some successful attempts applying deep
neural nets to time series data in other application ar-
eas. In the field of human activity recognition, Ordéfiez and
Roggen (2016); Yang, Nguyen, San, Li, and Krishnaswamy (2015),
and Hammerla, Halloran, and Ploetz (2016) use sensor data
to recognize activities improving the state-of-the-art. Cui, Chen,
and Chen (2016); Prasad and Prasad (2014); Zheng, Liu, Chen,
Ge, and Zhao (2014), and Le Guennec, Malinowski, and Tave-
nard (2016) present network structures for time series classifi-
cation across multiple domains. Also, Sirignano, Sadhwani, and
Giesecke (2016) assess mortgage risk using a deep net on 294 ex-
planatory variables. However, on the contrary to our work, they
use multilayer perceptrons instead of CNNs, and the majority of
the variables are loan-level feature and performance variables. The
deep net is mainly used to identify complex interactions between
the input variables.

Much work in credit scoring is related to regulatory frame-
works such as the Basel Accord. The Basel II regulations require
transparency in the loan-granting process. Due to their non-linear
structure, CNNs are usually considered as black boxes. That is, it
is usually not obvious what exactly makes them arrive at their
predictions. However, since this lack of transparency in many ap-
plications is considered a major drawback, the development of
methods for explaining and interpreting deep learning models
has recently attracted increased attention, see e.g. Lundberg and
Lee (2016); Samek, Wiegand, and Miiller (2017); Shrikumar, Green-
side, Shcherbina, and Kundaje (2016), and Ribeiro, Singh, and
Guestrin (2016). Hence, it is not obvious that CNNs will remain
inappropriate for building regulatory models in the future. Mean-
while, a credit scoring system based on a CNN may be useful in
many other applications. Financial institutions may e.g. use them
in their own internal risk estimation or as part of a validation ex-
ercise (Pillar 2 of the Basel framework).

A lender commonly makes two types of credit decisions: first,
whether to grant credit to a new applicant, and second, how
to deal with existing applicants, including whether to increase
their credit limits. The first problem is denoted application scor-
ing and the latter behavioral scoring. The majority of previous
work focus on application scoring, while prior work on behav-
ioral scoring is much less developed, see e.g. Thomas (2000) and
Kennedy, Mac Namee, Delany, O'Sullivan, and Watson (2013). The
methodology proposed in this paper may be used both for appli-
cation and behavioral scoring. Consumer transaction histories con-
tain implicit repayment behavior, making them suitable for behav-
ior scoring. However, as the new Revised Payment Service Direc-
tive (PSD2) becomes implemented across the EU and the European
Economic Area during 2018, the banks (and other lending institu-
tions) will have access to transaction data even for new customers.
Hence, this kind of data may also be used for application scoring.

The remainder of the paper is organized as follows. In
Section 2 we describe our dataset and how it was processed be-
fore fitting the neural networks. In Section 3 we introduce convo-
lutional neural networks, and show how they were applied to our
problem. In Section 4 we evaluate the performance of the proposed
algorithms. Finally, in Section 5, we summarize our findings.

2. Data

This study is a collaboration with the largest Norwegian finan-
cial service group, DNB, using data from their banking services. The
dataset consists of a sample of 20,989 customers who either pre-
viously had a mortgage, or got approved for a mortgage at some
point between January 2012 and April 2016. For every customer we
have the daily balances on their checking account, savings account,
and credit card, in addition to the daily number of transactions on
the checking account. We also know the daily amounts that are
transferred into the checking account (e.g. from salary, payments
from friends, etc.). Hence, we have a set of five time series for each
customer. Finally, adding the sum of checking account, savings ac-
count, and credit card as a new time series, we end up with a total
of six series. A summary of the six series can be found in Table 1.

For a customer to be granted a mortgage by DNB, he or she is
required to open a checking account at the bank, given that this
criterion is not already satisfied. There are however no require-
ments as far as savings accounts and credit cards are concerned.
As a result, there are many missing series in the dataset.

Our definition of default is the one used in Basel II, i.e. that the
obligor is past due for more than 90 days on the obligation to the
bank. Housing prices in Norway have generally increased steadily
since 2003, and thus, the mortgage market has seen few defaults
(Finanstilsynet, 2016). The lack of defaults poses a problem due to
the fact that our algorithms need large datasets to generalize well.
In addition to this, the large class imbalance (ratio between non-
defaults and defaults) is commonly regarded as a problem for clas-
sification algorithms. Both issues are addressed in later sections.

2.1. Training and test set

We divide our data into a training set and a test set. For train-
ing, we extract transaction histories from the time period Decem-
ber 31, 2012 to December 31, 2013 and use the outcome (default /
non-default) in the period from January 1, 2014 to January 1, 2015
as response variables. A subset of the training set was held out
from training and used as a validation set for tuning of our algo-
rithms. For testing, we extract transaction histories from the time
period February 28, 2014 to February 28, 2015, and response vari-
ables from the period March 1, 2015 to March 1, 2016. There are
no customers who appear in both the training and test set, mean-
ing that our study is both “out-of-time” and “out-of-sample”. Cus-



H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217

209

Table 1

Time series.
Series Abbrev.  Explanation
Checking account ch Balance on the checking account.
Savings account sa Balance on the savings account.
Credit card cc Balance on the bank issued credit card.
Checking transactions  trch Number of transaction on the checking account.
Into checking in Sum of transactions into the checking account.
Sum sum Sum of series ch, sa, and cc.

The time series used in this paper. Each time series consists of values aggregated to a

daily level.
Table 2
Data proportions for training, validation, and test sets.

Dataset Defaults ~ Non-defaults  Total Default type
Training 1298 11,398 12,696 90 or 60 days past
Training augmented 95,647 841,247 936,894 90 or 60 days past
Validation 329 6043 6372 90 or 60 days past
Test 96 1825 1921 90 days past

tomers for whom we did not have a full year of transaction data,
were removed both from the training and the test set. However, we
evaluate the performance of our methods on customers with miss-
ing data in Section 4.5. For a further specification of the datasets,
see Table 2.

2.2. Preprocessing time series

Convolutional neural networks require the input to be scaled.
Hence, for images it is common to normalize the pixels to lie in the
range [0, 1] (Goodfellow, Bengio, & Courville, 2016). Pixels how-
ever have the benefit of all being in [0, 255] and somewhat evenly
distributed in this interval. On the contrary, there are great dif-
ferences in the magnitude of the accounts. If we scale all series
based on the most extreme account values, most of the series will
have very small variations, making it hard for our neural net to
learn from the data. Therefore, the time series were scaled such
that each individual series is in the range [0, 1] through

~ x-—min(x)
x= max(x) — min(x)’

(1)

where x denotes one time series. With this scaling, the neural net
receives inputs of similar magnitude. However, this comes at the
cost of removing the magnitude of the individual series. Hence,
the network can only find information in the relative patterns of
the series, and has no knowledge about the actual size of the dif-
ferent accounts. Missing series were treated as accounts without
any movements.

3. Methods

While there is an extensive literature on time series classifica-
tion, we have chosen to focus only on the subset of algorithms that
falls under deep learning. For a review of other state-of-the-art
methods, see e.g. Bagnall, Lines, Bostrom, Large, and Keogh (2016).

In the following, we will first, in Section 3.1, introduce convolu-
tional neural networks and how they were applied to our credit
scoring problem. Then, in Section 3.2, we will discuss methods
used to avoid overfitting and how we approached the class imbal-
ance problem.

3.1. Convolutional neural networks

Deep learning arguably owes much of its success to its extent
of modularity. The framework is based on combining differentiable

transformations, where each such transformation is commonly re-
ferred to as a layer. The way one organizes the layers is called the
network architecture. When fitting such a network to a dataset, or
performing the “training” as it is denoted in machine learning, it is
necessary to define a loss function that can be optimized. The loss
function does not necessarily need to be the objective we actually
want to optimize, but rather a function that indirectly optimizes
our true goal (Goodfellow et al., 2016). For binary classification it
is common to use the binary cross entropy

Loss = — Y "{y;log pi + (1 —y;) log(1 — py)},

i

(2)

where y; denotes the true class label as {0, 1}, and p; denotes our
prediction for customer i in [0, 1]. Eq. (2) is the same as the neg-
ative log likelihood used in logistic regression. Note that the loss
decreases as the p;'s move closer to the y;'s, hence reducing the
loss should improve our objective.

During training the data is passed through the network, the
loss is calculated, the gradients are computed with respect to all
the parameters in the network, and the parameters are optimized
through some version of gradient descent. The gradients can be ob-
tained in a nice way using backpropagation (LeCun, Bottou, Orr, &
Miiller, 1998), which basically is application of the chain rule for
differentiation. Backpropagation calculates the gradients in a se-
quential manner, such that the gradients of each transformation
can be derived solely from the error passed back from the suc-
ceeding layer. The main takeaway here is that layers can be im-
plemented independent of each other, simplifying the process of
combining them in an architecture.

Convolutional neural networks (CNNs) constitute the subset of
neural networks that contain convolutional layers. However, they
typically contain other layers as well. The following sections de-
scribe the different types of layers that have been used in our neu-
ral networks.

3.1.1. Convolutional layers

The first two layers of our network are presented in Fig. 1. The
left block shows an input time series that is 365 days long. For
now, assume that the dataset only consist of a single time series
per customer (instead of six).

A convolutional layer consists of multiple filters that are applied
to the input series. A filter is simply a vector (or matrix) consisting
of weights that need to be optimized. The first convolutional layer
has filters of length 9, as shown in the figure. The application of
such a filter to the input series is just a sum over the element-
wise product of the filter weights and the time series, resulting in



max pooling

32 feature series

210 H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217
o [
........... >
]
©
........... v
n [2] |
> >
© ©
© ©
Yol [Yo]
© [(e]
[sp] [0}
@ | ] activation
= A =
T | K [ D i e OO
[o)]
1 series 32 feature series

conv filter

Fig. 1. The first convolutional layer and first pooling layer of our model. The left block is the input series. The gray area marks the part of the series for which a convolutional
filter is currently being applied. The middle block shows the convolved features (or activations) resulting from the 32 different convolutional filters. The right block shows

the result of applying max pooling to the middle block.

a convolved feature (or activation). A convolved feature is there-
fore a measure of the correlation between the filter and the rele-
vant part of the input. The middle block of Fig. 1 displays all the
convolved features from the input, using 32 different filters. Each
filter is slided across the input to generate as many convolved fea-
tures as the length of the time series'. Due to the fact that the
32 filters are randomly initialized, they end up extracting different
information from the input.

After applying the filters to a time series, the convolved features
are passed through a ReLU transform, which is simply max{0, x}.
Such activation functions are applied to make the transformation
non-linear, and they are commonly considered a part of the convo-
lutional layer rather than a separate layer. See Gu et al. (2017) for
a discussion of other activation functions.

3.1.2. Max pooling layers

A convolutional layer preserves the resolution in the temporal
dimension. There can however be some benefits of reducing the
temporal resolution, such as reducing the number of parameters
in the next layer, and introducing some shift-invariance (Gu et al.,
2017). As a result, many CNNs include so-called max pooling lay-
ers, which simply replace a set of values with their maximum.
Note that this layer does not introduce any additional parameters.

We use max pooling after each convolutional layer. An example
is shown to the right in Fig. 1, where four values of each column
of the convolved features are pooled into one. As shown in the fig-
ure, pooling is applied separately for each feature series. Thus, the
pooling layer preserves the number of feature series, while reduc-
ing the temporal resolution. See Gu et al. (2017) for a discussion of
other pooling layers.

3.1.3. Fully connected layers

To perform the actual classification, it is necessary to combine
the convolved features into a binary classifier. This is typically done
through one or more fully connected (or dense) layers, which form

1 Zero-padding is used to preserve the temporal dimension (Goodfellow et al.,
2016).

a multilayer perceptron (a classical neural net). A dense layer re-
quires a one-dimensional input, so the columns of the last layer
are concatenated into a single vector x. The transformation is then
simply the inner product with a weight matrix, z=x"W, with
some non-linear activation function (typically ReLU). The number
of columns in W determines the dimension of the output. Our fi-
nal layer has only two outputs, one for each class, and therefore
a softmax activation function is applied to ensure that the predic-
tions are in the interval [0, 1].
e«

Softmax(z), = W

where ¢ and j refers to classes. Note that the softmax can be ap-
plied for an arbitrary number of classes, but for binary classifica-
tion it it equivalent to the logit function. As a result, in combina-
tion with our choice of loss function, this final layer is equivalent
to a logistic regression.

(3)

3.14. Network architecture and training

In our network architecture we alternate between a convolu-
tional layer and a max pooling layer two times, followed by two
fully connected layers. For an input of length 365 days, this results
in 199,234 weights that need to be optimized. The whole structure
is displayed in Fig. 2, were we also show the length of the filters
and number of filters for the convolutions, the size of the pooling
kernels, and the number of output nodes in the dense layers. This
architecture was developed manually by evaluating on a validation
set?, and the hyper parameter search was therefore not as rigor-
ous as with e.g. a grid search. However, it was found that a variety
of model configurations resulted in quite similar performance. In
particular, further increasing the number of nodes, filters, or layers
did not really seem to affect the performance.

We train one network for each of our six time series, com-
pletely independently, using the Adam optimization algorithm
(Kingma & Ba, 2014) with default parameters and batch size of 512.
The resulting six predictions are averaged to give a final prediction

2 Note that the validation set is not the same as the test set.



H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217 211

Input series, length=365

Y

conv. 32 filters with size=9

max pooling, size=4

conv. 64 filters with size=7

max pooling, size=2

fc with output size=64

!

fc with output size=2

Fig. 2. Our convolutional neural net. The blue layers are convolutional layers and
the yellow layers are fully connected layers. All activations are ReLU, with the ex-
ception of softmax in the final layer. Dropout, with rate 0.5, is performed between
the last two layers. (For interpretation of the references to color in this figure leg-
end, the reader is referred to the web version of this article.)

for each customer. When computing the averages, predictions cor-
responding to missing series are discarded. We also experimented
with averaging the log-odds instead of the predictions, which re-
sulted in a slight performance decrease.

We also tried an alternative model where we train a network
on all six series simultaneously. Thus, the input is 365 x 6 rather
than 365 x 1, meaning that the first convolutional filter will have
size 9 x 6, rather than 9 x 1. Apart from this, the architecture is
identical to the architecture for the individual series. By combin-
ing all series in the input, the network has the potential to learn
interactions between a customer’s time series. However, as this
model is more complex, it will require more data than the pre-
vious model.

In addition to the two models presented here, we have also
tried deeper and more shallow models, as we will get back to in
Section 4.2, In early stages of the project, we even experimented
with recurrent neural networks in the form of Long Short-Term
Memory networks (LSTM). They were found to be outperformed
by the CNNs, in addition to being much more computationally ex-
pensive. Hence, they were dropped from further investigation.

3.2. Overfitting and class imbalance

In the following sections we explain the techniques we have
used to prevent the models from overfitting and how we handled
the large class imbalance between defaulting and non-defaulting
customers.

3.2.1. Regularization

Deep neural networks are commonly overparameterized, mak-
ing them prone to overfitting (Gu et al., 2017). Subsequently, regu-
larizing techniques have been introduced to cope with these prob-
lems. Among the more common is the use of a validation set for
monitoring the training process. We used this set to stop the gradi-
ent descent iterations when the net starts to overfit. This technique
is commonly referred to as early stopping.

Another common form of regularization is dropout
(Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014),
which simply sets activations to zero with a given probability dur-
ing training. This prevents units in the network from co-adapting
too much. At test time, the dropout layer scales the activations
according to the dropout rate. We use dropout with rate 0.5
between the two last layers, but it can in practice be applied
between any two layers.

See Goodfellow et al. (2016) and Gu et al. (2017) for a further
review of regularization.

3.2.2. Data augmentation

The problem of predicting mortgage defaults is highly imbal-
anced in that the number of defaults is very small compared to the
number of non-defaults. As a classifier’s performance commonly
deteriorates under imbalance, we under-sample the non-defaulting
customers to make the two classes more similar in size. More-
over, to increase the number of defaults in the training set, we use
delinquencies of 60 days in addition to those of 90 days. Hence, we
ended up with a training set consisting of 12,696 customers, 10%
of whom where characterized with default.

Deep neural nets commonly require more data than classi-
cal machine learning algorithms to perform well. As a result,
data augmentation schemes have been explored in the literature
(Goodfellow et al., 2016; Krizhevsky, Sutskever, & Hinton, 2012).
Most of this work has been on images, and does not necessar-
ily generalize well to other data sources. However, recently some
attempts of performing data augmentation on time series have
been proposed. Le Guennec et al. (2016) explore the possibilities
of training a CNN in a semi-supervised manner using time series
from other datasets. Cui et al. (2016) propose a sliding window
technique where they split the time series in many overlapping
slices, and train a classifier using each slice as an individual series.
This is in some sense similar to other time series prediction tasks
where the dataset originally consists of many overlapping series of
data (e.g. Ordéfiez & Roggen (2016)).

In this paper, we use a slight variation of the sliding windows
approach of Cui et al. (2016). Our approach can be described as fol-
lows. For each defaulting customer we first define a training period
which ends one month before the default, and starts two years ear-
lier. If the customer did not exist in the dataset at the start of this
period, the start was set to the earliest date the customer existed.
We then extract the time series corresponding to the first 365 days
of the training period and use that as an observation. By jumping
a fixed number of days, called stride in the machine learning lit-
erature, we can get a new observation that is partially overlapping
with the previous observation. This process is repeated until the
end of our defined training period is reached. In this way, we get a
training set consisting of multiple overlapping series from each de-
faulting customer. This augmentation scheme is illustrated in Fig. 3.
The gray area shows the defined training periods for three different
customers, and the red dots mark the time of their defaults. For id:
2 we show three of the observations (windows) that are added to
the training set. Note that the first of the corresponding periods
ends one year before the default occurs, while the last ends one
month before. Thus both these observations, and all in between,
fit our objective of predicting a default in the following 365 days.

We also need to perform a similar augmentation for the non-
defaulting individuals. Our first experiments showed that sampling
non-defaulting and defaulting customers from different time peri-
ods made our net learn different characteristics of these periods
instead of the actual objective. Hence, to avoid this sampling bias,
we had to sample the start and end dates for the non-defaulting
customers from the ones of the defaulting customers.

Ideally one would use strides of 1 as this would give most
diversity in the training data. However, our preliminary analysis



212 H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217

Original training period

Default period

2012-12-31 2013-12-31 2014-12-31
id: 0 [0}
id: 1 (&
id: 2 (]
Neeeeeeeedheeeeene ______________________ o ;
first wi;ldow second window last window

@ default training period

Fig. 3. Illustration of our data augmentation scheme. The gray area identifies the time period from which we extract data, and the red dots show the time of default. The
sliding window approach is illustrated for id: 2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

showed that strides of 1 did not give better results than strides
of 5. Hence, since the memory usage of the latter is only a fifth of
the first, we decided to use strides of 5 in our final analysis.

In Table 2 we have shown the size of our training set, the train-
ing set augmented with the sliding windows, the validation set,
and the test set. The financial group DNB does not want to dis-
close its true default ratio. Hence, to generate the test set, 2000
customers were randomly sampled in such a way that the fraction
of defaulting customers was 5%. After removing customers with
missing history, we ended up with a test set of 1921 customers.
The size of the test set is quite small, which results in larger vari-
ance in our results. Note however that we have experimented with
different test sets from different time periods, and the results seem
to be quite consistent.

4. Experiments

In the following, we first present the measures used to evaluate
the performance of our models. We then describe our experiments
and their results.

4.1. Evaluation measures

The Receiver Operating Characteristic (ROC) curve is a com-
mon measure for evaluating a classifier’s ability to separate two
classes. The ROC curve is a plot of the true positive rate (for de-
fault) against the false positive rate, for all thresholds. A threshold
is the chosen cut-off in the estimated scores from the neural net.

Since the ROC curve is based on the true positive rates and the
false positive rates, it is invariant to class proportions. Moreover,
it is not dependent on the quality of the predictions (probability
estimates), only on the classifier's ranking capabilities.

ROC curves are often summarized through the area under the
curve, or AUC. With perfect classification, the AUC will be 1, while
random predictions result in an AUC of 0.5 on average.

AUC is a general measure of binary classification, and is widely
used across disciplines. There are however more specialized mea-
sures for evaluating a credit scoring model. One such measure is
the Expected Maximum Profit (EMP) (Verbraken, Bravo, Weber, &
Baesens, 2014), which is a profit based performance measure ac-
counting for the benefits generated by healthy loans and the costs
caused by loan defaults. We have chosen not to use EMP in this
paper. The main reason is that this measure is heavily dependent

Table 3
AUC for different CNN architectures.

Model Mean AUC ~ Std AUC  AUC for average pred.
Full, 1 conv layer 0.8884 0.0055 0.8979
Full, 2 conv layers 0.8879 0.0041 0.8982
Full, 3 conv layers 0.8897 0.0048 0.9015
Indiv, 1 conv layer 0.9022 0.0022 0.9043
Indiv, 2 conv layers 0.9146 0.0025 0.9184
Indiv, 3 conv layers 0.9106 0.0033 0.9148

AUC mean and standard deviation for 10 experiments for each of six differ-
ent CNNs. “Full” refers to the approach with all time series as input, and
“Indiv” to the approach where we compute the average of the predictions
from six individually trained models. The rightmost column gives the AUC
of the predictions averaged over the 10 trained models.

on the class proportions. As stated earlier, we have used a fictive
default rate, since the bank did not want to disclose its true ratio.
Hence, it does not make any sense to use a measure that signifi-
cantly changes when the class proportions are altered.

Our convolutional neural network is initialized with ran-
dom weights. Moreover, we use dropout by multiplying random
Bernoulli variables with the input to the last layer, and the net is
trained with stochastic gradient descent. As a result, the network
will be slightly different every time it is trained. Hence, to control
how our results are influenced by randomness, we repeat all ex-
periments 10 times and report the average and standard deviation
of the 10 resulting AUC values.

4.2. Competing architectures

In the following section, the two CNNs introduced in
Section 3.1.4 are compared and evaluated. The architectures of the
two models are identical, except that the first takes individual time
series as input (Indiv model), while all six time series are input to
the latter (Full model). Note that all training sets are augmented
as described in Section 3.2.2. Summary statistics for the AUCs are
shown in Table 3 under the names Indiv, 2 conv layes and Full, 2
conv layers. We see that the individual model is clearly better than
the full model. This might indicate that the full model is not able
to take advantage of interactions between the series, or at least
that the added benefit is smaller than the downside of the added
complexity of the model.



H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217 213

Table 4
AUC for individual series.

Table 7
AUC for different length of series.

Series  Mean AUC  Std NM Mean AUC ~ NM Std  Prop Missing Model Mean AUC  Std AUC  AUC for average pred.
ch 0.8632 0.0040  0.8646 0.0036 0.0068 RF 365 days 0.9130 - -

in 0.7116 0.0108 0.7140 0.0107 0.0068 RF 31 days 0.8907 - -

cc 0.7636 0.0080  0.8099 0.0101 0.2405 Combined 365 days ~ 0.9254 0.0011 0.9260

sa 0.7902 0.0056  0.8178 0.0039 0.1463 Combined 31 days 0.8941 0.0006 0.8946

sum 0.8752 0.0078  0.8752 00078 0 - - - -

trch 0.8472 0.0064  0.8480 0.0063 0.0068 R_F is a rgndom forgsts clgssnﬁer with covariates e.xtfacted from the unscaled
All 0.9146 0.0025 0.9146 0.0025 0 time series. Combined gives the averaged prediction of the CNN and the

In the NM columns (Not Missing) we have removed customers having missing
series or series without any activity. “Prop missing” gives the proportion of series
removed from the test set in NM. The AUC is averaged over 10 experiments. The
“All" series gives the score of the averaged predictions (Indiv model).

Table 5

AUC for different subsets of the training data.
Proportion Mean AUC Std AUC
1.00 0.9146 0.0026
0.90 0.9109 0.0048
0.75 0.9086 0.0054
0.50 0.9028 0.0033
0.25 0.8954 0.0082
0.10 0.8827 0.0062
Non-augmented 0.8880 0.0042

For each subset, we sample the customers from the training
set, and use sliding window for data augmentation. The left-
most column shows the proportion of customers sampled from
the training set, while the remaining columns show the average
and standard deviation of AUC for the 10 repetitions. 1.00 gives
the results for the full training set (Indiv model), while “Non-
augmented” refers to using all customers, but with no data aug-
mentation.

Table 6
AUC for different lengths of time series.

Model Mean AUC  Std AUC  AUC for average pred.
365 days  0.9146 0.0026 0.9184
180 days 0.8945 0.0051 0.8981
91 days 0.8744 0.0051 0.8791
31 days 0.8425 0.0043 0.8460

The “Mean AUC” is averaged over 10 repetitions. The “AUC for
average pred.” gives the AUCs for the averaged predictions of the
10 repetitions of the same model. All models have the same ar-
chitecture as the 365 days CNN.

Table 3 also includes four other models. The only difference be-
tween the models is the number of convolutional layers (and pool-
ing layers), and whether the input consist of individual series or all
six series simultaneously. For the full specification of the models,
see Fig. A.1 in the Appendix. From the table we see that all the
individual models have higher average AUC than the full models.
Additionally, it seems that there is no reason to have more than
two convolutional layers in the networks.

Averaging the predictions from six individually trained models
has a regularizing effect. To check whether the differences in per-
formance between the full models and the individual models are
caused by this averaging, we also, for each model, compute the
AUC for the average of the 10 predictions for each customer. The
results are shown in the rightmost column of Table 3 (“AUC for
average pred.”) We see that this improves the AUC for all models.
The individual models are still better than the full models, but the
difference seems to be smaller.

In the remainder of this section we concentrate on the Indiv
model, 2 conv layers, since this is the one that shows the best per-
formance in Table 3.

random forests classifier. The results for the combined classifier are aver-
aged over 10 repetitions of the CNN. The “AUC for average pred.” gives the
AUC for the averaged predictions of the 10 repetitions of the CNN.

4.3. Importance of different series

Our model creates predictions based on six different time se-
ries: checking account balance (ch), amount transferred into check-
ing account (in), credit card balance (cc), savings account balance
(sa), the sum of checking, saving and credit card balances (sum),
and number of transactions on the checking account (trch). To in-
vestigate how much information there is in each series, we report
their individual AUC values in Table 4. As before, we report the re-
sults averaged over 10 experiments. The checking account (ch and
trch) and the sum seem to be most informative, while the amount
transferred into the checking account (in) provides less informa-
tion.

In Section 2 it was stated that missing savings accounts and
credit card accounts are regarded as accounts without any move-
ments. This means that the comparison between the different se-
ries in the two leftmost columns of Table 4 might not be com-
pletely fair. Hence, we did a new experiment in which we re-
moved all customers missing the relevant time series from the test
set. The results are shown in columns 3 and 4 of the table (NM
Mean and NM Std), while the proportions of removed customers is
shown in column 5. From the table we see that the AUC for credit
card accounts (cc) and savings accounts (sa) significantly increase,
while there are small differences for the other series. This is rea-
sonable, as the proportion of missing data is largest for the credit
cards and savings accounts.

4.4. Training data

In this section we investigate how the size of the training set
affects the performance of our classifier. This can help us un-
derstand to what extent more training data would improve our
discriminator. We also evaluate the effect of our augmentation
scheme.

Table 5 shows AUC for models trained on different subsets of
the training data. The subsets were created by randomly sampling
customers. For a given proportion of the full training set we train
10 models in the same way as previously for the full training set.

Investigating the table, the performance seems to be improved
with the size of the training data. This suggests that with more
data we might be able to obtain even better results than those pre-
sented in this paper.

The last row of the leftmost column in Table 5 shows the re-
sults of fitting the same model to the original (not augmented)
training set. We see that using 10% to 25% of the original customers
with augmented data results in the same performance as using all
customers with non-augmented data.

4.5. Length of time series
To investigate to what extent lack of information affects the

performance of our model, we have also fitted our CNN to series
of different lengths, More specifically, we used the last month (31



214 H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217

Table 8

Evaluation metrics.
Model Threshold ~ Accuracy  Sensitivity  Specificity ~ AUC Brier Score  H-measure
CNN 0.3 0.954 0.374 0.985 0.915 0.0381 0.564
Combined 0.3 0.947 0.527 0.970 0925  0.0364 0.592
LR 0.3 0.910 0.490 0.935 0.864  0.0458 0.455
MLP (512) 03 0.899 0.590 0.918 0.875  0.0550 0.484
RF 0.3 0.920 0.602 0.940 0.913 0.0386 0.557
CNN 0.5 0.953 0.064 0.999 0.915 0.0381 0.564
Combined 0.5 0.956 0177 0.997 0925  0.0364 0.592
LR 0.5 0.943 0.219 0.981 0.864 0.0458 0.455
MLP (512) 0.5 0.927 0.455 0.953 0.875 0.0550 0.484
RF 0.5 0.957 0.332 0.991 0.913 0.0386 0.557

Different evaluation metrics for two different threshold values. All results are based on the time series with
length 365 days. For each model we have averaged the metrics over 10 trained models. CNN is the best-
performing CNN from Table 3, LR is a logistic regression model, MLP is a Multilayer perceptron with one
hidden layer and 512 nodes, RF is the random forest model, and Combined is the combined model in which
we averaged the predictions from the CNN and the RF.

1.0
s
4
4
4
7’
’
’
0.8 —
'
’
'
’
o ’
9 -,
© 0.6
1
2
=}
‘@
o
o
g 0.4
5
0.2
~—— CNN (area = 0.918)
——— RF (area = 0.913)
~— Combined (area = 0.926)
0.0 -
0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

Fig. 4. ROC curves for the CNN, the RF, and their averaged predictions model. The time series are the full 365 day long series. The CNN comes from the averaged predictions
over the 10 experiments.

1.0

0.8
Q
2
© 06
9]
=
=]
‘@
o
o
g 0.4
=}

0.2

o€ ——— CNN (area = 0.846)
Pid ——— RF (area = 0.891)
o —— Combined (area = 0.895)
0.0
0.0 0.2 0.4 0.6 0.8 1.0

false positive rate

Fig. 5. ROC curves for the CNN, the RF, and their averaged predictions model. The time series used are contain only the last 31 days of data. The CNN comes from the
averaged predictions over the 10 experiments.



H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217 215

days), the last quarter (91 days), and the two last quarters (182
days) of the original dataset to train the same model as previously.

The results are shown in Table 6. As can be seen, there is a
clear drop in performance when the time series get shorter. On the
downside, this makes it harder to evaluate customers with a short
relationship to the bank. However, the results also suggest that it
might be possible to increase the performance of our models by
applying them to time series longer than 365 days.

4.6. Classical covariates

As described in Section 2.2, all time series are scaled to be in
[0, 1] before fitting the CNN. This kind of scaling means that in-
formation about the magnitude of the series is lost. To assess the
potential decrease in results connected to this removal of relevant
information, we fit a random forests classifer (RF), consisting of
800 trees, to explanatory variables created from the original, un-
scaled time series. RF is often credited as a very strong classifier
outperforming several alternative methods (including Support Vec-
tor Machines and Neural networks) when applied to credit scor-
ing (Brown & Mues, 2012; Kruppa, Schwarz, Arminger, & Ziegler,
2013; Lessmann et al., 2015). For each of the six time series, we
computed the mean, max, minimum, standard deviation, and the
standard deviation scaled by the mean. These covariates were com-
puted both for the full series and for the last month (31 days). In
addition, we divided each of the covariates for the full series by
the equivalent covariate calculated for the last month, producing
a total of 15 features for each series. The resulting AUC is shown
in the upper row of Table 7. We also fitted a logistic regression
model and a Multilayer perceptron (with one hidden layer and 512
nodes) using the same explanatory variables. The AUC values for
these models were significantly worse (0.86 and 0.88 see Table 8)
than that for the RF, confirming the observations from previous
studies. Hence, we decided not to include these models in the fur-
ther comparisons.

Comparing the numbers in the upper rows of Tables 6 and 7 we
see that for the 365 days period, the AUC for the CNN is slightly
better than that for the RE. We also used a combined model in
which we averaged the predictions from the CNN and the RF.
From the third row of Table 6 we see that there is a small in-
crease in performance compared to that obtained using one of the
models only. The ROC curves for the CNN, the RF and the com-
bined model are shown in Fig. 4. Running the diagnostic test for
comparing ROC curves described in DelLong, DeLong, and Clarke-
Pearson (1988) verifies that there are no significant differences be-
tween the AUCs for any pair of ROC-curves.

Table 8 gives the values of 6 evaluation metrics for each of the 5
models. In addition to Accuray, Sensitivity, Specificity and AUC, the
Brier Score (Brier, 1950) and the H-measure (Hand, 2009; 2010) are
reported. The AUC is sometimes criticised for treating the relative
severities of misclassifications differently when different classifiers
are used. The H-measure, on the other hand, may accommodate
expert knowledge regarding misclassification costs, whenever that
is available. We want to treat misclassifications of the smaller class
as more serious than those of the larger class, since otherwise very
little loss would be made by assigning everything to the larger
class. Hence, we set the cost of misclassifying a bad customer as
healthy to 0.95 and the cost of misclassifying a good customer as
defaulter to 0.05.

We have also compared the three methods using data only
from the last 31 days. The AUC-values are given in the last row
of Table 6 and rows two and four in Table 7, respectively, while
the corresponding ROC-curves are shown in Fig. 5. As can be seen

from the tables and the figure, the performance of the RF does not
degrade as much as that of the CNN when decreasing the length
of the time series to 31 days. The p-value of the test for comparing
the two ROC-curves is 0.005, meaning that the AUC for the RF is
significantly higher than that for the CNN in this case.

5. Discussion

The ability to discriminate bad customers from good ones is
very important for banks and other lending companies. There is a
large literature on methods used to predict defaults of consumer
loans. Status quo in both the industry and the academic litera-
ture is to use models with handcrafted explanatory variables. In
contrast, we use a highly nonlinear convolutional neural network
(CNN), where the input is raw account transactional data. More
specifically, we have used daily balances of customers’ checking ac-
counts, savings accounts, and credit card accounts, in addition to
daily number of transaction on the checking accounts, and amount
transferred into the checking accounts to predict mortgage delin-
quency.

A CNN has a number of hyperparameters which need to be cho-
sen, such as the number of layers, type of layers, and the type of
regularization. Our best performing CNN with two convolutional
and two fully connected layers achieved an AUC of 0.915. Consider-
ing the fact that our training set only consists of 12,696 customers,
and that we do not use any other information than the account
data, the results are quite promising.

In our analysis, we found that the AUC for our CNN was in-
creasing with the size of the training set, suggesting that a larger
dataset might result in even higher performance. In addition, the
performance increased with the length of the time series, indicat-
ing that using a time series that is longer than 365 days may give
better results. Comparing the predictions from a single CNN with
ensemble predictions from 10 randomly initialized models showed
that the increase in AUC using several model was limited.

By using transaction data only, one throws away a lot of other
informative data that is typically used for credit scoring, e.g. the
loan balance, socioeconomic data, payment history, and credit bu-
reau data. Further, all time series are scaled to be in the interval
[0,1] before fitting the CNN, meaning that information about the
magnitude of the time series is lost. To account for the scaling,
a random forests classifier was fitted to covariates extracted from
the unscaled series, resulting in an AUC of 0.913. By combining the
predictions of the CNN and the random forests, we achieved an
AUC of 0.925.

Future research directions could include the combination of
our model with other credit scoring models that use more clas-
sical credit information; applying our model on a larger dataset,
as CNNs tend to perform better with more data; and using more
granular data in the form of labeled transactions (e.g. groceries,
gas, rent, vacation).

Acknowledgments

This work was supported by The Norwegian Research Council
237718 through the Big Insight Center for research-driven innova-
tion. We thank @rnulf Borgan for comments and suggestions on
the paper. We also thank Sven Haadem for his help on creating a
dataset from DNB’s mortgage portfolio.

Appendix A

Fig. A.1.



216

H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217

Input series, length=365

Input series,

length=365 Input series, length=365

Y A

y Y

conv. 32 filters with size=9

conv. 32 filters with size=9

conv. 32 filters with size=9

max pooling, size=4

max pooling, size=4

max pooling, size=4

fc with output size=64

conv. 64 filters with size=7

conv. 64 filters with size=7

!

fc with output size=2

fc with output size=64

|

max pooling, size=2

max pooling, size=2

conv. 128 filters with size=5

max pooling, size=2

fc with output size=2

fc with output size=64

!

fc with output size=2

Fig. A.1. Our three convolutional neural net architectures for single time series. We also have a version of each model with 365 x 6 input. The blue layers are convolutional
layers and the yellow layers are fully connected layers. All activations are ReLU, with the exception of softmax in the final layer. Dropout, with rate 0.5, is performed between

the last two layers. (For interpretation of the references to color in this figure legend,

References

Abellan, ]., & Castellano, J. G. (2017). A comparative study on base classifiers in en-
semble methods for credit scoring. Expert Systems with Applications, 73, 1-10.
doi:10.1016/j.eswa.2016.12.020.

Bagnall, A., Lines, ], Bostrom, A., Large, ], & Keogh, E. (2016). The great time
series classification bake off: A review and experimental evaluation of re-
cent algorithmic advances. Data Mining and Knowledge Discovery. doi:10.1007/
s10618-016-0483-9.

Barboza, F, Kimura, H., & Altman, E. (2017). Machine learning models and
bankruptcy prediction. Expert Systems with Applications, 83, 405-417. doi:10.
1016/j.eswa.2017.04.006.

Brier, G. W. (1950). Verification of forecasts expressed in terms of probability.
Monthly Weather Review, 78(1), 1-3.

Brown, I, & Mues, C. (2012). An experimental comparison of classification algo-
rithms for imbalanced credit scoring data sets. Expert Systems with Applications,
39(3), 3446-3453.

Butaru, F, Chen, Q. Clark, B., Das, S., Lo, A. W., & Siddique, A. (2016). Risk and risk
management in the credit card industry. Journal of Banking & Finance, 72, 218-
239. doi:10.1016/j.jbankfin.2016.07.015.

Chen, X, Zhou, C., Wang, X., & Li, Y. (2017). The credit scoring model based on lo-
gistic-bp-adaboost algorithm and its application in p2p credit platform. In X. Li,
& X. Xu (Eds.), Proceedings of the fourth international forum on decision sciences
(pp. 119-130). Singapore: Springer Singapore.

Chi, B.-W., & Hsu, C.-C. (2012). A hybrid approach to integrate genetic algorithm
into dual scoring model in enhancing the performance of credit scoring model.
Expert Systems with Applications, 39(3), 2650-2661. doi:10.1016/j.eswa.2011.08.
120.

Cui, Z., Chen, W., & Chen, Y. (2016). Multi-Scale Convolutional Neural Networks for
Time Series Classification. CoRR http://arxiv.org/abs/1603.06995.

Delong, E. R, DeLong, D. M., & Clarke-Pearson, D. L. (1988). Comparing the areas
under two or more correlated receiver operating characteristic curves: A non-
parametric approach. Biometrics, 44(3), 837-845.

Finanstilsynet (2016). Finansielt utsyn 2016. http://www.finanstilsynet.no/Global/
Venstremeny/Rapport/2016/Finansielt_utsyn_2016.pdf. Accessed: 2017-02-06.
Garcia, V., Marqués, A. I, & Sanchez, ]. S. (2014). An insight into the experimental
design for credit risk and corporate bankruptcy prediction systems. Journal of
Intelligent Information Systems, 44(1), 159-189. doi:10.1007/s10844-014-0333-4.

Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press. http://
www.deeplearningbook.org.

Gu, J., Wang, Z, Kuen, J., Ma, L, Shahroudy, A. Shuai, B, Liu, T, Wang, X, &
Wang, G. (2017). Recent Advances in Convolutional Neural Networks. CoRR http:
//arxiv.org/abs/1512.07108.

the reader is referred to the web version of this article.)

Hammerla, N. Y., Halloran, S., & Ploetz, T. (2016). Deep, Convolutional, and Recur-
rent Models for Human Activity Recognition Using Wearables. In Proceedings of
the Twenty-Fifth International Joint Conference on Artificial Intelligence (pp. 1533—
1540). New York, New York, USA: AAAI Press. http://dl.acm.org/citation.cfm?id=
3060832.3060835.

Hand, D. J. (2009). Measuring classifier performance: A coherent alternative to
the area under the ROC curve. Machine Learning, 77(1), 103-123. doi:10.1007/
510994-009-5119-5.

Hand, D. J. (2010). Evaluating diagnostic tests: The area under the ROC curve and
the balance of errors. Statistics in Medicine, 29(14), 1502-1510. doi:10.1002/sim.
3859.

Jones, S., Johnstone, D., & Wilson, R. (2015). An empirical evaluation of the perfor-
mance of binary classifiers in the prediction of credit ratings changes. Journal of
Banking & Finance, 56, 72-85. doi:10.1016/j.jbankfin.2015.02.006.

Kennedy, K., Mac Namee, B., Delany, S. J., O'Sullivan, M., & Watson, N. (2013). A
window of opportunity: Assessing behavioural scoring. Expert Systems with Ap-
plications, 40(4), 1372-1380.

Khandani, A. E., Kim, A. ], & Lo, A. W. (2010). Consumer credit-risk models via
machine-learning algorithms. Journal of Banking & Finance, 34(11), 2767-2787.
doi:10.1016/j.jbankfin.2010.06.001.

Kingma, D. P, & Ba, J. (2014). Adam: A Method for Stochastic Optimization. CoRR
http://arxiv.org/abs/1412.6980.

Krizhevsky, A., Sutskever, I, & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bot-
tou, & K. Q. Weinberger (Eds.), Advances in neural information processing sys-
tems 25 (pp. 1097-1105). Curran Associates, Inc. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

Kruppa, J., Schwarz, A., Arminger, G., & Ziegler, A. (2013). Consumer credit risk: In-
dividual probability estimates using machine learning. Expert Systems with Ap-
plications, 40(13), 5125-5131.

Le Guennec, A., Malinowski, S., & Tavenard, R. (2016). Data augmentation for time
series classification using convolutional neural networks. In Proceedings of the
ECML/PKDD Workshop on Advanced Analytics and Learning on Temporal Data ,Riva
Del Garda, Italy.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-
444. doi:10.1038/nature14539.

LeCun, Y., Bottou, L., Orr, G. B,, & Miiller, K. R. (1998). Efficient backprop. Neural
Networks: Tricks of the Trade, 9-50. doi:10.1007/3-540-49430-8_2.

Lessmann, S., Baesens, B., Seow, H.-V., & Thomas, L. C. (2015). Benchmarking state-
of-the-art classification algorithms for credit scoring: An update of research. Eu-
ropean Journal of Operational Research, 247(1), 124-136. doi:10.1016/j.ejor.2015.
05.030.



H. Kvamme et al./Expert Systems With Applications 102 (2018) 207-217 217

Lundberg, S., & Lee, S. (2016). An unexpected unity among methods for interpreting
model predictions CoRR abs/1611.07478.

Norges-Bank (2012). Arsrapport om betalingssystem 2012. http://static.norges-bank.
no/pages/94894/Betalingssystem_2012_o.pdf?v=27052013101201&ft=.pdf. ~ Ac-
cessed: 2017-02-09.

Ordéiiez, F, & Roggen, D. (2016). Deep convolutional and LStm recurrent neu-
ral networks for multimodal wearable activity recognition. Sensors, 16(1), 115.
doi:10.3390/s16010115.

Prasad, S. C.,, & Prasad, P. (2014). Deep Recurrent Neural Networks for Time Series
Prediction. CoRR http://arxiv.org/abs/1407.5949.

Ravi Kumar, P,, & Ravi, V. (2007). Bankruptcy prediction in banks and firms via sta-
tistical and intelligent techniques - A review. European jJournal of Operational
Research, 180(1), 1-28. doi:10.1016/j.ejor.2006.08.043.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining
the predictions of any classifier CoRR abs/1602.04938.

Samek, W., Wiegand, T., & Miiller, K. (2017). Explainable artificial intelligence: Un-
derstanding, visualizing and interpreting deep learning models CoRR abs/1708.
08296.

Shrikumar, A., Greenside, P.,, Shcherbina, A., & Kundaje, A. (2016). Not just a black
box: Learning important features through propagating activation differences
CoRR abs/1605.01713.

Sirignano, J., Sadhwani, A., & Giesecke, K. (2016). Deep Learning for Mortgage Risk.
ArXiv e-prints http://adsabs.harvard.edu/abs/2016arXiv160702470S.

Sousa, M. R, Gama, J., & Branddo, E. (2016). A new dynamic modeling framework
for credit risk assessment. Expert Systems with Applications, 45, 341-351. doi:10.
1016/j.eswa.2015.09.055.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I, & Salakhutdinov, R. (2014).
Dropout: A simple way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15, 1929-1958.

Thomas, L. C. (2000). A survey of credit and behavioural scoring: forecasting fi-
nancial risk of lending to consumers. International journal of forecasting, 16(2),
149-172.

Verbraken, T., Bravo, C., Weber, R., & Baesens, B. (2014). Development and applica-
tion of consumer credit scoring models using profit-based classification mea-
sures. European Journal of Operational Research, 238(2), 505-513. doi:10.1016/j.
€jor.2014.04.001.

Xia, Y., Liu, C, Li, Y., & Liu, N. (2017). A boosted decision tree approach using
Bayesian hyper-parameter optimization for credit scoring. Expert Systems with
Applications, 78, 225-241. doi:10.1016/j.eswa.2017.02.017.

Yang, J. B., Nguyen, M. N,, San, P. P, Li, X. L., & Krishnaswamy, S. (2015). Deep convo-
lutional neural networks on multichannel time series for human activity recog-
nition. In Proceedings of the twenty-fourth international conference on artificial
intelligence. In [JCAI'15 (pp. 3995-4001). AAAI Press.

Zheng, Y., Liu, Q. Chen, E,, Ge, Y., & Zhao, ]. L. (2014). Time series classification using
multi-channels deep convolutional neural networks. Lecture Notes in Computer
Science, 298-310. doi:10.1007/978-3-319-08010-9_33.






71







Journal of Machine Learning Research 20 (2019) 1-30 Submitted 6/18; Revised 7/19; Published 8/19

Time-to-Event Prediction with Neural Networks
and Cox Regression

Havard Kvamme HAAVAKVA@QMATH.UIO.NO
Arnulf Borgan BORGAN@MATH.UIO.NO
Ida Scheel IDASCH@QMATH.UIO.NO

Department of Mathematics
University of Oslo

P.O. Box 1053 Blindern
0316 Oslo, Norway

Editor: Jon McAuliffe

Abstract

New methods for time-to-event prediction are proposed by extending the Cox proportional
hazards model with neural networks. Building on methodology from nested case-control
studies, we propose a loss function that scales well to large data sets and enables fitting of
both proportional and non-proportional extensions of the Cox model. Through simulation
studies, the proposed loss function is verified to be a good approximation for the Cox
partial log-likelihood. The proposed methodology is compared to existing methodologies
on real-world data sets and is found to be highly competitive, typically yielding the best
performance in terms of Brier score and binomial log-likelihood. A python package for the
proposed methods is available at https://github.com/havakv/pycox.

Keywords: Cox regression, customer churn, neural networks, non-proportional hazards,
survival prediction

1. Introduction

In this paper, we consider methodology for time-to-event prediction, a part of survival
analysis that reasons about when a future event will occur. Applications of time-to-event
predictions can be found in a variety of settings such as survival prediction of cancer patients
(e.g., Vigan et al., 2000), customer churn (e.g., Van den Poel and Lariviere, 2004), credit
scoring (e.g., Dirick et al., 2017), and failure times of mechanical systems (e.g., Susto et al.,
2015). Arguably, the field of survival analysis has predominantly focused on interpretability,
potentially at some cost of predictive accuracy. This is perhaps the reason why binary
classifiers from machine learning are commonly used in industrial applications where survival
methodology is applicable. However, while the binary classifiers can provide predictions
for one predetermined duration, one loses the interpretability and flexibility provided by
modeling the event probabilities as a function of time. Furthermore, in time-to-event data,
it is common that some individuals are not followed all the way to their event time, resulting
in censored times rather than event times. While binary classifiers typically ignore these
observations, one of the main objectives in survival analysis is to account for them. Hence,

(©2019 Havard Kvamme, @rnulf Borgan, and Ida Scheel.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided
at http://jmlr.org/papers/v20/18-424.html.



KVAMME, BORGAN, AND SCHEEL

in applications with a substantial amount of censoring, the use of survival models tends to
be advantageous.

In our work, we propose an approach for combining machine learning methodology with
survival models. We do this by extending the Cox proportional hazards model with neural
networks, and further remove the proportionality constraint of the Cox model. Building
on methodology from nested case-control studies (e.g., Langholz and Goldstein, 1996) we
are able to do this in a scalable manner. The resulting methods have the flexibility of
neural networks while modeling event times continuously. Building on the PyTorch frame-
work (Paszke et al., 2017), we provide a python package for our methodology, along with
all the simulations and data sets presented in this paper.!

The paper is organized as follows. Section 2 contains a summary of related work. In
Section 3, we review some basic concepts from survival analysis and introduce the Cox
proportional hazards model with our extensions. In Section 4 we discuss some evaluation
criteria of methods for time-to-event prediction. In Section 5, we conduct a simulation
study, verifying that the methods we propose behave as expected. In Section 6 we evaluate
our methods on five real-world data sets and compare their performances with existing
methodology. We conclude in Section 7.

2. Related Work

The extension of Cox regression with neural networks was first proposed by Faraggi and
Simon (1995), who replaced the linear predictor of the Cox regression model, cf. formula
(3) below, by a one hidden layer multilayer perceptron (MLP). It was, however, found that
the model generally failed to outperform regular Cox models (Xiang et al., 2000; Sargent,
2001). Katzman et al. (2018) revisited these models in the framework of deep learning
and showed that novel networks were able to outperform classical Cox models in terms
of the C-index (Harrell Jr et al., 1982). Our work distinguishes itself from this in the
following way: The method by Katzman et al. (2018), denoted DeepSurv, is constrained
by the proportionality assumption of the Cox model while we propose an extension of the
Cox model where proportionality is no longer a restriction. In this regard, we propose an
alternative loss function that scales well for both the proportional and the non-proportional
cases.

Similar works based on Cox regression include SurvivalNet (Yousefi et al., 2017), a frame-
work for fitting proportional Cox models with neural networks and Bayesian optimization
of the hyperparameters, and Zhu et al. (2016) and Zhu et al. (2017) which extended the Cox
methodology to images. Both Zhu et al. (2016) and Zhu et al. (2017) replace the MLP of
DeepSurv with a convolutional neural network and applied these methods to pathological
images of lung cancer and to whole slide histopathological images.

An alternative approach to time-to-event prediction is to discretize the duration and
compute the hazard or survival function on this predetermined time grid. Luck et al.
(2017) proposed methods similar to DeepSurv, but with an additional set of discrete out-
puts for survival predictions and computed an isotonic regression loss over this time grid.
Fotso (2018) parameterized a multi-task logistic regression with a neural net that directly
computes the survival probabilities on the time grid. Lee et al. (2018) proposed a method,

1. Implementations of methods and the data sets are available at https://github.com/havakv/pycox.



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

denoted DeepHit, that estimates the probability mass function with a neural net and com-
bine the log-likelihood with a ranking loss; see Appendix D for details. Furthermore, the
method has the added benefit of being applicable for competing risks.

The majority of the papers mentioned benchmark their methods against the random
survival forests (RSF) by Ishwaran et al. (2008). RSF computes a random forest using
the log-rank test as the splitting criterion. It computes the cumulative hazards of the leaf
nodes and averages them over the ensemble. Hence, RSF is a very flexible continuous-time
method that is not constrained by the proportionality assumption.

3. Methodology

In the following, we give a brief review of some concepts in survival analysis. For a more
in-depth introduction to the field, see, for example, Klein and Moeschberger (2003).

Our objective is to model the event distribution as a continuous function of time. So
with f(t) and F'(¢) denoting the probability density function and the cumulative distribution
function of an event time 7™, we want to model

ngw:Kﬂ@@:nw

As alternatives to F'(¢), it is common to study the survival function S(t) and the hazard
rate h(t). The survival function is defined as

S()=P(T* >t)=1-F(t),

and is commonly used for visualizing event probabilities over time. For specifying models,
however, it is rather common to use the hazard rate
f(t) .1
h(t) =% = lim —PE<T*<t+At|T*>1).
) =gy = fim, 7P = AT 2 1)
If we have the hazard rate, the survival function can be retrieved through the cumulative
hazard, H(t) = fot h(s)ds, by

S(t) = exp[—H(1). (1)

The survival function and the hazard rate therefore provide contrasting views of the same
quantities, and it may be useful to study both.

Working with real data, the true event times are typically not known for all individuals.
This can occur when the follow-up time for an individual is not long enough for the event to
happen, or an individual may leave the study before its termination. Instead of observing the
true event time 7%, we then observe a possibly right-censored event time 7' = min{T™*, C*},
where C* is the censoring time. In addition, we observe the indicator D = 1{T = T*}
labeling the observed event time 7" as an event or a censored observation. Now, denoting
individuals by i, with covariates x; and observed duration T;, the likelihood for censored
survival times is given by

L= Hf(Ti |xi)*S(T; | %) ™7 = Hh(Tz‘ | xi) 7 exp[—H (T; | x:)]. 2)

We will later refer to this as the full likelihood.



KVAMME, BORGAN, AND SCHEEL

3.1. Cox Regression

The Cox proportional hazards model (Cox, 1972) is one of the most used models in survival
analysis. It provides a semi-parametric specification of the hazard rate

h(t|x) = ho(t) explg(x)],  g(x) = B"x, 3)

where ho(t) is a non-parametric baseline hazard, and exp[g(x)] is the relative risk function.
Here, x is a covariate vector and 3 is a parameter vector. Note that the linear predictor
g(x) = BTx does not contain an intercept term (bias weight). This is because the intercept
would simply scale the baseline hazard, and therefore not contribute to the relative risk
function,

ho(t) explg(x) + b] = ho(t) exp|b] exp[g(x)] = ho(t) exp[g(x)]-

The Cox model in (3) is fitted in two steps. First, the parametric part is fitted by max-
imizing the Cox partial likelihood, which does not depend on the baseline hazard, then the
non-parametric baseline hazard is estimated based on the parametric results. For individual
i, let T; denote the possibly censored event time and R; denote the set of all individuals
at risk at time 7; (not censored and have not experienced the event before time 7;). Note
that R; includes individuals with event times at 7j, so ¢ is part of R;. The Cox partial
likelihood, with Breslow’s method for handling tied event times, is given by

=Tl (pwml) @

i ZjeR,: explg(x;)]

and the negative partial log-likelihood can then be used as a loss function

loss = Z D;log Z explg(x;) —g(x3)] | - (5)

JER:

Let B3 be the value of B that maximizes (4), or equivalently, minimizes (5). Then the
cumulative baseline hazard function can be estimated by the Breslow estimator

Hy(t) =Y AHo(T)) (6)
T,<t

) D:
AHYT) = =,
Y jer, explg(xy)]
where g(x) = BTX. If desired, the baseline hazard hg(t) can be estimated by smoothing the
increments, AHy(7;), of the Breslow estimate, but the cumulative baseline hazard typically
provides the information we are interested in.

3.2. Cox with SGD

The Cox partial likelihood is usually minimized using Newton-Raphson’s method. In our
work, we instead want to fit the Cox model with mini-batch stochastic gradient descent



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

(SGD), to better scale to large data sets. As the loss in (5) sums over risk sets R;, which
can be as large as the full data set, it cannot be computed in batches. Nevertheless, it is
possible to do batched iterations by subsampling the data set (to a batch) and restrict the
set R; to only contain individuals in the current batch. This scales well for proportional
methods such as DeepSurv (Katzman et al., 2018), but would be very computationally
expensive for our non-proportional extension presented in Section 3.4. Hence, we propose
an approximation of the loss that is easily batched.

Intuitively, we can approximate the risk set R; with a sufficiently large subset R;, and
weight the likelihood accordingly with weights w;,

D;
a explg(x:)]
b= 1:[ (wi Yjer, CXP[Q(XJ)]) ' v

The weights should ensure that the weighted sum over the subset R; in (7) is a reasonable
approximation of the full sum over R; in (4). By choosing a fixed sample size of the sampled
risk sets R;, we can now optimize the objective by batched gradient descent. The individual
i is always included in the sampled risk set R; to ensure that each of the products in (7) is
bounded above by 1. As the weights w; do not contribute to the gradients of the logarithm
of (7) (as can be seen by differentiating with respect to the model parameters), we can
simply drop them from the loss function. Also, in practice we do not compute the loss for
D; = 0 as these entries do not contribute to (7). Finally, if we average the loss to make it
independent of the data set size, we obtain

loss =% > log | D explg(x) —g(xi)] | (8)

D=1 jele

where n denotes the number of events in the data set. In our experiments in Sections 5
and 6, we find that it is often sufficient to sample only one individual j from the risk set,
which gives us the loss

loss = = > Tog (1-+ exply(x) — g(x0))), J € R} (9)
:D;=1

One benefit of (8) is that it is, in a sense, more interpretable than the negative partial log-
likelihood in (5). Due to the sample dependence in the mean partial log-likelihood (MPLL),
i.e., the expression in (5) divided by n, the magnitude of the MPLL is dependent on the size
of the risk sets. Hence, for a change of batch size, the mean partial log-likelihood changes.
This prohibits a comparison of losses across different batch sizes. Comparably, the loss
in (8) is not affected by the choice of batch size, as the size of R; is fixed. As a result,
we can derive the range of values we expect the loss to be in. Using (9) as an example,
we know that it is typically in the range (0, 0.693], as a trivial g(x) = const, gives a loss
=log(2) ~ 0.693, and the minimum is obtained by letting g(x;) — oo, g(x;) — —oco, which
results in a loss that tends towards 0.

Sampling of the risk sets in Cox’s partial likelihood is commonly done in epidemiology
and formalized through the nested case-control design, originally suggested by Thomas



KVAMME, BORGAN, AND SCHEEL

(1977). In (8), case refers to the i’s, while the controls are the j’s sampled from R;\{i}.
Goldstein and Langholz (1992) show that for the Cox partial likelihood, the sampled risk
sets produce consistent parameter estimators. While their results do not extend to non-
linear models, it is still an indication that the loss function in (8) is reasonable.

Our sampling strategy deviates from that of the nested case-control literature in two
ways. Firstly, we sample a new set of controls for every iteration, instead of keeping control
samples fixed. Secondly, we sample controls with replacement, as this requires less com-
putation than sampling without replacement. Note, however, that we typically sample a
single control, in which case it does not matter if we sample with or without replacement.

3.3. Non-Linear Cox

Having established the simple loss function in (8), which can be computed with SGD,
the generalization of the relative risk function exp[g(x)] is rather straightforward. In this
paper, we replace the linear predictor g(x) = B7x by a g(x) parameterized by a neural
network. While our proposed loss function is not a requirement for the adaptation of a
neural network (see, e.g., DeepSurv by Katzman et al., 2018), it really helps for the further
extensions in Section 3.4. Also, it has been found that batched iterations can improve
predictive performance (Keskar et al., 2016; Hoffer et al., 2017).

Our generalization of g(x) leaves the presented theory in Sections 3.1 and 3.2 essentially
unchanged, so we do not repeat the likelihoods and loss functions for this model.

We will later refer to the Cox proportional hazards model parameterized with a neu-
ral network as Cox-MLP. To differentiate between minimizing the negative partial log-
likelihood in (5), as done by DeepSurv, and our case-control approximation in (8), we will
denote the corresponding methods by Cox-MLP (DeepSurv) and Cox-MLP (CC), respec-
tively.

For the non-linear Cox models, the loss does not necessarily have a unique minimizer
for g(x). Therefore, we add a penalty to the loss function to encourage g(x) to not deviate
too far from zero

penalty =X > > [g(x;)]- (10)

D=1 jeR,
Here A is a tuning parameter, and note that 7 is included in R;.

3.4. Non-Proportional Cox-Time

The proportionality assumption of the Cox model can be rather restrictive, and parame-
terizing the relative risk function with a neural net does not affect this constraint. Ap-
proaches for circumventing this restriction are typically based on grouping the data based
on a categorical covariate and applying a stratified version of the Cox model (Klein and
Moeschberger, 2003, chap. 9). We propose a parametric approach that does not require
stratification. Continuing with the semi-parametric form of the Cox model, we now let the
relative risk function depend on time,

h(t|x) = ho(t) explg(t, x)]. (11)



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

In practice, we let g(t,x) handle the time as a regular covariate, which enables g(¢,x) to
model interactions between time and the other covariates. This is similar to the approach
taken in classical survival analysis, where the non-proportional effect of a covariate x may
be modeled by including time-dependent covariates like x - ¢ and z - log t.

The model (11) is no longer a proportional hazards model. However, it is still a relative
risk model with the same partial likelihood as previously, only now with an additional
covariate. Following the approach from Section 3.2, we have the loss function

1
loss = - Z log Z explg(Ti, x;) — (T3, %3)] | » (12)
:D;=1 JER:

and we include the penalty in (10), with g(Tj,x;) replacing g(x;). We will later refer to
models fitted by (12) as Coz-Time.

Note that the loss has the same T; for both x; and the x;’s. Consequently, if we had
used the full risk set R; instead of the subset R, as is the case for the loss in (5), the
loss would become very computationally expensive. In fact, for the full risk set, the time
complexity of the loss would be O(n - |R;|) = O(n?), where |R;| denotes the size of the risk
set. But for (12) we get O(n - |Ri|) = O(n), as [R;] is fixed and small. In the proportional
case, to compute the loss in (5) one only needs to compute g(x;) once (per iteration) for
each j, and reuse that value in all other risk sets. This ensures the linear time complexity
for the classical Cox models.

We can find the Breslow estimate for the cumulative baseline hazard Hy(t) using (6)
with §(x;) replaced by §(T;,x;). Note that we still need the non-parametric baseline, as
g(t,x) is restricted to model interactions between the time and the covariates. To see this,
consider g(t,x) = a(t,x) + b(t), and observe that b(t) cancels out in the loss.

3.5. Prediction

We can obtain predictions from the relative risk models by estimating the survival function
in (1), S(t|x) = exp[-H(t|x)]. For the proportional hazards models, the relative risk
function does not depend on time, enabling us to integrate only over the baseline hazard
and compute the relative risk separately,

H(t|%) = /0 ho(s) explg(x)] ds = Ho(t) explg(x)].

By first estimating Ho(t) on the training data with (6), we only need to compute exp[g(x)]
to obtain predictions. Computation of the estimate Hp(t) requires a single pass over the
whole training set, in addition to sorting the training set by time.

In the case of models with non-proportional hazards, such as models fitted by Cox-Time
in Section 3.4, predictions are much more computationally expensive. As the relative risk
is time-dependent, we now need to integrate over both the baseline hazard and ¢(¢,x),

H(t|x) = /0 ho(s) explg(s,x)] ds.



KVAMME, BORGAN, AND SCHEEL

In practice, we estimate the cumulative hazards by

H(t|x) = Y AHy(T) explg(Ti, %)),
T; <t

where AHy(T;) is an increment of the Breslow estimate and §(7}, ) is the estimate of g(T7, x)
obtained from the neural network. This is clearly rather computationally expensive as we
need to compute §(7;,x) for all distinct event times T; < ¢. Furthermore, for continuous-
time data, computation of the cumulative baseline hazard through the Breslow estimate,

D;

A (T

(13)

scales quadratically.

To alleviate the computational cost, one can compute the cumulative hazards over a
reduced number of distinct time points. Hence, Cox-Time is trained on continuous-time
data but produces discrete-time predictions, with the benefit of the discretization happening
after the network is fitted. In practice, we perform this discretization by computing the
baseline on a random subset of the training data and subsequently control the resolution of
the time grid through the sample size.

4. Evaluation Criteria

Metrics for evaluating the performance of methods for time-to-event prediction should ac-
count for the censored individuals. In the following, we describe the metrics used in the
experimental sections of this paper.

4.1. Concordance Index

In survival analysis, the concordance index, or C-index (Harrell Jr et al., 1982), is arguably
one of the most commonly applied discriminative evaluation metrics. This is likely a result
of its interpretability, as it has a close relationship to classification accuracy (Ishwaran
et al., 2008) and ROC AUC (Heagerty and Zheng, 2005). In short, the C-index estimates
the probability that, for a random pair of individuals, the predicted survival times of the
two individuals have the same ordering as their true survival times. See Ishwaran et al.
(2008) for a detailed description.

As the C-index only depends on the ordering of the predictions, it is very useful for
evaluating proportional hazards models. This is because the ordering of proportional haz-
ards models does not change over time, which enables us to use the relative risk function
instead of a metric for predicted survival time. It is, however, not obvious how the C-index
should be applied for non-proportional hazards models (Gerds et al., 2012; Ishwaran et al.,
2008). We will use a metric based on the time-dependent C-index by Antolini et al. (2005),
which estimates the probability that observations ¢ and j are concordant given that they
are comparable,

CY = P{S(T; | x:) < S(T;|x;) | T; < Ty, D; = 1}. (14)



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

However, to account for tied event times and survival estimates, we make the modifications
listed by Ishwaran et al. (2008, Section 5.1, step 3). This is to ensure that predictions
independent of x, S(¢|x) = S(t), yields C*¢ = 0.5 for unique event times. Note that for
proportional hazards models, our metric is equivalent to the regular C-index.

4.2. Brier Score

The Brier score (BS) for binary classification is a metric of both discrimination and cal-
ibration of a model’s estimates. In short, for N binary labels y; € {0,1} with probabil-
ities p; of y; = 1, the BS is the mean squared error of the probability estimates p;, i.e.,
BS = % > (i — ﬁi)2. To get binary outcomes from time-to-event data, we choose a fixed
time ¢ and label data according to whether or not an individual’s event time is shorter or
longer than t. Graf et al. (1999) generalize the Brier score to account for censoring by
weighting the scores by the inverse censoring distribution,

BS(t) = 1 i g(ﬂxi)? HT; <t,D; =1} " (1- S’(t‘xi))Q {T; >t}
G(T) a(t)

(15)
i=1

Here N is the number of observations, G’(t) is the Kaplan-Meier estimate of the censoring
survival function, P(C* > t), and it is assumed that the censoring times and survival times
are independent.

The BS can be extended from a single duration ¢ to an interval by computing the
integrated Brier score

1 t2

IBS — / BS(s) ds. (16)
2— 11 Jy

In practice, we approximate this integral by numerical integration, and we let the time span

be the duration of the test set. In our experiments we found that using 100 grid points were

sufficient to obtain stable scores.

4.3. Binomial Log-Likelihood

The mean binomial log-likelihood is a commonly used metric in binary classification that
measures both discrimination and calibration of the estimates of a method. Using the same
inverse censoring weighting as for the Brier score, we can apply this metric to censored
duration time data,

XN: log[L — S(¢x)] 1T <, D; = 1} log[S(¢|x:)] 1Ty > 1}

i G(T;) G(t)

BLL(t (17)

The binomial log-likelihood can also be integrated in the same manner as (16)

I
IBLL = / BLL(s) ds.
to — 11



KvAMME, BORGAN, AND SCHEEL

e

-8.6

® BN

0 10 20 30 40 50
Epochs

o
3

Figure 1: Box plots giving the mean partial log-likelihood (MPLL) of the test sets for
different training epochs. The colors show how many controls were sampled
during training (in addition to the case).

5. Simulations

To empirically investigate our proposed methodology, we conducted a series of simulations.
These experiments are by no means exhaustive but are rather meant to verify that the
methods behave as expected. In the following, we let classical Cox refer to a Cox regression
with g(x) = 87x obtained with the Lifelines python package (Davidson-Pilon et al., 2018).
For experimental details exempt from the main article, we refer the reader to Appendix C.3.

We first investigate the behavior of our proposed loss (8). In particular, we want to
examine the impact the number of sampled controls has on the fitted models, in addition
to how well the results from using our loss agree with those from using the Cox partial log-
likelihood, i.e., the loss (5). To this end, we simulated survival times from a proportional
hazards model

h(t]x) = ho(t) exp[g(x)],
g(x) = B"x, (18)

with constant baseline hazard hg(t) = 0.1, and 87 = [0.44,0.66,0.88]. The covariates were
sampled uniformly from [—1, 1]. We drew censoring times independent of the covariates
with constant hazard ¢(t) = %, and, in addition, we censored all individuals that were still
under observation at time 30. This resulted in approximately 30 % censored individuals.

We sampled 10,000 individuals for training and 10,000 for testing, and fitted our Cox
model by SGD as described in Section 3.2. This method will be referred to as Cox-SGD. Four
models were fitted by sampling 1, 2, 4, and 8 controls (in addition to the case). The whole
experiment was repeated 100 times, and the mean partial log-likelihood (MPLL) of the test
sets are visualized in Figure 1. The figure indicates that the number of sampled controls
does not affect the rate of convergence, but we note that the computational complexity
increases with the number of sampled controls.

10



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

N1 N2 Em4 B8

0.44 0.88

.

|
Lo
-

Diff. Coef

]
.

I
o
~

+
‘e

!
o
w

100 1000 10000 100 1000 10000 100 1000 10000
Size data set Size data set Size data set

Figure 2: Differences between Cox-SGD and Classical Cox parameter estimates for different
data set sizes. The numbers above the plots give the value of the true coefficient.
Each box plot is based on 100 observations. The legend above the plots states
the number of sampled controls for Cox-SGD.

The experiment was repeated with training sets of 1,000 individuals to verify that the
results were not simply due to the size of the training data. The same patterns were found
in this setting, so the figure is exempted from the paper.

Next, we compare the parameter estimates obtained from our proposed loss (Cox-SGD)
with the estimates obtained with classical Cox regression. For data sets of sizes 100, 1,000,
and 10,000, we fitted models to 100 sampled data sets. The differences between the Cox-
SGD parameter estimates and the classical Cox estimates are displayed in Figure 2, where
the legend above the plots gives the number of controls sampled for the Cox-SGD method.
For the data sets of size 100, we observe that the Cox-SGD estimates seem to be slightly
smaller than the Cox estimates, and this difference is larger for fewer sampled controls.
However, as the data sets increase in size, the estimates for the two methods agree well.

Finally, we want to compare the likelihoods obtained by the two methods. As the mean
partial log-likelihood depends on data set size, it is really not comparable across data sets.
We will therefore instead use the full likelihood (2), which also depends on the baseline
hazard, to compare the methods. Note that the partial likelihood may be interpreted as a
profile likelihood, so the full likelihood and the partial likelihood are closely related (see, e.g.,
Klein and Moeschberger, 2003, p. 258). We obtain cumulative baseline hazard estimates
by (6), and baseline hazard estimates by numerical differentiation of the cumulative baseline
hazard estimates. We report the mean log-likelihood (MLL) of (2) to compare results for
different data set sizes. In Figure 3, we show the difference in the MLL between the Cox-
SGD method and the classical method for Cox regression (for each sampled data set). We
used the training MLL as we are here only interested in the losses’ abilities to optimize the
objective, and not the generalization to a test set. From the figure, we observe that, for
smaller data sets, more sampled controls in Cox-SGD seems to give likelihood estimates
closer to those of a classical Cox regression. As the data sets increase in size, the MLL of
the Cox-SGD seems to converge to that of the classical Cox, regardless of control sample

11



KvAMME, BORGAN, AND SCHEEL

0.000
-0.002

-0.004

Diff. MLL

—-0.006

—0.008

® BN

~0.010
b

100 1000 10000
Size data set

Figure 3: Differences in mean log-likelihood between Cox-SGD and classical Cox using (2).
The figure gives results for different data set sizes, and the legend gives the number
of sampled controls. Each box plot is based on 100 observations.

size. The MLL’s of the classical Cox regression is approximately -2.2, meaning that even
for the smallest data sets the differences in MLL for 1 sampled control is around 0.1 %.
Hence, it seems that our loss (8) approximates the negative partial log-likelihood rather
well. Furthermore, while a higher number of sampled controls can give lower training error,
the effect of the number of sampled controls decreases with the size of the data sets.

In the further experiments, we will for simplicity only use one sampled control, as
this was found sufficient. Furthermore, in Appendix C we have included simulations for
the methods using neural networks for non-linear and non-proportional models, to verify
that our proposed methods behave as expected. In summary, these simulations verify that
for observations drawn from a proportional hazards model with a non-linear relative risk
function, Cox models parameterized by neural networks provide better estimates of the
partial log-likelihood than classical Cox models. Further, by drawing observations from
a non-proportional relative risk model, the simulations verify that our Cox-Time method
(Section 3.4) is able to obtain better estimates of the survival functions than methods which
assume proportional hazards.

6. Experiments

In the following, we will evaluate our proposed methods on real data sets and compare their
performance to existing methods from the literature. In total, we use five data sets. One
large data set for a more in-depth analysis (see Section 6.2), and four smaller data sets
commonly used in the survival analysis literature.

6.1. Four Common Survival Data Sets

We base this experimental section on the data sets provided by Katzman et al. (2018), as
they are made available through the DeepSurv python package, and need no further prepro-

12



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

Data set Size Covariates Unique Durations Prop. Censored
SUPPORT 8,873 14 1,714 0.32
METABRIC 1,904 9 1,686 0.42
Rot. & GBSG 2,232 7 1,230 0.43
FLCHAIN 6,524 8 2,715 0.70

Table 1: Summary of the four data sets used in the experiments in Section 6.1.

cessing. The data sets include the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT), the Molecular Taxonomy of Breast Cancer Inter-
national Consortium (METABRIC), and the Rotterdam tumor bank and German Breast
Cancer Study Group (Rot. & GBSG). Katzman et al. (2018) also provide the Worcester
Heart Attack Study (WHAS) data set. However, their version of the data set is actually a
case-control data set, meaning it contains multiple replications of some individuals, some-
thing the authors seem to have overlooked. We replace it with the Assay Of Serum Free
Light Chain (FLCHAIN) made available in the survival packages of R (Therneau, 2015).
For FLCHAIN, we remove individuals with missing values. Further, we remove the “chap-
ter” covariate, which gives the cause of death. Table 1 provides a summary of the data sets.
For a more detailed description, we refer to the original sources (Therneau, 2015; Katzman
et al., 2018).

6.1.1. METHODS AND HYPERPARAMETER TUNING

In Sections 3.3 and 3.4 we presented two new survival methods based on case-control sam-
pling and neural networks: a proportional Cox method and a non-proportional Cox method,
which we will refer to as Coz-MLP (CC) and Coz-Time respectively. We will compare our
methods to a classical linear Cox regression referred to as Classical Cox (Linear), DeepHit
(Lee et al., 2018), and Random Survival Forests (RSF) (Ishwaran et al., 2008). We will also
compare to a proportional Cox method similar to DeepSurv (Katzman et al., 2018), but
our version performs batched SGD by computing the negative partial log-likelihood in (5)
on a subset of the data set. Furthermore, we choose not to restrict the network structure
and optimization scheme to that of Katzman et al. (2018). Hence, this method is identical
to our proportional Cox method in Section 3.3, except that it computes the negative partial
log-likelihood of a batch, while we use case-control sampling in the loss function. We will
refer to these two methods as Cox-MLP (DeepSurv) and Cox-MLP (CC) respectively. We
do not compare with Luck et al. (2017) as their method is another proportional hazard
method and is therefore restricted in all the same ways as our other proportional methods.
As we will show in Section 6.1.2, the proportional hazards assumption is very restrictive, and
methods based on this assumption are therefore not able to compete with other methods
such as DeepHit, RSF, and Cox-Time.

For the neural networks, we standardize the numerical covariates and encode the cat-
egorical covariates by entity embeddings (Guo and Berkhahn, 2016) half the size of the
number of categories. For the Classical Cox (Linear) regression, we one-hot encoded the
categorical covariates (dummy variables), and in RSF we simply passed the covariates with-
out any transformations. The networks are standard multi-layer perceptrons with the same

13



KVAMME, BORGAN, AND SCHEEL

Method SUPPORT METABRIC Rot. & GBSG FLCHAIN
Classical Cox (Linear) 0.598 0.628 0.666 0.790
Cox-MLP (DeepSurv) 0.611 0.636 0.674 0.790
Cox-MLP (CC) 0.613 0.643 0.669 0.793
Cox-Time 0.629 0.662 0.677 0.790
DeepHit 0.642 0.675 0.670 0.792
RSF (Mortality) 0.628 0.649 0.667 0.784
RSF (Ctd) 0.634 0.652 0.669 0.786

Table 2: Concordance (C'9) for the experiments in Section 6.1.

number of nodes in every layer, ReLU activations, and batch normalization between layers.
We used dropout, normalized decoupled weight decay (Loshchilov and Hutter, 2019), and
early stopping for regularization. SGD was performed by AdamWR (Loshchilov and Hut-
ter, 2019) with an initial cycle length of one epoch, and we double the cycle length after
each cycle. Learning rates were found using the methods proposed by Smith (2017).

As the four data sets are somewhat small, we scored our fitted models using 5-fold cross-
validation, where the hyperparameter search was performed individually for each fold. For
all the neural networks, we performed a random hyperparameter search over 300 parameter
configurations and chose the model with the best score on a held-out validation set. We
scored the proportional Cox methods by the partial log-likelihood, and for the Cox-Time
method, we used the loss (12). Model hyperparameter tuning for DeepHit and RSF was
performed with the time-dependent concordance index (Antolini et al., 2005). However, we
also include an RSF tuned in the manner proposed by the authors, i.e., by computing the
concordance of the mortality (Ishwaran et al., 2008, Section 4.1). The two versions of RSF
are in the following denoted RSF (C*d) and RSF (Mortality), respectively. A list of the
hyperparameter search spaces can be found in Appendix A.1.

6.1.2. RESULTS

We compare the methods using the metrics presented in Section 4, i.e., the time-dependent
concordance, the integrated Brier score, and the integrated binomial log-likelihood. While
the concordance solely evaluates a method’s discriminative performance, the Brier score
and binomial log-likelihood also evaluate the calibration of the survival estimates.

Table 2 shows the time-dependent concordance, or C*9, averaged over the five cross-
validation folds. As expected, the methods that assume proportional hazards, in general,
perform worse than the less restrictive methods, and Cox-MLP (DeepSurv) and Cox-MLP
(CC) are very close to each other. We see that RSF (C') has better concordance than
RSF (Mortality), which is expected as RSF (C'?) uses the same metric for hyperparameter
tuning as for evaluation. Cox-Time seems to do slightly better than the RSF methods,
which is impressive as we have not used concordance for hyperparameter tuning. DeepHit
seems to have the best discriminative performance overall, but, as we will see next, this
comes at the cost of poorly calibrated survival estimates.

14



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

Method SUPPORT METABRIC Rot. & GBSG FLCHAIN
Classical Cox (Linear) 0.217 0.183 0.180 0.096
Cox-MLP (DeepSurv) 0.214 0.176 0.170 0.092
Cox-MLP (CC) 0.213 0.174 0.171 0.093
Cox-Time 0.212 0.172 0.169 0.102
DeepHit 0.223 0.184 0.178 0.120
RSF (Mortality) 0.215 0.175 0.171 0.093
RSF (Ctd) 0.212 0.176 0.171 0.093

Table 3: Integrated Brier score weighted by estimates of the censoring distribution for the
experiments in Section 6.1.

Method SUPPORT METABRIC Rot. & GBSG FLCHAIN
Classical Cox (Linear) -0.623 -0.538 -0.529 -0.322
Cox-MLP (DeepSurv) -0.619 -0.532 -0.514 -0.309
Cox-MLP (CC) -0.615 -0.515 -0.509 -0.314
Cox-Time -0.613 -0.511 -0.502 -0.432
DeepHit -0.637 -0.539 -0.524 -0.487
RSF (Mortality) -0.619 -0.515 -0.507 -0.311
RSF () -0.610 -0.517 -0.507 -0.311

Table 4: Integrated binomial log-likelihood weighted by estimates of the censoring distri-
bution for the experiments in Section 6.1.

Tables 3 and 4 show the integrated Brier score and integrated binomial log-likelihood,
both weighted with Kaplan-Meier estimates of the censoring distribution. Here, for both
metrics, closer to zero is better. We find that both metrics yield very similar results, as
the orderings of the methods are almost identical. First, we see that Cox-Time seems to
generally perform the best, but it struggles with the FLCHAIN data set. However, we
note that, for FLCHAIN, Cox-MLP (DeepSurv) has the best integrated Brier score and
binomial log-likelihood while Cox-MLP (CC) has the best concordance. This indicates that
the proportionality assumption is quite reasonable for this data set.

Again, we find that there is very little difference between Cox-MLP (DeepSurv) and
Cox-MLP (CC), which is as expected. The RSF methods generally perform well. Note
that the two RSF methods perform equally well here, even though RSF (C*9) had the best
concordance. Classical Cox (Linear) does rather poorly, which was expected as it has very
restrictive model assumptions.

Even though DeepHit, in general, had the best concordance, it has the worst integrated
Brier score and binomial log-likelihood in three out of the four data sets. The loss function
in DeepHit, given by formula (D.2) in Appendix D, is a convex combination of the negative
log-likelihood and a ranking loss, determined by a parameter . For = 1 we obtain
only the negative log-likelihood and for @« = 0 we obtain only the ranking loss. As we

15



KVAMME, BORGAN, AND SCHEEL

Data set Size  Churned Censored Prop. Censor Unique users
Train 1,786,333 1,279,358 506,975 0.28 1,582,202
Test 661,748 473489 188,259 0.28 586,001
Validation 198,665 142,104 56,561 0.28 175,801

Table 5: Summary of the KKBox churn data set.

do hyperparameter tuning based on the concordance, we see that a tends towards smaller
values, which results in excellent discriminative performance at the cost of poorly calibrated
survival estimates.

6.2. KKBox Churn Case Study

Thus far we have compared competing survival methodologies on fairly small data sets.
We now perform a case study on a much larger data set, as this is more interesting in the
context of neural networks.

The WSDM KKBox’s churn prediction challenge was proposed in preparation for the
11th ACM International Conference on Web Search and Data Mining.? The competition
was hosted by Kaggle in 2017, with the goal of predicting customer churn on a data set
donated by KKBox, the leading music streaming service in Asia. The available data provide
us the opportunity to create a survival data set with event times and censoring indicators.
We stick with the churn definition given by KKBox, were a customer is considered churned
if he or she fails to resubscribe within 30 days after the previous subscription expired. Note,
however, that our use of the data is not comparable to the Kaggle competition, as we work
with survival times from the start of a subscription period, while they consider durations
from a fixed calendar date.

KKBox provides multiple data sources, but as we are primarily interested in evaluating
our methods, we spend less time on feature engineering and only use a subset of covariates
with general customer information (e.g., city, age, price of subscription). Furthermore, a
customer that has previously churned and later resubscribed, is treated as a new customer
with some covariate information describing the previous subscription history. This gives us
a total of 15 covariates. We split the data into a training, a testing, and a validation set, and
some information about these subsets are listed in Table 5. A more in-depth description of
the KKBox data set can be found in Appendix B.1.

6.2.1. METHODS AND HYPERPARAMETER TUNING

We use the same methods as in Section 6.1. However, as this data set is very large, we
replace the classical Cox regression with our Cox-SGD (Linear) method from Section 3.2.
We standardize and encode the covariates in the same manner as for the smaller data
sets. The networks and training are also the same as earlier, but we multiply the learning
rate by 0.8 at the start of every cycle, as we found this to give more stable training. The
KKBox data set is quite large, so we are not able to explore as large a hyperparameter
space as in the previous experiments. Hence, we do not include weight decay, and perform

2. https://www.kaggle.com/c/kkbox-churn-prediction-challenge

16



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

Method Layers Nodes Dropout « o
Cox-MLP (DeepSurv) 6 256 0.1 - -
Cox-MLP (CC) 6 128 0 - -
Cox-Time 8 256 0 - -
DeepHit 6 512 0.1 0.001 0.5

Table 6: KKBox model architectures. « and o only applies the DeepHit (see Appendix D).

Method ctd 1BS IBLL
Cox-SGD (Linear) 0.816 0.127  -0.406
Cox-MLP (DeepSurv) 0.841  0.111  -0.349
Cox-MLP (CC) 0.844 0.119 -0.379
Cox-Time 0.861 0.107 -0.334
DeepHit 0.888 0.147 -0.489
RSF (Mortality) 0.855 0.112  -0.352
RSF (C'd) 0.870 0.111  -0.352

Table 7: Evaluation metrics for the KKBox data.

a grid search over a small number of suitable parameters. The hyperparameter search is
described in detail in Appendix A.2.

The best configurations are given in Table 6. For RSF, the hyperparameter search based
on C* yielded 8 covariates sampled for each split and a minimum of 50 observations in each
leaf node. With concordance of mortality as the validation criterion, the best fitted model
used 2 covariates for splitting, and a minimum leaf node size of 10. Furthermore, we found
that 500 trees were sufficient, as there was little improvement compared to 250 trees.

6.2.2. RESULTS

For evaluation, we fitted each of the methods five times and computed the time-dependent
concordance index (C*4), the integrated Brier score (IBS), and the integrated binomial log-
likelihood (IBLL) of the fitted models. The median scores are presented in Table 7. We
use the median because the two proportional Cox-MLP methods yielded rather unstable
results, where some of the fitted models performed very badly.

From the table, we see that DeepHit continues to outperform the other methods in terms
of concordance while having the worst performance in terms of IBS and IBLL. Furthermore,
Cox-Time has the best IBS and IBLL, while still providing a decent concordance. RSF
continues to do well across all metrics, while again, the tuning based on C* seems to yield
better results than tuning base on the concordance of the mortality. Cox-SGD (Linear)
does rather poorly, as it is very restricted, and serves more as a baseline in this context.
The Cox-MLP methods seem to again perform reasonably close to each other, at least when
taking into account that we found both methods to yield rather unstable results. We are

17



KvAMME, BORGAN, AND SCHEEL

—— Cox-SGD (Linear) -+ Cox-MLP (DeepSurv) === Cox-MLP (CC) === Cox-Time DeepHit = RSF (Mortality) —-= RSF (Ctd)]

0.200

0.175

0.150

0.125

ier score

0.100

Bri

0.075

0.050

0.025

0.000
0 100 200 300 400 500 600 700 800
Time

Figure 4: Brier score on KKBox data set. The methods are the same as in Table 7.

not sure why this was the case, but note that the combination of the flexible neural net and
the proportionality constraint might be problematic for large data sets.

In Figure 4, we display the Brier scores used to obtain the IBS. Again, we see that
DeepHit does poorly for all durations. The instability of the Cox-MLP (CC) is also very
apparent for shorter durations. Cox-Time is clearly doing very well for all durations, but
interestingly, we observe the Cox-MLP (DeepSurv) provides the best fitted model for larger
durations. We could make a corresponding figure for the binomial log-likelihood, but as it
is very similar to the Brier score plot, and provide us with no new insights, we have not
included it.

6.2.3. SURVIVAL CURVES

One of the benefits survival models have over binary classifiers is their ability to produce
survival curves. In Figure B.1 in Appendix B, we show nine examples of estimated survival
curves from Cox-Time on the test data. The curves nicely illustrate the extent of detail the
method has learned.

To obtain a more general view of the predictions, we cluster the estimated survival
curves of the test set. For an equidistant grid 0 = 790 < 71 < -+ < 7, the survival
curve of individual i is represented by a vector [S(70|%:), S(71|Xi), ..., 5 (7m | xi)], and by
considering these as feature vectors, we apply K-means clustering to the test set with 10
clusters. In Figure 5, we display the cluster centers and the proportions of the test set
assigned to each of the clusters. This is a reasonable approach for segmenting customers
based on their churning behavior. A natural next step would be to further investigate the
clusters, but as we consider this somewhat outside the scope of this paper, we only make

18



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

1.0

— 19%
- 18%
—-13%
»»»»»» 12%
— 10%
— 1%
— 7%
...... 7%
— 4%
-— 3%

0.8

0.6

S(t)

0.4

0.2

0.0

0 100 200 300 400 500 600 700 800
Time

Figure 5: Cluster centers of survival curves from KKBox test data. The centers were gener-
ated by K-means clustering on survival curves from Cox-Time. The legend gives
the proportion of test data assigned to each cluster (rounded to nearest integer).

a few observations. First, we see that 19 % of the customers are assigned to a cluster that
does not provide much detailed information about their behavior, but instead provides a
survival curve with a rather constant slope. In sharp contrast, the second largest group
(18 %) is at high risk of churning immediately. Furthermore, we observe that many of the
curves seem to have higher hazards at the end of each month (drops in the survival curves
around 30, 60, 90 days), and we hypothesize that this is a result of customers paying for a
full month at a time.

The smallest cluster, constituting only 3 % of the test data, has a sharp drop around day
400. Investigating the covariates of the assigned customers reveals that most of them had
prepaid for a 411 days long subscription. However, the large drop after 400 days indicates
that only around 25 % of them were interested in continuing their subscription.

Our choice of 10 clusters is mainly motivated by how many curves that can be visualized
in a single plot, without being too crowded. Further increasing the number of clusters would
likely reveal more detailed behavior.

7. Discussion

In this paper, we propose extensions of the Cox proportional hazards model. By parame-
terizing the relative risk function of a Cox model with neural networks, we can model rich
relationships between the covariates and event times. Furthermore, we allow the networks
to model interactions between the covariates and time, resulting in models that are no longer
constrained by the proportionality assumption of the Cox model. Building on methods for
nested case-control studies, we propose a loss function that can be computed in batches,
enabling the models to scale to large data sets. We verify through simulation studies that
fitting a Cox model using our proposed loss function gives results close to those obtained
using the full Cox partial likelihood.

19



KVAMME, BORGAN, AND SCHEEL

We compare our suggested methodology with classical Cox regression, random survival
forests (RSF), DeepHit, and DeepSurv on 5 real-world data sets, and find that our proposed
Cox-Time method performs very well, and has the best overall performance in terms of
integrated Brier score (IBS) and integrated binomial log-likelihood (IBLL). DeepHit has, in
general, the best discriminative performance, but this comes at the cost of poorly calibrated
survival estimates.

Finally, we show how estimated survival curves (event probabilities as functions of time),
can be used as a descriptive tool to better understand event-time data sets. This is illus-
trated by an example where we cluster the survival estimates of a customer churn data set,
and show that this customer segmentation provides a useful view of the churning process.

Interesting expansions of our methodology include the extension to handle multiple
competing events, time-dependent covariates, dynamic predictions, and recurrent events.
Furthermore, it would be of interest to explore other data sources that require more ad-
vanced network structures such as convolutions and recurrent neural networks. Finally, less
computationally expensive alternatives for creating survival estimates for the Cox-Time
method should be explored.

Acknowledgments

This work was supported by The Norwegian Research Council 237718 through the Big
Insight Center for research-driven innovation.

Appendix A. Details on Hyperparameter Tuning

In the following, we provide further details about the experiments conducted in Section 6.
Here we list hyperparameter configurations and details about the model fitting procedures.

A.1. Four Common Survival Data Sets Tuning

Table A.1 gives the hyperparameter search space used for Rot. & GBSG, SUPPORT,
METABRIC, and FLCHAIN. The square brackets describe continuous variables. In the ex-
periments in Section 6.1, we sample 300 random parameter configurations for each method,
for each fold of each data set. In the table, “a” and “o” are given in (D.2) in Appendix D,
“Num. durations” are the number of discrete durations (equidistant) used in DeepHit, “\”
is the penalty in (10), “Log duration” refers to a log-transform of the durations passed to
Cox-Time, “Ridge” is a ridge penalty used in classical Cox regression, “Split covariates”
and “Size leaf” are the number of covariates used for splitting, and the minimum node size
of RSF.

A.2. KKBox Tuning

Hyperparameters in the KKBox study were found by a grid search over the relevant pa-
rameters in Table A.2. The table consists of three sections, where the top represents the
networks, the bottom represents RSF, and the middle contains network parameters that

131}

were found on a smaller network with two layers and 128 nodes. “a” and “o” controls the

20



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

Hyperparameter Values
Layers {1, 2, 4}
Nodes per layer {64, 128, 256, 512}
Dropout [0, 0.7]
Weigh decay {0.4, 0.2, 0.1, 0.05, 0.02, 0.01, 0}
Batch size {64, 128, 256, 512, 1024}

a (DeepHit)

o (DeepHit)

Num. durations (DeepHit)

A (Cox-Time and Cox-MLP (CC))
Log durations (Cox-Time)

Ridge (Cox (Linear))

Split covariates (RSF)

Size leaf (RSF)

0, 1)
{0.1,0.25, 0.5, 1, 2.5, 5, 10, 100}
{50, 100, 200, 400}

{0.1, 0.01, 0.001, 0}

{True, False}

{1000, 100, 10, 1, 0.1, 0.01, 1073, 10~*, 107°}

{27 47 67 8}
{2, 8, 32, 64, 128}

Table A.1: Hyperparameter search space for experiments on Rot. & GBSG, SUPPORT,

METABRIC, and FLCHAIN.

Hyperparameter Values
Layers {4, 6, 8}
Nodes per layer {128, 256, 512}
Dropout {0, 0.1, 0.5}
a(*) {0, 0.001, 0.1, 0.2, 0.5, 0.8, 0.9, 0.99, 0.999, 1}
a(*) {0.01, 0.1, 0.25, 0.5, 1, 10, 100}

Log durations(*)

{True, False}

Split covariates
Size leaf

{27 47 6’ 8}
{8, 10, 20, 50}

Table A.2: KKBox hyperparameter configurations. (*) denotes parameters found with a

two layer network with 128 nodes.

21



KvAMME, BORGAN, AND SCHEEL

1.0

0.8

0.6

S(t)

0.4

0.2

0.0

0 50 100 150 200 250 300 350
Time (days)

Figure B.1: Survival curves from the case study in Section 6.2, which models the times at
which customers of a streaming service churn. Each curve gives the estimated
probabilities for a customer not having churned (probabilities of still being a
customer at any given time). The time axis shows the number of days since
first subscription. The curves are generated by the Cox-Time method from
Section 3.4.

loss function of DeepHit, and we assumed it should generalize well across network struc-
tures. The same goes for whether or not we should log-transform the durations passed to
Cox-Time. Hence, to reduce the hyperparameter search, we found suitable values with a
smaller network.

For the proposed Cox-MLP (CC) and Cox-Time, we used a fixed penalty A = 0.001
n (10). All networks were trained with batch size of 1028, and the best performing archi-
tectures can be found in Table 6.

Appendix B. Details from KKBox Churn Case Study

In the following, we provide some details of the KKBox case study that were exempt from
the main article.

In Figure B.1, we show an example of nine survival curves estimated by Cox-Time on
the KKBox data set. Each line represents an individual from the test set. It is clear that
the Cox-Time method has learned to represent a variety of survival curves.

B.1. KKBox Data Set

KKBox provides data consisting of general customer information (city, age, gender, initial
registration), transaction logs listing how customers manage their subscription plans, and
user logs containing some aggregate information of the customers’ usage of the streaming

22



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

service. KKBox defines a customer as churned if he or she has failed to resubscribe to their
service more than 30 days after their last subscription expired.

Through the transaction information, we can create a data set with survival times and
censoring indicators. We keep KKBox’s original churn definition of 30 days absence and
calculate the survival time from the date of the first subscription or the earliest record of the
customer in the transaction logs. Customers that have previously churned but resubscribed,
are treated as new customers with some covariate information describing their previous
subscription history.

All covariates are calculated at the time of subscription of each customer, and they do not
change with time. This is a simplification, as the covariates of a customer are typically not
stationary. However, as our objective is to evaluate the proposed methodology, we refrain
from doing extensive feature engineering. In this regard, we further disregard the user logs,
as we get a reasonable set of covariates from the customer and transaction information.

The data sets are summarized in Table 5. As some of the customers have churned
multiple times, and are therefore included multiple times, the table also includes the number
of unique customers in the respective data sets.

We have a total of 15 covariates, where 7 are numeric and 8 are categorical. The
numerical covariates give the time between subscriptions (for customers that have previously
churned), number of previous churns, time since first registration, number of days until
the current subscription expires, listed price of the current subscription, the amount paid
for the subscription, and age. All numerical covariates, except the number of previous
churns, were log-transformed. The categorical covariates are gender (3 categories), city (22
categories), how the customer registered (6 categories), and 5 indicator variables specifying if
an individual has previously churned, if the subscription is canceled, if the age is unrealistic,
if the subscription is automatically renewed, and if we do not know when the customer first
registered.

Appendix C. Additional Simulations

In the following, we provide some additional simulations used to further investigate the
proposed methods, and in Appendix C.3 we explain how the simulated data were generated.
We again stress that the aim of the simulations is only to verify the expected behavior of
our methods, and should not be interpreted as a general evaluation of them.

C.1. Non-Linear Hazards

Continuing from the simulations in Section 5, we do a simple study of the increased flexibility
provided by replacing the linear predictor in a Cox regression by a neural network. To
evaluate this, we extend the simulations in Section 5 by replacing g(x) = BTx with the
non-linear function

2
g(x) = BTx + g(r% + 23 + 2129 + 2123 + T213), (C.1)
where z; denotes element 7 of x. The simulations are otherwise unchanged from the linear
case in Section 5. We sample 10,000 training samples, 10,000 test samples, and 1,000 samples

used for validation (validation data is used for early stopping), and fit the Cox-SGD and

23



KvAMME, BORGAN, AND SCHEEL

-4
® Cox-SGD -

® Cox-MLP "’

Estimated PLL

-11 -10 -9 -8 =7 -6 -5 -4
True PLL

Figure C.1: Partial log-likelihood estimates of Cox-SGD and Cox-MLP plotted against the
true partial log-likelihoods, for 2,000 samples of the test set.

classical Cox regression from Section 5. Additionally, we fit the Cox model in Section 3.3,
where g(x) is parameterized by a one-hidden layer MLP (multilayer perceptron) with 64
hidden nodes and ReLU activations. This model will be referred to as Coz-MLP (we drop
(CC) as we do not consider DeepSurv here).

In Figure C.1 we have, for 2,000 individuals of the test set, plotted the individual partial
log-likelihood estimates of Cox-SGD and Cox-MLP against the true individual partial log-
likelihoods. That is, for each ¢ with D; = 1, we plot

li=—log [ > explg(x;) — §(xi)]
JER;

against the true ¢;. The closer a method estimates g(x) to the true predictor in (C.1), the
closer the scatter plot should be to the identity function (straight line with slope 1 through
the origin). As expected, we see that Cox-MLP produces likelihood estimates very close to
the true likelihoods, while Cox-SGD struggles to represent this non-linear function.

C.2. Non-Proportional Hazards

In our final simulations, we investigate the effect of removing the proportionality constraint
in the Cox models. Building on the previous simulations, we add a time dependent term
to the risk function. The hazard function is now given by h(t|x) = hgexplg(t,x)], with
ho = 0.02 and

9(t,x) = a(x) + b(x) t,
a(x) = gpn(x) + sign(z3),
(x) =10.2 (zo + 1) + 0.5 xpx1],

24



TIME-TO-EVENT PREDICTION WITH NEURAL NETWORKS AND COX REGRESSION

® Cox-MLP -
-4 @ Cox-Time o ~ L

Estimated PLL

-12 -10 -8 -6 -4
True PLL.
Figure C.2: Partial log-likelihood estimates of Cox-MLP and Cox-Time plotted against the
true partial log-likelihoods, for 2,000 samples of the test set.

were gpp(x) is the function in (C.1). The simulations are otherwise unchanged from the
previous experiments. We require the term b(x) to be non-negative to ensure that the haz-
ards increase with time. Furthermore, we have added sign(z3) to a(x) as this is essentially
equivalent to having two different baselines, hg = hq exp[sign(z3)] € {0.0074,0.054}. Both
of these choices are motivated by our attempt to produce reasonable looking survival curves.

We sample 10,000 training samples, 10,000 test samples, and 2,000 samples for valida-
tion, and fit a Cox-MLP model and a Cox-Time model. Both Cox-MLP and Cox-Time
parameterize