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Abstract 

In this paper, we discuss the design of an Expert System (ES) that supports decision making in a Local Plannmg System (LPS) 

environment. The LPS provides the hnk between a high level factory planning system (rough cut capacity planning and material 

coordination) and the actual execution of Jobs on the shopfloor. by specifymg a detailed workplan. It is divided m two 

hterarchtcal layers: planmng and scheduling. At each level, a set of different algorithms and heuristics is available to anticipate 

different situations. 

The Expert System (which is a part of the LPS) supports decision making at each of the two LPS layers by evaluatmg the 

planning and scheduling conditions and, based on this evaluation, advising the use of a specific algorithm, and evaluatmg the 

results of using the proposed algorithm. 
The Expert System is rule-based while knowledge (structure) and data are separated (which makes the ES more flexible m 

terms of fine-tuning and adding new knowledge). Knowledge is furthermore separated in algorithmic knowledge and company 

specific knowledge. In this paper we discuss backgrounds of the expert system in more detail. An evaluation of the Expert system 

is also presented 

1. Introduction 

Production control has become increasingly 
complex during the last few decades. On the 
one hand market requirements tend towards 
more diversity, a higher quality and reliable 
due dates. On the other hand the rapid ad- 
vancements in information technology have 
increased the possibilities on the shopfloor, 
thereby leading to more complex planning and 
control problems. 

In this paper we concentrate on discrete 
parts manufacturing environments. It is com- 
monly accepted that the complexity of the 
overall planning problems should lead to a 
hierarchical planning and control framework, 
where demand management and long term 
capacity planning are high level decisions, 
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materials coordination is at the medium level, 
while detailed shopfloor planning and control 
can be found at the lower levels. For the high 
and medium level decisions we assume that 
a Global Planning System (GPS) has been 
implemented. In practice we often may find an 
MRP II system (Manufacturing Resource 
Planning system) at this place. 

However, it is well known that Global 
Planning Systems such as e.g. an MRP II sys- 
tem are not adequate in translating a planned 
set of orders into detailed work instructions at 
the shopfloor level. To this end, a Local Plann- 
ing System (LPS) has recently been developed 
at the University of Twente (cf. Refs [l-3]). 
Hence, this LPS acts as shopfloor planning 
and control system and as such bridges the gap 
between the Global Planning System and the 
actual execution of jobs on the shopfloor. 

To highlight the functioning of the LPS 
in some more detail, we assume (reflecting 
common industrial practice) that the factory 
shopfloor can be decomposed into relatively 
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autonomous groups of machines (this may be 
a functional arrangement but also a cell in 
a cellular manufacturing environment). Now, 
the Global Planning System organizes the 
materials flow between these machine groups 
(to be called Factory Systems (FS) in the se- 
quence). Subsequently, the Local Planning Sys- 
tem attempts to match this flow with the critical 
resources within each FS, such as tools, fixtures, 
machine capacities and operators. Hence, the FS 
is the local planning environment for the LPS. 

In performing these tasks, a large number of 
decisions have to be made while facing several, 
sometimes conflicting, objectives. To support 
this decision making an expert system may be 
helpful, in particular to evaluate specific work- 
ing conditions, to suggest planning and sched- 
uling algorithms and to judge the final results. 
The objective of this paper is to describe what 
such an expert system should look like, and to 
demonstrate that it can support an operator to 
substantially improve the performance of the 
LPS. In other words: it is demonstrated how 
we can formalize knowledge about planning 
and scheduling and how we can use this knowl- 
edge operationally. 

Other research on expert systems in the type 
of production situations discussed here can be 
found in Refs. [4-73. For general discussions 
on expert systems the reader is referred to Refs. 
[S-12]. 

In the remainder of this article we will 
focus on the expert system. First the expert 
system concept in general will be outlined and 
some properties of the concept of knowledge 
are discussed. Next the architecture, its tasks 
and functions are described for the particular 
LPS situation. The LPS-Expert system combi- 
nation has been evaluated in four different situ- 
ations. The evaluation of the expert system is 
presented in Section 5. Conclusions and sugges- 
tions for further research are given in Section 6. 

2. The expert system: principles, tasks and 
knowledge 

The basic idea behind an expert system for 
an industrial company is that the company 

should save its investments in knowledge, even 
if skilled employees should leave the company. 
Expert systems can be used when we have to 
deal with problems in such fields as [13] : 
(1) interpretation and understanding of a 

complex data structure, 
(2) ordering/scheduling, 
(3) the evaluation of situations, 
(4) diagnostics, 
(5) the tracing of failures. 

There are different types of expert systems 
which can be used to solve these problems [9] 
such as: 
(1) rule based expert systems, 
(2) expert systems based on first order predi- 

cate logic, 
(3) expert systems based on structured objects 

(e.g. frames and trees). 
Looking at the characteristics of the tasks 

that an expert system should perform in the 
particular environment, studied in this paper, 
we have selected a rule based system. Rules can 
represent a unit piece of knowledge. Advan- 
tages of a rule based ES are: 
~ it is easy to work with in test situations, 
_ it is easy to implement in a control concept 

(as will be explained in the next sections). 
A more elaborate discussion of arguments 

leading to the choice of a rule based ES is given 
in Ref. [14]. The structure of such an expert 
system is described in detail in Ref. [15]. 
Knowledge is represented in what we call 
“knowledge rules” (IF-THEN-ELSE). These 
rules are mutually independent. 

One of the properties of an expert system in 
general is that the knowledge (structure) and 
the data are strictly separated. The advantage 
of an expert system in contrast with a tradi- 
tional computer program is that if something 
changes in the problem environment, it will 
not cause much problems in the ES. One 
should simply add a new rule or new data. In 
a traditional program, the entire source code 
may have to be changed. 

The structure of an expert system will be 
briefly explained now. An expert system is con- 
structed from three basic elements: 1) the 
database, 2) the knowledge base, 3) the infer- 
ence engine. In our research framework we 
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have added some slightly more advanced con- 
cepts like a statistics module (and in the future 
a simulation module). See Fig. 1. 

The inference engine matches patterns from 
the “rule base” or knowledge base, with recom- 
mended data from the database. The combina- 
tion represents the knowledge. In Fig. 1 we 
have also included the module “statistics”. By 
changing data in the database, it implicitly 
changes the knowledge. To clarify what is 
meant by knowledge, how it can be used opti- 
mally and how it should be represented in the 
rule based expert system, some techniques are 
illustrated by using an example. 

Example: Suppose the “expert” knows that 
computer time will increase exponentially fast 
when the algorithm “complete enumeration” 
(this algorithm calculates every possible sched- 
ule and gives always the optimal solution) will 
be used by a set of jobs larger than 20. 

We can implement this knowledge as follows: 
IF ord# ~20 (condition] 
THEN advise algorithm 

= complete enumeration (action}, 
certainty factor = 100 {certainty}. 

I : simulation It__. statistics 
:______: I I_____________, 

Fig. 1. Expert system, structure. 

Ii KNOWLEDGEBASE 

!+ 
IF a > b THEN action. I 

One can distinguish three main parts in the 
knowledge rules, which are explained in short: 

(1) 

(2) 

(3) 

The condition part: The condition part 
can be true or false. If it is true, action is 
taken, if it is false, no action will be taken. 
The condition part may find the values of 
the corresponding parameters (constants, 
variables, etc.) in the database or from 
other rules in the rule base (tree search). 
For instance in Fig. 2 action will be taken if 
a > b. The value of the parameter a is 
found in the database. However, b is not 
and therefore the inference engine now 
searches in the knowledge base and finds 
b in the second rule. Since now d is needed, 
the inference engine will search for it. In 
this way a tree of rules can be checked. 
The action part: This part of the rule de- 
scribes the action that has to be taken. An 
action can be: 
_ changing data in the database (for con- 

trol applications), 
- placing at inferences disposal of data for 

tree search activities, 
- proposing an algorithm. 
The certainty part: This part specifies the 
value of the so-called certaintyfactor. Basi- 
cally the value of the certainty factor indi- 
cates the probability that a recommended 
action will lead to satisfactory results. We 
will come back to the construction and role 
of the certainty factor in more detail below. 

Under complex environmental conditions it 
is not always obvious what may be expected 
from the performance of a given rule or algo- 
rithm (e.g. priority dispatching rules). Statis- 
tical knowledge about the performance of such 
a rule in the past, under similar conditions, 
may therefore be helpful to predict its behavior 

IF d 2 2 THEN b = 2, 

IF c <> 1 THEN d = 10 

Fig. 2. Example knowledge representation. 
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in the future. In this way a sort of learning 
capability is included in the expert system. 
This idea has motivated the introduction of 
the certaintyfactor. Basically its value specifies 
the probability that an algorithm performs sat- 
isfactorily. Since any knowledge about recent 
performances should be included, a reasonable 
up-date procedure for the value of the cer- 
tainty factor is as follows: 

CF,,, = 
(CFold*N + 6 x 100) 

N+l . 
(1) 

Here CFold and CF,,, represent the initial 
and the updated values of the certainty factor, 
respectively. Furthermore, we set 6 = 1 if the 
solution determined by the relevant algorithm 
in the last cycle is satisfactory, and 6 = 0 other- 
wise. N is the number of previously recorded 
tests upon which the certainty factor has been 
based so far. For practical reasons the value of 
N should neither be too low nor too high. 
When N is very low the certainty factor will be 
strongly influenced by each additional test. 
When N is high the influence becomes negli- 
gible. When the rule is tested often, N is high 
and the value will become very stable. As cir- 
cumstances may change, considering all for- 
mer tests has its disadvantages. Therefore, both 
a lower bound and an upper bound are given to 
(in some cases even a constant value will do). 

Having thus motivated the use of the cer- 
tainty factor (basically to incorporate learning 
effects) we next explain its use. Given a particu- 
lar planning or scheduling problem faced by 
the LPS, we first check the environmental con- 
ditions and objectives to find what algorithms 
or rules might be applicable. Next, we simply 
choose the rule with the highest CF-value, 
where ties are broken arbitrarily. 

Another way to incorporate knowledge 
about the performance of certain rules or algo- 
rithms is by adjusting the conditions under 
which it may be applied. These conditions, 
such as the condition in our example, may be 
changed as a result of recent performance 
evaluations. E.g. in our example let us replace 
the factor 20 by a factor WF. The condition 

hence becomes ord d WF. In this case, as a re- 
sult of statistical analysis one may adapt the 
value of the factor WF and write this new 
value in the database. Complex statistical pro- 
cedures may be required to find good values 
for such factors. 

An expert system will only perform well if 
the knowledge added to the data and knowl- 
edge base is well defined. This means: the pro- 
cess of knowledge acquisition must be carried 
out thoroughly and accurate. A formal de- 
scription of the knowledge acquisition process 
is given in Ref. [16]. For our particular situ- 
ation we list a few important steps. Note that 
knowledge acquisition basically concerns the 
representation of knowledge rules (Fig. 3). 
(1) First the relevant relations in combination 

with the relevant indicators have to be 
traced. To get these relations one may use 
a knowledge relation chart (see Fig. 3). In 
such a chart the relations between the LPS 
algorithms and the potential environment 
indicators are given. 

After an interview with an expert or 
analyses done on the LPS algorithms, the 
relations between the indicators and the 
LPS-algorithms found can be added into 
the chart. 

(2) After finding the important relations, the 
effective area of the indicators must be 
found (i.e. in our example the effective area 
was the interval [0, 201. Values of 20 or 
more are not relevant). Possibilities here 
are to test the LPS algorithms for different 
input values. The condition part can be 
defined in combination with the action 
part (LPS-algorithm). 

Fig. 3. Knowledge acquisition chart. 
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(3) Finally a certainty factor must be set. 
When there is no information about the 
performance of the LPS-algorithm an ar- 
bitrary value must be added. In the long 
run the certainty factor converges to 
a stable value (in a stable environment). 

With this information the condition part, 
action part and certainty part can be projected 
on the knowledge representation structure 
(IF-THEN-ELSE structure) which yields the 
knowledge rules that can be implemented. 

3. An expert system for the LPS 

A Local Planning System contains several 
modules, structured in a hierarchical frame- 
work. The two most important ones are 
the “Planning module” and the “Scheduling 
module”. 

The planning module performs the follow- 
ing functions: 
_ It receives a set of orders (see Fig. 4) from the 

GPS that have to be produced in a certain 
time period of one to three weeks, say. 

- It checks capacity and handles utilization 
planning on a high aggregation level. This 

Fig. 4. LPS. 

means in particular: 
_ moving orders in time, 
_ selecting alternative process plans, avail- 

able in “technical data” (cf. Fig. 4). 
_ It selects a subset of orders for the next day 

from the above described order set. This sub- 
set forms the input for the scheduling module. 
The scheduling module performs the follow- 

ing functions: 
_ It creates the schedule for the next day by 

assigning all operations from the selected 
subset of orders to machines and by 
sequencing all operations assigned to that 
specific machine. 

- It creates task lists for the resources (e.g. 
tools, machines, fixtures, operators, etc.). 
Both levels contain a range of different algo- 

rithms and heuristics. For most particular 
situations there is an algorithm or heuristic 
available that performs best under these 
circumstances. This means that an LPS oper- 
ator (planner) has to interpret the situation 
(given by the GPS and the actual situation on 
the shopfloor) and has to select an algorithm 
that yields a satisfactory planning/scheduling 
solution. 

The algorithms and heuristics available on 
“planning” level are: 
(1) For utilization planning: 

_ moving orders in time: 
_ sorting algorithms to select jobs on 

specific properties, 
_ clustering algorithms on technical 

constraints (for tools and fixtures), 
_ clustering algorithms with precedence 

relations, release and due dates. 
- process plan selection: 

- complete enumeration (workload bal- 
ancing), 

_ mixed integer programming (work- 
load balancing), 

- linear programming, continuous 
rounded (workload balancing), 

_ two-opt heuristic (pair-wise inter- 
change) (workload balancing), 

_ sorting on resource load (workload 
balancing), 

(2) For workloading: 
- linear programming. 



The module scheduling contains algorithms 
and heuristics to generate schedules which 
focus on the utilization of resources, short term 
due-date performance, throughput times, and 
schedule robustness. 
(1) Before using actual dispatching and sched- 

uling algorithms, it is possible to use 
a preparation tool to let the dispatching 
and scheduling algorithms perform better. 
For example: 
_ add all operator relations, 
_ add relations for a specific fixture type, 
_ add all machine-tool relations for a spe- 

cific machine. 
(2) The dispatching may be used to accom- 

modate e.g.: 
_ order due dates, 
_ operations due dates, 
- priorities. 

The actual scheduling procedure is the shifting 
bottleneck procedure developed by Adams 
et. al. [17]. 
(3) After having generated the schedule, there 

is a possibility to improve the schedule 
somewhat further by one of the secondary 
scheduling procedures: 
_ make feasible, 
_ adapt for gaps. 

The heuristics and algorithms are described 
more extensively in Ref. [3]. 

The expert system should support the deci- 
sion making in selecting algorithms on differ- 
ent levels. It may either support the operator 
or operate as an autonomous program with- 
out intervention of the operator. Let us return 
to the specific expert system structure de- 
veloped for the LPS environment. The LPS 
basically consists of two layers: a planning 
level and a scheduling level. An important rea- 
son to split the system in such a hierarchical 
structure is to be able to deal with the com- 
plexity of the problems encountered. Also the 
ES developed here is used in an experimental 
environment, with a data and knowledge base 
on each separate level it seems easier to test. 
Having just one level where all decisions 
should be made it may become harder to evalu- 
ate the effects of any new rule or alteration. 

As mentioned earlier, the expert system has 

to perform the following tasks. On both, the 
planning and the scheduling level it has to: 
_ evaluate the situation in the planning and 

scheduling environment, 
_ support the operator by choosing the right 

algorithm or heuristic in a specific situation 
(generate), 

_ evaluate the result of one algorithm or heu- 
ristic (are we satisfied or not?) (evaluate). 

The generate-evaluation concept (depicted in 
Fig. 5) is implemented on both LPS levels. On 
each level the expert system has to advise. All 
relevant data according to this advice and to 
the result of this advice is temporarily saved (as 
best). The evaluation part checks this data. 

If “evaluation” is satisfied, the expert system 
permits to move to a lower level of the LPS. 

If “evaluation” is not satisfied, the expert 
system has to generate a new solution by sug- 
gesting a new algorithm. 

Remark I. When “evaluation” is not satis- 
fied, it will explain to the advice-part what’s 
wrong. So the advice part is able to re-advise 
“intelligently”. We call this control loop the 
short control loop. 

Remark 2. When “evaluation” continues to 
return “not satisfied” it may advise to go to 

____________ 

evalua :ion part 

advise part j 

w 
o on with ‘best’ to next stag 

& 

Fig. 5. Control mechanism. 
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a lower LPS-level after a certain number of 
loops. This is to protect against infinite loops. 
(Temporary solution “best” is given to the 
lower level). 

Remark 3. The evaluation system on the 
LPS-scheduling level has the possibility to 
send information to the LPS-planning level. 
Since we deal with a hierarchic system, it may 
possibly happen that the planning module 
presents an order subset to the scheduling 
module which does not allow to meet a specific 
criterion under any schedule. 

Both advice and evaluation part have to be 
fitted into the expert system (see Section 4). 

4. Implementation 

The expert system is implemented on a HP 
9000 workstation. It operates together with the 

LPS interface 

-1 
, I 

LPS under an X-window representation man- 
ager on a UNIX operating system. Both are 
written in Standard Pascal, see Ref. [15]. 

The choice for Pascal is motivated by the 
fact that in this type of research one has to deal 
with many new concepts and changes. In 
Pascal it is easy to develop new ideas. We also 
have investigated different software packages, 
like the IBM Expert Shell [9] and the Delfi II 
Expert Environment. Both of the packages are 
professional expert environments but the link 
between these Expert Systems and the LPS is 
difficult to make. Also extensions on the Ex- 
pert System framework the hardly to realize. 

Once having discussed the control mechan- 
ism and the knowledge structure we are now 
ready to present the complete expert system 
structure. The structure is depicted in Fig. 6. 
Observe the knowledge rules embedded in this 
concept. 

expert system 

I GPS I i I 

IF_TKN-ELS.. 

IFJKNELSE.. 

lzzza= tnference engine 

Fig. 6. Control chart. 
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Not mentioned till now but important for 
the ES-concept is the interface unit (see Fig. 6). 
The interfaces are mechanisms which are able 
to compress files of information in a special 
way. In particular, a file given by the GPS can 
be transformed into a vector of indicators. 
In that way it is easier for expert system to 
interpret the GPS situation. For a more elab- 
orate treatment of the interfaces we refer to 
Ref. [14]. 

To further highlight Fig. 6 one, step of the 
advisory and evaluation process of the expert 
system will be described. 

Step I. The GPS file is translated into an 
indicator vector. The mass of available data 
will be compressed to a set of indicators which 
represent the important characteristics of the 
file. The vector is stored in the database. 

Step 2. After a request for advice is received, 
the inference engine matches the data and the 
rules and presents the advice. It also reports to 
the module statistics. 

(1) 

(2) 

(3) 

(4) 

Step 3. The result of the advice is imple- 
mented. 

Step 4. The planning file (containing the 
results of following the advice) is transformed 
in a way similar to the one described in step 1. 

The combination tested in an operation 
oriented FS situation. This case concerns 
an FS which contains 5 rather similar 
milling/drilling machines (the only differ- 
ence between the machines is the number 
of driven rotation and translation axes). 
The second case concerns a part oriented 
FS consisting of 5 machines of three differ- 
ent types. We may think about families of 
products visiting this machining centre 
(part flow). For details see below. 
The third case is taken from Ref. [IS]. 
Actually this FMS situation concerns 
a pilot plant in a Dutch research institute 
(IPL-TNO, Apeldoorn). It consists of 
a turning centre and a FS. The machines 
and a tool preparation cell are integrated 
in a CIM environment (the TN0 super- 
visory control system). 
The final case is a comparison made be- 
tween OPIS/ISIS, a scheduling system de- 
veloped by Fox et al. [4], and the LPS-ES. 
The test situation used in this case is de- 
scribed in Ref. [19]. Special in this case is 
that the FS consists of a number of cells, 
where each cell contains a number of sim- 
ilar machines. 

Step 5. There are two possibilities. The re- 
sult of the evaluation is: 
“ok”: -+ We continue with scheduling; go to 
step 1, 
“not ok”: --t a new advice is given. The differ- 
ence is that the evaluation changes the data in 
the database on the advice level (see Fig. 6). Go 
to step 1. 

In our expert system we have implemented 
the knowledge evaluation by means of the cer- 
tainty factor. The module “statistics” takes 
care of the handling of the factor N. For every 
rule which generates an advice a value of N is 
maintained. 

How the LPS-ES combination works in 
a particular environment (recall that the ES 
implementation is situation-specific) is ex- 
plained in more detail, Although the LPS-ES 
combination is extensively tested for each of 
the four cases described above, at this point, 
for the sake of brevity only the knowledge 
acquisition and the evaluation of the second 
case are described. 

5.1. Outline of the second case 

5. Evaluation of the expert system 

5.1.1. The factory system 

The FS consists of 5 machines: two of type 
A, two of type B and one of type C. Each 
machine has a tool magazine with a capacity of 
forty tools. 

To evaluate the power and usefulness of the Each job follows a predetermined route 
LPS-ES (Local Planning System-Expert Sys- along the machine types: A + B + C. The 
tem) combination, it is implemented in four maximum number of different operations 
different environments. within one job is three on machine A and B 
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and two on machine C. The total number of 
operations within one job is at most five. Two 
shifts (16 hours) per day are assumed. 

5.1.2. Jobs 

80 jobs have to be produced in one week. 
Every job has to be produced in 1 to 5 days, 
with a mean of 3. Jobs also can have a priority 
index ranging from 1 to 3 where 3 means 
a rush job. Every job consists of one or more 
products of one available type. For every 
product type there are two process plans avail- 
able which can be selected for production. 
Other job characteristics are: 

the batch size: 1 to 5 with a mean of 3, 
the number of operations: 1 to 5 with a mean 
of 3, 
the process time: 10 to 50 minutes with 
a mean of 30, 
special tools per operation: 1 to 5 with 
a mean of 3. 
A file generator has been developed to gen- 

erate a GPS file with the preferred factory and 
job characteristics. 

5.2. Knowledge acquisition for the second case 

rithm, based on the situation given by the GPS 
and depending on the status of the FS. For this 
information is required (cf. Kl . . . Kn in Fig. 2). 
This information must be compressed into 
a limited set of indicators (see also Fig. 6). 
Based on the results of step 1 and given the 
information stored in the GPS data file, we 
have chosen the following set of indicators for 
the selection of planning algorithms: 
(1) the total workload per machine, 
(2) total workload released/total workload, 
(3) the number of different parts, 
(4) the average number of alternative process 

plans, 
At this point the knowledge acquisition pro- (5) the total number of operations, 

cess (in analogy of Section 2) for the expert (6) the average order priority, 
system for the second case is described. We (7) the average release date, 
confine with the description of the acquisition (8) the average due date, 
process for the LPS-“planning level”. (9) the number of orders. 

5.2.1. Step I: dejinition of useful algorithms, 
heuristics and solution rules 

First step in the knowledge acquisition pro- 
cess is to select a subset of useful algorithms (cf. 
Pl . . . Pn in Fig. 2) from the nine algorithms 
available on the planning level. 

In this case the objective on the planning 
level is to balance the workload among the 
machines. According to this objective we have, 
based on the knowledge and experience of 
the LPS-builder, selected the following algo- 
rithms: 

For the process plan selection: 
- full enumeration, 

_ a heuristic on workload balancing, 
_ a mixed integer programming formulation, 
_ a heuristic for sorting on the workload of 

one specific machine. 
For work loading: 
- linear programming with a utilization of 

95%, 
- a heuristic with a tool capacity bound and 

a utilization of 95%. 

5.2.2. Step 2: dejinition of indicators for the 
advice part 

The expert system has to advise an algo- 

5.2.3. Step 3: definition of indicators for the 
evaluation part 

The evaluation is an important part of 
the expert system framework. When an algo- 
rithm is selected and executed, the results 
may be judged to be poor or even not accept- 
able by the evaluation part of the expert sys- 
tem, according to some specified criteria. 
These criteria may be simple operational cri- 
teria such as the average or maximum lateness 
but may also concern more “fuzzy” conditions 
such as the capabilities of operators to deal 
with the resulting solution. To this end some 
control indicators are needed. We have 
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selected: 

(10) 

(11) 
(12) 

c 

A parameter indicator whether or not the 
result is almost satisfactory, what exactly 
is meant by “satisfactory” is discussed 
below. 
The number of attempts so far. 
The algorithms evaluated earlier. These 
parameters are written into the database. 
They provide sufficient information to 
yield a good advice. Generally, the pro- 
cess to find the proper parameters for 
practical situations will be iterative. 

_ J.4. Step 4: dejinition sf the knowledge 
rules 

Now that we have defined a set of important 
indicators in combination with a set of useful 
algorithms in the previous steps, we may con- 
struct the knowledge rules by using a chart as 
depicted in Fig. 2. After the determination of 
the indicator intervals and the certainty factors 
our knowledge acquisition process is com- 
pleted. 

We implemented two types of knowledge. 
We can distinguish: 

(1) 

(2) 

theoretical- knowledge: this is knowledge 
about the actual LPS-algorithms. This 
means that the relation between the input 
data characteristics and the output perfor- 
mance of each algorithm and its properties 
in different situations are stored in knowl- 
edge rules. This knowledge is generally 
usable, 
situation specific knowledge which may 
concern specific company knowledge or 
FS-configuration constraints (e.g.: tool X is 
not available for job of type Y). This knowl- 
edge is specific for each of the four cases 
and therefore different in each of the cases. 

5.3. Evaluation of the espert sqxtern in the 
second case 

5.3.1. HON. to evaluate an expert system 

The expert system is implemented to sup- 
port the operator in decision making among 
the different algorithms, rules and heuristics 

available on the different levels in the LPS. So, 
what we are interested in, is what the quality is 
of the advice to select a specific algorithm, as 
given by the expert system. Did the algorithm, 
suggested by the expert system, perform well? 
Before we can give judgement about a satisfac- 
tory performance of an advised algorithm, we 
first must know what exactly is meant by satis- 
factory. In other words: how can one measure 
the quality of an advice. 

5.3.2. The qualit), of an advice 

To establish the quality of an advice one has 
to evaluate the actual output of the LPS, 
which is actually a complete production sched- 
ule. A schedule can be evaluated by perfor- 
mance indicators like maximum lateness, 
tardiness, utilization of machines or through- 
put times. These performance indicators can 
be compared with lower bounds. Lower 
bounds can be found by using e.g the shifting 
bottleneck procedure (cf. Ref. [17] ) for the 
lateness criterium and a mathematical 
programming formulation for the utilization 
criterium. Deviation of the performance indi- 
cators from the lower bound gives a measure 
for the quality of a production schedule. 

In this research, the quality of the produc- 
tion schedules is measured for every advice 
generated by the expert system. The reason for 
not presenting the data to match, is that the 
data gives more information about the quality 
of the used algorithms themselves instead of 
given straight the information about the qual- 
ity of the decision of choosing the algorithm. 
So, in our evaluation we have used the follow- 
ing performance measure: did the advised al- 
gorithm lead to a solution (i.e. a workload 
balancing or a production schedule) which 
could not be improved by applying any of the 
other available algorithms according to the 
performance measures described above (in 
particular the lateness criterium). 

5.3.3. Evaluation results of’ the second case 

The LPS Expert system is tested on 20 dif- 
ferent GPS order sets. 
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In 10 cases the expert system advised these 
algorithms which lead the LPS to an “opti- 
mal” production schedule at once. 

In 7 cases the expert system used its evalu- 
ation optimization mechanism (cf. Figs. 5 and 
6) on planning level only (4 times) on schedul- 
ing level only (3 times) and on both levels at 
the same time (2 times) to find the optimal 
combination of algorithms leading to the “op- 
timal” production schedule. 

In 2 cases the expert system advised to re- 
turn to the LPS-planning level for a complete 
new LPS session, after recognizing infeasibility 
at the LPS-scheduling level. These cases show 
that the control mechanism as depicted in 
Figs. 5 and 6, works well. 

In one case the expert system did not advise 
the algorithm that finally led to the “optimal” 
production schedule. 

5.3.4. Remarks 

(1) 

(2) 

(3) 

The results of these tests reflects the 
quality and the completeness of the know- 
ledge gathered during the acquisition 
phase. 
Although only the second case is outlined 
here, equivalent results have been found in 
the other three test environments. 
The fact that most of the times an optimal 
production schedule has been found indi- 
cates that the situation presented by 
the GPS is interpreted well by the expert 
system. 

5.3.5. Conclusions extracted from the test 
cases include 

(1) 

(2) 

In all four test cases, the LPS performs well 
on the advices given by the ES. We only 
once could find a better production sched- 
ule by using a different algorithm then the 
one advised by the expert system in the 
second case. 
In the various, often complex, situations 
and circumstances the expert system 
appears to be a useful tool in supporting 
decision making to control the LPS. 

(3) The theoretical knowledge (not presented 
here but described in Ref. [14]) added till 
now is functioning well. 

(4) It appears to be very easy to add knowl- 
edge, and make the universal LPS situ- 
ation specific (e.g. by adding practical 
constraints). 

6. Conclusions and suggestions for further 
research 

In this paper we have outlined the structure 
and functions of a rule-based Expert System 
(ES), which has been developed to assist deci- 
sion making by a Local Planning and Schedul- 
ing System (LPS), operating at a production 
cell level. In particular, we have underlined the 
need to recognize and interpret complex situ- 
ations in the Local Planning Environment, as 
well as the fact that any advice from the LPS 
should be based on both theoretical knowl- 
edge (algorithms and heuristics) and factory 
specific practical knowledge. A prototype ver- 
sion of the Expert System has been pro- 
grammed. Finally, we have evaluated the 
performance to the ES by considering some 
typical cases; this evaluation in particular ad- 
dresses the quality of the advisory function, 
not primarily the quality of the underlying 
algorithms (which is quite a different topic). 

Further research might be concentrated on 
number of aspects, including: 
the influence of alterations in the condition 
part of the underlying rules. The knowledge 
evaluation has been based primarily on the 
values of the certainty factors. Changing the 
range of values for which a condition of 
a specific rule should hold may severely in- 
fluence the ultimate performance of that 
rule, 
the extension of the ES with a simulation 
part (cf. Fig. 1). Such an extension yields the 
possibility to generate additional knowledge 
by simulating several alternatives. See Ref. 
[14] for some more elaborate ideas, 
knowledge acquisition in a real manufactur- 
ing environment. This will be the next topic 
in forthcoming research. 
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