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Abstract 

This paper presents an investigation into the development of an intelligent mobile-enabled expert system 

to perform an automatic detection of tuberculosis (TB) disease in real-time. One third of the global 

population are infected with the TB bacterium, and the prevailing diagnosis methods are either resource-

intensive or time consuming. Thus, a reliable and easy–to-use diagnosis system has become essential to 

make the world TB free by 2030, as envisioned by the World Health Organisation. In this work, the 

challenges in implementing an efficient image processing platform is presented to extract the images 

from plasmonic ELISAs for TB antigen-specific antibodies and analyse their features. The supervised 

machine learning techniques are utilised to attain binary classification from eighteen lower-order colour 

moments. The proposed system is trained off-line, followed by testing and validation using a separate set 

of images in real-time. Using an ensemble classifier, Random Forest, we demonstrated 98.4% accuracy 

in TB antigen-specific antibody detection on the mobile platform. Unlike the existing systems, the 

proposed intelligent system with real time processing capabilities and data portability can provide the 

prediction without any opto-mechanical attachment, which will undergo a clinical test in the next phase. 

Keywords: Image processing; machine learning; decision support system; colourimetric tests 

1. Introduction 

Tuberculosis (TB) is a communicable disease, infecting one third of the world’s population. In 2015, 1.8 

million TB-related deaths were reported (Centers for Disease Control and Prevention, 2017). On the 

other hand, every year about 244 million migrants cross international borders (Department of Economic 

and Social Affairs, 2016). The carriage of TB in a mobile population is a global challenge, which is a 

particular concern for the border agencies (Posey, Marano, & Cetron, 2017). However, TB is curable 

with appropriate early diagnosis. The most common diagnosis procedure for TB is a skin test (Mantoux 

test) or a blood test (Centers for Disease Control and Prevention.; NHS). Despite many commercial test 
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schemes, there is still a need for an easy-to-use, effective and feasible point-of-care (POC) TB diagnosis 

tool, particularly for the remote community where there are very limited or no diagnostic facilities. Such 

a tool should possess the following features: low cost mobile solution, anytime anywhere access, low 

energy consumption, ease of use, fast and automatic identification of TB.  

The World Health Organization (WHO) prefers diagnostic tools which are inexpensive, disposable and 

easy-to-use (Khademhosseini, 2011; S. Wang, Xu, & Demirci, 2010). A mobile-enabled expert system 

can address all these features. Due to the high penetration rate of mobile phones (GSMA Intelligence), 

such system can reach a wider population, especially those who have limited access to advanced 

laboratory facilities. Incorporation of the mobile phone can not only facilitate an easy and automatic 

colour detection but also can enable diagnostic disease decision using machine learning techniques.  

In order to establish a widespread application, the mobile-enabled expert systems should possess 

minimum hardware requirements. To eliminate the necessity of the opto-mechanical attachment, one 

requires advanced image processing techniques. The difficulty of choosing the right image processing 

technique for a mobile platform includes the balance between accuracy, robustness and computation cost.  

This work aims to develop such a system to provide qualitative TB diagnosis results on the mobile 

platform in real time. The main contribution of the paper is to ‘automatically’ detect TB-specific 

antibodies by analysing digital images (i.e. ELISA images) with colour signals produced by biosensor 

technology. The plasmonic ELISA tests were conducted in Universiti Putra Malaysia. The proposed 

system does not require any additional hardware such as an opto-mechanical attachment to enhance the 

colour detection or guide the illumination source, which makes the system the most conveniently 

portable. Utilising an intelligent image processing algorithm, the presented system robustly separates the 

samples from the assay plate and extracts the features, and within a few seconds the system predicts the 

class label via a machine learning algorithm with high accuracy and ease of use. On a trained model, 

when a user provide an image to test, the system will require to process the image. Sending this user 

input directly to the cloud may present certain uncertainty and degradation of the image quality in 

resource-limited settings. A local analysis can enable TB testing facility for 24/7 even in the remote areas 

where internet connection is not available or very weak to send the images to the server, conduct the 

analysis, and send the result back to the smartphone. Although the proposed system is a native application 

to provide anytime-anywhere access, the presented system can be integrated to a server.  

2. Literature Review 

2.1 Computational Systems for TB-detection  

To the best of authors’ knowledge, there is no existing mobile, desktop or server based system for 

plasmonic ELISA based detection of TB antigen-specific antibodies. In literature, only a few studies 

employed machine learning techniques to assist in the diagnosis and monitoring of TB to offer a low-

cost, simple, rapid and portable platform. Tracey et al. (2011) utilised acoustic signals to track the 
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recovery of pulmonary tuberculosis patients. The multilayer perceptron (MLP) showed 88.2% accuracy 

for ambulatory cough analysis.  

Osman, Mashor, & Jaafar (2010) proposed a tuberculosis bacteria detection technique from tissue sample 

by Ziehl-Neelsen staining method. The prepared sample image from an optical microscope was 

segmented by moving k-mean clustering for tuberculosis bacteria extraction. Both RGB and C-Y colour 

were utilised to acquire a robust and improved segmentation under various staining condition. The hybrid 

multilayered perceptron network (HMLP) selected the features among the geometrical features of 

Zernike moments to detect tuberculosis bacteria. The result showed 98.0%, 100% and 96.19% of 

accuracy, sensitivity and specificity respectively to find the class of definite and possible TB. 

Tsai, Shen, Cheng, & Chen (2013) developed colorimetric sensing using unmodified gold nanoparticles 

and single- stranded detection oligonucleotides for a TB test. The focus of the work was salt-induced 

AuNP colourimetric diagnosis for sensing target TB DNA sequences without multiple PCR cycles to 

amplify specific MTB target DNA sequences from extracted sputum or tissue samples. A smartphone 

was utilised just to collect the multiple detection results of colour variation from the concentration on 

cellulose paper and transmit the data to the cloud. 

Table 1: TB related mobile applications on the Android platform 

User Region Aspect Questionnaire  Intelligent 
Systems 

Ref.  

Department of 
Health 

South 
Africa 

Management;  
TB and HIV 
diagnostic data 

 X (Interactive Health 
Solutions, 2016a) 

Specific Users Bangladesh Management  X (Interactive Health 
Solutions, 2017) 

Mine community  South 
Africa 

TB screening   X (Interactive Health 
Solutions, 2016b) 

Patients Pakistan Control TB and 
drug-resistance 

 X (Interactive Health 
Solutions, 2016) 

Clinicians Global Decision on 
rapid diagnosis 
of TB and 
resistance 

X X (Open Medicine 
Project, 2014) 

Clinicians and 
Patients 

Cambodia Track lab test 
result 

X X (Operation Asha, 
2017) 

There are commercial and endorsed mobile applications for TB in the popular application stores e.g. 

Google Play (Table 1, searched on 21-09-2017) and Apple app store. When it comes to diagnosis, the 

applications are for screening purpose only (Interactive Health Solutions, 2016, 2016, 2017). These 

applications store the screening data via the OpenMRS server. Either the user needs to insert the answers 

to a series of questions or the lab test results have to be manually inserted by the user or clinician. The 

available applications can ensure the data portability (Table 1) and in some cases diagnostic decision 

(Open Medicine Project, 2014), however they lack automation to produce a diagnostic result from the 
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specimen. Thus, there is a need for a system that does not require any additional hardware e.g. a plate 

reader and can produce laboratory scale test results. 

2.2 Image Processing on mobile platform  

An image processing based automatic system to be implemented on mobile platform firstly requires 

quality assessment and size reduction of the image. The quality assessment of the image will increase the 

accuracy of the system. The reliability will also increase due to the consistency in the input. The size-

reduction and quantisation will make the system faster. For a mobile enabled decision support system, 

Bourouis et al. (2014) utilised a normalisation function to resize the retinal images to 32x32 pixels before 

storing 1-dimentional vector of pixel information. Lot of emphasis is provided in literature and 

commercial mobile applications for adjusting environmental condition and colour and light exposure 

correction (US9563824 B2, 2017; Wug Oh,Seoung; Kim, 2017). 

The image segmentation algorithms in the literature can be mainly categorised based on five of the 

following methods: histogram thresholding, edge detection, clustering, region-based and graph-based 

methods (X.-Y. Wang, Wu, Chen, Zheng, & Yang, 2016). An alternative to segmentation is often carried 

out e.g. ELISA Plate Reader (Enzo Life Sciences inc., 2015) and AssayColor (Alidans srl, 2015). Both 

applications use a guideline e.g. grid or well structure to ensure a better image from a naïve user. Such a 

guideline can help the user to maintain an adequate distance of the sample from the camera, 

compromising the flexibility of the assay type. In both cases, the well-to-well distance is restricted 

because of certain assumptions regarding the plate size. Instead of any intelligent segmentation 

technique, few works in the literature (Mutlu et al., 2017; Ozkan & Kayhan, 2016) used cropping. It is 

highly discouraged for two reasons: i) it would require cropping skill from the user, and ii) it reduces the 

ease of use.   

2.3 Colourimetric classification and decision on mobile platform  

After processing the images, the features require analysis to generate a diagnostic decision and present it 

on the mobile platform. The related works done in the literature are mostly for paper based assays (Kim 

et al., 2017; Solmaz et al., 2018), which are less complex than the wet chemical assays. A cloud based 

mobile application was demostrated to classify peroxide content from mean RGB, HSV and LAB under 

diverse lighting environments (Solmaz et al., 2018). The least squares SVM and Random Forest were 

utilised to provide binary and multi-class classification respectively. The maximum accuracy at training 

phase (with 10-fold cross-validation) was 95% and on the mobile platform, it was reduced to 90.3%. On 

the other hand, analysing the colour features e.g. average, mode, median, mean, and centroid from the 

histogram of four colour spaces, the saliva-alcohol concentration was determined by Linear discriminant 

analysis (LDA), Support vector machine (SVM) and Artificial neural network (ANN)  (Kim et al., 2017). 

The accuracy varied for different classes. Kim et al. (2017) showed that the stand-alone mobile 

application is two times faster than the server based application.  

There are few mobile applications available for 96 well enzyme-linked immunosorbent assay (ELISA) 

based colour detection in the commercial and public app stores e.g. Spotxel® Reader (Sicasys Software 
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GmbH, 2017), Enzo ELISA Plate Reader (Enzo Life Sciences inc., 2015) and AssayColor (Alidans srl, 

2015). Enzo ELISA Plate Reader (Enzo Life Sciences inc., 2015) and AssayColor (Alidans srl, 2015) 

neither provide any automatic complete analysis, nor include any decision support system (DSS) to 

interpret the colourimetric results. The Spotxel® Reader (Sicasys Software GmbH, 2017) comprising 

plate annotation and alignment, uses powerful noise processing and signal detection techniques. Instead 

of intelligent sensing, the application uses a virtual plate which can be laid over the plate image.  The 

application expects the wells to be aligned with the virtual plate.  The user is required to match the corner 

and centre wells with the grid. The virtual plate or grid can be scaled and rotated. However, aligning the 

wells with the grid requires some image capturing skills, which reduces the ease of use. The developers 

also acknowledged the limitations in the image processing (Sicasys Software GmbH, 2017). The 

application is capable of performing statistical analysis to quantify the result. The accuracy of such 

quantification is yet to be revealed.    

Clearly it is evident from the recent literature and commercial mobile application stores (Table 1), that 

there is no existing low cost mobile solution which can benefit the wider population by anywhere anytime 

access to perform convenient confirmatory diagnosis of TB. To develop such a system, the critical review 

of the literature suggests to us the following findings: 

- A strong image processing technique is required to eliminate the opto-mechanical attachments.  

- Such an image processing technique has to be computationally feasible to be executed in the 

mobile environment.  

- The image processing technique has to be intelligent and robust for wet chemical analysis. It 

should also consider powerful noise filtering techniques.  

- The model needs to be trained off-line before deploying on the mobile platform. A native 

application would be faster than cloud based solutions, can be availed anytime anywhere and 

would possess less concern regarding cyber security.   

3. Methods 

3.1 Data Collection 

3.1.1 Sample preparation  

The experiments on plasmonic ELISA were mainly conducted in Universiti Putra Malaysia (Abuhassan 

et al., 2017; Tania, Lwin, Abuhassan, & Bakhori, 2017). However, the TB patient sputum samples were 

provided by School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Malaysia through 

their University’s hospital. The fresh sputum sample were delivered to their lab and smear microscope 

analysis were carried out prior to culture method. The ELISA analysis was carried out simultaneously in 

the same lab.  

For the detection of CFP-10, a 10 kDa secreted antigen from Mycobacterium tuberculosis, we first coated 

the ELISA plate with 100 μL of CFP-10 in carbonate buffer and then incubated for 1.5 h. Following the 

period, the plate was washed three times with PBS pH 7.6 and 0.05 % Tween-20 (PBST) by tapping it 
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against a clean paper towel. Now the plate was blocked with 370 μL of PBS containing BSA (PBSA) (1 

mg/mL) for 1.5 h. All the antibodies and enzyme conjugates were diluted in diluent antibody containing 

PBST and 1% BSA. The plate was washed with PBST for three times, and kept the plate (invert) at 4°C 

for 2 h. Now, 100 μL of monoclonal anti CFP-10 antibody as primary antibody was added to the plate at 

4°C for 1.5 h. After 1.5 h, the plate was washed with PBST for three times and the plate was added with 

100 μL of biotinylated polyclonal secondary antibody and incubated for another 1.5 h at 4°C. The plate 

then washed three times and 100 μL of catalase-streptavidin conjugate (v/v 1:20) was pipetted into the 

plates and left for 1.5 h at 4°C. After the period, the wells in the plate were washed three times with 

PBST, two times with PBS, one time with deionized water and then dried. Now, 100 μL of hydrogen 

peroxide (in 1 mM MES, pH 6.5) buffer was pipetted into the wells. Immediately, 100 μL of gold ion 

solution freshly prepared in 1 mM MES buffer was added to the wells prepared in 1 mM MES buffer 

was added to the wells at room temperature. At this stage, the GNPs formation in the form of coloured 

solution can be seen and this can be read with microplate reader at an absorbance of 550 nm. For the 

analysis of real samples, the sputum from positive and negative TB patients were diluted in 4% sodium 

hydroxide first, and then proceeded to the same coating process as mentioned above.  

3.1.2 Image acquisition 

The dataset (generated as stated above) contains 252 images and 4 videos (Tania et al., 2017); 106 of 

them, captured with an iPhone 8-megapixel camera without mobile phone holder, were initially 

considered for (Abuhassan et al., 2017). Blurry images, images with inadequate camera exposure, 

observations intended for biosensor optimisation and the initial experiments where the colour widely 

varied from the final representative colours were removed. Finally, 27 images were selected from 22 

independent observations. Among these images, 13, 3 and 2 images were captured by Samsung Galaxy 

J5 Prime (13-MP), iPhone 7 plus (12-MP) and iPhone 6 (8-MP) cameras respectively. The remaining 

images were captured with an iPhone (8-MP camera). The dataset contains images of 96 wells, which 

are partially filled, which means the plates contain both empty wells in addition to wells filled with 

sample. The final selection of 27 images from 22 independent observations were taken in a laboratory 

lighting environment. These images contain 266 samples - 81 of them are positive for TB-specific 

antibody, 181 are negative and three of the samples failed to produce any indicative result, thus 263 

samples were finally selected. A mobile phone holder (NJS Telescopic Music Record Mobile Phone iPad 

iPhone Stand Inc G Clamp Mount 68G) was used while capturing the image. However, the acquired 

images vary in terms of well size, camera to ELISA plate position, light exposure and mobile phone. 

Considering a robust application, this variation is expected in the real life incoming images. 
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Fig.  1: Impact of sample and camera position with respect to ELISA plate. X and Y are the length and width of the 
ELISA plate respectively. Z= volume of sample in the well and Cp= camera position.  

Let us assume, the assay plate, 𝐴 = 𝑓(X , Y , Z ), where {X, Y} ∈ ℤ+ and Z ∈ ℝ and Z > 0   . In this work 

(Fig.  1),  X = {1,2, … , 12} and Y = {𝐴, 𝐵, … , 𝐻}. For the commercially available 96 well plates X and Y 

will maintain such positions in rows and columns. The space between these wells can vary from plate to 

plate. Thus, the wells are signified in (x, y, z) coordinates. Each well denoted by 𝑤 , ∈ 𝑤 ,  in the plate 

and 𝑠 , ∈ 𝑤 , = 𝑠𝑎𝑚𝑝𝑙𝑒, i.e. the well is filled with the sample. Both shape and depth of the well can 

vary, depending on the specification of the assay plate. Due to the dimension of the well itself, the 

distance between these wells can differ from plate to plate. Depending on the biochemical protocol, the 

amount of sample to fill these wells can vary as well. All this information has a direct impact on the 

imaging. However, the colour of each sample, 𝑠 (𝑟, 𝑔, 𝑏) ≠ 𝑓(𝑥, 𝑦, 𝑧).  

We have maintained the camera position (Cp) parallel to the A, giving the wells a uniform exposure to 

the camera. For a static Cp, the distance between Cp to each 𝑤 ,  is not equal. Thus, the sample to camera 

exposure is not equal. In theory, it would make 𝑠 (𝑟, 𝑔, 𝑏) appear as 𝑠 (𝑟, 𝑔, 𝑏). The best exposure would 

be attained by the median 𝑤 , . 

The 𝑠 (𝑟, 𝑔, 𝑏) can potentially differ due to the ambient conditions such as temperature, weather and geo-

location, and certainly for the sample itself. However, this work is conducted in the laboratory 

environment.  

3.2 Image pre-processing and segmentation 

3.2.1 Image pre-processing 

The goal of this work is to provide TB diagnosis on mobile platforms. Thus, this paper intends to 

circumvent the limited memory and processing power of the mobile devices, which is why the size of 

the images need to be reduced. The acquired images were scaled i.e. proportionally resized to reduce the 

processing time.  

After the size reduction, the Gaussian Blur filtering was utilised as the image enhancement technique. 

This low pass filter (LPF) with parabolic amplitude Bode plot detracted the detail of the image by using 

a Gaussian function on each pixel.  
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𝐺(𝑥, 𝑦) = 𝑒
 

………(1), where 𝜎 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

In an image, x being the distance from the origin in the horizontal axis, y being the distance from the 

origin in the vertical axis, 2D Gaussian or normal distribution can be written as Eq. (1).  Alternatively, a 

local Laplacian filter with contrast-limited adaptive histogram equalization was also implemented in the 

desktop application to evaluate the reformation.  

Most commonly, the images captured by smartphones are in the RGB format. After smoothing, the image 

needed to be taken into a more perceptually linear colour space, LAB. This colour space transformation 

provides the ease to perform Euclidean distance calculation-based clustering at a later stage.   

3.2.2 Image segmentation 

Initially, a number of segmentation methods were implemented such as Otsu (Otsu, 1979), multi-level 

Otsu (Liao, Chen, & Chung, 2001), watershed (Meyer, 1994), super pixel (Ren & Malik, 2003) and k-

means (Forgy, 1965; Lloyd, 1982; Macqueen, 1967). In the previous study (Abuhassan et al., 2017), k-

means clustering showed promising performance, where the number of cluster was 6 and the size 

reduction was minimum.  

Table 2: Major steps of the Algorithm 

Input: Images of plasmonic ELISA plates 

Output: Result   
Steps:  

1) Read the images in Red-Green-Blue (RGB) colour space  

2) Dynamically scale the image based on the initial size 

3) Smooth the image using Gaussian Blur filtering.  

4) Convert the image into the CIELAB colour space  

5) Use colours in the ab space to measure the Euclidean distance for clustering  

6) Select k = 4 

7) Dynamically repeat step to avoid local minima  

8) For clusters 1 to k, separate the objects using the index clustering. This will produce k images.  

9) Convert k images to binary images 

10) Use morphological transformation includes Dilation and Erosion 

11) Identify the optimum cluster(s) by calculating the difference between the produced images and the white colour 

(the image with the lowest distance is the optimum cluster) 

12) Use Canny edge detector to sharp edges  

13) Apply the Find Contours to the optimum cluster. This step will produce images equal to the sample wells in the 

segmented image 

11) Read through the well images and apply size and position noise filtering  

12) Extract the histogram features from the image 

13) Save the values in the .csv file 

14) Repeat steps 11 to 13 if more wells left, If not go to 15  

15) Pass the .csv file to the classifier 

16) Draw the result of positive or negative 

17) Show the result to the user 
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The qualitative test determines the presence or absence of a substance. Thus, the decision is in the binary 

form. For the naked-eye tests, these binary classes are supposed to be visually distinguishable. Therefore, 

in theory there are only 3 relevant colours: background, foreground containing positive samples and 

alternatively negative samples. Hence, it can be hypothesised that k=3 should provide a perfect 

segmentation for a qualitative colourimetric test holding both positive and negative samples. However, 

if the foreground pixels of positive and negative samples are in two different clusters, it would make the 

sample annotation unnecessarily complex and computationally expensive. Thus, it would be desirable to 

force the clustering method to keep the positive and negative samples in the same cluster.  

During the segmentation process, the random selection of cluster centroid position at initial stage 

compelled a requirement for the best cluster persuasion. Thus, after the clustering, a series of post-

processing techniques were applied. As mentioned in Table 2, these post-processing techniques include 

morphological operation encompassing Dilation and Erosion followed by object detection. The 

morphological transformations on a binary image in most cases require two inputs: the image and the 

kernel which identifies the nature of the operations. The contours were exploited after the segmentation 

and morphological transformations for size analysis and object detection. 

ELISA plate

l

a

b

Segmented 
well or sample

mean mode std. 
Deviation

skew-
ness

energy entropy

mean mode std. 
Deviation

skew-
ness

energy entropy

mean mode std. 
Deviation

skew-
ness

energy entropy

Features

Classifier

 
Fig.  2: Feature analysis framework 

3.3 Feature analysis and classification 

Once the samples (ROI) were separated, the characteristics of these samples were analysed. In this paper, 

the feature analysis involves measurement of colour moments. This work includes basic features 

necessary to compute any probability distribution (Sergyan, 2008). The framework is illustrated in Fig.  

2.  As described in Abuhassan et al. (2017), mean, mode, standard deviation, skewness, energy and 

entropy in L, a and b channel (18 features in total) were considered to train the model. 

3.4 Mobile-enabled expert system 

In this work, the plasmonic ELISA-based TB detection was deployed on the Android platform. The 

mobile application was developed on a Samsung Galaxy S7 edge. The minimum target SDK is 21 (API 

level 5). 
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Fig.  3: System framework: Implementation of the Algorithm 

The steps outlined in Table 2 were implemented on the Android platform as illustrated in Fig.  3. Due to 

convenient functionality on the Android platform, OpenCV was utilised to perform the data pre-

processing i.e. image processing and feature extraction. The feature values of the segmented, individual 

sample (well) were stored as text and carried to Weka to train the classifier model offline. The offline 

training was conducted on a 64 bit Windows system with Intel ® Core ™ i7-4770 CPU at 3.40 GHz 

processor and 16 GB RAM.  

Once the model is trained, it was loaded on the Android platform using Weka library (weka.jar file). At 

the testing level in Fig.  3, the user can use any new image of the plasmonic ELISA test on an Android 

device to produce the correct prediction of TB disease in real time.  

4 Results 

4.1 Image acquisition of Plasmonic ELISA 

Plasmonic ELISA links the colour of plasmonic nanoparticles to the presence or absence of the analyte 

(target protein). Mycobacterium tuberculosis ESAT-6-like protein esxB (CFP-10) was used as a target 

protein biomarker for the TB detection Plasmonic is accomplished by linking the growth of gold 

nanoparticles with the biocatalytic cycle of the enzyme label. The protocol adapts a conventional ELISA 

procedure with catalase-labelled antibodies. The enzyme consumes hydrogen peroxide (H2O2), and then 

gold (III) ions are added to generate gold nanoparticles. The concentration of hydrogen peroxide dictates 

the state of aggregation of gold nanoparticles. This allows for the naked-eye detection of analytes by 

observing the generation of blue- or red-coloured gold nanoparticle solution. 
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Positive sample
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Negative sample
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Fig.  4: Samples in a plasmonic ELISA plate. (a) Samples are hard to visually distinguish, (b) Samples are visually 
distinguishable 

In this work, the presence of TB-specific antibodies can be confirmed if the sample turns blue in the 

ELISA plate. In Fig.  4 (a) gold ions are reduced when H2O2 is present. The top 3 samples are free from 

TB-specific antibodies. In the presence of H2O2 non-aggregated nanoparticles are formed turning the 

solution pink. In the bottom 3 samples, the concentration of H2O2 is decreased, turning the samples blue, 

confirming the presence of TB-specific antibodies. 

Background

ELISA plate
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sample

Negative 
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position

Fig.  5: Observation of the associated colours and key variables in the image 

The key observations from the detailed inspection of the dataset are listed below. 

Obs. 1: In the presented dataset, the sample-to-sample distance was not constant (Fig.  1). If the wells 

are filled within a close neighbourhood, there is an unavoidable smearing effect. Thus, the background 

cluster holds many pixels which are close to the foreground pixels. With varying position(𝑥, 𝑦), 

depending on the class of 𝑠 , , the background cluster is difficult to separate from the foreground clusters. 

Obs. 2: In some cases, the positive and negative samples are hardly visually distinguishable. For 

image e.g. Fig.  4 (b), the samples are adequate for naked eye measurement. For sample image e.g. Fig.  

4 (a), the indicated sample pair are hard to differentiate.  This issue can worsen if the plate contains only 

one sample and the colour is as ambiguous as in Fig.  4 (a), which can lead to subjective interpretation. 

Moreover, there is a conscious variation in the sample colour, 𝑠 (𝑟, 𝑔, 𝑏) on independent A.  
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Obs. 3: In the dataset, the value of Z (the volume of sample in a well) had an impact on the size of 

the sample (𝑠 , ). It implies that the 1st colour moment can vary based on how the wells are filled. 

𝑠 (𝑟, 𝑔, 𝑏) = 𝑓(Z). A well filled up to the surface would have a better exposure when they are positioned 

at the far edge of the plate. 

Obs. 4: This work is comprised of wet sample, which is not immune to light reflection from its 

surroundings (Fig.  5). Initially, this ceiling light was not taken into account. Our hypothesis was: the  

𝑤 ,  with median (𝑥, 𝑦) would be the ideal position for the samples. Even a well filled up to the surface 

(Obs. 3) in the median position can suffer from the ceiling light reflection.  

Obs. 5: The impact of ‘camera to well position’ (Fig.  1) is aligned with our prediction in Sec. 3.1. 

Such influence can be analysed by the SKEW (Fig.  2). 

The observations Obs. 1, Obs. 3 and Obs. 4 have a clear impact on the image processing measures. 

The Obs. 2 works in our favour. The qualitative colourimetric tests are usually suitable for naked-eye 

detection, which necessitates (i) adequate biosensors to produce visually distinguishable colours and (ii) 

a user who has appropriate colour vision. Firstly, the use of intelligent systems can reduce the 

biochemical complexity without compromising the accuracy, specificity, sensitivity and reliability. 

Therefore, the positive and negative samples do not require to be visually distinguishable.  Secondly, an 

intelligent system such as the system we presented in this paper can eliminate the subjectivity of 

interpretation. A robust system should be able to handle the variation of sample colour mentioned in Obs. 

2.  

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

   

(j) (k) (l) 

Fig.  6: (a) Samples in a plasmonic ELISA plate. Gradual enhancement of the image: (b) sharpened, (c) smoothened, 
(d) final enhancement before colour space transformation. Quantisation input: (e) full size quantisation, (f) plane-
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by-plane quantisation, (g) Superpixel, (h) JSEG in MATLAB and (i) Gabor filtering, (j) k-means, (k) Superpixel, (l) 
Gaussian filtering in OpenCV 

4.2 Image Analysis  

4.2.1 Image pre-processing 

At first, the acquired images were scaled and quantised to reduce the size of the image. For a simple 

method such as Otsu, the impact of scaling on processing time is negligible. On the other hand, to perform 

numerous iterations, the aid of scaling is obligatory for a heavy segmentation technique such as 

clustering. In our earlier study (Abuhassan et al., 2017) utilising desktop application, typical images 

ranging ~3000-4000 pixels were scaled 50%, which requires more reduction to be implemented on 

mobile platform. Bourouis et al. (2014) utilised 32x32 pixels retinal images, which is not substantial to 

analyse the colour features of the presented dataset. Moreover, the resizing in Bourouis et al. (2014) was 

not dynamic. For a known condition, the height and the width of the image will not vary to a great extent.  

However, it may vary due to factors such as position of the camera, size of the plate, and camera 

configuration. Thus, the size reduction in this work was performed dynamically (Android Developers, 

2018) and proportionally so that the geometry of the ROI was not deformed.  The quantisation techniques 

were carried out to reduce the size of the image by reducing the number of colours in the image (Fig.  6). 

It was observed that quantisation has insignificant impact on the overall segmentation process. As a 

result, it was discarded. For a good quality image, such as Fig.  6 (a), the requirement of image 

enhancement is not high. However, to develop a robust technique applicable to poor quality images, 

image enhancement is essential. Hence, the images were sharpened, which is a function of resolution and 

acutance. The radius value of standard deviation of the Gaussian LPF controls the size of the region 

around the edge pixels that is affected by sharpening. A large value sharpens wider regions around the 

edges, whereas a small value sharpens narrower regions around edges. The higher value of sharpening 

will lead toward larger increase in the contrast of the sharpened pixels. A very large value for this 

parameter may create undesirable effects in the output image, as it may appear as noise. Thus, an edge-

aware local contrast alteration was deployed to create more contrast. In the next step, the sharpened image 

was selectively smoothened to blur the empty wells. The objective of such extensive pre-processing was 

to ease the segmentation process and minimise the number of iterations. However, these excessively 

processed images caused separation of cluster 1 and 2 (Eq. 2) in two different clusters at the segmentation 

stage, as predicted. This led to an elongated object detection step. Hence, the Gaussian Blur filtering (Fig.  

6(l)) was utilised as the only image enhancement (negative) technique prior to image segmentation. It 

assisted to address Obs. 1.   
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Input Watershed Otsu Multi-level 
Otsu 

K-means 

     

     

Fig.  7: Image Segmentation using different techniques  

4.2.2 Image segmentation 

The qualitative performance of different image segmentation techniques can be seen from two different 

input images as shown in Fig.  7 (OpenCV). The Otsu and watershed transformation were unsuccessful 

in segmenting adequately. The multi-level Otsu performed well for a good quality image with low 

smearing effect, where the samples are evenly spaced e.g. Fig.  6 (a). However, it failed for many images 

e.g. second input of Fig.  7. The JSEG was time consuming, not suitable for implementation in real-time. 

The k-means showed good segmentation performance resembling our early study (Abuhassan et al., 

2017).   

(a) (b) (c) 

(d) (e) (f) 

Fig.  8: (a) Input image, (b) Gaussian 2D filtering in MATLAB, (c) first cluster, (d) 2nd cluster with positive and 
negative samples, (e) 3rd cluster, (f) fourth cluster 

As mentioned earlier, we require the positive and the negative samples to belong in the same cluster. The 

use of Gaussian LPF forced the segmentation process to hold the samples in the same cluster as illustrated 

in Fig.  8. Such pre-processing and segmentation techniques precisely addressed Obs. 1 and Obs. 4.  
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Without forcing the positive and negative samples to be in the same cluster

Algorithm mentioned in Table 2, only with varying k  

Fig.  9: Performance of the image processing algorithm for different k  
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In our preliminary study, we performed the k-means with k=6 without any pre-processing and with 

minimum resizing (Abuhassan et al., 2017). As it is mentioned earlier, theoretically the input image 

should be segmented into three different clusters, which was later found to be imprecise in this work 

(Fig.  9). Initially, utilising the desktop application (MATLAB), we analysed the impact of varying k 

without using Eq. (1). Without forcing the algorithm to keep both positive and negative samples in the 

same cluster, higher k exhibited better segmentation, which is computationally expensive and less 

suitable to be performed in the mobile environment. Without utilising Eq. (1), the maximum accuracy 

achieved was 88.81% with k=6 (Fig.  9).  

It was also observed that the required number of k may vary for image to image due to the image quality, 

filled well-to-well distance, camera position and positive-negative sample position and ratio per image. 

A range in the required number of clusters was also observed from the silhouette method (Rousseeuw, 

1987), which supports the observation. However, it is not feasible to use multiple iterations to choose a 

different k each time for each image as it would become computationally expensive. If the ELISA plate 

contains more filled wells, the execution time is likely to be higher, which makes it unsuitable for mobile 

applications. In future, we will utilise the image histogram to predict the required number of k before 

starting the iteration. In contrast, many applications in the commercial app stores simplify the image 

processing portion by utilising a gridline approach, resulting in compromising the freedom of diverse 

plate size and in some cases the ease of use.   

In this paper, we have used k-means with an optimum number of k=4 (as mentioned in Table 2), with 

complimentary rigorous pre and post processing techniques. With varying k, the overall performance 

(Fig.  9) of the image processing algorithm (Table 2) varied as well. When k=3, the unsupervised machine 

learning showed under-segmentation, leading the segmented region to hold image area outside of ROI. 

When k>4, the algorithm showed over-segmentation, which resulted in more poor performance due to 

extensive post-processing of the segmented image.  

       

       

       

Fig.  10:  Constraint in segmentation without post-processing: adhered samples after clustering  

adhered 
samples 
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Fig.  11: Image processing utilising morphological processing  

For post-processing, subsequent to clustering, the images were converted into binary images, followed 

by morphological operation. Without morphological processing, many images would suffer from 

incorrect object reckoning. After segmentation, in a few cases the samples joined together in association 

with the noise. If this phenomenon occurs in the right cluster, then the ROI separation process will fail. 

This problem can be better visualised with Fig.  10, where the samples could not be adequately separated. 

Due to Obs. 1, few samples are attached together as illustrated in the highlighted image (marked with a 

red box). All these samples were categorised as a single sample, whereas they are 8 adhered samples.  

Therefore, the binary dilation and erosion was used to ease the object detection. Erosion operation was 

iterated four times more than the dilation in order to isolate individual wells and overcome Obs. 1. The 

size of each (processed) sample in Fig.  11 is much smaller than Fig.  10, which helped to reduce noise, 

and the samples were no longer adhered (Fig.  11). However, it presented a small possibility of over 

segmentation due to camera–to-plate position and the type of the plate. To achieve a higher degree of 

freedom regarding the plate size, a conversation table is required to transform the physical dimension of 

the assay plate into image pixels.  

 
(a) (b) (c) 

 

(d) (e) (f) 

Fig.  12: (a) Segmented image using Fig. 4(a) as the input. (b) Post-processing after segmentation. (c) Final output 
after contour detection. (d) Segmented image using Fig. 5(a) as the input. (e) Post-processing after segmentation. 

(f) Final output after contour detection 

The next challenge was to automatically recognise the best cluster among the four clusters, which was 

accomplished by exploring the well-to-well background. According to our research, the best cluster is 

the one that has less white background. As explained earlier, the adversity of Obs. 1 is worsened if this 
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phenomenon happens after the segmentation in the chosen best cluster (Fig.  10). This background acting 

as noise needed to be filtered from the best cluster (Fig.  11). Finally, the ROIs i.e. samples are separated 

using contour detection technique.  

To address all the challenges listed as the observations in Sec. 4.1, selection of a precise post-processing 

technique was crucial. The 𝑠 ,  was diverse for the entire dataset, which is expected for a robust use of 

the application. We demonstrated an intelligent inspection after segmentation to correctly extract the 

sample from the noise (Fig.  12). The object detection technique functioned accurately even in the case 

of blurry images in which a larger number of wells were detected and used. 

4.3 Feature Analysis and Classification Result  

The colour moments of the extracted ROI were analysed to train the system offline. The reported articles 

(Mutlu et al., 2017; Solmaz et al., 2018) mostly feed the mean colour values to the classifiers. We have 

considered 18 histogram features listed in Table 2 to ensure all the variables are being considered for a 

robust operation.  
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(a) (b) (c) 

Fig.  13: Confusion matrix of (a) Random Forest, (b) Random Tree, (c) Random Committee  

The non-parametric classifiers such as random forest (RF), decision tree, k-nearest neighbours algorithm 

(kNN), and cubic support vector machine (CSVM) performed better than the parametric classification 

method e.g. linear discriminant and logistic discrimination. Without cross-validation, all these non-

parametric methods produced 100% accuracy.  

The Multilayer Perceptron (MLP) with backpropagation was comparatively slow and the classification 

performance was poor as well. It provided 95.2% accuracy. The learning rate was 0.3. In order to 

circumvent the backpropagation algorithm to be trapped in the local minima, the momentum rate was 

chosen to be 0.2. There were 500 epochs to train through without decaying the learning rate.  The network 

was allowed to be reset. Both attributes and classes were normalised before training the model. The 

required number of hidden layers were calculated from the number of attributes and 

classes . The nodes of these 10 hidden layers were sigmoid. No validation set was used 

to terminate the training. The model was built in 0.35 seconds.  
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With 30 weak learners, the RF provided a high accuracy (97.2%) in our preliminary study (Abuhassan 

et al., 2017). The RF showed consistent performance in this study as well. In this work, the bag size in 

RF was chosen to be 100 without storing out-of-bag predictions in internal evaluation object.  The 

bagging was conducted with 100 iterations and base learner. Only one seed was taken for random number 

generator. The maximum depth of the trees were kept unlimited and minimum one instances per leaf was 

allowed to occur. The desired batch size for prediction was chosen to 100. It took 0.09 seconds to build 

the model in Weka.  

Table 3. Result of different classifiers in Weka platform 

Classifier κ TP 
rate 

FP Rate    
 

Precision F-
Measure   

ROC 
Area 

Class 

Random  
Forest 

0.9775 0.982     0.00     1.00       0.991    1.00       Negative 

1.00 0.018 0.973 0.986 1.00 Positive 

Random  
Tree 

0.9661 0.982 0.014 0.991 0.987 0.984 Negative 

0.986 0.018 0.973 0.979 0.984 Positive 

Random  
Committee 

0.9773 0.991 0.014 0.991 0.991 0.999 Negative 

0.986 0.009 0.986 0.986 1.00 Positive 

Bagged  
Tree 

0.9098 0.956 0.042 0.973 0.965 0.996 Negative 

0.958 0.044 0.932 0.945 0.997 Positive 

Multilayer 
Perceptron 

0.8988 0.947 0.042 0.973 0.960 0.977 Negative 

0.958 0.053 0.920 0.939 0.981 Positive 

In this paper, the RF and Random Committee (RC) both showed 98.9% accuracy with stratified cross 

validation (10-fold) in the Weka platform. Keeping the batch size, number of seeds, minimum number 

of instances per leaf as same as RF, the RC was built in 0.01 seconds using default number of iterations 

(10). The size of the tree varied in each iteration.  The Random Tree (RT), a decision tree built on a 

random subset of columns achieved 98.4% accuracy. Keeping the parameters as same as RC, the Bagged 

Trees consisting unpruned binary trees provided 95.7% accuracy.  

The Cohen's kappa coefficient (Cohen, 1960) (κ) is a statistic which compares an observed accuracy with 

an expected accuracy that can be seen as a random chance. It can be calculated as, κ = , where 𝑝 is 

the prequential accuracy of the classifier and 𝑝  is the probability that a chance-classifier makes a correct 

prediction. The result of κ being 1 would signify that the classifier is always correct and 0 would mean 

that the predictions coincide with the correct ones as often as those of the chance classifier. The κ can 

provide more precise evaluation than the traditional accuracy metric.  Moreover, it can aid in evaluating 

the classifiers among themselves. From the κ measurement (Table 3), the RF is the best classifier. The κ 

of RF is in agreement with the accuracy of our previous study as well (Abuhassan et al., 2017).  
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The true positive (TP) rate provides the instances where the samples are correctly classified as the given 

class. TP rate =
  ( )

 . It can also be expressed as the sensitivity or recall. The highest 

TP rate was attained by the RF. The false positive (FP) rate or Fall-out provides the instances when the 

samples are falsely classified as the given class. The precision is the fraction of relevant instances among 

the retrieved instances i.e. Precision =  . The F-Measure provides a combined measure for 

precision and recall. It can be expressed as,  F − measure =
 ×  ×

 .  The detection ability of 

the classifier can be better perceived by the receiver operating characteristic (ROC) area (Table 3). 

Considering the ROC area, the RF is the best classifier for our dataset. The accuracy, specificity and 

sensitivity can be better visualised from the confusion matrix. The confusion matrix of the top three 

classifiers are illustrated in Fig.  13.  

The random feature selection in RF, makes the trees more independent from one another than Bagging, 

which led to higher accuracy and better bias-variance trade-off.  Each tree is able to learn only from a 

certain subset of features, making it a faster ensemble method as well. Moreover, the RF showed a 

consistent better performance in various metrics. Similar performance to RF was attained in the 

MATLAB platform as well. Therefore, we trained our model with RF on the mobile platform.   
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Fig.  14: Accuracy at different stage of the system 

4.4 Testing and Validation on the Mobile platform  

In this work, we demonstrated automatic, real-time TB disease decision making on a mobile platform.  

The trained model was deployed on the Android platform as illustrated in Fig.  3. To test the efficiency 

of this mobile-based intelligent algorithm for detecting TB, a separate dataset was used than Sec. 3.1. 

This new dataset is unknown to the system and contained 61 samples. Among these samples, 20 were 

positive, 41 were negative and one failed to produce a colour. This held-out validation on the mobile 

platform ensures the reliability of the system.  
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Fig.  15: Confusion matrix of testing performance at mobile platform  

On the mobile platform, for this unseen data, the system provided correct prediction for 60 samples. 

Thus, a final accuracy i.e. from image processing up to TB detection on the mobile platform, of 98.4% 

was achieved (Fig.  14). The necessity of balanced data can be perceived from the confusion matrix (Fig.  

15). The performance of the classifier on a balanced dataset in Weka platform is shown in the 

Supplementary document. In the absence of a larger dataset, over-sampling or multiple resampling 

(Estabrooks, Jo, & Japkowicz, 2004) can shed some more light on the performance of the mobile 

platform.   

       

Fig.  16: TB disease detection application 

One of the biggest challenges of this work was to provide this diagnostic decision on the mobile platform 

in real-time. The prediction on the mobile platform requires the performing of image processing of the 

incoming image on the mobile device itself. The processing time is a subject to the number of iterations 

during image segmentation and object detection and is heavily influenced by Obs. 1, Obs. 2 and Obs. 4. 

We embraced careful pre-processing techniques to minimise the number of iterations. The k-means uses 

a random initial value and it is sensitive to the size of the image, thus scaling has a direct impact on this 

clustering technique regarding the number of k and how the image is being segmented, which justifies 

the pre-processing used in here. Moreover, we managed to confine the best cluster containing multi-

sample of different classes within the same cluster with aid from the Gaussian filtering.  This algorithm 

(Table 2) possess the robustness to deploy the image processing scheme on the mobile platform for other 

assay plates, which can be further authenticated for the quantitative colourimetric tests.     
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The execution time was recorded for all the images in the dataset. Due to fewer iterations, the image 

processing occurs in real time liberating the implementation on the mobile platform (Fig.  16). The input 

image of Fig.  10, containing 20 samples, took 23 seconds to produce the result. The image with only 6 

samples e.g. Fig.  6(a) provided the result within 9 seconds.  Therefore, it can be concluded that our 

system is capable of delivering TB disease decision from the plasmonic ELISA image on the mobile 

platform within ~1-2 seconds/sample (Fig.  16).  

An image annotation technique was used in the embedded system to identify each sample individually. 

The Android memory management was utilised to enhance the heap performance by following the correct 

life cycle of activities in the Android platform. The memory management includes actions with garbage 

collector (GC), memory optimisation, and tree dominator (Android Developers, 2018). In order to reduce 

memory leak, the elements used by the system were scaled. The application persistently searched for the 

objects that were no longer required (garbage) after the life cycle, or reachable which were needed for 

references. The heap dumps were accumulated over the period of time to determine if there was any 

growing memory leak. The allocation tracker facilitated a better understanding of the memory usage.  

In this work, we utilised 8-bit channel ARGB_8888 configuration for the bitmap of image. Although it 

occupies considerable amount of memory and immediately allocated in the heap, quickly exhausting the 

memory, this is an optimised choice to maintain the quality of the scaled images.   Moreover, this work 

involves series of image conversations. Therefore, redundant images had to be simultaneously deleted. 

For garbage collection, a mechanism to remove unnecessary objects to the java application using a virtual 

machine, Dalvik GC was utilised (Ehringer, 2010). The type of garbage collectors were also examined 

closely.  

The application was tested on Samsung Galaxy S6, Samsung Galaxy Note 3 and Samsung Galaxy J3 

Prime. On most of these devices, the application performs similarly in terms of the classification accuracy 

and processing time. 

5 Limitations and scope of improvement  

For any diagnostic system, it is important to note its limitations as well as its capabilities. In the image 

processing section, in spite of multi-step filtering, the noise due to Obs. 1 needs to be further adjusted. 

In future, to train the model we will conduct feature optimisation and bias-variance trade-off. The future 

work should also focus on rectifying the variation between κ and accuracy (Sec. 4.3).  We will also 

explore non-parametric NN with backpropagation, deep NN, hybrid decision tree and naïve Bayes 

classifiers (Farid, Zhang, Rahman, Hossain, & Strachan, 2014)  to investigate a potential enhancement 

of the accuracy. 

6 Conclusion 

This paper has presented a mobile enabled plasmonic ELISA based TB antigen-specific antibodies 

detection scheme using smartphones with the integration of machine learning techniques. Using a robust 

image processing technique comprised of clustering and object detection, our system can detect samples 
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(wells) without any guide or virtual plate. The decision components facilitated selection of the right 

cluster among the multiple number of clusters, detection of wells and transcending the samples from 

noise. Therefore, unlike the reported articles, the system does not require the user to provide seed points 

or perform cropping. Moreover, the system is capable of reading multiple samples and classifying them 

as positive or negative in real time. 

The plasmonic ELISA based technique produce colours for positive and negative samples. However, 

making of a final decision based on the colour appearance is not accurate in all the cases. Therefore, in 

this work, we demonstrated a smartphone-based POC platform that takes the final decision based on 

colour analysis. This work incorporated supervised machine learning to free the TB test result from the 

colour perception of individuals and its subjectivity of interpretation. Utilising 18 histogram features, we 

achieved 98.9% accuracy with the Random Forest classifier. This fully automated and self-contained 

system with image capturing, analysing and classification service is then embedded into the Android 

system. Using a completely new dataset, we demonstrated 98.4% accuracy to diagnose TB-positive 

samples on the mobile platform. In the absence of any existing automatic platform without an opto-

mechanical attachment, to the best of our knowledge, it is the best performance for TB diagnosis on the 

mobile platform.  

The portability, technical and financial feasibility in automatic TB diagnosis in the presented system can 

benefit millions of people, especially in remote locations where few experts are available. This technique 

can be applied to other colourimetric qualitative tests, especially for ELISA and paper-based assays. 

Moreover, this system can be a guide in providing properly distinguishable colour by minimising the 

complexity of a chemical method utilising a powerful algorithm, which will reduce the dependency on 

perfect colour vision for naked-eye evaluation. The scheme shows great potential in evolving healthcare 

applications to benefit wider communities. A polythetic approach and subsequently a clinical trial will 

be executed in future to enhance the expert system with better precision and reliability.   

Acknowledgement 

This research is supported by British Council Newton Institutional Links and Newton-Ungku Omar Fund 

(Grant ID: 216385726). This is a collaborative research project between Anglia Ruskin University (UK) 

and Universiti Putra Malaysia (Malaysia).  

References  

Abuhassan, K. J., Bakhori, N. M., Kusnin, N., Azmi, U. Z. M., Tania, M. H., Evans, B. A., … Hossain, M. A. (2017). Automatic 

Diagnosis of Tuberculosis Disease Based on Plasmonic ELISA and Color-based Image Classification. In 2017 39th 

Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 4512–4515). 

Jeju Island, South Korea. https://doi.org/10.1109/EMBC.2017.8037859 

Alidans srl. (2015). AssayColor. Retrieved January 10, 2017, from 

https://play.google.com/store/apps/details?id=com.alidans.assaycolor 

Android Developers. (2018). Overview of memory management. Retrieved May 29, 2018, from 

https://developer.android.com/topic/performance/memory-overview 

Bourouis, A., Feham, M., Hossain, M. A., & Zhang, L. (2014). An intelligent mobile based decision support system for retinal 

disease diagnosis. Decision Support Systems, 59(November 2015), 341–350. https://doi.org/10.1016/j.dss.2014.01.005 



23 

 

Centers for Disease Control and Prevention. (n.d.). Tuberculosis (TB) | CDC. Retrieved September 18, 2017, from 

https://www.cdc.gov/tb/ 

Cohen, J. (1960). A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement, 20(1), 37–46. 

https://doi.org/10.1177/001316446002000104 

Department of Economic and Social Affairs. (2016). International Migration Report 2015. https://doi.org/ST/ESA/SER.A/384 

Ehringer, D. (2010). The Dalvik virtual machine architecture. Retrieved from 

http://show.docjava.com/posterous/file/2012/12/10222640-The_Dalvik_Virtual_Machine.pdf 

Enzo Life Sciences inc. (2015). Enzo ELISA Plate Reader. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=com.enzo.elisaplatereader 

Estabrooks, A., Jo, T., & Japkowicz, N. (2004). A Multiple Resampling Method for Learning from Imbalanced Data Sets. 

Computational Intelligence, 20(1), 18–36. https://doi.org/10.1111/j.0824-7935.2004.t01-1-00228.x 

Farid, D. M., Zhang, L., Rahman, C. M., Hossain, M. A., & Strachan, R. (2014). Hybrid decision tree and naïve Bayes classifiers 

for multi-class classification tasks. Expert Systems with Applications, 41(4 PART 2), 1937–1946. 

https://doi.org/10.1016/j.eswa.2013.08.089 

Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 

768–769. 

GSMA Intelligence. (n.d.). Definitive data and analysis for the mobile industry. Retrieved August 7, 2017, from 

https://www.gsmaintelligence.com/ 

Interactive Health Solutions. (2016). Global Fund TB. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=com.ihsinformatics.tbr3mobile_sa&hl=en 

Interactive Health Solutions. (2016). MINE TB. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=com.ihsinformatics.tbr4mobile 

Interactive Health Solutions. (2016). TB REACH 4 - Kotri. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=com.ihsinformatics.tbr4mobile_pk&hl=en 

Interactive Health Solutions. (2017). Childhood TB-Bangladesh. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=com.ihsinformatics.childhoodtb_mobile&hl=en 

Khademhosseini, A. (2011). Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Delivery 

Rev, 62(4–5), 449–457. https://doi.org/10.1016/j.addr.2009.11.016.Nano/microfluidics 

Kim, H., Awofeso, O., Choi, S., Jung, Y., & Bae, E. (2017). Colorimetric analysis of saliva--alcohol test strips by smartphone-

based instruments using machine-learning algorithms. Appl. Opt., 56(1), 84–92. https://doi.org/10.1364/AO.56.000084 

Liao, P.-S., Chen, T.-S., & Chung, P.-C. (2001). A Fast Algorithm for Multilevel Thresholding. Journal of Information Science 

and Engineering, 17, 713–727. 

Lloyd, S. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137. 

https://doi.org/10.1109/TIT.1982.1056489 

Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth 

Berkeley Symposium on Mathematical Statistics and Probability (pp. 281–297). Berkeley, California: University of 

California Press. Retrieved from https://projecteuclid.org/euclid.bsmsp/1200512992%0A%0A 

Maggio, Emilio;Pan, Qi; Reitmayr, G. (2017). US9563824 B2. Retrieved from https://www.google.com/patents/US9563824 

Meyer, F. (1994). Topographic distance and watershed lines. Signal Processing, 38(1), 113–125. https://doi.org/10.1016/0165-

1684(94)90060-4 

Mutlu, A. Y., Kılıç, V., Özdemir, G. K., Bayram, A., Horzum, N., & Solmaz, M. E. (2017). Smartphone-based colorimetric 

detection via machine learning. The Analyst, 142(13), 2434–2441. https://doi.org/10.1039/C7AN00741H 

NHS. (n.d.). Tuberculosis (TB) - NHS Choices. Retrieved September 18, 2017, from 

http://www.nhs.uk/Conditions/Tuberculosis/Pages/Introduction.aspx 

Open Medicine Project. (2014). FIND TB. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=tompsa.findtb&hl=en 

Operation Asha. (2017). eAlert Cambodia. Retrieved September 21, 2017, from 

https://play.google.com/store/apps/details?id=org.opasha.eCompliance.ecomplianceLabCambodia 

Osman, M. K., Mashor, M. Y., & Jaafar, H. (2010). Detection of mycobacterium tuberculosis in Ziehl-Neelsen stained tissue 

images using Zernike moments and hybrid multilayered perceptron network. Conference Proceedings - IEEE 



24 

 

International Conference on Systems, Man and Cybernetics, 4049–4055. https://doi.org/10.1109/ICSMC.2010.5642191 

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and 

Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076 

Ozkan, H., & Kayhan, O. S. (2016). A Novel Automatic Rapid Diagnostic Test Reader Platform. Computational and 

Mathematical Methods in Medicine, 2016. Retrieved from http://dx.doi.org/10.1155/2016/7498217 

Posey, D. L., Marano, N., & Cetron, M. S. (2017). Cross-border solutions needed to address tuberculosis in migrating 

populations. The International Journal of Tuberculosis and Lung Disease, 21(5), 485–486. 

https://doi.org/10.5588/ijtld.17.0187 

Ren, & Malik. (2003). Learning a classification model for segmentation. In Proceedings Ninth IEEE International Conference on 

Computer Vision (pp. 10–17 vol.1). IEEE. https://doi.org/10.1109/ICCV.2003.1238308 

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of 

Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7 

Sergyan, S. (2008). Color Histogram Features Based Image Classification in Content-Based Image Retrieval Systems. In 2008 

6th International Symposium on Applied Machine Intelligence and Informatics (pp. 221–224). Herlany. 

https://doi.org/10.1109/SAMI.2008.4469170 

Sicasys Software GmbH. (2017). Spotxel® Reader. Retrieved January 12, 2018, from 

https://play.google.com/store/apps/details?id=com.sicasys.spotxel&hl=en 

Solmaz, M. E., Mutlu, A. Y., Alankus, G., Kılıç, V., Bayram, A., & Horzum, N. (2018). Quantifying colorimetric tests using a 

smartphone app based on machine learning classifiers. Sensors and Actuators B: Chemical, 255, 1967–1973. 

https://doi.org/10.1016/J.SNB.2017.08.220 

Tania, M. H., Lwin, K. T., Abuhassan, K., & Bakhori, N. M. (2017). An Automated Colourimetric Test by Computational 

Chromaticity Analysis: A Case Study of Tuberculosis Test. In Advances in Intelligent Systems and Computing (Vol. 616, 

pp. 313–320). Springer, Cham. https://doi.org/10.1007/978-3-319-60816-7 

Tracey, B. H., Comina, G., Larson, S., Bravard, M., López, J. W., & Gilman, R. H. (2011). Cough detection algorithm for 

monitoring patient recovery from pulmonary tuberculosis. Proceedings of the Annual International Conference of the 

IEEE Engineering in Medicine and Biology Society, EMBS, (day 0), 6017–6020. 

https://doi.org/10.1109/IEMBS.2011.6091487 

Tsai, T.-T., Shen, S.-W., Cheng, C.-M., & Chen, C.-F. (2013). Paper-based tuberculosis diagnostic devices with colorimetric 

gold nanoparticles. Science and Technology of Advanced Materials, 14(4), 44404. https://doi.org/10.1088/1468-

6996/14/4/044404 

UKVI. (n.d.). Tuberculosis tests for visa applicants. Retrieved September 24, 2017, from https://www.gov.uk/tb-test-visa 

Wang, S., Xu, F., & Demirci, U. (2010). Advances in developing HIV-1 viral load assays for resource-limited settings. 

Biotechnology Advances, 28(6), 770–781. https://doi.org/10.1016/j.biotechadv.2010.06.004 

Wang, X.-Y., Wu, Z.-F., Chen, L., Zheng, H.-L., & Yang, H.-Y. (2016). Pixel classification based color image segmentation 

using quaternion exponent moments. Neural Networks : The Official Journal of the International Neural Network Society, 

74, 1–13. https://doi.org/10.1016/j.neunet.2015.10.012 

Wug Oh,Seoung; Kim, S. J. (2017). Approaching the computational color constancy as a classification problem through deep 

learning. Pattern Recognition, 61, 405–416. https://doi.org/10.1016/J.PATCOG.2016.08.013 

Yetisen, A. K., Martinez-Hurtado, J. L., Garcia-Melendrez, A., da Cruz Vasconcellos, F., & Lowe, C. R. (2014). A smartphone 

algorithm with inter-phone repeatability for the analysis of colorimetric tests. Sensors and Actuators B: Chemical, 196, 

156–160. https://doi.org/10.1016/j.snb.2014.01.077 

 


