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Abstract  The goal of our work is development of a neuron and a neural network which recognize any object without 
mistakes. It worked out by learning method, with totality of simple (single-layer) neurons. The work deals with the formal 
neuron and neural network learning process through the realizations of a set of learning sets. At the same time, the features 
and the feature space used for the recognition process are evaluated. The feature space for all the types and realizations is of 
the same dimension and binary. The learning process is carried out by means of recognition procedures; this, in case of 
incorrect recognition, as much as possible, draws together the changes in neuron weighting coefficients as well as the 
threshold (structuring etalon descriptions) with the neural process of recognition. A set of realizations for the learning clusters 
of each pattern is used for the learning process. The learning algorithm comprises two stages. The first stage represents 
structuring etalon description of its own, the second – the correction of the received description in relation to other patterns of 
descriptions by using the same patterns of the learning set’s realizations. The correction of the results received in the 
recognition process is carried out by means of changing the weighting coefficients through using the award algorithm 
(procedure). In case of the incorrect recognition of some realization, it is presented to the neuron until we get the correct 
recognition through coefficients changing (error correction of mistakes) which may require neuron threshold changing.  
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1. Introduction 
Elaborating Neural Network has a long history of 

development. McCulloch and Pitts (1943) [1] developed 
models of neural networks based on their understanding of 
neurology. In the late 1940s psychologist Donald Hebb [2] 
created a hypothesis of learning based on the mechanism of 
neural plasticity that is now known as Hebbian learning. 
These ideas started being applied to computational models 
in 1948 with Turing's B-type machines Farley and Wesley 
A. Clark [3] (1954) first used computational machines, then 
called calculators, to simulate a Hebbian network at MIT. 
Other neural network computational machines were created 
by Rochester, Holland, Habit, and Duda [4] (1956). 
Rosenblatt (1958) [5] stirred considerable interest and 
activity in the field when he designed and developed the 
Perceptron. The Perceptron had three layers with the middle 
layer known as the association layer. (Three layers: I layer – 
output of feature space, II layer – conversion of the output; 
III layer decision-making). Another system was the 
ADALINE (ADAptive LInear Element) which was 
developed in 1960 by Widrow and Hoff (of Stanford  
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University). In 1969 Minsky and Papert wrote a book in 
which they generalised the limitations of single layer 
Perceptrons to multilayered systems [7]. Grossberg's (Steve 
Grossberg and Gail Carpenter in 1988) influence founded a 
school of thought which explores resonating algorithms. 
They developed the ART (Adaptive Resonance Theory) 
networks based on biologically plausible models. Anderson 
and Kohonen developed associative techniques independent 
of each other. Klopf (A. Henry Klopf) in 1972, developed a 
basis for learning in artificial neurons based on a biological 
principle for neuronal learning called heterostasis. Werbos 
(Paul Werbos 1974) developed and used the 
back-propagation learning method, however several years 
passed before this approach was popularized. Amari (A. 
Shun-Ichi 1967) was involved with theoretical 
developments: he published a paper which established a 
mathematical theory for a learning basis (error-correction 
method) dealing with adaptive patern classification. While 
Fukushima (F. Kunihiko) developed a step wise trained 
multilayered neural network for interpretation of 
handwritten characters. The original network was published 
in 1975 and was called the Cognitron. The backpropagation 
algorithm was created by Paul Werbos [6] (1975). 

The parallel distributed processing of the mid-1980s 
became popular under the name connectionism. The text by 
David E. Rumelhart and James McClelland [8] (1986) 
provided a full exposition on the use of connectionism in 
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computers to simulate neural processes. 
In the 1990s, neural networks were overtaken in 

popularity in machine learning by support vector machines 
and other, much simpler methods such as linear classifiers. 
Renewed interest in neural nets was sparked in the 2000s by 
the advent of deep learning. 

Between 2009 and 2012, the recurrent neural networks 
and deep feedforward neural networks developed in the 
research group of Jürgen Schmidhuber at the Swiss AI Lab 
IDSIA have won eight international competitions in pattern 
recognition and machine learning. [9] For example, 
multi-dimensional long short term memory (LSTM) [10] 
[11] won three competitions in connected handwriting 
recognition at the 2009 International Conference on 
Document Analysis and Recognition (ICDAR), without any 
prior knowledge about the three different languages to be 
learned. Variants of the back-propagation algorithm as well 
as unsupervised methods by Geoff Hinton and colleagues at 
the University of Toronto [12] [13] can be used to train 
deep, highly nonlinear neural architectures similar to the 
1980 Neocognitron by Kunihiko Fukushima, [14] and the 
"standard architecture of vision", [15] inspired by the 
simple and complex cells identified by David H. Hubel and 
Torsten Wiesel in the primary visual cortex. Deep, highly 
nonlinear neural architectures similar to the 1980 
neocognitron by Kunihiko Fukushima [14] and the 
"standard architecture of vision" [15] can also be 
pre-trained by unsupervised methods [16] [17] of Geoff 
Hinton's lab at University of Toronto. A team from this lab 
won a 2012 contest sponsored by Merck to design software 
to help find molecules that might lead to new drugs. [18]. 
Nowadays, there are some scientists working in the field of 
Artificial neuroscience and making significant contribution 
to it: Yann LeCun, Pierre Sermanet and more. We are using 
the terms which are used already in the works: [19][20]. 

Used Symbols:  
Set of patterns to be recognized: 

{ } { }1 2,  ,.......... ,.......... ,  IA A A Ai A I Card A= = (1.1) 

Set of given realizations for each pattern { }X  

{ } 1 2, ,..., ,...,i IX X X X X= ;        (1.2) 

A set of realizations for each pattern consists of learning, 
testing and unknown realization sets; for example, for {Xi} 
set of Ai pattern we will have:  

1 2, ,..., ,...,i i i mi MiX X X X X= , 1; ;  1;i im M i I= = ;(1.3) 

Any type of realization represents N dimensional vector 
with binary components. For example, for  Ai  type mi 
realization we will have: 

{ } 1 2;   , ,..., ,..., ;

 1; ; 1;

i i i i im m m m mmi
i i i ni Nii iX X X x x x x

i I n N

∈ =

= =
;  (1.4) 

Spatial dimension for N = Card(xn ) symbols; ∀

 {0;1}.im
nx =  

Due to the fact that for different patterns we may have 
different quantities of learning set realizations, we will 
have: 

{ }im
mi niX x= , where   𝑚𝑚𝑖𝑖 = 1;𝑀𝑀𝑖𝑖������ ;      (1.5) 

We have each neuron weighing coefficient for each sign 
of the sign space, for example, we will have a set of 
weighting coefficients {xn }  for a {wn }  number of 
symbols: 

{ } 1 2, ,..., ,...,n NW w w w w= ;        (1.6) 

For each Aj  member of 𝐴𝐴  set of patterns we will 
correspondingly have Wi set: 

{ }i niW w= ;              (1.7) 

For each pattern we have one neuron designated as Ne, 
for example we will have Nei  neuron for Ai  pattern, 
which will be represented by its own weighting coefficient 
and in the form of neuron threshold we will accordingly 
have sets of Neineurons and Zi thresholds : 

{Ne} = Ne1, Ne2, … , Nei, … , NeI,      (1.8) 
{Z} = Z1, Z2, … , Zi, … , ZI;         (1.9) 

For the purpose of compactly describing the recognition 
process through neurons in the given work original symbols 
have been used; these symbols reflect separate stages of 
recognition. 

1. The introduction (arrival) of unknown realizations 
for recognition at the neuron entry is expressed by 
means of the predicate (presentation): 

 “presentation”; 
The predicate “presentation” implies that an unknown 

realization with all its components is included into neuron  
2. Predicate “is accepted” implies the result obtained 

through some mathematical operation: 
⇒ “ is accepted”.  

By considering one or two points, the recognition process 
in neurons can be presented as follows: 

X Ne{W} ⇒�XW = net 

⇒ F{net} ⇒ Z ⇒ out = {0; 1} ;       (1.10) 
F(net)  function is termed as the activation function 

which is nonlinear as a rule, e.g. sigmoid or hyperbolic 
tangent, or some other one chosen heuristically. 

F(. ), ”net” and “out” symbols are widely spread in the 
corresponding literature, therefore, we don’t change them. 
However, let us present their mathematical description and 
function: 

n nnnet x w=∑ ;            (1.11) 

which represents the coordinate product of the realization 
and neuron weighting coefficients by means of which the 
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modeling of charge accumulation process in soma is 
performed; 

out = {0; 1};            (1.12) 
Through this pattern the description of the decision 

making process at Ne neuron exit, namely:  
If  out = 1, then X ∈ Aj ,  if out = 0, then  X ∉ Aj  

 Aj ∈ {A}.              (1.13) 

2. Description of the Correct and 
Incorrect Recognition Processes 

As the goal of our work is development of a neural 
network which recognizes correctly (without mistakes), then 
at first, explain the meaning of correct or incorrect 
recognition processes: 

The result of the recognition process is correct, if the right 
decision is obtained due to it: the realization to be recognized 
belongs to “its own” type.  

The result of the recognition process is incorrect if an 
incorrect decision is obtained due to it: the realization to be 
recognized does not belong to “its own” type, or belongs to a 
different type. For example, if Aj  type realization is 
presented for recognition from Xj  learning set, then the 
recognition is correct if making a decision results in  

Xj ∈ Aj,                (2.1) 

And the recognition is incorrect if we have: 
Xi ∉ Ai. 

Taking into consideration the symbols obtained in the 
previous chapter and 1,10 patterns, the correct and incorrect 
recognition processes can be described as follows: 

Correct recognition 
Xi Nei ⇒ ∑Xi Wi = ∑ xni wnin = neti  

⇒ F{neti} Zi ⇒ outi = 1 ⇒ Xi ∈ Ai;     (2.2) 
incorrect recognition:  

Xi Nei ⇒ ∑Xi Wi = ∑ xni wnin = neti  

⇒ F{neti} Zi ⇒ outi = 0 ⇒ Xi ∉ Ai.      (2.3) 
The process of correct recognition is completely described 

by 2.2 expression, whereas the incorrect recognition process 
can be varied. It depends on the number of patterns to be 
recognized, on the similarity measure, on the decision 
making algorithm. In our case we deal with the recognition 
process through neurons or a fixed similarity measure as well 
as the decision making algorithm. Therefore, the list of 
enumerated incorrect recognitions is considerably shortened. 
In particular, if the realization to be recognized is presented 
to a neuron of a “different” type, for example, Xi ⇒ Nej , 
where i, j = 1; I���� , i≠j, Xi ∈ Aj . When the number of 
recognitions is more than two in the decision making 
algorithm the neuron threshold initial (heuristically chosen) 
value is frequently admissible; if the value is exceeded, out = 
1 for several patterns. In such a case the decision of 
attributing it to the type for which the given condition is true, 

the decision is made according to the net function maximum 
value or creating a different algorithm. 

Later on we will discuss the process of correcting 
incorrect recognition results for 2.3 expression and for the 
cases when a realization of one type is presented for 
recognition to a “different” type of neuron. It should be taken 
into consideration that the above-mentioned situations fully 
comprise the list of incorrect (false) recognition processes. 
Let us imagine a process of incorrect recognition when Xj  
realization is to be recognized and is presented to Ai 
type Nei neuron: 

Xi Nei = Wi ⇒ ∑ xnj wnjn = netji   

⇒ F�netji� Zi ⇒ outji = 1 ⇒ Xj ∈ Ai. (2.4) 

In 2.3 and 2.4 expressions weighting coefficients 
Wi = {Wni }  of one, namely, Nei  neuron are used; these 
coefficients must ensure, in one case, the correct recognition 
of ”their own” realizations, in the other case, - discarding  
realizations of a different type. 

Let us consider that F(net)  function is generally 
nonlinear but it has a linear section as well. Later on we will 
consider that  F(net)  function parameters and weighting 
coefficients are chosen in such a way that the relation 
between net parameters and F(net) function is linear and 
monotonously growing. Therefore, in the further process of 
correcting recognition errors we can directly use net function 
values considering the fact that scaling of net function values 
is possible during the process of correction as the need arises. 

Let us consider F(net) function in the given range as 
linear which satisfies monotony conditions. Then we will 
have the following expression for describing the correct and 
incorrect recognition process: 

F(net) = k ∙ net = k∑ xni wnin , 
where k > 0, 𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.             (2.5) 

In fact  k, represents a scaling coefficient which changes 
in the process of adjusting the weighting coefficient. Later on, 
in the process of correcting mistakes we will have that the 
initial value of k coefficients equals one and in the process 
of correlation the scaling coefficient is automatically 
established at the necessary level. 

According to the above-mentioned, for describing the 
expressions 1.10 and 2.3 of the incorrect recognition process 
we will have: 

1. While presenting its own realization we have 
(Xi Nei)  

ni ni ink x w Z<∑ ;            (2.6) 

2. While presenting a different realization we have 
(Xi Nei) Expressions 1,10 and 2,4 

    nj ni ink x w Z≥∑ .            (2.7) 

Let us assume that k = 1, then 2.6 and 2.7 inequalities 
will be expressed as follows: 

ni ni in x w Z<∑               (2.8) 
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nj ni in x w Z≥∑              (2.9) 

It should be taken into account that for accomplishing the 
recognition process (algorithm) it is necessary to give initial 
values to the weighting coefficients and thresholds. In 
literature, there are numerous methods and algorithms for 
forming such values. The majority of authors select 
{wni } {Zi}  parameters heuristically and randomly. In our 
case, as it was mentioned above, in the process of recognition 
and correction we only use award procedures, e.g. for {wni } 
coefficients we have:  

wni [ρ + 1] = wni [ρ] + α        (2.10) 
where  ρ = 0,1,2, … is the number of the step. 
From 2.4 expression it follows that we can receive that  

[0] 0niw∀ = ,  1; ,      1; ,n N i I= =    (2.11) 

In a special case when the condition 1.10 and α = 1  is 
fulfilled then we get the so-called statistical etalons [1] 
where we have: 

1 , 1; ,  1; ,  1;im
ni ni i in

i
w X m M i I n N

M
= = = =


(2.12) 

where Mi is the number of realizations in Ai type learning 
cluster. By means of 2.4 expression we get the realization of 
overlay procedure for a learning cluster of any type of set. 
The received set of weighting coefficients can be used for 
initial Wn [0] values. 

Finally, for the correct recognition the following 
inequality is true: 

ni ni in x w Z≥∑            (2.13) 

If the recognition is incorrect, the following inequality is 
true: 

ni ni in x w Z<∑           (2.14)  

3. Correction of the Errors in the 
Process of Recognizing “Their Own” 
Realizations 

The incorrect recognition process is described by means of 
2.3 expression. If we take into account 1.10 expression, then 
the incorrect recognition process can be described in more 
detail by means of the following expression (2.3 expression 
modification): 

Xi Nei ⇒ ∑ xnj wnin = netji   

⇒ F�netji� Zi ⇒ outi = 0 ⇒ Xi ∉ Ai       (3.1) 

The expression 2.7 is analogous to 3.1 expression received 
by means of assumptions (error making) in the previous 
chapter; this expression can be presented in the contracted 
form as follows: 

      1;ni ni in x w Z i I< =∑         (3.2) 

For correcting the recognition mistake it is necessary to 
change the inequality symbol in 3.2 expression, which is 
possible through changing the elements of vectors (matrices) 
xni  or wni . It is obvious that realization elements cannot be 
changed, therefore, it is only admissible to change or, in our 
case to increase the weighting coefficients which is termed 
awarding in the theory of neural networks. Awarding can be 
carried out by applying iteration procedures, e.g. through 
2.10 expression where the initial values of the weighting 
coefficients can be given according to 2.11 expression. 

Let us assume that according to step we received the 
Wni [ρ] set of weighing coefficients. In this case, if the error 
is not corrected, then 3.2 expression can be presented as 
follows: 

∑ xnin wni [ρ] < Zi             (3.3) 
If 3.3 expression is true, we will have to continue the 

iteration (awarding) process by 2.10 expression i.e. to 
increase wni = [ρ]  weighing coefficients until the 
inequality symbol in 3.3 expression is changed: 

ni ni in x w Z≥∑               (3.4) 

where wni  is a set of weighing coefficients for which 3.4 
inequality is true. 

If we use 2.10 procedure for all Ai –type realizations, 
where an error occurred, then due to the fact that applying the 
awarding procedure does not change the correct recognition 
results, we will get a correct recognition of Ai-type learning 

cluster of { }im
iX  realizations. 

Let us carry out the above-mentioned error correction and 
the recognition process for the realization of all set patterns 
of learning sets, accordingly we will have the correct 
recognition of all the realizations for recognizing patterns of 
a learning set. 

There is an obstacle in the described procedure of error 
correction; this obstacle is termed as “repletion” in the theory 
of neural networks. Repletion implies such a growth of the 
weighing coefficients in the process of error correction, 
when the values of a separate and total coefficients exceed 
the possibilities of a neural network and the computer. In 
literature we have numerous methods for overcoming this 
obstacle; the simplest of them implies the proportional 
decreasing of neural network parameters which corresponds 
to the division of both sides of 3.4 expression (inequality) by 
nonnegative integral number. This problem is topical when 
we have a great number of patterns or in case of an increased 
sign space dimension. In this respect the activation function 
nonlinearity is more important; it suppresses the values of 
the activation function which correspond to a high value of 
the argument. In addition, the method of awarding infinitely 
small positive quantities to initial values of weighting 
coefficients is applied. 

3.1. Correction of the Errors in the Process of 
Recognizing “Different” Realizations 

The error at recognizing a different type of realization is 
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given in 2.3 expression and 2.9 expressions obtained through 
further assumptions and simplifications: 

nj ni in X W Z≥∑  

Due to the fact that wni  weighing coefficients have 
changed in the process of error correction given in the 
previous paragraph, instead of 2.9 expression we will have; 

*  ni nj in x w Z≥∑               (4.1) 

If 4.1 inequality is true, then we will have an incorrect 
recognition result Xnj ∈ Ai (expression 2.4). To correct this 
error it is necessary to change wni

∗ and Zi  parameters so 
that the results of correct recognitions obtained in the 
previous chapter are not replaced by an incorrect recognition. 
It means that wni

∗ and Zi parameters should be changed in 
such a way that the inequality sign in 4.1 expression is 
reversed. 

Let us take into account that we use an awarding 
procedure (expression 2.10) as a learning method; this is 
caused by the necessity of error correction in the process of 
recognizing realizations of their own pattern. 

Let us use the awarding procedure for the right side of 4.1 
expression, that is for Zi threshold of Nei neuron. Similar 
to 2.10 procedure we will have: 

Zi[α] = Zi[α − 1] + ΔZ         (4.2) 
Where α = 0,1,2, … is the step number. We increase the 

neuron threshold by 4.2 iterative expression until the 
inequality sign in 4.1 expression is reversed; as a result we 
will get the following expression: 

* *
i[ ] Z  ni ni in x w Z α< =∑        (4.3) 

where  Zi
∗  is the required value of the threshold.  

If 4.3 expression is true, then the recognition process 
described by 4.1 expression is incorrect, that is the error 
made in the process of recognizing Xj  realization is 
corrected.  

In order to avoid errors that Zi  threshold increase may 
cause during the process of recognizing by Nei neuron its 
own Xirealizations it is necessary to take certain measures 
that will enable us to determine that error making in the 
process of recognizing its own realizations can be avoided. 
Let us consider that set pattern realizations are binary 
(condition 1.4), which enables us to make a list of possible 
situations for different patterns of realizations, for example, 
Xi  and Xj realizations for Xni  and Xnj  components (table 
4.1). It is evident, that realizations may belong to any two 
different patterns; the n index value of their properties 
(characteristic features) is the same. 

Table 4.1  

Situation 

 
1 2 3 4 

Xni  0 1 0 1 

Xnj  1 0 0 1 

The recognition of Ai type Xj realizations is correct if 3.4 
inequality is true. If we consider that the neuron threshold 
has increased according to 4.2 and 4.3 expressions, then 3.4 
expression will be presented as follows:    

I) *
ni ni in x w Z≥∑       recognition is correct or     

II) *
ni ni in x w Z<∑  recognition is incorrect 

(expression 4.4). 
Situation 1: Xni = 0;   Xnj = 1  

In the first case which is described by 4.4 expression, the 
recognition is correct, so it is not necessary to change wni  
weighing coefficient; in the second case the increase in wni  
will give no result (no error connection) because wni = 0, as 
we see in case of situation 1 the increase in wni  weighting 
coefficient is ineffective. 

Situation 2: Xni = 1;   Xnj = 0 

Proceeding from 4.4 expression the increase in wni  
coefficients helps to make the first inequality of the 
expression stricter or, which is the same, strengthens the 
process of correct recognition; in case of the second 
inequality the increase in Wni weighting coefficient becomes 
the necessary condition for correcting the recognition error. 
Consequently, it becomes evident that in case of situation 2 
the increase in weighting coefficient is effective according to 
the increase in the reliability of the recognition  

Situation 3: Xni = 0;    Xnj = 0  

In case of situation three, on the basis of 4.4 expression the 
recognition result (correct or incorrect) will not change, as 
we have weighing coefficients multiplied by zero. 

Situation 4:  Xni = 1;    Xnj = 1 

In case of situation four, the recognition of Xi realization 
will improve. But it is possible to make errors in the Xj 
realizations recognition process, which occurs when Zj < Zi, 
so we must consider other circumstances in case of the 
increase in wni  coefficients, or we must avoid the increase 
procedure and search for another way out to correct the 
erroneous recognition.  

The analysis of the above-given situation shows that for 
the correct recognition of any type of realization it is 
necessary for the etalon description of this pattern to have at 
least one sign whose realization probability for one pattern is 
equal to one, whereas it is equal to zero for other patterns. If 
there is such a sign, then the correction of the recognition 
error is possible through using an awarding procedure.  

In other cases it is necessary to use the existing methods 
for evaluation or to work out a new one. 

4. Signs Evaluation (Ranging) 
According to Learning Set 
Realizations 

Let us assume that we have chosen (heuristically or 
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according to other factors) signs-characteristic features that 
represent A set patterns in this sign space. The presentation 
of patterns in the sign space occurs by means of realizations 
whose totality for each pattern forms or must form a separate 
cluster (group). It is implied that the number of clusters must 
be equal to the number of patterns or exceed it. The position 
of clusters in the sign space determines their separateness 
degree and, accordingly, the reliability of recognition 
process. Namely, the more separated the type-reflecting 
clusters are from one another, the more reliable the 
recognition process is and vice versa; in case of closely 
positioned clusters the recognition process becomes more 
complicated and the recognition becomes unreliable. The 
process of selecting signs, as well as its result, greatly 
influences the position of clusters in the sign space, so the 
selection of signs should be based on the existing scientific 
information (if it is possible) in the given sphere. The next 
stage may be selected according to evaluating signs together 
or separately. 

In our case the process of evaluating-selecting signs is 
considered according to its reliability which makes it 
necessary to introduce some concepts – terms through which 
we will characterize certain properties (signs) from the point 
of view of recognition, content by means of formalizing 
these concepts later on. 

To evaluate a separate sign in the sign space let us use 
general and content criteria: 

To what extent a concrete pattern is characterized by a 
given sign.  

To what extent a given concrete pattern of a sign differs 
from the same sign of another pattern. 

Characteristic features represent the 
property-characteristic of the object which the object 
possesses always or very frequently; this is expressed by the 
fact that we have this property in the object realizations or if 
it is measurable, its values are steadily placed in a certain line 
of values; the sign possesses a property distinguishing it 
from other patterns, if it satisfies the condition of specificity 
and, at the same time, this condition is not fulfilled clearly in 
relation to other signs. 

According to the condition, 1.4 expression, the sign space 
and, correspondingly, pattern realizations are binary. At the 
same time, any realization of any pattern (vectors or matrices) 
has equal dimensions, which makes it possible to present the 
concepts “characteristic” and “distinguishing” in a 
formalized way. 

Let us place the realizations of a learning cluster according 
to types, after this with the help of superposition (overlay) let 
us make the so-called “statistical” description (etalon) for 
each type separately [1]. Let us designate the Ai type 
statistical etalon with Si (vector or matrix) the coordinates 
of which are: 

S = s1, s2, … , sni , … , sNi , …   i = 1; I����       (5.1) 
Where for ∀sni  we have: 

       1;i
ni

i

RS i I
M

= =            (5.2) 

Where Ri  is the number of those realizations in Ai 
pattern learning set in which Xni  sign gets the value equal to 
one. Proceeding from 5.2 expression we can formalize 
“characteristic” and “distinguishing” signs: 

Sign xni  is absolutely characteristic of Ai type if Sni = 1. 
Sign xni  is absolutely distinguishing for Ai  type if 

Sni = 1 and, Snj = 0, j = 1; J����, j ≠ i 
For the situations discussed in chapter 2 xni sign is 

absolutely characteristic for Ai pattern if xni = 1 (situation 
2 and situation 4) for all the realizations of Ai  pattern 
learning set. 

The same sign is absolutely distinguishing for Ai pattern 
if the following condition is fulfilled: 

xni = 1; xnj = 0, (situation 2). ∀i, j ∈ I; i ≠ 0. 
It is evident that the greater the number of the absolutely 

characteristic and distinguishing signs in the description of 
the given pattern, the higher the chance of correct 
recognition for this pattern of realization and vice versa. 

Unfortunately, the combined occurrence of characteristic 
and different signs for a real object is quite rare; due to this it 
becomes necessary to introduce intermediate concepts and 
their formalized definitions. In particular, let us assume that 
xni  xni sign is partially characteristic of Ai  pattern if the 
following condition is fulfilled: 

0,5 ≤ Sni ≤ 1               (5.3) 
xni  sign is partially distinguishing for Ai  pattern if 5.3 

condition and the following condition are fulfilled: 
0 ≤ Sni ≤ 0,5     j = 1; J����, i ≠ j        (5.4) 

It is obvious that the greater the number of signs satisfying 
the 5.3 and 5.4 conditions, the higher the chance of correct 
recognition and vice versa. 

It can be said that through carrying out the learning 
processes discussed in chapters 3 and 4 the error-free 
recognition of learning set realizations is achieved. If there 
are no absolutely characteristic and distinguishing signs for 
the patterns, then it becomes necessary to find satisfying 
signs for conditions 5.3 and 5.4; this will make it possible to 
correctly evaluate the recognition process for such cases. Let 
us designate the set of Ai pattern signs for Aj type which 
satisfy 5.3 and 5.4 conditions �Sij�  and by Sji  set - Aj 
pattern signs which satisfy the same conditions in relation to 
Ai pattern; the correlation of the whole set of signs {X} and 
Sij  Sji , Sji  sets is given in Picture 5.1: 

Let us assume that the number of signs in Sij   set is equal 
to Rij , whereas in Sji  set it is equal to Rji ; for the 
corresponding indexation of these signs in order to describe 
their total sequence let us use symbols 

1; ;    1;ij i ji jr R r R= = ; let us consider expressions: 

;     rij ij rji jir rS Q S Q= =∑ ∑        (5.5) 
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Picture 5.1  

As in equalities Rij < 𝑁𝑁 and  Rji < 𝑁𝑁 are fulfilled, the 
following inequalities are also true: 

] ;      ij ni i ji nj jn nQ S C Q S C≤ =∑ ∑    (5.6) 

We can characterize (range) separate elements or groups 
of elements of a sign set from the point of view of 
recognition reliability which depends on how big is Qij  
value which constitutes Ci  value and on how big is Qji  
value which constitutes Cj value. 

The following inequalities are received considering 5.6 
expression: 

0;     , 1, ,    i ijC Q i j I i j− ≥ = ≠      (5.7) 

1. A sign is absolutely useful if 5.7 inequality is true  
for ∀i and ∀j. In this case there is at least one sign in 
the sign space which ensures the Ai  pattern 
error-free recognition for learning set realizations of 
the given set of patterns. 

2. A sign is useful if 5.7 expression is fulfilled for a part 
of patterns, e.g. for half of the patterns: 

1 10;    1, ,   0,5  i ijC Q j I I I I− ≥ = ≤ <    (5.8) 

3. A sign is less useful if 5.7 expression is true for less 
than a half of patterns; 

2 20;     1, ,    0,5  i ijC Q j I I I− ≥ = <     (5.9) 

The I1, I2 coefficient values are taken heuristically, their 
improvement is possible and should be made for a concrete 
set of types and signs. 

It is obvious that absolutely useful signs for real objects 
and the sign space are very rare, whereas useful and less 
useful signs for the vast majority of patterns and signs occur 
quite often. 

It is evident that the greater the number of absolute or 
useful signs is, the greater is the possibility of correct 
recognition of learning processes described in the previous 
chapters and vice versa. 

5. The Plan and Algorithm for 
Experimental Research 

The error correction methods and sign evaluation 
algorithms given in the previous chapters are based on the 
exact knowledge of the elements of pattern realizations set as 
well as the realization of their learning set. According to the 
condition the set of signs for all the patterns and accordingly 
for all the realizations should be equal and binary. To carry 
out the realizations of learning set patterns it must be 

determined which pattern each of them belongs to; this must 
be considered attentively as otherwise this will cause the 
incorrect description of patterns in the learning process and 
eventually we will get incorrect recognition results.  

The stages of experimental research are as follows: 
Building neural networks or selecting them from the 

existing ones; 
The setting up – calculating the threshold coefficient for 

each neuron in the network; 
Awarding (calculating) the weighting coefficient for each 

sign; 
Error correction in the process of recognizing their own 

realizations; 
Error correction during the recognition of different 

realizations; 
Carrying out feature’s evaluation (algorithm). 
In order to carry out the above mentioned stages it is 

necessary to create the so-called “statistical” descriptions, 
after which it becomes possible to calculate the threshold for 
each neuron by way of conducting the recognition process 
(process algorithm). If necessary, it is possible to get the 
error-free recognition of learning set patterns realizations by 
means of changing-improving the weighting coefficients of a 
neuron. This article has a theoretical character, so explained 
method may be used for practical tasks, which are executed 
by neural nets. 
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