
Text Categorization Methods for

Automatic Estimation of Verbal Intelligence

F. Fernández-Mart́ıneza, K. Zablotskayab, W. Minkerb

aGrupo de Tecnoloǵıa del Habla,
Universidad Politécnica de Madrid, Madrid, Spain.

bInstitute of Communications Engineering,
University of Ulm, Germany

Abstract

In this paper we investigate whether conventional text categorisation
methods may suffice to infer different verbal intelligence levels. This research
goal relies on the hypothesis that the vocabulary that speakers make use of
reflects their verbal intelligence levels. Automatic verbal intelligence estima-
tion of users in a Spoken Language Dialogue System may be useful when
defining an optimal dialogue strategy by improving its adaptation capabili-
ties. The work is based on a corpus containing descriptions (i.e. monologues)
of a short film by test persons yielding different educational backgrounds and
the verbal intelligence scores of the speakers. First, a one-way analysis of vari-
ance was performed to compare the monologues with the film transcription
and to demonstrate that there are differences in the vocabulary used by the
test persons yielding different verbal intelligence levels. Then, for the classi-
fication task, the monologues were represented as feature vectors using the
classical TF-IDF weighting scheme. The Naive Bayes, k-nearest neighbours
and Rocchio classifiers were tested. In this paper we describe and compare
these classification approaches, define the optimal classification parameters
and discuss the classification results obtained.

Keywords: spoken dialogue systems, Naive Bayes classification, Rocchio
approach, k-nearest neighbours

Email addresses: ffm@die.upm.es (F. Fernández-Mart́ınez),
kseniya.zablotskaya@uni-ulm.de (K. Zablotskaya), wolfgang.minker@uni-ulm.de
(W. Minker)

Preprint submitted to Expert Systems with Applications December 22, 2011

*Manuscript
Click here to view linked References



Figure 1: Spoken Language Dialogue System

1. Introduction

Next-generation spoken language dialogue systems (SLDS), developed to
provide users with required information and/or to help them to accomplish
certain goals, are expected to be able to deal with difficult tasks and react to
a wide range of situations and problems. They should help users to feel free
and comfortable when interacting with them. Moreover, they should also
be user-friendly and easy to use. Including aspects of adaptation to users
into SLDS may help to increase the systems’ communicative competences
and influence on their acceptability (Figure 1). Next-generation SLDS may
change the level of dialogue depending on users’ experience. For example,
a spoken dialogue system aimed at providing guidance and support for the
installation of some software may try to estimate whether the user is an ex-
pert or a novice in this field. Based on this information suitable words and
explanations may be generated. These explanations may be very detailed
and without specific vocabulary for a non-experienced user; in contrast, for
an expert, the system may provide only a sequence of important steps or
inform about more difficult operations. From the beginning of the dialogue,
SLDS may analyse the user’s speech, behaviour and requests and also the ex-
isting difficulties. When deciding on the best response to a user, the dialogue
manager may change words and sentence structures based on the informa-
tion about cognitive processes. Its responses may become more helpful and
the user-friendliness of the system may be improved. For this purpose it
is necessary to identify differences in language use of people yielding differ-

2



ent educational background and abilities to analyse situations and to solve
problems.

The ability to use language for accomplishing certain goals is called ver-
bal intelligence (VI) [5, 3]. In other words, verbal intelligence is “the ability
to analyse information and to solve problems using language-based reason-
ing” [13]. Automatic verbal intelligence estimation may help dialogue sys-
tems to choose the level of communication and be more simple, useful and
effective.

Figure 2 explains the adaptation process of spoken dialogue systems based
on verbal intelligence estimation in more detail. When talking to the system,
all j spoken utterances of a user are analysed for the verbal intelligence
determination. This means that the intelligence level is re-estimated at each
turn based on features extracted from the new spoken utterances and from
all the phrases which were pronounced at the previous turns. In Figure 2 the
SLDS has three different dialogue scenarios corresponding to users yielding
a higher, an average and a lower verbal intelligence. At the beginning of
the dialogue, the systems uses scenarios corresponding to users yielding an
average verbal intelligence. At the following turns, the system might switch
to alternative dialogue scenarios.

Figure 2: Adaptation to the user.

The automatic estimation of users’ verbal intelligence may help SLDS
to more effectively control the flow of the dialogues, engage users in the

3



interaction and be more attentive to human needs and preferences. For
training machine learning algorithms, we need to know a maximum number
of language features that reflect differences in language use of people yielding
different verbal intelligence. In this work we investigate to which extent the
vocabulary of test persons reflect their levels of verbal intelligence when they
all describe the same event and explain their thoughts and feelings about it.
The investigation is based on a corpus containing descriptions of a short film
along with the corresponding intelligence scores of the speakers [32] .

The paper is structured as follows. In Section 2 we describe the cor-
pus which was used for the experimental research. Section 3 describes our
primary efforts at defining film related features which could be useful for
distinguishing test persons yielding different verbal intelligence. Section 4
describes typical TF-IDF approaches and explains the details of the feature
selection process for the monologues. In Section 5 we describe and compare
the Naive Bayes, k-nearest neighbours and Rocchio classifiers. Classification
results are presented and discussed in Section 6. Finally, Section 7 presents
conclusions and future work.

2. Corpus Description

For the data acquisition in [32], a short film was shown to German native
speakers. It described an experiment on how long people could stay without
sleep. The test persons were asked to imagine that they met an old friend and
wanted to tell him about this film. Our goal was to record everyday speech
when talking to relatives and friends. This corpus, described in [32], consists
of 56 descriptions (3, 5 hours of audio data) of a short film (i.e. monologues).

The test persons were also asked to participate in the verbal part of the
Hamburg Wechsler Intelligence Test for Adults (HAWIE) [29]. According to
Wechsler, intelligence is “the global capacity of a person to act purposefully,
to think rationally, and to deal effectively with his environment” [28]. The
verbal part consists of the following subtests:

• Information: this subtest measures general knowledge and includes
questions about history, geography, literatures, etc. For example, What
is the capital of Italy?

• Comprehension: test persons are asked to solve different practical prob-
lems and explain some social situations. For example, What would you
do if you lost your way in a forest?

4



• Digit Span: test persons are asked to repeat increasingly longer strings
of numbers forward and then backward; the subtest measures short-
term memory.

• Arithmetic: test persons are asked to solve some arithmetic problems
given in a story-telling way; the subtest measures their concentration
and computational ability. For example, How many rolls you can buy
if you have 36 cents and one roll costs 4 cents?

• Similarities: test persons are asked to find a similarity between a pair
of words. For example, Please find a similarity between “wood” and
“alcohol”?

• Vocabulary: test persons are asked to explain increasingly more diffi-
cult words using their vocabulary. For example, What does “to creep”
mean?

Raw scores of each test person on the verbal test are based on the correct
answers (Figure 3). The raw scores are then converted into “Scaled Scores”
using special tables [29]. The Scaled Scores vary between 0 and 16 and may be
used to compare the performance of the participants. The sum of the scaled
scores and the age of a test person are used to estimate the corresponding
verbal intelligence score.



Figure 3: Verbal Part of the Hamburg Wechsler Intelligence Test for Adults

5



Overall, 56 test persons yielding different educational levels were tested,
therefore 56 monologues about the same topic were collected. All the mono-
logues and the film were transcribed according to the transcription standards
by Mergenthaler [15].

3. Modelling Verbal Intelligence by Using Film Derived Features

To analyse the vocabulary of people yielding different verbal intelligence
when describing the same event, at first we decided to compare the mono-
logues with the film transcription. Figure 4 shows excerpts from the film and
from one of the monologues 1.

Excerpt from the film
Max and Funda have been without sleep for fifty eight hours. They have
laid down on the sofa. Is it a mistake? Actually they would like to move.
But now they cannot any more. The blood pressure is down, the energy
reserves are over. They both are freezing despite the fire-place and the
jacket. The question is who closes the eyes first. It is Max. Funda wins.
She stays awake a few minutes longer.
Excerpt from a corresponding monologue
After fifty eight hours, they were really tired. And, they had frozen.
Despite they had very warm clothes. And then the man fell asleep and
then the woman.

Figure 4: Excerpts from the film and one of the recorded monologues.

For the comparison, the following features were extracted:

• Number of reused words - number of words which a test person “reused”
from the film. For our example in Figure 4 the reused words are: fifty,
eight, hours, they, and, they, despite, they, and, the, and, the.

• Number of unique reused words. It includes the number of reused words
without repetitions. In Figure 4, the unique reused words are: fifty,
eight, hours, they, and, despite, the.

• Number of all reused lemmas. This feature is similar to the Number of
all reused words, but referred to lemmas instead.

1As the conversation language is German, the example was directly translated into
English.

6



• Number of unique reused lemmas. This feature is similar to the Number
of unique reused words, but considering unique lemmas instead.

• Cosine similarity between the film and a kth monologue using lemmas.
For this feature extraction, we created a matrix consisting of all unique
lemmas from the film, including the frequency of these lemmas within
the film and within a kth monologue. Table 1 shows this matrix for the
texts from our example (Figure 4).

Table 1: Matrix for lemma frequency
Lemmas from film Frequency (film) Frequency (monologue)

Max 2 0
and 1 3

Funda 1 0
have 2 2
be 6 1

without 1 0
sleep 1 0
for 1 0
fifty 1 1
eight 1 1
hour 1 1

The frequencies were normalized by the total amount of words in the
corresponding text; the cosine similarity between the two normalized
vectors (lemma frequencies within the film and lemma frequencies within
a kth monologue) was calculated as:

similarity =

∑n
i=1 aibi∑n

i=1 ai
2
∑n

i=1 bi
2 ,

where n is the number of unique lemmas in the film, ai - frequency of
ith lemma in the film, bi - frequency of ith lemma in the monologue 2.

• Number of reused n-grams. For this feature we have calculated the
number of n-grams (n = 2, 10) that were used in the film and then

2Cosine similarity will be further used in the Rocchio classification approach that will
be explained in detail in Section 5.2.

7



reused by a test-person in the corresponding monologue. In our exam-
ple, the number of reused 2-grams equals to 2 (reused 2-grams are fifty
eight and eight hour), the number of reused 3-grams equals to 1 (fifty
eight hour), etc.

• Cosine similarity using n-grams. The cosine similarity was calculated
from a feature vector composed by the counts of different n-grams for
each monologue.

• We also determined the number of lemmas that were used by the candi-
dates but were not used in the film. For each monologue the following
features have been calculated:

Own lemmas1 =
n∑

i=1

frequency(lemmai) ∗ count(lemmai)

and

Own lemmas2 =
n∑

i=1

frequency(lemmai),

where n is the number of unique lemmas that were used by a test
person but were not used in the film; count(wordi) shows how many
times lemmai was used in the monologue; frequency(lemmai) shows
the frequency of lemmai according to a frequency dictionary of the
German language [11]. This dictionary consists of 40000 German words
with frequency from 1 to 17: 1 corresponds to more frequent words, 17
corresponds to less frequent words. If a word from the monologues was
not found in the dictionary, its frequency was set to 20.

3.1. Feature Analysis

The k-means algorithm, which is frequently used for data clustering in
machine learning, was applied on the scaled scores of the test persons (Fig-
ure 5). For the feature analysis two experiments were performed. In the first
experiment the observations were partitioned into two clusters: cluster P1

consisted of test persons yielding a lower verbal intelligence, P2 contained
candidates yielding a higher verbal intelligence. In the second experiment
the test persons were partitioned into three clusters: P1 - lower verbal intel-
ligence, P2 - average verbal intelligence, P3 - higher verbal intelligence.

8












Figure 5: The K-means algorithm

The averaged values of all the features from the two clusters were com-
pared using a one-way analysis of variance (ANOVA).

In Experiment I with two clusters, features with small p-values were:

• Number of reused 3-grams (averaged value for the first class AVlow =
0.021, averaged value for the second class AVhigh = 0.031, p = 0.012,
F = 6, 63);

• Cosine similarity using lemmas (AVlow = 0.79, AVhigh = 0.83, p = 0.03,
F = 4, 64);

• Cosine similarity using repeated n-grams (AVlow = 0.13, AVhigh = 0.15,
p = 0.01, F = 7, 07).

In Experiment II with three clusters, a feature with a small p-value was:

• Cosine similarity using repeated n-grams (AVlow = 0.13, AVaver = 0.14,
AVhigh = 0.16, p = 0.01, F = 7, 07).

As we can see, participants with a higher verbal intelligence used more
words from the film and the similarity between their descriptions and the
film was higher than the similarity of participants with an average and a
lower verbal intelligence. This may be explained in the following way.

Test persons yielding a higher verbal intelligence (class HIGH ) may have
a better ability to listen to and recall spoken information from the film. Mem-
ory is indeed one of the verbal sub-tests of HAWIE so that a high memory
score relates to a high verbal intelligence score of a test person. Therefore,
people with good memory (i.e. higher verbal intelligence) were easier able to

9



remember many details of the film and to use words which they heard when
watching the program. They may also better understand the relationships
between language concepts, make more sophisticated language analogies or
comparisons and perform a more complex language-based analysis.

Hence, we may conclude that the vocabulary of test persons yielding
different verbal intelligence was different when they talked about the same
event, even despite they were asked to talk about this film just after they
had watched it.

4. Text Categorization Solutions

Film derived features presented in the previous section showed to be good
predictors of verbal intelligence. Particularly, some of them suggested that
test persons belonging to different verbal intelligence classes may be distin-
guished by word or lemma patterns, even regardless of the order of these
words and lemmas in the monologues.

This result led us to the main hypothesis that we investigate in this work:
is it possible to solve the problem of inferring the corresponding level of
verbal intelligence by simply applying conventional text categorization (TC)
techniques?

To validate this hypothesis, typical TF-IDF features (introduced in the
next section) have been extracted from the transcripts of the monologues
(henceforth we do not make any use of the film transcription).

Three of the most popular TC methods have been applied for the auto-
matic classification of monologues into three groups: test persons yielding a
lower, an average and a higher verbal intelligence.

4.1. TF-IDF based Approaches

TF-IDF (term frequency - inverse document frequency) based approaches
are often used in information retrieval and text mining. As an example of a
typical text mining task we may refer to the text categorization. The goal
of TC is the classification of documents into a fixed number of predefined
categories.

The applicability of TC techniques has significantly grown in recent years.
Organizing news by subject topics (e.g. to disambiguate information and
to provide readers with greater search experiences) or papers by research
domains (e.g. for large databases of information that need indexing for re-
trieval) are just some of the most popular examples. Moreover, Security

10



(e.g. analysis of plain text sources such as Internet news), Biomedical (e.g.
indexing of patient reports in health care organizations according to disease
categories) or Software (e.g. for tracking and monitoring terrorist activities)
domains also have benefit from these techniques.

New domains, like Marketing (e.g. analytical customer relationship ma-
nagement) or Sentiment analysis (e.g. analysis of movie reviews), start using
text mining solutions. In this work we have applied these techniques to a
new domain: the estimation of speakers’ verbal intelligence.

For TC, every document has to be transformed into a representation
which could be suitable for learning algorithms and classification tasks. As
reviewed in [16], most TC algorithms are based on the vector space model
(VSM). TC state-of-the-art systems widely apply the VSM approach [1, 26,
16].

Information retrieval (IR) research suggests that words work well as rep-
resentation units. In VSM, each document in a corpus is represented by a
list of words (i.e. bag of words). Each word is considered as a feature; the
value of the feature is a weight transformation of the number of times the
word occurs in the document (i.e. word’s frequency). Thus, a document is
represented as a feature vector and its relevance to a query submitted by
a user is measured through appropriate matching functions. These match-
ing functions are typically based on statistical measures, like TF-IDF, that
basically weight the importance of each word. The importance of a word
increases proportionally to its frequency within a document but is offset by
its frequency within a corpus.

Variations of this TF-IDF weighting scheme are often used by search
engines as a central tool in scoring and ranking a document’s relevance given
a user query.

4.1.1. Mathematical Details

TF-IDF is a common feature transforming or weighting function. The
term count, ni,j, denotes the frequency of a given term ti in a given docu-
ment dj. This count is usually normalized to prevent a bias towards longer
documents. Thus, the term frequency tfi,j measures the importance of a
term ti within a document dj and is defined as follows:

tfi,j =
ni,j∑
k nk,j

(1)

11



where the denominator is the number of words in a document dj, that is, the
size of the document |dj|.

The inverse document frequency idfi is a measure of the general impor-
tance of a term:

idfi = log
|D|

{j : ti ∈ dj}
(2)

where |D| is the total number of documents in the corpus, {j : ti ∈ dj}
is the number of documents where the term ti appears (i.e. documents for
ni,j #= 0).

The feature weighting function is then computed by using the following
formula:

tfidfi,j = tfi,j · idfi (3)

These weights show the importance of the words in each document. As
can be seen, more frequent terms in a document are more representative and,
if the number of documents in which this term occurs increases, this term
becomes less discriminative.

At this point, we may view each document as a vector that contains terms
and their corresponding weights. For those terms from the vocabulary that
do not occur in a document this weight equals to zero. In the following
sections we will show the advantage of such a document representation.

4.2. Feature Selection

Typical TC approaches make use of different feature selection techniques
to further reduce the dimensionality of the data space by removing irrelevant
features that have no contribution to category discrimination.

Different feature selection techniques through information theory were
well studied in [31]. As a result of this study, information gain (IG) and
v2-test (CHI) were reported to be the top performing methods out of five
methods under test in terms of feature removal aggressiveness and classifica-
tion accuracy improvement. However, the document frequency thresholding
approach, the simplest method with the lowest cost in computation, was
reported to perform similarly.

The Document Frequency (DF) is the number of documents in which a
term occurs. As described in [31], it is possible to compute the document
frequency for each unique term in the training corpus and to remove from the

12



feature space those terms whose document frequency is less than a certain
predefined threshold. By doing so we are adopting a basic assumption: rare
terms are either non-informative for the category prediction (i.e. intelligence
estimation in our case) or not influential in global performance. In either
case, removal of rare terms contributes to the reduction of dimensionality of
the feature space and improves the classification accuracy (i.e. if rare terms
happen to be noise terms).

If we try to summarize both pros and cons of using the document fre-
quency thresholding approach, we may say that positive aspects are:

• It is the simplest technique for vocabulary reduction (easily scalable to
a very large corpora).

• Computational complexity is approximately linear with the number of
documents.

while on the other hand, negative aspects are:

• The technique is usually considered as an ad-hoc approach to improve
the efficiency instead of a principled criterion for a predictive features
selection.

• The technique is typically considered, from an IR point of view, as a
non-appropriate approach for aggressive term removal (low-DF terms
are assumed to be relatively informative and therefore should not be
removed aggressively).

In this work a slightly modified version of this DF thresholding approach
was applied to the data: TF-IDF measures instead of DF measures were used.
As another remarkable difference, we did not remove the lowest TF-IDF
terms but just selected the highest TF-IDF terms. In particular, instead of
defining a threshold for TF-IDF measures, we defined a fixed number of terms
to be selected (i.e. N). Therefore, we first sorted all the terms according to
their TF-IDF measures. Then, we selected the top N most representative or
indicative terms according to their TF-IDF weights. The remaining terms
were removed as stop or common words that did not add any meaningful
content. By observing the evolution of the classification accuracy with an
increasing N value, we determined the minimum size of the vocabulary (i.e.
dimensionality) required to achieve the optimum performance.

13



4.2.1. Class-based vs Corpus-based

As stated above, in our framework each word is considered as a feature and
each document is represented as a feature vector. In [19] two alternative ways
for implementing the selection of these keywords or features are presented.

In the first one, the so-called corpus-based keyword selection, a common
keyword or feature set that reflects the most important words for all classes
(i.e. highest TF-IDF terms) in all documents is selected.

In the alternative approach, named as class-based keyword selection, the
keyword selection process is performed separately for each class. In this way,
the most important and specific words for each class are determined.

4.2.2. Word Lemmatisation

Word lemmatisation is often applied in the area of IR, where the goal
is to enhance the system performance and to reduce the number of unique
words [23]. Particularly, word lemmatisation is part of the data pre-processing
required to convert a natural language document to the feature space. For-
mally, it is the process for reducing inflected (or sometimes derived) words
to their lemmas. For example, as a result of lemmatisation, different words
like “play”, “plays”, “playing” and “played” are related to the same feature
identification (i.e. lemma) “play”.

Word lemmatisation was applied to our monologues to assess its impact
on performance (i.e. classification accuracy). Like removing stop words,
lemmatisation also contributed to the reduction of the size of the lexicon,
thus saving on computational resources.

5. Vector Space Classification

As stated above, the vector space model represents each document as a
vector with one real-valued component (i.e. TF-IDF weight) for each term.
Therefore, we need text classification methods that can operate on real-
valued vectors. In this section we introduce those ones that have been tested
so far.

A number of classifiers has been used to classify text documents, including
regression models, Bayesian probabilistic approaches, Nearest Neighbours
approaches, Rocchio algorithm, decision trees, inductive rule learning, neural
networks, on-line learning, Support Vector Machines (SVMs), and combining
classifiers [12, 7, 22, 30]. In this work we used three well-known vector space

14



classification methods: Naive Bayes (NB), Rocchio and Nearest Neighbour
classification (kNN).

NB is often used as a baseline in text classification research as it com-
bines efficiency (training and classification can be accomplished with one pass
over the data) and good accuracy (particularly if there are many equally im-
portant features that jointly contribute to the classification decision). The
Rocchio algorithm is a very simple and efficient text categorization method
for applications such as web searching, on-line query, etc. because of its sim-
plicity in both training and testing [26]. kNN requires no explicit training
and can use the unprocessed training set directly in classification. However,
it is less efficient than the other classification methods (i.e. with kNN all the
work is done at run-time so that it can have poor run-time performance if
the training set is large).

Rocchio and Naive Bayes are linear classifiers whereas kNN is an example
of a non-linear one. Generally speaking, if a problem is non-linear and its
class boundaries cannot be approximated well with linear hyperplanes, non-
linear classifiers are often more accurate than linear classifiers (particularly,
if the training set is large, then kNN can handle complex classes better than
Rocchio and NB). On the other hand, if a problem is linear, then it is better
to use a simpler linear classifier. However, this needs to be taken with a
little bit of salt since the previous assertion is always conditioned by the
well-known bias-variance trade-off (i.e. with limited training data, a more
constrained model tends to perform better). These approaches are described
in more detail in the following sections.

Among the enumerated alternatives, SVMs are widely used mainly be-
cause they have much current theoretical and empirical appeal and perform
at the state-of-the-art level. According to [22], SVMs, example based meth-
ods, regression methods and boosting based combining classifiers deliver top-
notch performance. Lewis et al. (2004) also found that SVMs perform better
on Reuters-RCV1 corpus than kNN and Rocchio.

Nonetheless, recent revisions of the selected algorithms have proposed en-
hanced versions of these methods that achieve relatively close performance
to the top-notch TC classifier: SVMs. For instance, Miao and Kamel (2010)
have re-examined the applicable assumptions and parameter optimization
method of the traditional Rocchio algorithm and proposed an enhanced ver-
sion of this method that clearly outperforms the former one by using a pair-
wise optimized strategy. Salles et al. (2010) also presents a methodology to
determine the impact that may have temporal effects on TC and to minimize

15



it. By extending the three algorithms (namely kNN, Rocchio and NB) to in-
corporate a Temporal Weighting Function (TWF), experiments showed that
these temporally-aware classifiers achieved significant gains, outperforming
(or at least matching) state-of-the-art algorithms.

In any case, and as discussed in [14], despite believes of many researchers
that SVM is better than kNN in terms of effectiveness, kNN is better than
Rocchio and Rocchio is better than NB, the ranking of classifiers ultimately
depends on the classes, the document collection and the experimental setup.

5.1. Naive Bayes Classification

The first supervised learning method we introduce is the multinomial
Naive Bayes or multinomial NB model, a probabilistic learning method [14].
According to this method, the probability of a document d being in a class
c can be computed as:

P (c, d) ∝ P (c) ·
∏

1≤k≤nd

P (tk|c) (4)

where P (tk|c) is the conditional probability of a term tk occurring in a doc-
ument of a class c. It may also be interpreted as a measure of how much
evidence tk contributes that c is the correct class. P (c) is the prior probabil-
ity of a document occurring in a class c. Terms 〈t1, t2, · · · , tnd〉 are part of
the vocabulary that is used for the classification; nd is the number of terms.

In NB classification, the best class for a document d is determined as:

cmap = argmax
c∈C

P̂ (c|d) = argmax
c∈C

P̂ (c) ·
∏

1≤k≤nd

P̂ (tk|c) (5)

where P̂ refers to the parameters to be estimated from the training data by
applying the Maximum Likelihood Estimation (MLE). The interpretation of
this equation is rather simple. Each conditional parameter P (tk|c) is a weight
that indicates the quality of an indicator tk for a class c. Similarly, the prior
P (c) is a weight that indicates the relative frequency of c. More frequent
classes are more likely to be determined as the correct class.

To reduce the number of parameters, we adopted the Naive Bayes con-
ditional independence assumption where attribute values are independent of
each other given the class so that for our multinomial model:

P (d|c) = P (〈t1, t2, · · · , tnd〉|c) =
∏

1≤k≤nd

P (Xk = tk|c) (6)

16



where Xk is a random variable for a position k in the document and the
values of Xk are terms from the vocabulary. P (Xk = tk|c) is the probability
that in a document of a class c a term t will occur in a position k.

To further reduce the complexity of our multinomial model (assuming a
different probability distribution for each position k in the document still re-
sults in too many parameters), we made a second independence assumption:
conditional probabilities for a term are the same regardless of its position in
a document:

P (Xk1 = t|c) = P (Xk2 = t|c) (7)

where X is a single distribution of terms which is exactly the same for any po-
sition k1, k2, · · · , ki. Equation 7 applies for all terms t and classes c. This po-
sitional independence assumption is equivalent to adopting the bag of words
model, which we introduced in Section 4.1. This bag-of-words model dis-
cards all information that is communicated by the order of words in natural
language sentences.

5.1.1. A Variant of the Multinomial Model

A critical step in solving a text classification problem is to choose the
document representation. An alternative formalization of the multinomial
model represents each document d as a M-dimensional vector of counts:
tf−idft1,d, tf−idft2,d, · · · , tf−idftM ,d where tf−idfti,d is the TF-IDF measure
for a term ti in a document d. P (d|c) is then computed as follows:

P (d|c) = P
(
〈tf-idf t1,d, tf-idf t2,d, · · · , tf-idf tM ,d〉|c

)
(8)

All the model parameters (i.e. class priors and feature probability distri-
butions) may be estimated from the training set by using MLE. For every
class’ prior we calculated an estimate for the class probability from the train-
ing set (i.e. (prior for a given class) = (number of samples in the class) /
(total number of samples)). To estimate the parameters for our feature dis-
tribution, we adopted the typical assumption that the continuous values as-
sociated with each class are distributed according to a Gaussian distribution.
Particularly, assuming that the training data contains continuous attributes,
i.e. TF-IDF measures for each term and document, we first segmented the
data by the class and then computed the mean and variance of every term
specific TF-IDF measure in each class.

17



5.1.2. About the Independence Assumptions

Typically, TC tasks rather look at the words themselves and not at their
corresponding positions in the documents (i.e. bag of words). This relies on
the hypothesis that each topic or class to be distinguished is fairly represented
by only some specific words from our bag. The NB models often perform
well for TC tasks despite the conditional independence and the positional
independence assumptions. In fact, both assumptions are very important to
avoid problems in estimation owing to data sparseness.

By adopting both independence assumptions, we are committed to a spe-
cific way of processing the evidence. Particularly, in the NB classification we
look at each term separately so that we do not make a difference between
word A followed by word B and word B followed by word A (although there is
a difference between them). However, the conditional independence assump-
tion does not really hold for text data as terms are conditionally dependent
on each other. Additionally, the position of a term in a document by itself
may carry more information about the class than expected.

5.2. The Rocchio Approach

The Rocchio classification [20] divides the vector space into different re-
gions centred on prototypes. These prototypes or centroids, one for each
class, define the class boundaries (i.e. hyperplanes). For a given training
dataset, the centroid of a class c can be computed as the vector average or
centre of mass of its members (i.e. all documents in the class) [14, 8].

−→µ (c) =
1

|Dc|

∑

d∈Dc

−→
V (d) (9)

where Dc is the set of documents from class c: Dc =
{
d : 〈d, c〉 ∈ D

}
;

−→
V (d) = V1(d) · · ·VM(d) is a vector that contains tf-idf weights for each term
of a document d.

As many vector space classifiers (e.g. computing the nearest neighbours
in kNN classification), the Rocchio approach relies on distance-based deci-
sions (from a TC point of view, the relatedness of two documents can be
typically expressed in terms of similarity or distance). Particularly, the Roc-
chio classification rule is to classify a point in accordance with the region
it falls into. To do this, basically we determine the centroid −→µ (c) that the
point is closest to and then assign it to c.

18



In our experiments, we used the cosine similarity measure as the un-
derlying distance. Cosine similarity is the cosine of the angle between two
vectors and determines whether they are pointing in roughly the same direc-
tion. Since the components of our vectors (i.e. tf-idf weights) could not be
negative, the angle between two tf-idf vectors could not be greater than 90◦.

The vector representation
−→
V (d1) and

−→
V (d2) of the cosine similarity be-

tween two documents d1 and d2 is:

sim (d1, d2) =

−→
V (d1) ·

−→
V (d2)

|
−→
V (d1)||

−→
V (d2)|

(10)

where |
−→
V (d1)| and |

−→
V (d2)| it the Euclidean length of the vectors.

By using this measure, we are also applying a normalization process which
makes each vector of the same length [21]. If we have a look at the magni-
tude of the vector difference between two vectors corresponding to documents
with very similar content, it may happen that this difference is significantly
simple because one is much longer than the other. Cosine similarity measure
compensates this effect of document length so that the similarity between
document vectors is reduced to only measuring the cosine of the angle be-
tween them.

We can rewrite Equation 10 as follows:

sim (d1, d2) =
−→v (d1) ·

−→v (d2) (11)

where −→v (d1) =
−→
V (d1)/|

−→
V (d1)| and

−→v (d2) =
−→
V (d2)/|

−→
V (d2)|. The assign-

ment criterion for a document d and its vector representation
−→
V (d) can be

defined as:

crocchio = argmax
c∈C

sim
(
−→µ (c),

−→
V (d)

)
(12)

In our implementation of the Rocchio approach [4, 10] only positive train-
ing samples are considered for obtaining the prototype for each class (i.e.
training samples that belong to the corresponding class). However, recent
variations of Rocchio [22, 17, 2] consider the effects of negative samples (i.e.
training documents that belong to all other classes) when computing the
prototypes for the defined classes. Different parameters may be used to con-
trol the relative importance of positive and negative samples. These Rocchio
classifiers reward not only the closeness of a test document to the centroid

19



of the positive training instances, but also its distance from the centroid of
the negative training instances.

5.3. K-nearest Neighbours

In pattern recognition, the k-nearest neighbour algorithm (kNN) is a
method for classifying objects based on the closest training examples in the
feature space. In TC, kNN takes an arbitrary input document and ranks
the k nearest neighbours among the training documents through the use of a
similarity score (i.e. cosine similarity distance). It then assigns to the input
the category or the class of the most similar document or documents. A
constant k, defined by a user, denotes the number of neighbours included in
the evaluation.

The kNN algorithm is a valid non-parametric method. Despite being
amongst the simplest of all machine learning algorithms, it is one of the best
methods when the text is described by using VSM [30]. However, traditional
kNN has two main drawbacks: the intensive computational effort, especially
when the size of the training set grows (training examples are vectors in
a highly multidimensional feature space), and its sensitiveness to the local
structure of the data [9].

New nearest neighbour algorithms have been recently proposed mainly
with the purpose of reducing the number of distance evaluations actually
performed, thus trying to make kNN computationally tractable even for large
data sets. For instance, [27] presents a fast kNN algorithm that reduces
the cost of similarity computing in order to raise the classifying speed and
applicability of kNN.

In Naive Bayes and Rocchio classification we have to estimate correspond-
ing parameters: priors and conditional probabilities and centroids. In kNN
we do not need to estimate any parameters but simply memorize all exam-
ples in the training set and then compare a test document to them. For this
reason, kNN is also called memory-based learning or instance-based learning.

The kNN algorithm is known because of its strong consistency results. As
the amount of data approaches infinity, the algorithm is guaranteed to yield
an error rate no worse than twice the Bayes error rate (the minimum achiev-
able error rate given the distribution of the data) [14]. kNN is guaranteed to
approach the Bayes error rate for a certain value of k (where k increases as
a function of the number of data points). The k-nearest neighbour methods
may be improved by using proximity graphs [25].

20



5.3.1. Choosing the Class for an Unclassified Document

To make a decision on a number of unclassified documents, we measure
their similarity with all the documents that have already been classified. The
unclassified documents are then ranked according to their similarity scores.
Appropriate classes for the documents may be assigned in the following ways:

• If we choose k = 1, the class is predicted to be the class of the closest
training sample. This is called the nearest neighbour algorithm.

• If we choose k > 1, then all the documents which ranks are smaller
than or equal to k will be included in the ranked list. We can then use
different means to find a class for our document, like:

– we may assign the document to the most common class amongst
its k nearest neighbours (if we are dealing with a binary, i.e. two-
class, classification problem, it is helpful to choose k to be an odd
number as this avoids tied votes).

– we may estimate the probability of membership in a class c as the
proportion of the k nearest neighbours in c. This is commonly
referred as the probabilistic version of the kNN classification al-
gorithm.

– for the individual classes, we may sum the distances to all the doc-
uments in which the class occurs, and then choose the class corre-
sponding to the highest accumulated distance (remember that we
are using cosine distance).

– etc.

If we decide to use either the basic “majority voting”, the probabilistic
method or the sum of distances based classification, those classes with more
frequent examples will tend to dominate the prediction of a new vector. This
is actually a drawback as they tend to come up in the k nearest neighbours
when the neighbours are computed due to their large number (it is important
to remind that the available data is certainly imbalanced). To overcome this
problem, we compensate this possible imbalance by introducing a slightly
modified classification method for our kNN based approach.

Typically, the implementation of these versions of the algorithm starts
by computing the distances from the test sample to all stored vectors of

21



the training data set. Next, all these training samples are sorted according
to these distances thus ranking the nearest k training samples regardless
of their corresponding class. If we look at those already labelled classes
instead (neighbours are taken from a set of documents for which the correct
classification is known), we could then identify specific top k neighbours for
each class c (i.e. k nearest neighbours labelled as c, thus resulting in an
overall list composed of k × C elements). Finally, by computing distance to
each class as the average distance between the test sample and those top k
class specific neighbours, we will then manage to compensate any possible
imbalance in the distribution of the training data among the defined classes.

The best class for kNN classification can then be derived from:

ckNN = argmax
c∈C

score(c, d) = argmax
c∈C

1

k
·

∑

d′∈Sk(c,d)

sim(−→v (d′),−→v (d)) (13)

where Sk(c, d) is the c class specific set of d’s k nearest neighbours. As could
be derived from Equation 13, it may also be useful to weight the contributions
of the neighbours so that nearer ones contribute more to the average than
more distant ones [24]. This classification method is weighted by taking into
account not only the distance from the test sample to the c set of k nearest
neighbours, but also the class compactness particularly for high values of k.

5.3.2. Parameter Selection

The parameter k in kNN is typically defined by using some previous
experience or specific knowledge about the classification domain. Normally,
1NN is found to be not very robust. The accuracy of the kNN algorithm
can be severely degraded by the presence of noisy or irrelevant features (also
if the feature scales are not consistent with their importance). 1NN means
that the classification decision for each test document only relies on the class
of a single training document, whose label could eventually be incorrect or
atypical. kNN for k > 1 are more robust as larger values of k tend to
reduce the effect of noise on the classification (although also make boundaries
between classes less distinct).

As an alternative, a good value of k can be assigned heuristically via
cross validation technique or empirically via bootstrap method [6]. In our
experiments, instead of applying any of these parameter selection methods,
we tried different k values, thus finally selecting the optimal k as the value
which was used when obtaining the best performance.

22



6. Experimental Results and Discussion

6.1. Experimental Set-up

Our main goal is to identify the algorithm that best computes class bound-
aries and reaches the highest classification accuracy. In our experiments for
comparing the performance of the different approaches, a Leave-One-Out
cross validation (LOO-CV) method was used. The idea of this method is to
use N-1 observations for training (where N is the number of data points) and
only 1 data point for testing. This procedure is repeated N times and each
observation is used once as the testing data.

6.2. Baseline Approach: Class-Based vs Corpus-Based Feature Selection

As introduced in Section 4.2.1, our experiments covered the comparison
of the class-based and corpus-based keyword selection approaches.

The corpus-based approach implies the selection of a common feature set
for all classes with the top N most representative or indicative terms. The
class-based approach instead implies the selection of the most important
words for each particular class. In this case, to preserve the balance between
classes, N/M words for each specific class were selected, where M is the
number of classes. For our classification task M equals to 3, where the
first class contained test persons yielding a lower verbal intelligence, the
second class contained participants yielding an average verbal intelligence and
the third class contained participants yielding a higher verbal intelligence.
Then, we composed our feature vector by concatenating all the class-specific
features, thus resulting into a vector comparable to theN -dimensional vector
corresponding to the corpus-based approach.

However, when using the class-based approach, a particular word may be
included in various class-specific subsets (i.e. a word that is important to
not only one single class but to several classes). To avoid using duplicate
features, we only used the intersection between all the class-specific subsets.
Therefore, the dimension of the resulting feature vector in these cases had to
be necessarily lower thanN . For simplicity, we will better refer to the number
of features per class (i.e. F = N/3) rather than to the final dimensions of
the vectors. Consequently, if we report, for instance, about 50 words or
features per class, this means that we are using a 150-dimensional corpus-
based vector. In this case for the class-based approach, 150 is the maximum
number of dimensions. To definitely determine its value, it is necessary to
check the possible intersection.

23



Of course, the higher the value of F , the more significant the intersection
between class-specific word subsets, and also the bigger the difference with
respect to the corpus-based vector dimensions. Analysing the corpus, 2210
different words were extracted from all the monologue transcripts. Table 2
shows how the intersection evolved according to F . Considering the size of
the vocabulary, the observed difference is significant.

Table 2: Dimension differences between class-based and corpus-based approaches.

# of features per class (3 classes)

50 100 150 200 250 300 350 400 450 500

Corpus-based 150 300 450 600 750 900 1050 1200 1350 1500

Class-based 150 289 393 486 557 601 737 858 992 1102

Difference 0 11 57 114 193 299 313 342 358 398

Rel. diff. (%) 0 3, 7 12, 7 19 25, 7 33, 2 29, 8 28, 5 26, 5 26, 5

Figure 6 presents the accuracy results obtained using either the corpus-
based or the class-based feature selection methods. The results were obtained
using the NB approach for different dimensions of the feature vector. Confi-
dence intervals of 95% are also shown in the figure.

As it can be derived from the figure, the class-based approach clearly out-
performed the corpus-based one regardless of any difference about the used
dimension. Although the observed differences were not statistically signifi-
cant in any case, it is interesting to pinpoint the result for the 155-dimensional
value. At this point the class-based approach reached the top performance
while the difference with the corpus-based alternative also turned to be the
biggest one thus becoming almost significant.

From a different point of view, we may also try to analyse the min-
imum dimensionality required by the class-based approach to outperform
the corpus-based one. The corpus-based approach obtained a maximum ac-
curacy of 51, 79%. As can be observed in Figure 6, this performance was
reached with dimensionality equal to or higher than 110. Also derived from
this figure, we may check that the class-based approach obtained a better
performance of 57, 14% (though not statistically significant) using “only” 20
features per class. The class-based feature selection, by definition, focuses
on finding the most crucial or indicative class keywords. On the other hand,

24



Figure 6: Baseline approach: Class-Based vs Corpus-Based feature selection.

the corpus-based one simply tends to find general keywords concerning all
classes. This clearly tips the balance in favour of the class-based approach
particularly when we use a reduced set of features. This is important as
there may be a significant gain in classification time when a small number of
features is used.

By confirming these differences with additional statistical evidence (i.e.
more data), we may also conclude that the class-based feature selection im-
proved the performance of the corpus-based one for the NB approach not
only in terms of accuracy but also in terms of time. Similar results were
already confirmed in [19].

When using the corpus-based approach, most features (i.e. words) tend
to be selected from the prevailing classes so that rare classes are not well rep-
resented. In contrast, when using the class-based approach all the classes are
represented equally well as for their representation class specific features are
used. Thus, the class-based approach achieved consistently higher accuracies
than the corpus-based approach.

Similar differences between the class-based and corpus-based methods

25



have been consistently observed throughout all of our experiments. There-
fore, in the next sections we will only focus on the class-based versions.

6.3. Comparison between Approaches: Rocchio “Wins”

In this section we compare the results that were obtained using different
approaches. Before proceeding with this comparison, we need first to assign
the optimal configuration (i.e. k value) for the kNN approach.

Figure 7 presents classification results corresponding to several k values.
As expected, 1NN was found to be not very robust. Optimal performance
may be reached by using k = 3 in combination with dimensionality of 155.
However, if we keep increasing the value of k, which is typically more robust
as it helps to reduce the effect of noise on the classification, then the results
apparently start to be affected by sparse data bias.

Figure 7: kNN results for different k values.

As a result of the initial k-means clustering, only 13 samples were defined
to be part of the least populated class. Therefore, starting with 1NN we
checked out up to k = 12 values leaving one sample out for testing (the LOO

26



approach was applied). For clarity, Figure 7 presents classification results
only with some values of k.

The observed differences were found to be statistically significant for the
top performance dimensionality (i.e. F = 155) when comparing the best
configuration (i.e. k = 3) with all the others for k > 5. No statistically
significant differences where observed between the best k and any k ≤ 5
configurations.

Figure 8 allows to compare the results of the NB approach, the Rocchio
approach and the kNN approach with k = 3.

Figure 8: Comparison between approaches: Rocchio wins.

A first important result that we can derive from Figure 8 is that both Roc-
chio and kNN are clearly outperforming the NB approach, although the top
performance is defined for different dimensionalities in each case. The kNN
performance had a maximum accuracy of 92, 86% for 155-dimensionality,
while Rocchio just required 15 features per class to improve it up to 95, 6%.
Both results denoted a statistically significant difference when compared to
the NB top performance, 66, 07% also for 155-dimensionality. However, we
did not observe any significant difference between Rocchio and 3NN (natu-

27



rally, Rocchio was also significantly outperforming any k > 5 approach).
As it typically occurs in TC tasks, most of the learning takes place with

a small yet crucial portion of features (i.e. keywords) for a class. This is
evident in the steeper learning curves that reach the top performance at
relatively low dimensionality. Therefore, we may conclude that the class-
based feature selection approach is shown to be successful in quickly finding
the most crucial or indicative class keywords.

Another visible result in Figure 8, common to all the tested approaches, is
the performance decrease as the value of F increases (particularly beyond a
200-dimensional value). As we already introduced in Section 6.2 and proved
in Table 2, the higher the value of F , the more significant the intersection
between class-specific word subsets. If we expand this interpretation, the
more significant the intersection, the less discriminative the class-specific
subsets, the more likely to include words that are not really indicative of any
of the classes, and so the performance decreases.

6.4. Using Words vs Lemmas

As we introduced in Section 4.2.2, we also tried a word lemmatisation
strategy (i.e. to group together those words that are in different forms but
with the same lemma). This strategy was implemented as part of the data
pre-processing stage during the classification task. Figure 9 shows the results
with and without word lemmatisation for our top performing approach: the
Rocchio one.

The main advantage of word lemmatisation is to reduce the dimension-
ality of the data space. In a TC task, it is basically applied under the
assumption that all the documents belonging to the same category or topic
may include these lemmas appearing in different forms, and of course, it
makes sense to use them as they refer to words with similar meanings. TC
tasks typically rely on this. However, to be successful and thus really en-
hance system performance, there is another important hypothesis that also
needs to be confirmed: each topic or class to be distinguished should be fairly
represented by only some class-specific lemmas.

While the former one happens to be true for most of the cases, the latter
one, though also successfully applied in typical TC tasks, may reasonably not
be true in our case. The main reason for this would be that, from this point
of view, all the documents (i.e. monologues) could be regarded as belonging
to the same category according to their topic or content: all the documents
are about the film which the participants watched. Consequently, we could

28



Figure 9: Classification results using words vs lemmas.

expect an important number of lemmas to be shared among the participants
as they all were talking about the same topic.

This is an important difference with conventional TC tasks where, nor-
mally, the topics or classes are well separated according to their conceptu-
alization. In contrast, in our domain we may expect the participants to be
identifiable among others not by the concepts or ideas themselves but by
the way they express these ideas. Therefore, in this particular case, we may
expect lemmas not to have much contribution to category discrimination but
the different endings and forms instead. Hence, missing this discriminative
information because of lemmatisation (simplifying words with different forms
into their more common roots) could have some undesirable consequences in
classification and clustering.

Moreover, the fact that all the participants were German native speakers
could be particularly critical for this problem. In this regard it is important to
remark that German is a very agglutinative language [18]. Compound words
or words that consist of more than one lemma (i.e. compounding or word-
compounding occurs when a person attaches two or more words together to

29



make one word), can be found very often in the German language. “Donau-
dampfschifffahrtsgesellschaftskapitänsmütze” (i.e. Danube steamboat ship-
ping company Captain’s hat) is a good example of how long these compound
words could be (they can be practically unlimited in length, particularly in
case of biochemistry).

The meaning of a compound word differs from the meanings of words
which it consists of. Lemmatisation of compound words would simply re-
duce them to their more common lemmas thus loosing this discriminative
information.

To what extent this argument could be either true or false is something
that can be derived from Figure 9. In fact, the word-based approaches sys-
tematically outperform the lemma-based ones. Confidence boundaries for
both cases are also shown in this figure. As we can observe, differences be-
come statistically significant mostly around the same dimensionality range
that was previously pinpointed when referring to the top performance for
both kNN and NB (particularly at a 155-dimensional value). However, the
differences are not statistically significant at F = 15, the point at which Roc-
chio reaches its maximum accuracy for both word-based and lemma-based
approaches.

6.5. Tempted to Use More Classes

Although the three-classes scheme can be found entirely suitable from a
practical implementation point of view (i.e. participants yielding a lower, an
average and a higher verbal intelligence), we were also interested in analysing
the performance of the suggested approaches for a higher number of classes.
This would enable a better granularity for the verbal intelligence classifica-
tion.

Figure 10 presents benchmarking results for 4 classes instead of 3 (as it
was shown in Figure 8). From a practical point of view, these classes may
correspond to the following levels of verbal intelligence: poor, average, high
and very high respectively.

In this regard it seems to be important to remark that working with a
higher number of classes, like 5 or more, was practically infeasible because
of sparse data problems (i.e. k-means resulted into unpopulated classes).

As for 3 classes, the Rocchio approach showed the highest accuracy again
(i.e. 87, 5% at F = 15). The optimal dimensionality remained to be the same
as for 3 classes (i.e. F = 15). Regarding the comparison between Rocchio and
kNN, the observed differences also remained to be not statistically significant.

30



Figure 10: Tempted to use more classes: 4 classes.

Additionally, both Rocchio and kNN clearly outperformed the NB algo-
rithm, once again by a significant margin. For these two, another effect starts
to become evident: the top performance region, previously observed for di-
mensionality values up to 200, now turns to be narrower, locating its limit
approximately around a value of 100. As we simply increase the number of
classes, it seems to be evident that the number of terms or features that are
really indicative of each particular class becomes smaller, thus affecting the
performance.

From a general point of view, the resulting performance can still be
deemed to be satisfactory as the error rate is only roughly 7% higher than
with three classes. If we look at the confusion matrix, presented in Table 3,
we may check that by adopting the four classes into three by grouping high
and very high classes, predictability would be more similar reducing the gap
roughly to the half (i.e. 94, 64% for three classes and 91, 07% for four classes
adopted into three).

Finally, it may be interesting, particularly from a practical point of view,
to have a look at the upper-right and lower-left corners of the matrix: 0

31



Table 3: Confusion matrix corresponding to Rocchio’s top performance using 4 classes
(F = 15).

Prediction outcome

a b c d

Actual
value

a = poor 4 0 1 0

b = average 1 14 1 0

c = high 1 0 22 1

d = very high 0 1 1 9

errors. This means there was not any critical errors like regarding a lower
verbal intelligence individual as a higher verbal intelligence one and vice-
versa.

7. Conclusions and Future Work

This work showed that verbal intelligence may be recognized by com-
puters through language cues. The achieved classification accuracy can be
deemed as satisfying for a number of classes that is reasonably high enough
to enable its integration into SLDSs. To our knowledge, this is the first report
of experiments attempting to automatically predict verbal intelligence.

Some of the most popular TC algorithms were applied to this task: NB,
Rocchio and kNN. NB models are typically expected to perform well for TC
tasks despite the conditional independence and the positional independence
assumptions. However, the performance of NB approach was significantly
worse than with the other approaches: kNN and Rocchio. This suggests
that this probabilistic classifier was more sensitive to the low number of
examples available, mainly resulting into inaccurate probability estimates,
than the vector space ones (computing distances to some relevant members
or to a prototype of each defined class seems to be more robust against sparse
data).

On the other hand, and connecting with those independence assumptions,
it is well known that conditional independence does not really hold for text
data (even worse considering that our features are highly correlated). Fur-
thermore, we firmly believe that, for this specific task, the position of a term

32



in a document by itself could carry more information about the class than
expected, mainly because of the above mentioned peculiarities of our classi-
fication task (i.e. it is not only about the words that participants used to
denote their intelligence, but also the way they combined them). Therefore,
our data is somehow violating these independence assumptions, thus finally
explaining why the NB approach performed so poorly. In this regard, it
would be very interesting to test a LM based TC approach to better validate
this argument.

Using the class-based feature selection approaches has proven to be an
essential factor, not only to achieve a better inference performance but also
to reduce its computational cost.

Despite typically successful when applied to TC tasks, word lemmatisa-
tion was not really helpful for our task. The word-based approaches system-
atically outperformed the lemma-based approaches, thus pointing out some
peculiarities of the classification task. Particularly, these results were found
to be mainly explained by two different factors: the same topic for collecting
monologues and the use of the German language.

Unlike typical TC tasks, our verbal intelligence prediction task is influ-
enced by the necessary fact that the different categories or classes to be
identified are not well separated from a conceptualization point of view. Of
course, it might be easier to distinguish people talking about different topics
from their everyday life although the results for such a comparison might not
be objective. By letting the participants (i.e. people with different interests
and hobbies) to discuss their own topics, we would be then recognizing the
topics themselves rather than people with different cognitive processes.

On the other hand, the use of German, a very agglutinative language,
resulted to be a drawback with regards to word lemmatisation. By lemma-
tisation of compound words (compounding is a pretty common phenomena
in German) we are basically loosing the extra meaning that arises from the
combination of the interrelated words. This meaning has proven to be really
helpful to correctly discriminate between different levels of verbal intelligence.

In future work, it would also be interesting to examine how well the
suggested approaches perform when integrated into existing SLDS. In this
regard, it is important to remark that any application involving speech recog-
nition will always introduce noise in the features that we used. This needs
to be considered as it will surely reduce the presented accuracies. Testing
these approaches with conventional SLDS would allow us to assess whether
the accuracies we achieve are high enough or not for our intended application

33



(i.e. dialogue system adaptation).
On the other hand, this also suggests the importance of finding some other

features that could be more robust when being used in a conventional system.
Prosodic features could be a good alternative; so it would be interesting
to start working on an multimodal inference framework that could jointly
exploit the potential of, among others, this kind of features. As we have
already mentioned, the linguistic cues that we have used in this work could
pose a problem, for instance, if we want to apply these solutions with the
same users but across different domains. In this regard, prosodic features
would be found to be advantageous as they would also allow us to explore
the possibility of finding topic independent solutions.

Acknowledgement

This work is partly supported by the DAAD (German Academic Ex-
change Service).

Parts of the research described in this article are supported by the Tran-
sregional Collaborative Research Centre SFB/TRR 62 ”Companion-Technology
for Cognitive Technical Systems” funded by the German Research Founda-
tion (DFG).

For this work, Fernando was granted a fellowship by the Caja Madrid
foundation.

References

[1] Baeza-Yates, R. A., Ribeiro-Neto, B., 1999. Modern Information Re-
trieval. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[2] Bi, Y., Bell, D., Wang, H., Guo, G., Guan, J., March 2007. Combining
multiple classifiers using dempster’s rule for text categorization. Appl.
Artif. Intell. 21, 211–239.
URL http://dl.acm.org/citation.cfm?id=1392641.1392644

[3] Cianciolo, A. T., Sternberg, T. J., 2004. Intelligence: a Brief History.
Blackwell Publishing.

34



[4] Dumais, S., Platt, J., Heckerman, D., Sahami, M., 1998. Inductive learn-
ing algorithms and representations for text categorization. In: Proceed-
ings of the seventh international conference on Information and knowl-
edge management. CIKM ’98. ACM, New York, NY, USA, pp. 148–155.
URL http://doi.acm.org/10.1145/288627.288651

[5] Goethals, G., Sorenson, G., Burns, J., 2004. Encyclopedia of leadership.
No. v. 1 in Encyclopedia of Leadership. Sage Publications.
URL http://books.google.es/books?id=kjLspnsZS4UC

[6] Hall, P., Park, B. U., Samworth, R. J., 2008. Choice of neighbor order
in nearest-neighbor classification. ANNALS OF STATISTICS 36, 2135.
URL doi:10.1214/07-AOS537

[7] Hui, G. G., Wang, H., Bell, D., Bi, Y., Greer, K., 2003. Using knn model-
based approach for automatic text. In: In Proc. of ODBASE’03, the 2nd
International Conference on Ontologies, Database and Applications of
Semantics, LNCS. pp. 986–996.

[8] Ittner, D. J., Lewis, D. D., Ahn, D. D., 1995. Text categorization of low
quality images. In: In Proceedings of SDAIR-95, 4th Annual Symposium
on Document Analysis and Information Retrieval. pp. 301–315.

[9] Jianliang, Y., Yongcheng, W., 2004. Application of iterative-knn based
on knn and automatic retrieval in automatic categorization. Journal of
The China Society For Scientific and Technical Information 23, 137–141.

[10] Joachims, T., 1998. Text categorization with support vector machines:
Learning with many relevant features. In: European Conference on Ma-
chine Learning (ECML). Springer, Berlin, pp. 137–142.

[11] Kupietz, M., Belica, C., Keibe, H., Witt, A., 2010. The german ref-
erence corpus dereko: A primordial sample for linguistic research in:
Calzolari, nicoletta et al. (eds.). In: Proceedings of the 7th conference
on International Language Resources and Evaluation (LREC 2010). pp.
1848–1854.

[12] Lewis, D. D., Yang, Y., Rose, T. G., Li, F., December 2004. Rcv1:
A new benchmark collection for text categorization research. J. Mach.
Learn. Res. 5, 361–397.
URL http://dl.acm.org/citation.cfm?id=1005332.1005345

35



[13] Logsdon, A., 2011. Learning disabilities.
URL http://www.learningdisabilities.about.com/

[14] Manning, C. D., Raghavan, P., Schtze, H., 2008. Introduction to Infor-
mation Retrieval. Cambridge University Press, New York, NY, USA.

[15] Mergenthaler, E., 1996. Emotion-abstraction patterns in verbatim pro-
tocols: A new way of describing psychotherapeutic processes. Journal of
Consulting and Clinical Psychology 6 (64).

[16] Miao, Y.-Q., Kamel, M., January 2011. Pairwise optimized rocchio al-
gorithm for text categorization. Pattern Recogn. Lett. 32, 375–382.
URL http://dx.doi.org/10.1016/j.patrec.2010.09.018

[17] Moschitti, A., 2003. A study on optimal parameter tuning for rocchio
text classifier. In: Proceedings of the 25th European conference on IR
research. ECIR’03. Springer-Verlag, Berlin, Heidelberg, pp. 420–435.
URL http://dl.acm.org/citation.cfm?id=1757788.1757828

[18] Olsen, S., 2000. Ein internationales handbuch zur flexion und wortbil-
dung. In: Booij, G., Lehmann, C., Mugdan, J. (Eds.), Morphologie.
Berlin / New York: de Gruyter, pp. 897–916.

[19] Özgür, A., Özgür, L., Güngör, T., 2005. Text categorization with class-
based and corpus-based keyword selection. In: ISCIS. pp. 606–615.

[20] Rocchio, J., 1971. Relevance Feedback in Information Retrieval.
Prentice-Hall Inc., Ch. 14, pp. 313–323.

[21] Salton, G., 1989. Automatic text processing: the transformation, analy-
sis, and retrieval of information by computer. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

[22] Sebastiani, F., March 2002. Machine learning in automated text catego-
rization. ACM Comput. Surv. 34, 1–47.
URL http://doi.acm.org/10.1145/505282.505283

[23] Solka, J., Jul 2008. Text data mining: Theory and meth-
ods. Statistics Surveys 2008, Vol. 2, 94-112Comments: Pub-
lished in at http://dx.doi.org/10.1214/07-SS016 the Statistics Surveys
(http://www.i-journals.org/ss/) by the Institute of Mathematical Statis-
tics (http://www.imstat.org).

36



[24] Tan, S., May 2005. Neighbor-weighted k-nearest neighbor for unbalanced
text corpus. Expert Syst. Appl. 28, 667–671.
URL http://dx.doi.org/10.1016/j.eswa.2004.12.023

[25] Toussaint, G. T., 2005. Geometric proximity graphs for improving near-
est neighbor methods in instance-based learning and data mining. Int.
J. Comput. Geometry Appl. 15 (2), 101–150.

[26] Vinciarelli, A., October 2005. Application of information retrieval tech-
niques to single writer documents. Pattern Recogn. Lett. 26, 2262–2271.
URL http://dx.doi.org/10.1016/j.patrec.2005.03.036

[27] Wang, Y., Wang, Z.-O., aug. 2007. A fast knn algorithm for text cat-
egorization. In: Machine Learning and Cybernetics, 2007 International
Conference on. Vol. 6. pp. 3436 –3441.

[28] Wechsler, D., 1939. The Measurement of Adult Intelligence. Baltimore
(MD): Williams & Witkins.

[29] Wechsler, D., 1982. Handanweisung zum Hamburg-Wechsler-
Intelligenztest fuer Erwachsene (HAWIE). Separatdr., Bern; Stuttgart;
Wien, Huber.

[30] Yang, Y., Liu, X., 1999. A re-examination of text categorization meth-
ods. In: Proceedings of the 22nd annual international ACM SIGIR con-
ference on Research and development in information retrieval. SIGIR
’99. ACM, New York, NY, USA, pp. 42–49.
URL http://doi.acm.org/10.1145/312624.312647

[31] Yang, Y., Pedersen, J. O., 1997. A comparative study on feature se-
lection in text categorization. In: Fisher, D. H. (Ed.), Proceedings of
ICML-97, 14th International Conference on Machine Learning. Morgan
Kaufmann Publishers, San Francisco, US, Nashville, US, pp. 412–420.
URL citeseer.nj.nec.com/yang97comparative.html

[32] Zablotskaya, K., Walter, S., Minker, W., May 2010. Speech data cor-
pus for verbal intelligence estimation. In: Proceedings of LREC’10. pp.
1077–1080.

37


