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A B S T R A C T  

The simple production rule representation is generalized by adding programs to a 
management system that manipulate rules in a rule-based system. By adapting this 
methodology, a single generalized rule can represent a group o f  simple ones. Then 
programs are employed to satisfy the general rule in a partial way while recursively 
reducing a decision problem into smaller ones o f  the same nature until a decision is 
made. It is shown that the reduction method is more efficient than the simple rule 
approach and that it minimizes the number o f  rules used to express a problem. The 
concept o f  using a management program to manipulate a set o f  rules is emphasized 
through solving a problem in a differential diagnosis expert system. A comparison 
between the number o f  rules employed to express a problem is made to show 
advantages o f  the reduction methodology over the simple rule representation. 
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I N T R O D U C T I O N  

Much recent research focuses on computer systems that facilitate methodolo- 
gies simulating experts' knowledge-based decision-making strategies (see, for 
example, [1-4]). The most popular current way to create such systems is to 
incorporate large amounts of "domain-dependent" knowledge acquired from 
experts. Because experts often express their decision-making processes in sets of 

Address correspondence to Kevin D. Reilly, Departments ~ of  Computer and Information 
Sciences and Biostatistics and Biomathematics, University of  Alabama at Birmingham, 
Birmingham, Alabama 35294. 

International Journal of Approximate Reasoning 1987; 1 : 131 - 139 
© 1987 Elsevier Science Publishing Co.,  Inc. 
52 Vanderbilt Ave. ,  New York, NY 10017 0888-613X/87/$3.50 131 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81989388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


132 Akram Salah and Kevin D. Reilly 

if-then rules, rule bases are devised (Hayes-Roth [5]). Such systems are usually 
called knowledge-intensive rule-based systems. 

A knowledge-intensive rule-based system consists mainly of  a set of  rules 
describing different decision situations in the problem under question, together 
with actions to be taken in each case. A rule in such a system is represented as a 
structure typically in the form 

A l  & A 2  & • • • & A n - ' C  

Such a rule is interpreted as follows: if Ax and A 2 and . . . and An are true 
simultaneously, then consequently C is true. The left side of  a rule contains a 
conjunction o f  atoms called c o n d i t i o n s  and the right side is called a c o n c l u s i o n  

or a c o n s e q u e n c e  (Salah and Yang [4]). 
I f  an expert expresses his or her decision-making process as a collection of  

simple if-tben rules, each of  them can be represented directly as stated above. A 
problem arises if an expert expresses rules in a less explicit way or in some form 
such as a function over a set of  rules. Then it is the responsibility o f  the rule 
acquirer, whether person or machine, to decide upon a representation or to 
provide some kind of  control on processing such rules. 

In this article we show an approach that can facilitate a generalization of  
simple rule representation. This article is part of  a larger study that has borrowed 
concepts from relational database systems (RDBSs), such that rules are stored in 
a rule base and then a management system retrieves the rule under question. The 
system exploits a number o f  features studied previously (Reilly et al. [6], Yang 
[7], Reilly et al. [8]), where key concerns have been incorporation into a Prolog 
framework (Kowalski [9], Clocksin and Mellish [10]) of  knowledge representa- 
tions and RDBSs (Bruynooghe [11]). It is shown that the approach increases the 
efficiency of  a rule-based system. 

THE PROBLEM 

The problem arises in a differential diagnosis expert system where conditions 
are either symptoms, observations, or test results gathered by a physician to be 
used to derive a conclusion, which in this case is a disease or a class o f  diseases. 
Rules used to derive such a conclusion would typically be in the form 

O l & O 2 & .  • . & O n - ' D  

where each Oi for 1 _< i _< n is an observation, and D is a disease or class of  
diseases. (From here on, we refer to any atom on the left side of  a rule as an 
observation (an observation can be a test result or a symptom) and on the right 
side as a disease. Thus, this rule is read as follows: if all observations 1 through 
n exist simultaneously in a patient, then this case can be diagnosed as D.)  

Our problem arises when a group of  rules is expressed within a single if-then 
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statement. Our particular concern is this: given a set of  n observations and a 
conclusion D such that if any k-subset of observations of  n holds, k _< n, then D 
can be concluded. That is, 

any k observations of  {O1 & 02 & . . . & O,}-- ,D 

A simple example of such a case is the common cold, where there are about 12 
observations and any 3 of  them (existing simultaneously) establish the diagnosis. 
Examples of a similar nature occur in rheumatic diseases (more discussion is 
provided below). 

Actually, this is a generalization of a rule application. The special case in 
which k = n defines the "normal"  rule structure, that is, the case in which all the 
conditions have to be satisfied to derive the consequence. A more formal view of 
this problem is as follows. In a rule system there is a set of  conditions for each 
decision situation, each condition having a domain of values. The left side of any 
rule represents an element in the Cartesian product of the domains of these 
conditions. The case here may be conceptualized as having one condition with 
one domain of observations, say, O with length n, such that if any k-subset of O 
with k < n occurs simultaneously, then the diagnosis is established. This 
expresses a set of rules, each one having a condition part c E O k, where k < n, 
and the same consequence D,  which is the disease under consideration. 

To represent this situation within an expert system, we examine two 
alternatives to set the stage for subsequent comparison. 

1. The single if-then statement is re-expressed as a set of simple rules. Each 
such simple rulecontains k observations on its left side and D on its right 
side. Needless to say, the resulting number of rules consumes much 
memory space, complicates the search when the system is applied, and 
reduces the efficiency of the system. 

2. The production system is extended such that if the "any k out of  n "  
formulation is expressed, it can be handled automatically. 

Note that this problem differs from those representations of "inexact 
reasoning" or uncertainty (Prade [12], Rosenbloom et al. [13]) in which subsets 
of  conditions are used to derive a consequence--for instance, probabilistically, 
fuzzily, or using weighting schemes. 

R E D U C T I O N  M E T H O D  

The reduction method is based on viewing rule-base systems as a set of rules 
together with programs that manage such rules. This view enables us to add 
program code to the management system such that it can extend the simple 
representation of production rules. Here, we apply this methodology to enable a 
direct representation of the generalized fonn discussed above. 

We denote a problem as " a  k/n diagnostic problem" when the diagnosis is 
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dependent on n observations such that if any k of them are found to exist in a 
case, then the diagnosis is established. For example, the case discussed by Weiss 
and Kulikowski ([14], p. 119 ff.) in diagnosis of rheumatic diseases such as 
mixed connective tissue disease (MCTD) involves 10 observations. If  any 4 of 
these 10 exist in a patient, then he or she definitely has a rheumatic disease. 
Using our terminology, we say that this is a 4/10 diagnostic problem. 

A Reduction Algorithm 

To solve a k/n diagnostic problem using the reduction methodology, we 
perform the following: 

1. Pick any k symptoms. 
2. Name them temporarily T1 . . . . .  Tk. 
3. Check decision table (k) with results for the k symptoms. 
4. The output of the decision table is tS. 
5. The problem now is tS/R, where R = n -  k. 
6. For any 6/R diagnostic problem: 

(a) if 6 = 0 diagnosis is POSITIVE; terminate. 
(b) if 6 > R diagnosis is NEGATIVE; terminate. 
(c) i f6  _< R go to step 1 (with k = 6 ,  n = R )  for further reduction. 

The set of tables in Table 1 depicts the situation in a simplified form to make it 
easier to focus on the steps of the reduction method. In realistic cases, actions 
may involve reports back to the user on the rules that are fired, auxiliary 
calculations (for instance, of  a statistical nature), or other options. In such cases, 
a table action portion would include additional information along with the 
number of remaining tests that are depicted in this set of tables. It should be 
noted that the use of tables to describe the algorithm does not necessarily imply 
that implementation by tables is mandated. If  tables are used in the implementa- 
tion, they need not always be stored; that is, there are cases in which they can be 
generated. 

An Example 

To illustrate the method, we use a specific example of a 4/7 diagnostic 
problem. To solve the diagnostic problem: 

1. Pick any 4 observations. 
2. Name them temporarily T1, T2, T3, and T4. 
3. Check the first table in Table 1 with the results of these 4 observations: 

(P = positive or N = negative) 

4. The possible cases are as follows: 
(a) I f  the results of all 4 are P, then the diagnosis is definitely established. 
(b) If  only 3 are P, then we need to check 1 more of the remaining 3. 
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Tab le  1. Decision Tables Used for 4/n, 3/n, 2/n, and 1/n Problems 

TI 
T2 
T3 
T4 

P P P P P P P P N N N N N N N N 
F P P P N N N N P P P P N N N N 
P P N N P P N N P P N N P P N N 
P N P N P N P N P N P N P N P N 

~i 0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 

For  any 4/n problem 

T1 P P P P N N N N 
T2 P P N N P P N N 
T3 P N P N P N P N 

6 0 1 1 2 1 2 2 3 

For  any 3/n problem 

TI P P N N 
T2 P N P N 

6 0 1 1 2 

For  any 2/n problem 

TI P N 

6 0 1 

For  any 1/n problem 

(c) If  only 2 are P, then we need to check 2 more of  the remaining 3. 
(d) I f  only 1 is P, then we need to check 3 more of  the remaining 3. 
(e) If  all are N, then hypothetically we need to check 4 of  the remaining 3, 

which is impossible;  thus, we reject the diagnosis.  
In case (a) there are 4 observations;  all of  them hold, and the diagnosis is 
established (further checks are 0 of  3). In cases (b), (c), or (d), a diagnosis is not 
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established because there is insufficient input information. Instead of restarting 
the problem, we can define a new reduced problem such that we check only the 
remaining observations. Now we need to check either 1/3 in case (b), 2/3 in case 
(c), or 3/3 in case (d). In case (e) we can reject the diagnosis because the total 
number of observations is 7, 4 of them have already been checked and failed, 
and the remaining observations are 3 in number. To establish a diagnosis, 4 
observations need to exist; therefore, it is impossible to establish a diagnosis 
from this situation (4/3). 

Thus, the method either establishes a diagnosis from the information provided 
or uses the information to reduce the problem to a smaller problem of the same 
nature. The new problem can be solved recursively by the same methodology. 

Commentary 

We can cite several advantages of the reduction methodology: (1) there is 
guaranteed recursive reduction until a solution is reached; (2) the number of 
rules to be checked is less than using the simple rule approach (see Table 2); (3) 
the tables given in Table 1 can be used for any diagnostic problem k/n, 
regardless of  the value for n; and (4) the growth of the number of rules is 
limited, as all the decision tables are complete (Welland [15]), and thus there is 
no possibility of adding rules to any of them. 

As can be seen, the number of  rules in the reduction method depends on the 
length of the subset that establishes the diagnosis, k, rather than the length of the 
domain of observations, n. This is an important property of the reduction 
methodology, as in simple rule approaches the number of rules grows 
exponentially with the length of the set of  observations, assuming that simple 
rule generation uses either combinations or permutations. 

According to Weiss and Kulikowski ([14], pp. 118-119), a problem similar to 
what we have been intimating was detected while an expert system for diagnosis 
for rheumatic diseases was being implemented. As the expert system evolved, 
the number of its (physician) users increased; consequently, the number of 
observations known to the system increased. The expert system started with a 4/ 
10 diagnostic problem and was extended to 4/18 and eventually to 4/35. A 

Table 2. Number of  Rules Used to Build a Knowledge Base 

Using Using Using 
Problem ID Permutation Combination Reduction 

4/10 5020 210 31 
4/18 73440 3060 31 
4/35 1256640 52360 31 
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simple treatment of the problem (see Table 2) would make the number of rules 
increase exponentially with any increase in the number of observations. 

A final point to be noted about the reduction method is that it does not depend 
on any particular application. The algorithm was developed for an expert system 
for differential diagnosis of rheumatic diseases, but it can be used in any other 
rule representation of the same nature. 

ENVIRONMENT 

The system that we employ for representing the methodology of this article is 
based on an extension of a previously defined system called EXPRD (EXtended 
Prolog Rule Data system), an integration of a Prolog, a relational database, and 
a decision table system (Salah [16]). This system is used to store or generate 
decision tables such as those appearing here. Prolog programs expressing the 
reduction algorithm are added as a part of the management program. Sets of 
observations are stored in the system as database relations. An interactive 
dialogue prompts the user to provide the proper information for the diagnostic 
problem and invokes the reduction algorithm. If  a decision is reached, the 
program advises the user whether the diagnosis is established or rejected. If the 
information is not sufficient to establish the diagnosis, the program prompts the 
user to provide more information. An example dialogue in a session is as 
follows: 

Give me a test you performed: Arthralgia 

What is the result of arthralgia ( p =  positive, n = negative): p 

**Diagnosis is POSITIVE** 

**Chronic polyarthritis> 6 weeks is a significant factor** 

What is the result of synovial fluid inflammatory (p = positive, n = negative): p 

These results are not sufficient to establish a diagnosis 
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What is the result of subcutaneous nodules (p = positive, n = negative): p 

• • • 

• *Diagnosis is NEGATIVE** 

• *Two positive symptoms are noted** 

Do you wish a trace of this dialog? No 

• • • 

A general philosophy in dealing with rule systems emerges from our 
methodology: a management system is employed in which rules are dealt with as 
one of the components. Such a management system can be viewed as a meta-rule 
program that helps a user (or an expert-system administrator) to build, 
manipulate, query, and analyze a rule system. 

CONCLUSION 

Although the reduction methodology for differential diagnosis expert systems 
is self-contained in the sense that it solves a well-defined problem, if we take a 
broader view of the situation, we see this method as part of the overall rule- 
management environment. The environment conceptualization emphasizes use 
of meta-level processing to manipulate rule-like representations. Given a k/n 
diagnostic problem, an extended form of rule, the management program is 
designed to generate a set of simple rules or employ the reduction methodology 
to reduce the problem to a smaller problem of the same nature. Employing 
management programs on the meta-level facilitates a global .view for expert 
systems, allowing operations such as generation, reduction, or analysis of rules. 
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