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Abstract

This paper proposes an approach to reduce the total operational cost of a spare part logistic system by appropriately designing the
BOM (bill of material) configuration. A spare part may have several vendors. Parts supplied by different vendors may vary in failure rates
and prices – the higher the failure rate, the lower the price. Selecting vendors for spare parts is therefore a trade-off decision. Consider a
machine where the BOM is composed of s critical parts and each part has k vendors. The number of possible BOM configurations for the
machine is then ks. For each BOM configuration, we can use OPUS10 (proprietary software) to calculate an optimum inventory policy
and its associated total logistic cost. Exhaustively searching the solution space by OPUS10 can yield an optimal BOM configuration;
however, it may be formidably time-consuming. To remedy the time-consuming problem, this research proposes a GA-neural network
approach to solve the BOM configuration design problem. A neural network is developed to efficiently emulate the function of OPUS10
and a GA (genetic algorithm) is developed to quickly find a near-optimal BOM configuration. Experiment results indicate that the
approach can obtain an effective BOM configuration efficiently.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Machine availability is very important in capitally inten-
sive industries. The higher the machine availability, the
higher is the capacity. The level of machine availability
partly depends on the inventory level of its spare parts.
At a lower inventory level, the time required to repair a
machine would be longer due to having higher possibility
of lacking spare parts. A higher inventory level by contrast
would increase machine availability at the expense of pay-
ing more inventory cost. Since spare parts in capitally
intensive industries are quite expensive, much research
investigated the stocking policies for spare parts to resolve
the trade-off decision (Sherbrooke, 2004).

Spare parts are typically replenished through a multi-

echelon supply chain system, which is a hierarchical
structure comprising multiple layers of facilities (Fig. 1).
A facility has two main functions: storing and repairing
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spare parts. Facilities in the lowest layer directly supply
parts to machines, whereas those at a high layer supply
parts to its succeeding lower layer facilities. Facilities at a
higher layer are generally equipped with higher repairing
capability. That is, a part that cannot be repaired by a par-
ticular facility would be sent upward to its parent facility.
In this paper, the information for characterizing such a
supply chain system is called BOS (bill of stations).

A machine is typically composed of several modules;
each module comprises several assemblies that are assem-
bled by subassemblies/parts (Fig. 2). The hierarchical rep-
resentation for modeling the materials of a machine is
called BOM (bill of materials), where a layer in the BOM
structure is usually called an indenture in literature. In the
BOM, each part is defined with several BOS-independent
attributes such as cost and failure rate, and some BOS-
dependent attributes such as eligible stations for repairing
the part.

At a globalization era, a part tends to have multiple ven-
dors who may provide parts that are functionally identical
but with various failure rates and costs. The lower the
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Fig. 2. BOM of a multi-indenture machine.
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failure rate, the higher is the price of a part. Purchasing
more reliable parts (i.e. with lower failure rates) would
reduce the inventory level of spare parts required to main-
tain the target machine availability. As a result, this would
reduce the holding cost of part inventory at the expense of
increasing its purchasing cost. Choosing an appropriate
configuration of BOM is therefore a very important way
to reduce the total operational cost of a spare part supply
chain system. Yet, this idea has been rarely noticed in
literature.

This paper proposes the idea of choosing appropriate
BOM configurations, formulates the decision problem, and
develops an efficient approach to solve the problem. Suppose
a machine has s critical parts, each of which has k vendors.
The possible number of BOM configurations may be quite
huge (ks). It might take a formidable computation time if
we exhaustively evaluate the performance of each BOM
configuration by using the evaluation methods developed
in literature. To efficiently solve the problem, we propose a
GA-NN approach. The NN (neural network) technique is
used to efficiently emulate the function of an existing method
for evaluating BOM configurations, whereas the GA tech-
nique is used to efficiently identify a near-optimal BOM con-
figuration from the huge solution space.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the literature on stocking spare parts for a
supply chain system. Section 3 introduces OPUS10 (pro-
prietary software), which can be used to evaluate the perfor-
mance of a BOM configuration. That is, OPUS10 can yield
the optimal stocking policy and its associated total opera-
tional cost for a BOM configuration. Section 4 describes
the procedure for establishing the neural network that could
emulate the function of OPUS10. Section 5 presents the
genetic algorithm. Section 6 illustrates the experimental
results and concluding remarks are placed in Section 7.

2. Related literature

The inventory policy for a multi-echelon repairable item
(spare part) system has been a research issue for several dec-
ades. Much literature has been published and some of them
have included a comprehensive survey (Diaz & Fu, 2005;
Guide & Srivastava, 1997; Kennedy, Patterson, & Freden-
dall, 2002; Rustenburg, 2000; Sleptchenko, 2002). These
previous studies can be categorized into two main streams.

The first stream addressed a scenario equipped with an
infinite repair capacity. An early and representative study
is the METRIC (Multi-echelon Technique for Recoverable
Item Control) model developed by Sherbrooke (1968).
Many studies that extend the METRIC model were subse-
quently developed (Graves, 1985; Muckstadt, 1973; Sher-
brooke, 1986, 2004; Simon, 1971; Slay, 1984). With the
ample-server assumption, the queue-time for repair is negli-
gible; therefore, these METRIC-variant models have been
able to deal with large and complex systems. However, a
real-world problem is typically equipped with limited repair
capacity. The METRIC-variant models thus tend to under-
estimate the stocking levels in some real applications.

The various versions of the METRIC-variant models
can be characterized from three perspectives: the demand
pattern of spare part, BOM, and the complexity of supply
chain. In the original METRIC model (Sherbrooke, 1968),
the BOM is a single-indenture system involving multi-
repairable-items, the demand is a compound Poisson
process, and a replenishment (S, S � 1) policy is used
throughout a two-echelon supply chain. Simon (1971)
developed a METRIC-variant model that uses (s, S) policy
in the second-echelon facilities. Muckstadt (1973) enhanced
the METRIC model by including two-indenture BOM
systems. Slay (1984), Graves (1985), and Sherbrooke
(1986) further developed methods in order to estimate the
variances of service levels. Hausman and Erkip (1994)
broadened the METRIC model by including a scenario
where an emergency-ordering policy is allowed.

The second stream addressed a scenario with finite

repair capacity, which leads to the need of modeling the
machine-repair queueing behavior. The models in this
stream, more realistic than the METRIC-variant models,
are certainly more difficult to solve. Due to the inherent
complexity, by the possible inclusion of enumeration tech-
niques, most of these studies are computationally extensive
(Gross, Miller, & Soland, 1983). Approximations to reduce
the complexity have therefore been proposed in order to
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develop efficient algorithms for determining the capacities
of repair facilities as well as spares level (Albright, 1989;
Albright & Soni, 1988a, 1988b; Diaz & Fu, 1997; Gross
& Miller, 1984; Gross, Kioussis, & Miller, 1987; Kim, Shin,
& Park, 2000; Rustenburg, van Houtum, & Zum, 2001;
Sleptchenko, van der Heijden, & van Harten, 2002).

In summary, most previous research focused on how to
appropriately determine stocking level and repair capaci-
ties to reduce the total logistic costs of spare parts. Our
problem of interest—how to choose a BOM configuration
to reduce the total logistic cost of spare parts has been scar-
cely addressed.

3. OPUS10

OPUS10, proprietary software of a Swedish company,
was developed based on the techniques of the METRIC-
variant models. The input to OPUS10 involves the BOM/
BOS of a spare part supply chain system. The output of
OPUS10 yields optimal stocking levels for achieving target
machine availability, and computes the associated total
operational cost of the supply chain. The BOS, BOM,
and the input/output relationships of OPUS10 are
described below.

3.1. BOS

As shown in Fig. 1, the BOS of a spare part supply chain
in OPUS10 is a hierarchical structure (also called multi-
echelon in literature) consisting of multiple facilities. The
attributes for describing a BOS includes the number of lay-
ers in the hierarchy, the number of facilities at each layer,
the replenishment/repair logistic relationships between
any two facilities, the lead time between any two facilities,
and the number of machines logistically supported by each
facility at the lowest layer. The facility at the lowest layer,
which directly supports machines, hereafter is called a ter-

minal facility.
A replenishment logistic relationship defines the eligibil-

ity of a particular facility to supply quality parts to other
facilities. A repair logistic relationship defines the eligibility
of a particular facility to send a failed part to other facili-
ties for repair. Two facilities, if not eligible for shipping
parts between each other, do not have a logistic relation-
ship. The more number of logistic relationships denotes
the more flexibility is embedded in the hierarchy of BOS.
Lateral transshipment (logistic relationships among facili-
ties of the same layer are eligible), which has been investi-
gated by some literature (Axsäter, 2003; Lee, 1987; Wong,
Cattrysse, & van Oudheusden, 2005), can also be modeled
in the BOS of OPUS10.

3.2. BOM

As shown in Fig. 2, the BOM is a hierarchical structure
that involves two main types of information: the hierarchi-
cal relationship and the attributes of each part/module.
The typical attributes of a part/module involve the failure
rate, the unit cost, and the facilities that are eligible for
repairing the part/module.

The modules/parts of a BOM are classified into two
types: replaceable and discardable. A replaceable part/mod-
ule denotes that it is repairable, which involves two types:
LRU and SRU. An LRU (line replacement unit) is a
part/module that can be directly replaced by a terminal
facility. Any LRU if failed can be individually taken out
from the machine, replaced by a quality unit, and sent
upward for repairing. Referring to Fig. 2, an SRU (shop
replacement unit), a member of a particular LRU assem-
bly, cannot be individually taken out from the machine.
When an SRU fails, we cannot replace the SRU on line.
Rather, we have to replace its parent LRU on line and sent
the LRU upward to a shop-facility, where the LRU can be
disassembled so that the SRU can be taken out from the
LRU for repairing, and a quality SRU can be filled in
the LRU.

A discardable part/module denotes that it is non-repair-

able, which also involves two types: DU and DP. A DU
(discardable unit) can be individually taken out from the
machine. When a DU fails, we can take it out on line, dis-
card it, and replace it by a new quality DU. A DP (discard-
able part), like SRU, cannot be individually taken out from
the machine and always has a parent LRU. When a DP
fails, we cannot discard the DP on line. Rather, we have
to replace its parent LRU on line and sent the LRU
upward to a shop-facility, where the LRU can be disassem-
bled so that the failed DP can be taken out and discarded
for filling in a new quality DP in the LRU.

In summary, each part/module in the BOM has a
replacement attribute to clarify where it is of LRU, SRU,
DP, or DU. The distribution of the replacement attributes
would significantly affect the total operational cost of a
spare part logistic system and have to be modeled in the
BOM.

3.3. Input/output relationship of OPUS10

The input/output relationships of OPUS10 in dealing
with a multi-vendor spare part supply chain system that
adopts (S � 1, S) stocking policy to achieve a specified
machine availability can be formulated as follows:

ðSij;TSCÞ ¼ f ðA; rj;Qj; T
pr
j ; P jk; F jk; T tr

io;C
tr
io; T

re
ij ;C

re
ij Þ ð1Þ

where
i index of facility, 1 6 i 6 I

j index of part, 1 6 j 6 J

k index of vendor, 1 6 k 6 K

Sij stocking level of part j at facility i

TSC total operation costs of the supply chain
A target average machine availability specified by

users
Qj quantity of part j in the BOM
rj replacement attribute of part j, which denotes that

part j is LRU, SRU, DP or DU
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T pr
j production/purchasing lead time of part j

Pjk unit price of part j provided by vendor k

Fjk failure rate of part j provided by vendor k

T tr
io transportation time between facilities i and o

Ctr
io transportation cost between facilities i and o

T re
ij repair time of part j at facility i

Cre
ij repair cost of part j at facility i

In Eq. (1), f denotes the function of OPUS10. The right-
hand side represents the input parameters of OPUS10,
which characterize the BOM/BOS of the supply chain
and the user-specified machine availability (A). The left-
hand side represents the output of OPUS10 – an optimal
setting for stocking levels (Sij) and the total operational
cost at this setting (TSC).

In dealing with the decision of selecting BOM configura-
tions, the function of OPUS10 can be further formulated as
follows:

ðSij;TSCÞ ¼ f ðV jA; rj;Qj; T
pr
j ; P jk; F jk; T tr

io;C
tr
io; T

re
ij ;C

re
ij Þ
ð2Þ

where V = [vj]1·J, 1 6 vj 6 K, vj denotes the vendor that
supplies part j.

That is, V is used to model a BOM configuration, which
represents the decision variables of this problem. Sij

(1 6 i 6 I and 1 6 j 6 J) are intermediate output variables
denoting optimal stocking policy, which can be used to
compute TSC – the final output variable.

The combination of these decision variables would yield
KJ possible BOM configurations, where KJ = 59,049 if
K = 3, J = 10. Using a particular personal computer, our
experiment indicates that it takes OPUS10 about 5 s to
evaluate the performance (TSC) of a BOM configuration.
For a decision problem with KJ = 59,049, the required
computation time is about 3.4 days if we search these
configurations exhaustively. In this paper, we propose a
GA-NN technique to reduce the computation time. The
NN (neural network) technique is used to emulate the func-
tion of OPUS10 in a more efficient manner. The (GA)
genetic algorithm technique is used to reduce the number
of BOM configurations that are searched during the pro-
cess of finding a near-optimal one.

4. Neural networks (NN)

The procedure for establishing an NN for emulating the
function of OPUS10 involves two major steps. First, we
randomly sample n number of BOM configurations from
the solution space and evaluate their performance at the
specified machine availability (A) by using OPUS10. Refer-
ring to Eq. (2), this sampling would yield n pairs of input/
output vectors, where V (BOM configuration) is the input
and TSC (total operation cost) is the output.

Second, from the n pairs of input/output vectors, n1

pairs are randomly sampled and used to train or develop
a back-propagation neural network (Fausett, 1994). The
remaining n � n1 pairs are used to test the effectiveness of
the network. The trained network if effective can be used
to emulate the function of OPUS10.

The architecture of the back-propagation neural net-
work involves three layers of neurons (Fig. 3). The first
layer represents the input, the third layer represents the
output, and the second layer (called hidden layer) tends
to model the transformation mechanism from input to out-
put. Each neuron in a layer and that in its subsequent layer
is connected by a link on which a weight is to be found.
Training or developing the back-propagation neural net-
work is to determine appropriate weights of each link.

The algorithm for training the NN iteratively changes
the network weights by the following formula:

wijkðt þ 1Þ ¼ wijkðtÞ þ g � wijkðtÞ þ a � wijkðt � 1Þ ð3Þ

where t denotes the index of change, i denotes a neuron in
layer k, j denotes a neuron in the preceding layer (k � 1),
and wijk represents the weight between the two neurons.
Parameters g (learning constant) and a (momentum con-
stant) are intended to adjust the speed of convergence.
The detailed procedures for training the NN can be
referred to Fausett (1994).

The validity of the trained NN is evaluated by measur-
ing the deviation between the predicted output of the NN
and the actual output of OPUS10, in terms of the root-
mean-square error (RMSE). During the network develop-
ment process, the network architecture (number of neurons
at each layer) and the training parameters (g and a) are iter-
atively selected in order that the RMSE is minimized.

5. Using GA to find a near-optimal BOM configuration

The solution space of BOM configuration may be quite
huge. Though the proposed NN could efficiently evaluate
the performance of a particular BOM configuration.
However, exhaustively searching the space may still be
computationally extensive. In order to reduce the computa-
tion time, we proposed a GA (genetic algorithm) for effi-
ciently finding a near-optimal BOM configuration from
the solution space. GAs have been widely used in various



M.-C. Wu, Y.-K. Hsu / Expert Systems with Applications 34 (2008) 2417–2423 2421
applications (Bäck, Hammel, & Schwefel, 1997; Stockton,
Quinn, & Khalil, 2004a, Stockton, Quinn, & Khalil,
2004b) and found to be efficient and effective in solving a
complex space-searching problem.

Referring to Eq. (2), a BOM configuration that involves
J parts and each part has K vendors on can be represented
by V = (v1, v2, . . ., vJ), where 1 6 vi 6 K represents the ven-
dor that supplies part i. In the GA, a BOM configuration V

is called a chromosome and vi is a called a gene. The perfor-
mance of a BOM configuration refers to the total operation
cost (TSC) subject that the stocking policy is optimally
determined by using the developed NN that emulates the
function of OPUS10. The TSC of a chromosome V, com-
puted by the NN rather than OPUS10, is represented by
F(V), which is called the fitness of chromosome V.

The procedure of the GA involves the following major
steps.

Step 1: Set t = 0. Randomly sample N chromosomes to
form a population P(0).

Step 2: Reproduction operation
• S = /
• Reproduce N chromosomes in P(t) and place

them in set S.

Step 3: Crossover operation

• Create N · Pcr new chromosomes and place them
in set S.
Step 4: Mutation operation
• Create N · Pmu new chromosomes and place

them in set S.

Step 5: Termination check

• If a terminating condition is met, output the best
chromosome from S and stop.

• Otherwise, t = t + 1, P(t) S, go to Step 2.
In the aforementioned GA procedure, the reproduction,
crossover, and mutation operators as well as the terminat-
ing conditions are further explained below. The reproduc-
tion operator in Step 2 is intended to select ‘‘good’’
chromosomes from P(t) to form a new population; that
is, a chromosome with higher fitness value has higher
probability of being reproduced. We use the tournament
Table 1
Failure rates and prices of critical parts provided by different vendors

Critical part Quantity of
each part per BOM

Failure rates provided by each vendor

FRT1 FRT2

A 3 54.75 33.46
B 3 59.59 31.21
C 3 102.61 98.43
D 20 116.81 55.86
E 3 114.68 97.69
F 3 95.31 88.48
G 3 52.75 38.36
H 24 37.82 33.37
I 6 127.58 77.31
J 6 104.25 91.08
selection method (Blickle, 1997, chap. C2.3: C2.3:1–
C2.3:4; Goldberg, Korb, & Deb, 1989) in the reproduction
process. This method randomly samples two chromo-
somes, from which the one with higher fitness is selected
and placed in set S. This selection procedure is repeated
until N chromosomes have been chosen.

The crossover operator in Step 3 is intended to create
‘‘new’’ chromosomes by using the single-point crossover
technique (Booker, Fogel, Whitley, & Angeline, 1997,
chap. C3.3:C3.3:1–C3.3:27; Goldberg, 1989; Spears, 1997,
chap. E1.3:E1.3:1–E1.3:11). This technique firstly samples
a pair of chromosomes randomly. Secondly, a cut-point is
randomly chosen so that each chromosome is interpreted
as having two segments. Thirdly, the left-hand segments
of the two chromosomes are swapped to form a new chro-
mosome, so does the right-hand segments. This as a result
yields a new pair of chromosomes. The crossover operation
is repeated until N · Pcr new chromosomes have been cre-
ated, where Pcr is termed crossover rate whose value is
manually given.

The mutation operator in Step 4 is intended to create
‘‘new’’ chromosomes by changing the value of a particular
gene. This operator firstly samples a chromosome ran-
domly. Secondly, from the chromosome, one of its genes
is randomly selected. Thirdly, the value of the gene (denot-
ing a particular vendor) is replaced by randomly selecting a
new vendor. The mutation operator is repeatedly per-
formed until N · Pmu new chromosomes have been created,
where Pmu is termed mutation rate.

The GA procedure terminates either when the popula-
tion has been updated Tf times (i.e., t = Tf) or when the
best solution in P(t) keeps unchanged for Bf generations.

6. Numerical experiments

The proposed GA-NN method for solving the decision
problem of BOM configuration has been tested by numer-
ical experiments.

The tested scenario assumes the BOS/BOM structures as
shown in Figs. 1 and 2 respectively. In the BOM, there are
10 critical parts (A–J), each of which has three vendors to
choose. Table 1 shows the quantity of each part per BOM,
(number of failures per 106 h) Unit price provided by each vendor

FRT3 C1 C2 C3

30.42 $19,086 $31,231 $34,355
28.38 $20,385 $32,277 $38,733
60.36 $48,776 $75,040 $97,552
50.79 $34,672 $39,625 $55,476
67.46 $26,006 $29,474 $44,211
56.06 $35,026 $40,030 $56,042
23.98 $38,951 $50,936 $66,218
22.25 $38,465 $57,698 $69,238
60.28 $40,866 $70,588 $97,647
37.92 $14,261 $19,015 $28,523



Table 2
Comparing performance between BOM configurations

A B C D E F G H I J TSC % of cost reduction

GA 1 2 1 2 1 3 3 1 1 3 $9,304,599
Vendor 1 1 1 1 1 1 1 1 1 1 1 $11,243,894 16.13%
Vendor 2 2 2 2 2 2 2 2 2 2 2 $10,906,230 14.58%
Vendor 3 3 3 3 3 3 3 3 3 3 3 $10,553,935 11.82%
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the failure rates and the prices of each part offered by each
vendor. As indicated in the table, the higher the price, the
lower the failure rate. Assume that the desired machine
availability (A) is 85%.

Out of these 310 (59,049) BOM configurations, 1500 con-
figurations are randomly sampled to train the neural net-
work. Of these samples, 1200 samples are used to train
the NN and the remaining 300 are used for testing. The
NN is a 10-10-1 back-propagation neural network architec-
ture trained by setting g = 0.10 and a = 0.80, where 10-10-1
denotes that 10 neurons in the input layer, 10 in the hidden
layer, and 1 in the output layer. Experiment results indicate
that the accuracy of the trained NN is RMSE = 0.00795.

A personal computer equipped with 3.0 G CPU and 512
MB is used in the experiments. It takes about 5 s for
OPUS10 to evaluate the performance of a BOM configura-
tion. It takes about 1330 s to train the neural network.
That is, the trained NN needs only about 10�4 s to evaluate
the performance of a BOM configuration, about 50,000
times faster than OPUS10.

Parameters of the GA are so defined: N = 100,
Pcr = 0.80, Pmu = 0.05, Tf = 99,999, and Bf = 1000. The
GA was executed with 50 replicates. Experiment results
showed that the solutions of the 50 replicates are all the
same. The computation time for executing the GA with
one replicate takes about 1 s.

Table 2 compares the performance of four BOM config-
urations. The first row in the table is the solution proposed
by the GA. Each of the remaining three rows denotes a
BOM configuration whose parts are exclusively supplied
by a single vendor, rather than multiple ones. The table
shows that the BOM configuration proposed by the GA
outperforms the other three alternatives, reducing the cost
up to 16.13%.
7. Concluding remarks

This paper proposes a new perspective to reduce the total
operational cost of a spare part logistic system through
appropriately selecting the BOM configuration. Most pre-
vious studies on spare part logistics assumed that the
BOM configuration is fixed and aimed to determine the
optimal inventory levels. However, each part in a BOM
may have several options in terms of failure rates. A
part option with lower failure rate is generally more expen-
sive. Therefore, a BOM configuration with lower failure
rates tends to require less quantity of inventory, at the
price of incurring higher unit inventory cost. This research
enhances previous works by relaxing the assumption of
fixed BOM configuration in order to further reduce the
total operational cost of a spare part logistic system.

The proposed solution method involves the use of
OPUS10 as well as the development of a back-propagation
neural network and a genetic algorithm. Given a BOM
configuration, OPUS10, (proprietary software) can be used
determine the optimal inventory levels for a spare part
logistic system. However, using OPUS10 to exhaustively
search a huge solution space of BOM configurations may
be quite time-consuming. The time-consuming issue is
resolved in twofold. First, through the development of an
artificial neural network, we can reduce the computation
time for estimating the performance of a BOM configura-
tion. Second, through the development of a GA, we can
greatly reduce the number of BOM configurations to be
evaluated. Numerical experiments indicate that selecting
an appropriate BOM configuration could significantly
reduce the total operational cost.

Other than redesigning BOM configuration, we may fur-
ther reduce the total operational cost of a spare part logistic
system by redesigning the BOS (bill of stations) and the asso-
ciated transportation configurations. Possible extensions of
this research involve how to develop an integrated method
to comprehensively design a spare part logistic system; that
is, such a design should consider simultaneously the effects
of BOM, BOS, and transportation configurations.
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Z. Michalewicz (Eds.), The handbook of evolutionary computation.
Philadelphia, PA: IOP Publishing Ltd. and Oxford University Press.

Stockton, D. J., Quinn, L., & Khalil, R. A. (2004a). Use of genetic
algorithms in operations management. Part 1: Applications. ProQuest

Science Journals, 3, 315–327.
Stockton, D. J., Quinn, L., & Khalil, R. A. (2004b). Use of genetic

algorithms in operations management. Part 2: Results. ProQuest

Science Journals, 3, 329–343.
Wong, H., Cattrysse, D., & van Oudheusden, D. (2005). Inventory

pooling of repairable spare parts with non-zero lateral transshipment
time and delayed lateral transshipments. European Journal of Opera-

tional Research, 165, 207–218.


	Design of BOM configuration for reducing spare parts logistic costs
	Introduction
	Related literature
	OPUS10
	BOS
	BOM
	Input/output relationship of OPUS10

	Neural networks (NN)
	Using GA to find a near-optimal BOM configuration
	Numerical experiments
	Concluding remarks
	Acknowledgement
	References


