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a b s t r a c t

Performance assessment often has to be conducted under uncertainty. This paper proposes a ‘‘fuzzy
expected value approach’’ for data envelopment analysis (DEA) in which fuzzy inputs and fuzzy outputs
are first weighted, respectively, and their expected values then used to measure the optimistic and pes-
simistic efficiencies of decision making units (DMUs) in fuzzy environments. The two efficiencies are
finally geometrically averaged for the purposes of ranking and identifying the best performing DMU.
The proposed fuzzy expected value approach and its resultant models are illustrated with three numer-
ical examples, including the selection of a flexible manufacturing system (FMS).

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional data envelopment analysis (DEA) (Charnes, Cooper,
& Rhodes, 1978) requires crisp input and output data, which may
not always be available in real word applications. Significant ef-
forts have been made to handle fuzzy input and fuzzy output data
in DEA. For example, Sengupta (1992) incorporated fuzziness into
DEA by defining tolerance levels for both the objective function
and violations of constraints and proposed a fuzzy mathematical
programming approach. Triantis and Girod (1998) transformed
fuzzy input and fuzzy output data into crisp data using member-
ship function values and suggested a mathematical programming
approach in which efficiency scores were computed for different
values of membership functions and then averaged. Guo and
Tanaka (2001) converted fuzzy constraints such as fuzzy equalities
and fuzzy inequalities into crisp constraints by predefining a pos-
sibility level and using the comparison rule for fuzzy numbers
and presented a fuzzy CCR model. León, Liern, Ruiz, and Sirvent
(2003) suggested a fuzzy BCC model based on the same idea.

Lertworasirikul, Fang, Joines, and Nuttle (2003) proposed a pos-
sibility DEA model for fuzzy DEA. In the special case that fuzzy data
are trapezoidal fuzzy numbers, the possibility DEA model became a
linear programming (LP) model. They (Lertworasirikul, Fang,
Joines, & Nuttle, 2003) also presented a credibility approach as
an alternative way for solving fuzzy DEA problems. The possibility
and credibility approaches were further extended to fuzzy BCC
model in Lertworasirikul, Fang, Nuttle, and Joines (2003) by the

same authors. Wu, Yang, and Liang (2006) applied the possibility
DEA model for efficiency analysis of cross-region bank branches
in Canada. Garcia, Schirru, and Melo (2005) utilized the possibility
DEA model for failure mode and effects analysis (FMEA) and
presented a fuzzy DEA approach to determining ranking indices
among failure modes. Wen and Li (2009) employed credibility
measure to represent fuzzy CCR model as an uncertain program-
ming and solved it with a hybrid intelligent algorithm which inte-
grates fuzzy simulations and genetic algorithms.

Kao and Liu (2000a, 2000b, 2003, 2005) transformed fuzzy in-
put and fuzzy output data into intervals by using a-level sets and
Zadeh’s extension principle, and built a family of crisp DEA models
for the intervals. Based on their crisp DEA models for a-level sets,
Liu (2008) and Liu and Chuang (2009) took further into consider-
ation the concept of assurance region (AR) and developed a fuzzy
DEA/AR model for the selection of flexible manufacturing systems
(FMSs) and the assessment of university libraries, respectively.
Saati, Menariani, and Jahanshahloo (2002) defined fuzzy CCR mod-
el as a possibilistic-programming problem and transformed it into
an interval programming by specifying a a-level set. Their ap-
proach was further extended in Saati and Memariani (2005) so that
all decision making units (DMUs) could be evaluated with a com-
mon set of weights under a given a-level set. Entani, Maeda, and
Tanaka (2002) and Wang, Greatbanks, and Yang (2005) also chan-
ged fuzzy input and fuzzy output data into intervals by using a-
level sets, but suggested two different interval DEA models.

Dia (2004) proposed a fuzzy DEA model based upon fuzzy arith-
metic operations and fuzzy comparisons between fuzzy numbers.
The model requires the decision maker (DM) to specify a fuzzy
aspiration level and a safety a-level so that the fuzzy DEA model
could be transformed into a crisp DEA model for solution. Wang,
Luo, and Liang (2009) constructed two fuzzy DEA models from
the perspective of fuzzy arithmetic to deal with fuzziness in input
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and output data in DEA. The two fuzzy DEA models were both for-
mulated as linear programs and could be solved to determine fuzzy
efficiencies of DMUs.

Triantis (2003) introduced a fuzzy DEA approach to calculate
fuzzy non-radial technical efficiencies and implemented the ap-
proach in a newspaper preprint insertion manufacturing process.
Soleimani-damaneh, Jahanshahloo, and Abbasbandy (2006)
addressed some computational and theoretical pitfalls of the fuzzy
DEA models developed in Kao and Liu (2000a), León et al. (2003)
and Lertworasirikul et al. (2003) and provided a fuzzy DEA model
to yield crisp efficiencies for the DMUs with fuzzy input and fuzzy
output data. Jahanshahloo, Soleimani-damaneh, and Nasrabadi
(2004) extended a slack-based measure (SBM) of efficiency in
DEA to fuzzy settings and developed a two-objective nonlinear
DEA model for fuzzy DEA.

Existing fuzzy DEA models exhibit some drawbacks. For in-
stance, fuzzy DEA models derived from the direct fuzzification of
crisp DEA models ignore the fact that a fuzzy fractional program
cannot be transformed into an LP model in the traditional way that
we do for a crisp fractional program. Fuzzy DEA models built on the
basis of a-level sets require the solution of a series of LP models
and thus considerable computational efforts. Fuzzy DEA models
constructed from the perspective of fuzzy arithmetic demand a ra-
tional yet easy-to-use ranking approach for fuzzy efficiencies. To
overcome these drawbacks, we propose in this paper a ‘‘fuzzy ex-
pected value approach’’ for fuzzy DEA, which first weights fuzzy in-
puts and fuzzy outputs, respectively, and then utilizes their
expected values for measuring the performances of DMUs in fuzzy
environments.

The paper is organized as follows. Section 2 introduces the mea-
sures of fuzzy expected values and develops fuzzy expected value
models for fuzzy DEA. Section 3 illustrates the developed fuzzy ex-
pected value models with three numerical examples, including the
selection of a FMS. Section 4 concludes the paper.

2. Fuzzy expected values and fuzzy DEA models

Fuzzy numbers are convex fuzzy sets, characterized by given
intervals of real numbers, each interval with a grade of member-
ship between 0 and 1. The most commonly used fuzzy numbers
are triangular and trapezoidal fuzzy numbers defined by the
following membership functions, respectively:

leA1
ðxÞ ¼

ðx� aÞ=ðb� aÞ; a 6 x 6 b;

ðd� xÞ=ðd� bÞ; b 6 x 6 d;
0; otherwise;

8><>: ð1Þ

leA2
ðxÞ ¼

ðx� aÞ=ðb� aÞ; a 6 x 6 b;

1; b 6 x 6 c;

ðd� xÞ=ðd� cÞ; c 6 x 6 d;

0; otherwise:

8>>><>>>: ð2Þ

For brevity, triangular and trapezoidal fuzzy numbers are often
denoted as (a,b,d) and (a,b,c,d). It is evident that triangular fuzzy
numbers are special cases of trapezoidal fuzzy numbers with
b = c. For any two positive trapezoidal fuzzy numberseA ¼ ðaL; aM; aN; aUÞ and eB ¼ ðbL; bM ; bN; bUÞ, fuzzy addition and fuzzy
multiplication on eA and eB are respectively defined aseA þ eB ¼ ðaL þ bL; aM þ bM ; aN þ bN; aU þ bUÞ and eA � eB � ðaLbL;

aMbM ; aNbN; aUbUÞ.
Let n be a fuzzy variable with a membership function l:

R! ½0;1� and r be a real number. The possibility and the necessity
of {n P r} are respectively defined by

Posfn P rg ¼ sup
xPr

lðxÞ; ð3Þ

Necfn P rg ¼ 1� Posfn < rg ¼ 1� sup
x<r

lðxÞ; ð4Þ

which show respectively the possibility and the necessity degrees
to which n is not smaller than r. Pos and Nec are a pair of dual fuzzy
measures in the sense that Pos{A} = 1 � Nec{AC} with AC is the com-
plement of A. Based upon the possibility and the necessity mea-
sures, credibility measure is defined as

Crfn P rg ¼ 1
2

Posfn P rg þ Necfn P rgð Þ: ð5Þ

The fuzzy expected value of n can thus be defined as (Liu & Liu,
2002)

E½n� ¼
Z 1

0
Crfn P rgdr �

Z 0

�1
Crfn 6 rgdr: ð6Þ

It has been shown (Liu & Liu, 2002) that if fuzzy variable n is re-
placed with a random variable whose probability density function
is / and Cr is replaced with the probability measure Pr, then there
exists

R1
0 Prfn P rgdr �

R 0
�1 Prfn 6 rgdr ¼

Rþ1
�1 x/ðxÞdx, which is

exactly the expected value of the random variable n.
It is also shown (Liu & Liu, 2002) that if n is a trapezoidal fuzzy

variable (r1,r2,r3,r4), then the expected value of n is (1/4)(r1 +
r2 + r3 + r4). In particular, if n is a triangular fuzzy variable
(r1,r2,r3), then the expected value of n is (1/4)(r1 + 2r2 + r3).

Suppose we have n DMUs to be evaluated in terms of m inputs and
s outputs. Let xij (i = 1, . . . ,m) and yrj (r = 1, . . . ,s) be the input and out-
put data of DMUj (j = 1, . . . ,n). Without loss of generality, all input
and output data xij and yrj are assumed to be uncertain and character-

ized by trapezoidal fuzzy numbers ~xij ¼ xL
ij; x

M
ij ; x

N
ij ; x

U
ij

� �
and

~yrj ¼ yL
rj; y

M
rj ; y

N
rj ; y

U
rj

� �
with xL

ij P 0 and yL
rj P 0 for i = 1 to m, r = 1 to

s, and j = 1 to n. Crisp data and triangular fuzzy data are treated as
special cases of trapezoidal fuzzy data ~xij and ~yrj with
xL

ij ¼ xM
ij ¼ xN

ij ¼ xU
ij ; yL

rj ¼ yM
rj ¼ yN

rj ¼ yU
rj , and xM

ij ¼ xN
ij ; yM

rj ¼ yN
rj ,

respectively. The total fuzzy weighted output (FWO) and the total
fuzzy weighted input (FWI) of DMUj are given by

FWOj ¼
Xs

r¼1

~ur~yrj ¼
Xs

r¼1

uL
r ;u

M
r ;u

N
r ;u

U
r

� �
� yL

rj; y
M
rj ; y

N
rj ; y

U
rj

� �
; ð7Þ

FWIj ¼
Xm

i¼1

~v i~xij ¼
Xm

i¼1

vL
i ;vM

i ;vN
i ;vU

i

� �
� xL

ij; x
M
ij ; x

N
ij ; x

U
ij

� �
; ð8Þ

where ~ur ¼ uL
r ; u

M
r ;u

N
r ; u

U
r

� �
and ~v i ¼ vL

i ;vM
i ;vN

i ;vU
i

� �
are fuzzy

weights for fuzzy input ~xij and fuzzy output ~yrj, respectively. Accord-
ing to fuzzy addition and fuzzy multiplication operations on two
positive fuzzy numbers, (7) and (8) can be approximately expressed
as

FWOj �
Xs

r¼1

uL
r yL

rj;
Xs

r¼1

uM
r yM

rj ;
Xs

r¼1

uN
r yN

rj ;
Xs

r¼1

uU
r yU

rj

 !
; ð9Þ

FWIj �
Xm

i¼1

vL
i xL

ij;
Xm

i¼1

vM
i xM

ij ;
Xm

i¼1

vN
i xN

ij ;
Xm

i¼1

vU
i xU

ij

 !
; ð10Þ

which can be viewed as two trapezoidal fuzzy variables, whose
expected values can therefore be determined as

EðFWOjÞ ¼
1
4

Xs

r¼1

uL
r yL

rj þ
Xs

r¼1

uM
r yM

rj þ
Xs

r¼1

uN
r yN

rj þ
Xs

r¼1

uU
r yU

rj

 !

¼ 1
4

Xs

r¼1

uL
r yL

rj þ uM
r yM

rj þ uN
r yN

rj þ uU
r yU

rj

� �
; ð11Þ
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