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The normality assumption concerning the distribution of equity returns has long been challenged both
empirically and theoretically. Alternative distributions have been proposed to better capture the char-
acteristics of equity return data. This paper investigates the ability of five alternative distributions to
represent the behavior of daily equity index returns over the period 1979-2014: the skewed Student-t
distribution, the generalized lambda distribution, the Johnson system of distributions, the normal inverse
Gaussian distribution, and the g-and-h distribution. We find that the generalized lambda distribution is a

prominent alternative for modeling the behavior of daily equity index returns.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The assumption that stock price changes follow a stable distri-
bution forms the basis for major asset pricing and option pricing
models. Early models by Bachelier (1900) take normality as a
fundamental assumption for modeling stock price movements. In
line with this assumption, Osborne (1959) shows that logarithms
of the changes in the stock prices are mutually independent with
a common probability distribution (i.e., they conform to a random
walk). He then suggests that stock price changes must follow a
normal distribution. However, these findings have been challenged
both theoretically and empirically.!

An early work by Mandelbrot (1967) proposes that stock price
returns belong to the family of stable Paretian distributions be-
cause they have fatter tails. Fama (1963; 1965) provides empirical
evidence that supports this claim and demonstrates that stock
price changes indeed have fatter tails and have higher peaks than
the normal distribution. More recently, Rachev, Stoyanov, Biglova,
and Fabozzi (2005) compared the stable Paretian distribution
to the normal distribution using 382 US stock returns over the
period 1992-2003. The authors investigated the daily returns
using two probability models: the homoskedastic independent and
identically distributed model and the conditional heteroskedastic
ARMA-GARCH model. Normality was rejected for both models.
However, Officer (1972) found that normality holds for monthly
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returns and that the standard deviation of the returns is inconsis-
tent with the stable hypothesis. To support this argument, Praetz
(1972) then suggested the Student-t distribution as an alternative
to the stable Paretian because the stable Paretian distribution has
an infinite variance property and the density function of the stable
Paretian is unknown. Over an eight-year period, Praetz (1972)
examined weekly data from Sydney Stock Exchange and showed
that the Student-t distribution can be used as an alternative to
explain the stock price behavior.

The Student-t distribution was also compared with the nor-
mal distribution and the Cauchy distribution by Blattberg and
Gonedes (1974). Contrary to Praetz (1972), they used both daily
and weekly returns of stocks of the Dow Jones Industrial (DJI), and
they used the maximum likelihood estimation method for esti-
mating the parameters of the distributions. Blattberg and Gonedes
(1974) showed that the Student-t distribution performs better than
the normal distribution on daily returns. However, normality is not
rejected for monthly return data. Hagerman (1978) tested the nor-
mality hypothesis on both individual stocks of the American and
New York Stock Exchanges on portfolios that contain these stocks,
and found that they do not behave in line with the normal dis-
tribution. Hagerman (1978) proposed that the mixture of normal
distributions and the Student-t distribution can be an alternative
to representing the characteristics of stock return data. However,
the performance of these two distributions against each other was
not investigated in Hagerman'’s work.

Kon (1984) compared the discrete mixture of normal distribu-
tions and the Student-t distribution over a period of almost 19
years, examining daily returns of 30 stocks from DJI and Standard
& Poor’s (S&P) value- and equal-weighted stock market indexes. A
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discrete mixture of normal distributions is shown to have greater
validity than the Student-t distribution in modeling the data. Simi-
lar to Blattberg and Gonedes (1974) and Akgiray and Booth (1987);
Officer (1972) stated that the monthly returns of stock prices can
be assumed to be normally distributed. However, for the daily data
they found that the mixed diffusion process and the mixture of
normal distributions perform better than the stable distributions.

Bookstaber and McDonald (1987) proposed the generalized beta
(GB2) distribution to explain the behavior of stock returns. This
was chosen because the GB2 is a flexible distribution and acknowl-
edges various distributions as special cases. They found that the
GB2 distribution is significantly better than the lognormal dis-
tribution, especially in relation to short time intervals. Badrinath
and Chatterjee (1988) examined the Center for Research in Secu-
rity Prices (CRSP) value-weighted market index returns between
1962 and 1985 and concluded that returns of stock prices follow
a skewed g-and-h distribution.? Similarly, Mills (1995) found that
the g-and-h distribution accurately fits a dataset that consists of
three London Stock Exchange indices: FTSE 100, Mid 250, and FTSE
350.

A more general comparison of distributions with finite vari-
ances over equity stocks was conducted by Gray and French (1990).
They compared the scaled-t distribution, the logistic distribution,
the exponential power distribution, and the normal distribution
over the log-returns of daily S&P 500 Composite index values for
the period 1979-1985. Among four alternatives, the exponential
power distribution was found to be the best fit. Lau, Lau, and Win-
gender (1990) showed that series of returns of stock prices that are
taken from the CRSP yield higher kurtosis and skewness than the
normal distribution. They proposed the lognormal, beta, Weibull,
Pearson Types IV and VI, and Johnson system of distributions as al-
ternatives. A general comparison of the normal distribution to the
scaled-t distribution and to the mixture of two normal distribu-
tions was conducted by Aparicio and Estrada (2001) using the daily
returns of 13 different European stock markets. It was found that
the scaled-t distribution is a significantly better fit for the data, and
the partial mixture of two normal distributions also performs well.
Normality is rejected in all cases.

Linden (2001) introduced the Laplace mixture distribution,
which is derived by conditioning the standard deviation of the nor-
mal distribution as an exponentially distributed random variable.
Linden (2001) used this distribution to represent the daily, weekly,
and monthly returns of the 20 most traded shares and the index
of the Helsinki Stock Market. The normality assumption is not al-
ways rejected for the weekly and monthly returns. However, for
the daily returns, an asymmetric Laplace distribution is found to
be a better candidate than the normal distribution.

Harris and Kii¢iitk6zmen (2001a) and Harris and Kiiciikzmen
(2001b), respectively, examined the skewed generalized-t distribu-
tion (SGT) and the exponential generalized beta distribution (EGB)
using daily UK, US, and Turkish equity returns. Consequently, they
found that the SGT outperforms the EGB. In both studies, the au-
thors rejected the hypothesis that the daily returns are distributed
with the Student-t, power of exponential, or logistic distribution.
In addition, for the daily Turkish returns, the Laplace distribution
was also rejected. For the UK returns, the skewed-t distribution
was preferred, whereas for the US returns, the generalized-t distri-
bution was preferred. More recently, Behr and Potter (2009) com-
pared the generalized hyperbolic distribution, the generalized logF
distribution, and the finite mixture of Gaussians on monthly S&P
500 index returns over the years 1871-2005 and daily returns over
the years 2001-2005. For the monthly returns, the two-component

2 Badrinath and Chatterjee (1988) also provide an excellent review of the litera-
ture.

Gaussian mixture distribution described the empirical distribution
of the returns better than alternative distributions. Although the
generalized hyperbolic distribution is the poorest performer for
monthly returns, it performs best for daily data. However, as the
daily data examined by Behr and Potter (2009) is almost symmet-
ric, the Laplace distribution, which does not have a parameter to
capture the asymmetries, fits as well as the generalized hyperbolic
distribution.

Finally, as an alternative to the stable distribution and the
Student-t distribution, Chalabi, Scott, and Wiirtz (2010) use the
generalized lambda distribution (GLD) for modeling equity returns.
Starting with Eberlein and Keller (1995), the normal inverse Gaus-
sian (NIG) distribution is used to model financial returns and
particularly for modeling 30 stocks at the German Stock Index.
Prause, Zentrum, and Modellbildung (1997) show the applicability
of the NIG distribution in modeling German stock and US Stock In-
dex data. Bolviken and Benth (2000) used the NIG distribution to
model 8 Norwegian stocks.

In Table 1, we summarize the papers that performed compar-
ison studies to investigate the behavior of stock returns. We find
that the outcomes differ and are often conflicting. Based upon this,
our goal in this study is to fill this gap in the literature by ad-
dressing which distribution is best for modeling daily equity index
return data. To this end, we consider the following flexible distri-
butions that are commonly used in finance: the skewed Student-
t distribution, the GLD, the NIG distribution, the Johnson system
of distributions, and the g-and-h distribution. We conduct a com-
prehensive numerical analysis to compare the overall suitability
of these five distributions on the equity index returns of twenty
different countries over the period 1979-2014, which is divided
into twelve three-year sub-periods. We also include the normal
distribution in our experimental design. The overall suitability is
initially compared using the Kolmogorov-Smirnov (KS) test statis-
tic (Chakravarti & Laha, 1967) and the Anderson-Darling (AD) test
statistic (Anderson & Darling, 1954). Furthermore, we conduct p-
value tests in order to assess the significance of these KS and
AD statistics. In addition, the explanatory power of the models is
tested using in-sample Value-at-Risk (VaR) failure rates. Consistent
with other studies in the previous research, we find that normal-
ity is rejected in all sub-periods for all markets. Our p-value tests
and the in-sample VaR test suggest that GLD performs best for all
markets over all time periods.

The remainder of the paper is organized as follows. Section 2
presents the data. Section 3 presents the distributions along with
the fitting methods that are used to estimate the parameters of
the distributions. Section 4 discusses our numerical study and
Section 5 presents key conclusions.

2. Description of the data

We create a diversified sample from ten developed and ten
emerging market indexes. The selected developed stock market in-
dexes are: S&P/ASX 200 Index (Australia), S&P/Toronto Stock Ex-
change Index (Canada), CAC 40 (France), DAX (Germany), NIKKEI
225 (Japan), the Straits Times Index (Singapore), IBEX 35 (Spain),
SMI (Switzerland), FTSE 100 (UK), and S&P 500 (US), while the
emerging stock market indexes are the Ibovespa Index (Brazil),
IPSA Index (Chile), SHSZ 300 (China), BSE 500 (India), KOSPI Index
(Korea), FBMKLCI Index (Malaysia), the Mexican IPC Index (Mex-
ico), MICEX Index (Russia), JALSH Index (South Africa), and BIST
100 (Turkey). The daily closing index levels from January 1979 to
August 2014 are collected using the Bloomberg Terminal.

Bloomberg provides index levels for the S&P/ASX 200, CAC
40, DAX and IBEX 35 prior to their establishment date. This can
happen due to two reasons. First, the index levels can be adjusted
with respect to their ancestor indices. For instance, the DAX
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Table 1

Summary of articles that performed comparison studies to investigate the behavior of stock returns. The first column of this
table lists the articles that compare several distributions for modeling stock returns. The second column of the table presents

the distributions considered in the corresponding study.

Article

Compared distributions

Fama (1963), Fama (1965) and Rachev et al. (2005)
Praetz (1972)

Hsu, Miller, and Wichern (1974)
Blattberg and Gonedes (1974)

Kon (1984)

Eberlein and Keller (1995)

Akgiray and Booth (1987)

Bookstaber and McDonald (1987)

Gray and French (1990)

Aparicio and Estrada (2001)

Linden (2001)

Harris and Kiigiikézmen (2001a), (2001b)
Behr and Pétter (2009)

Stable Paretian*, normal

Scaled-t*, compound process , normal

Normal*, stable Paretian

Student-t*, Cauchy, normal

Discrete mixture of normals*, Student-t

Normal inverse Gaussian*, normal

Mixed diffusion process*, discrete mixture of normals
Generalized beta*, lognormal

Exponential power*, logistic, Scaled-t, normal

Scaled-t*, mixture of normal, normal

Asymmetric Laplace*, normal

SGT+, EGB, exponential power, logistic, Student-t, Laplace
Finite mixture of Gaussians*, generalized hyperbolic**, generalized logF

* represents the outperforming distribution.

** In Behr and Potter (2009), a mixture of two Gaussians describes the monthly data better than the others, whereas a
generalized hyperbolic distribution is the best fit for the daily data.

Table 2

Markets considered in each sub-period. This table presents the emerging and developed markets consid-
ered in each sub-period. For instance, in sub-period 1979-1981, data are available only for the developed
markets Canada, Germany, Japan, and the US and the emerging markets Korea and Malaysia. Beginning
from the sub-period 2000-2002, we have access to data for all ten developed and ten emerging markets.

Periods Developed markets Emerging markets

1979-1981 Canada, Germany, Japan, US Korea, Malaysia

1982-1984  Canada, Germany, Japan, UK, US Korea, Malaysia

1985-1987  Canada, France, Germany, Japan, Spain, UK, US  Korea, Malaysia

1988-1990 Canada, France, Germany, Japan, Chile, Korea, Malaysia, Turkey
Spain, Switzerland, UK, US

1991-1993 Australia, Canada, France, Germany Brazil, Chile, Korea, Malaysia, Turkey
Japan, Spain, Switzerland, UK, US

1994-1996 Australia, Canada, France, Germany Brazil, Chile, Korea, Malaysia
Japan, Spain, Switzerland, UK, US Mexico, South Africa, Turkey

1997-1999  Australia, Canada, France, Germany, Japan Brazil, Chile, India, Korea, Malaysia
Singapore, Spain, Switzerland, UK, US Mexico, Russia, South Africa, Turkey

2000-2014  All markets All markets

follows its ancestor indices Borsenzeitungs Index and Hardy In-
dex.> Second, the index levels can be recalculated to an earlier
date. For instance, the CAC 40 is established in December 31, 1987;
however, CAC 40 index levels are recalculated on a daily basis to
September 7, 1987 (Shilling, 1996). Similarly, the S&P/ASX 200 is
established in April 3, 2000; however, S&P/ASX 200 index levels
are recalculated to May, 1992.% IBEX 35 is launched in January 14,
1992 and IBEX 35 index levels are recalculated to January 5, 1987
(Fernandez, Aguirreamalloa, & Avendafio, 2011).

The daily logarithmic returns are calculated as X; =
log(St/S¢_1), where S; is the closing index level at time t. We
divide the data for each market into twelve three-year nonover-
lapping sub-periods. Our sample period contains both regional and
global financial crises such as the 1997 Asian financial crisis, the
Global Financial Crisis (2006-2008), and the Euro-zone Sovereign
Debt Crisis (2009-2011). Unfortunately, return data is not available
for every market during all of these sub-periods. In Table 2, we
list data that are available for the developed and the emerging
markets in each sub-period. For example, in sub-period 1979-
1981, data are available only for the developed markets Canada,
Germany, Japan, and the US and the emerging markets Korea and
Malaysia. Beginning from the sub-period 2000-2002, we have
access to data for all ten developed and ten emerging markets.

Fig. 1 presents the descriptive statistics for the developed mar-
kets and the emerging markets over different sub-periods. The

3 Based on communications with Deutsche Borse Group.
4 Based on communications with Standard & Poor’s Dow Jones Indices.

number in each circle represents the sub-period number, where 1
is for the sub-period 1979-1981 and 13 is for the entire sample.
The skewness equals to s = (m3/m,)3/2 and the kurtosis is given
by k = m4/m%, where m; is the estimate of the ith moment around
the mean. The skewness values of the returns in the figure are
clustered either on the right or left hand-side of the vertical line
drawn at zero, indicating that all returns of all indices demonstrate
a skewed (either left or right) behavior. Similarly, the kurtosis of
returns are all clustered above the line drawn at three (some be-
ing very far from three) meaning that the return distributions are
more peaked than the normal distribution.

For the developed markets in Fig. 1, the fourth sub-period (i.e.,
1988-1990) and the thirteenth sub-period (i.e., the entire sample)
exhibit skewness and kurtosis values that are significantly far from
the skewness and kurtosis values of the normal distribution. For
the emerging markets, there are more sub-periods that exhibit
high skewness and kurtosis values, such as fourth, seventh, eighth,
ninth, twelfth, and thirteenth sub-periods (i.e., 1988-1990, 1997~
1999, 2000-2002, 2003-2005, 2012-2014, entire sample). These
two figures alone indeed suggest that the normal distribution is
not a good model for describing the distribution of daily equity in-
dex returns. Additionally, we calculate the Bera-Jarque (B]) statistic
for all of the countries over all sub-samples in order to test for any
departure from normality. The results indicate that the normality
is rejected in 96% of the instances, at the 1% significance level.’

5 To save space, we do not present the BJ test statistics here. However, they are
available upon request.
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Fig. 1. Skewness and kurtosis values of each market over all sub-samples and the entire sample. The top figure presents the skewness (on the horizontal axis) and the
kurtosis (on the vertical axis) values of each developed market over all sub-samples and the entire sample. The bottom figure does the same for emerging markets. The
number in each circle represents the sub-period number with 1 presenting the sub-period 1979-1981 and 13 presenting the entire sample. The skewness equals to s =
(m3/my)3? and the kurtosis is given by k = m4/m§, where m; is the estimate of the ith moment around the mean.

3. Flexible distributions

We describe the generalized lambda distribution (GLD) in
Section 3.1, the Johnson translation system in Section 3.2, the
skewed Student-t distribution in Section 3.3, the normal inverse
Gaussian (NIG) distribution in Section 3.4, and the g-and-h distri-
bution in Section 3.5.

3.1. The Generalized Lambda distribution
The GLD (Filliben, 1975; Joiner & Rosenblatt, 1971; Ramberg &

Schmeiser, 1974), which is an extension of Tukey’s lambda distri-
bution (Hastings, Mosteller, Tukey, & Winsor, 1947), is defined by

the following inverse cumulative distribution function:

uh — (1 —u)M
Ao ’
where 0 < u < 1; Aq is the location parameter, A, is the scale
parameter, and A3 and A4 are related to skewness and kurtosis, re-
spectively. This representation is denoted as Ramberg-Schmeiser
Generalized Lambda Distribution (RS GLD) in reference to the
parametrization of Ramberg and Schmeiser (1974). However, the
probability density function (pdf) associated with equation (3.1)
does not provide a valid pdf for all combinations of A3 and A4
(Fournier et al., 2007).
In order to avoid this problem, Freimer, Kollia, Mudholkar,
and Lin (1988) proposed a different parametrization of the GLD,

F7'(us Ay Ao, Az, Ag) = Ag + (3.1)
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denoted as Freimer-Mudholkar-Kollia-Lin Generalized Lambda
Distribution (FMKL GLD). This is given by:

1 (-1 (1-uwh-1
g _ _
F7h(us A1, Mg, A3, Ag) = A + ~ ( " a .

Both the FMKL and RS representations are used in practice as
they offer a wide variety of shapes. However, the FMKL representa-
tion is preferable as a result of its ease of use. In addition, it is well
defined over all parameter values with the only restriction being
that A, must be positive. Also, the condition min(A3, A4) > —1/k
must hold to have a finite kth moment. In this study, we use the
FMKL representation. The FMKL GLD curves are classified into five
categories: Class-1 family (A5 < 1, A4 < 1) represents unimodal
densities with continuous tails, Class-II family (A3 > 1, A4 < 1)
represents monotone pdfs similar to the exponential distribution,
Class-III family ( 1 < A3 < 2, 1 < A4 < 2) represents U-shaped
densities with truncated tails, Class-IV family (A3 > 2, 1 < A4 <
2) represents S-shaped densities, and finally Class-V family (A3 >
2, A4 > 2) represents unimodal densities with truncated tails. We
find that the daily equity return data belongs to the Class-I family.

Prior studies propose different fitting techniques for estimat-
ing the parameters of the GLD.S In this study, we use the maxi-
mum likelihood estimation method in the GLDEX package of R (Su,
2007).

3.2. The Johnson translation system

A random variable X from the Johnson translation system is
represented by (Johnson, 1949):

X=E&+ ! (Z—a)/)

where Z is a standard normal random variable, y and § are shape
parameters, £ is a location parameter, A is a scale parameter, and
r( - ) is one of the following transformations:

bY for the Sy (normal) family
X) = log(x) for the S; (lognormal) family
~ ) log(x/(1 —x)) for the S (bounded) family
log(x +vx2+1) for the Sy (unbounded) family.

The range of the random variable X is defined by the family of in-
terest: X > & and A =1 for the S; family; & < X <& + A for the Sp
family; and —co < X < oo for the Sy and Sy families. For each fea-
sible combination of the skewness and the kurtosis values there is
a unique family that depends on the choice of r. In this study, we
only consider the Sy family of the Johnson translation system be-
cause the equity index returns have skewness and kurtosis values
that conform with the Sy family.

There are alternative methodologies proposed in previous re-
search to estimate the parameters of the Sy.” We use the method-
ology proposed in Tuenter (2001), which resembles the method of
moments, where the sample skewness and kurtosis are equalized
with the theoretical skewness and kurtosis.

3.3. The skewed Student-t distribution

A number of skewed Student-t distributions have been pro-
posed in previous research. In this study, due to its simplicity, we
follow the parametrization used in Azzalini and Capitanio (2003).

6 A detailed review can be found in Corlu and Meterelliyoz (2015).
7 A detailed review can be found in Corlu and Biller (2015).

A random variable X from the skewed Student-t distribution (here-
after, skewed-t distribution) has a density of the form:

. _1 X— X— U v+1
fx: 8, v, u,B) = gl'v <8>2Tv+1 (ﬂ( K ) (Xﬂ)z—i—\))’

8

where u, 6, and B represent the location, scale, and skewness pa-
rameters, respectively. t, is the density of the standard Student-t
distribution with v degrees of freedom and T, is the distribution
function of the standard Student-t distribution with v + 1 degrees
of freedom.

Estimates of the parameters of the skewed-t distribution are ob-
tained using the maximum likelihood estimation method proposed
by Azzalini and Capitanio (2003). The maximization of the likeli-
hood function is conducted by the Nelder-Mead algorithm.

3.4. The Normal Inverse Gaussian distribution

The NIG distribution is obtained from a more general distribu-
tion called the generalized hyperbolic distribution (GHD), whose
density is given by:

fler . B.p.d)

) (8 o2 —,82)}‘(804)1/24 (1 N x— M)2>A/2_1/4
V278K (/o — B?) 5

/ — )2
x exp(B(x — u)K_1,2 (Ol3 1+ ()(82,u)>

where K, is the modified third-order Bessel function;  and § rep-
resent location and scale parameters, respectively; A is the class-
defining parameter; « is a parameter related to tail heaviness; and
B is the asymmetry parameter. The density is defined under the
following parameter restrictions:

d>0and |B] < if A >0
§>0and |B] <aif L =0
6>0and || <aif A <0

Pfaff, McNeil, and Ulmann (2013) indicate that the GHD can rep-
resent skewed distributions as well as heavy tails. The variants of
the GHD can be obtained by changing the value of the parame-
ter A; this is why A is called the class-defining parameter. The NIG
distribution is obtained from the GHD by setting A = —1/2, and its
density is given by:

bk (/82 + (= 1)) 5 e s

fxo, o 8) = e
T/82%+ (x — )2
with |8| < « and § > 0 (Prause, 1999).
We use the ghyp package of R to estimate the parameters of
the NIG.

3.5. The g-and-h distribution

The g-and-h distribution is a functional transformation of the
standard normal distribution. A random variable from the g-and-h
distribution is obtained by transforming the standard normal ran-
dom variable Z to the following form (Tukey, 1977):

hz?,2
Yon(2) = (egZ — 1)6)(132/),

where g, h € R. The g and h parameters account for skewness and
kurtosis, respectively. When a location parameter A and a scale pa-
rameter B are incorporated, a random variable from the g-and-h
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Fig. 2. Kolmogorov-Smirnov (KS) statistics of all six probability distributions for Canada and Germany. The top figure shows the KS statistics of the skewed-t distribution,
generalized lambda distribution (GLD), normal inverse Gaussian (NIG) distribution, Johnson Sy family, g-and-h distribution, and normal distribution for Canada over all sub-
periods starting with 1979-1981. The last tick mark on the horizontal axis presents the KS statistic for the entire sample over the period 1979-2014. The bottom plot does

the same for Germany.

distribution takes the following form:

2
Xgn(Z) =A+B(e¥ — 1)eXp(ZZ/2). (32)

Among the alternative fitting methodologies that are proposed
for estimating the parameters of the g-and-h distribution, we fol-
low the procedure used in Mills (1995) and Dutta and Babbel
(2002) as a result of its tractability. Specifically, the estimation pro-
cedure starts with identifying the pth percentile of the parameter
g as follows:

1 Xi—p —Xos
== )In{ —-=, 33
& (z,,) < Xo5 —Xp ) 2

where X, and Z, are the pth percentile of the empirical distri-
bution and the standard normal distribution, respectively. It is
important to note that by using different values of p, one can

obtain multiple estimates of g. Following (Mills, 1995), we use
nine percentiles and we choose percentiles using letter values; i.e.,
p=1/2,1/4,1/16,.... The estimate for g is calculated as the me-
dian of g, values.

Using equation (3.2), it is trivial to derive

exp (hZ2/2)

Xp =A+B(e# — 1) (3.4)

22, 2
Xi_p = A+ (e - 1)W. (3.5)

Since Xp5 = A, the location parameter A is given by the median of
the data set.
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Fig. 3. Kolmogorov-Smirnov (KS) statistics of all six probability distributions for Mexico and Turkey. The top figure shows the KS statistics of the skewed-t distribution,
generalized lambda distribution (GLD), normal inverse Gaussian (NIG) distribution, Johnson Sy family, g-and-h distribution, and normal distribution for Mexico over all sub-
periods starting with 1994-1996. The last tick mark on the horizontal axis presents the KS statistic for the entire sample over the period 1994-2014. The bottom plot does

the same for Turkey over all sub-periods starting with 1988-1990.

Subtracting (3.5) from (3.4) and letting Z, = —Z;_, provides the
following result:

In gi(Xp _ Xl*p)

_ 2
7. = InB) +h(Z}/2).

(3.6)

If the data is positively skewed, the left-hand side of (3.6)
can be replaced with the upper half-spread (UHS), as defined in
Hoaglin (2006):

gX1_p —Xos)

UHS = )

(3.7)

Conversely, if the data is negatively skewed, then a lower half-
spread (LHS) can be used on the left-hand side of (3.6):

g(Xo5 — Xp)

LHS = (1 - egZp)

(3.8)

The estimates of h and B are obtained from the coefficient and
the intercept of the linear regression of In(UHS) and In(LHS) on
(Z3/2).

4. Performance and risk estimation

The goal of this section is to evaluate the performances
of the density functions described in Section 3 in order to
model the daily equity index returns. To this end, we use the
Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) test statis-
tics in Section 4.1 and we present the Value-at-Risk (VaR) levels in
Section 4.2.

4.1. Goodness-of-fit

In this section, we first use the KS and AD test statistics to
compare the goodness-of-fit of the distributions of interest. Both
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Fig. 4. Anderson-Darling (AD) statistics of five probability distributions for Canada and Germany. The top figure shows the AD statistics of the skewed-t distribution, gen-
eralized lambda distribution (GLD), normal inverse Gaussian (NIG) distribution, Johnson Sy family, and g-and-h distribution for Canada over all sub-periods starting with
1979-1981. The last tick mark on the horizontal axis presents the AD statistic for the entire sample over the period 1979-2014. The bottom plot does the same for Germany.

of these test statistics summarize the difference between the fit-
ted cumulative distribution function F and the empirical cumu-
lative distribution function F.. In particular, the KS test statistic
corresponds to the largest distance between Fe(x) and F(x), that
is, sup, {|F(x) — F(x)|}, while the AD test statistic corresponds to
the weighted average of the squared differences, (F.(x) —F(x))2,
where the weights are chosen in such a way that the discrepan-
cies in the tails are emphasized. The smaller the KS and AD test
statistics, the better the fit.

Fig. 2 presents the computed KS test statistics for the developed
markets of Canada and Germany under the six distributional as-
sumptions. Fig. 3 does the same for the emerging markets of Mex-
ico and Turkey. Fig. 4 presents the computed AD test statistics for
the developed markets of Canada and Germany using all distribu-
tions except the normal distribution. Fig. 5 does the same for the
emerging markets of Mexico and Turkey. The markets on the plots

have been selected as they are the most representative of the over-
all results. We excluded the normal distribution from Figs. 4 and 5
since the AD test statistic values for the normal distribution are
too large compared to the respective results for all other distri-
butions under consideration, and when the normal distribution’s
AD statistics are included, the scale of y-axis becomes very large,
which prevents to reveal the differences of AD statistics for other
distributions. KS and AD plots for the remaining markets can be
found in the Appendix.

We find that for every market in each sub-sample, and in the
entire sample, the KS statistic in the normal case is almost always
above the KS statistics in all other five distributions. A similar ar-
gument also holds for the AD statistics. Furthermore, we observe
that, in general, all five distributions excluding the g-and-h distri-
bution perform very similarly to each other; the g-and-h distribu-
tion marginally underperforms in many sub-samples.
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Fig. 5. Anderson-Darling (AD) statistics of five probability distributions for Mexico and Turkey. The top figure shows the AD statistics of the skewed-t distribution, generalized
lambda distribution (GLD), normal inverse Gaussian (NIG) distribution, Johnson Sy family, and g-and-h distribution for Mexico over all sub-periods starting with 1994-1996.
The last tick mark on the horizontal axis presents the AD statistic for the entire sample over the period 1994-2014. The bottom plot does the same for Turkey over all

sub-periods starting with 1988-1990.

Next, we compare the distributions of interest by plotting the
empirical histogram of the daily returns together with the esti-
mated distribution functions. Fig. 6 presents the empirical his-
togram of the log-returns of the Ibovespa Index (Brazil) over the
sub-period 1997-1999 together with six estimated distribution
functions for the same index. One notable observation is that the
normal distribution significantly underperforms other distributions
in modeling the Ibovespa Index. In particular, the normal distribu-
tion cannot capture the peakedness and the tails of the data. Other
distributions including the generalized lambda distribution (GLD),
the skewed-t distribution, the normal inverse Gaussian (NIG) dis-
tribution, and the g-and-h distribution perform very similarly in
modeling the data. However, the fit of the Johnson translation sys-
tem is slightly more peaked than the histogram.

As the computed KS and AD statistic values are very close to
each other in all distributions, it is difficult to identify whether the

differences in these statistics are significant.® Furthermore, Fig. 6
does not provide an answer to the question of which distribution
models the daily equity return data best. To address this problem,
we conduct a power test, where we calculate the p-value of each
fit. The null hypothesis is that the observed data originates from
the hypothesized distribution and the alternative hypothesis is that
the observed data does not belong to the hypothesized distribu-
tion. The null hypothesis is rejected if the p-value is lower than
o = 5%. It is important to recognize here that for many distribu-
tions under consideration, the critical values of both the KS statis-
tic and AD statistic do not exist. The typical approach in this case
is to compute the p-values and the critical values by means of a

8 We must express our gratitude to an anonymous referee for his/her observation.
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Fig. 6. Histogram and distribution fits for a selected market. This figure plots the
histogram of the Brazil log-returns together with the estimated distribution func-
tions of the generalized lambda distribution (GLD), normal distribution, skewed-t
distribution, Johnson Sy family, normal inverse Gaussian (NIG) distribution, and g-
and-h distribution over the sub-period 1997-1999. The bins of the histogram are
calculated with the Scott method in R.

Monte Carlo simulation for each hypothesized distribution (Ross,
2004). We follow the following steps to calculate the p-value:

Step 1. Use the data to estimate the parameters of the hypoth-
esized distribution and compute the value of the test statis-
tics denoted by G (such as KS and/or AD statistic).

Step 2. Generate a sample of size n that is equal to the number
of observed data from the fitted distribution.

Step 3. Fit the hypothesized distribution to the data generated
in Step 2 and estimate the sample goodness-of-fit statistics.

Step 4: Repeat Step 1 through Step 3 1000 times and calculate
the p-value as the proportion of times the sample statistics
values exceed the observed value G of the original sample.

Step 5: Reject the null hypothesis if p-value is smaller than
0.05.

Table 3 tabulates the number of rejections using both KS and
AD test statistics in each sub-period for each distribution in the
developed markets. Table 4 does the same for emerging markets.?
The last row of both tables tabulates the percentage of sub-periods
(out of 12 sub-periods) in which a particular distribution is ac-
cepted by the p-value test using both KS and AD statistics. The re-
sults reported in both tables suggest that the GLD is a prominent
alternative for fitting the daily equity index return data. We fail to
reject the GLD according to both KS and AD test statistics for all
index returns in all sub-samples, as well as in the entire sample.
Therefore, according to the p-value test, we can conclude that the
GLD is a powerful distribution in modeling both the center and the
tails of the daily index return data.

We conclude this section by comparing the models considered
in this paper according to their stability.!® Stability is particularly
important for applications of portfolio analysis and risk manage-
ment (Rachev & Mittnik, 2000). In particular, stable distributed

9 To save space, we do not report the results for each specific market here. How-
ever, these results are available upon request.

10 We must express our gratitude to an anonymous referee who brought this to
our attention.

returns possess the property that linear combinations of return se-
ries, such as portfolios, follow a stable distribution. We investigate
the relative stability of the models of interest by comparing their
capability to represent the variety of shapes taken by return dis-
tributions over twelve sub-periods. We find that in both emerging
and developed markets, GLD can adequately describe the empirical
distributions in all sub-periods. Other distributions achieve a good
fit in smaller share of periods. Specifically, in developed markets,
GLD is followed by Johnson Sy family (92%), g-and-h distribution
(67%), skewed-t distribution (42%), NIG distribution (41%), and nor-
mal distribution (0%) under the KS statistic and by g-and-h distri-
bution (67%), Johnson Sy family (42%), skewed-t distribution (25%),
NIG distribution (17%), and normal distribution (0%) under the AD
statistic (the last row of Table 3). In emerging markets, both John-
son Sy family and g-and-h distribution follow GLD with a share of
67%, and skewed-t distribution and NIG distribution with a share
of 25% under the KS statistic. When the AD statistic is used to per-
form the p-value test, the GLD is accepted in all of the sub-periods,
the Johnson Sy family and g-and-h are accepted in 58% of periods,
and the skewed-t distribution and NIG distribution are accepted in
25% and 17% of periods, respectively. The normal distribution is not
accepted in any of the sub-periods (the last row of Table 4).

4.2. Risk estimation

We examine the behavior of the distributions at the extreme
values of each market index return using the VaR measure. The
purpose of this investigation is to observe the risk that an investor
is facing when she has a long or short position on the market
indexes from our sample. The risk levels are determined as « <
{0.005, 0.01, 0.05, 0.95, 0.99, 0.995}, in which the first three levels
represent the lower extreme of returns (long position) and the last
three represent the upper extreme of returns (short position). In-
sample VaR(«) values are calculated to observe the behavior of the
distributions at the tails. We then apply the Kupiec likelihood ratio
test given in Kupiec (1995), which tests whether the expected pro-
portion of violations is equal to «. The likelihood ratio test statistic
is given by:

2log((z(@)/m)*@ (1 — T (e)/m)" ") — 2log (™ (1 — ) *@),

where 7(a) is the number of times the observed returns are above
(short positions) or below (long positions) the theoretical VaR
value and n is the sample size.

The results of the Kupiec test are represented in Tables 5 and
6. For example, Table 5 lists the number of times each distribu-
tion is rejected at each significance level for all of the developed
markets in each sub-period. Table 6 does the same for emerging
markets. Focusing on the sub-period 1979-1981 in Table 5, we see
that the GLD, Johnson Sy family, skewed-t distribution, NIG dis-
tribution, and g-and-h are not rejected in any of the significance
levels. However, the normal distribution is rejected by 3 markets
at the significance level of 0.005, by 2 markets at the significance
level of 0.01, and by 1 market at the significance level of 0.95.
The total number of rejections is tabulated at the far right col-
umn of the table. For the normal distribution, for instance, the total
number of rejections is equal to 6 over the sub-period 1979-1981.
Adding up the number of rejections over the sub-periods, we see
that the GLD is the least rejected model with only 7 rejections in
the developed markets and 8 rejections in the emerging markets.
On the other hand, the normal distribution is the most rejected
model with 207 rejections in the developed markets and 213 re-
jections in the emerging markets. In both developed and emerging
markets, the g-and-h distribution, NIG distribution, and skewed-
t distribution perform similarly to each other, while the Johnson
Sy family underperforms other distributions with 65 rejections in
the developed markets and 57 rejections in the emerging markets.
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Table 3

Number of times that each distribution is rejected according to Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) test statistics in developed markets. The first column of this table (excluding the last row) lists
the periods under consideration; the second column (excluding the last row) presents the number of devel-
oped markets considered in each period; the remaining columns (excluding the last row) presents the number
of times a distribution is rejected by the p-value test according to the KS and AD test statistics. For instance, in
the sub-period 1979-1981, the generalized lambda distribution (GLD), Johnson Sy family, and g-and-h distribu-
tion are rejected neither according to the KS statistic nor according to the AD statistic; the skewed-t distribution
is rejected once according to both KS and AD test statistics; the normal inverse Gaussian (NIG) distribution is
not rejected according to the KS statistic but rejected once according to the AD statistic; and the normal distri-
bution is rejected 3 times according to both KS and AD statistics. The very last row of this table presents the
percentage of periods in which a particular distribution is accepted by the p-value test. For instance, the GLD is
never rejected in any of the sub-periods; therefore, its percentage of acceptance is 100% according to both KS
and AD statistics. The Johnson Sy family is rejected in the sub-period 2003-2005 according to the KS statistic
(rejected only once in 12 sub-periods; thus, the percentage of acceptance is 11/12 x 100 ~ 92%) and is not
rejected in the sub-periods 1979-1981, 1988-1990, 1994-1996, 2009-2011, and 2012-2014 according to the AD
statistic (accepted in 5 sub-periods out of 12 sub-periods; thus, the percentage of acceptance is 5/12 x 100 ~
42%).

Period # Markets  GLD Johnson Sy Skewed-t  NIG g-and-h Normal
KS AD KS AD KS AD KS AD KS AD KS AD
1979-1981 4 0 0 0 0 1 1 0 1 0 0 3 3
1982-1984 5 0 0 0 1 0 0 0 0 0 0 4 4
1985-1987 7 0 0 0 1 1 2 3 4 0 0 7 7
1988-1990 8 0 0 0 0 0 2 1 4 0 0 8 8
1991-1993 9 0 0 0 1 2 3 1 3 1 0 8 8
1994-1996 9 0 0 0 0 1 1 0 1 0 0 8 8
1997-1999 10 0 0 0 1 0 0 2 0 0 0 8 9
2000-2002 10 0 0 0 1 0 0 0 1 0 0 9 10
2003-2005 10 0 0 2 7 2 3 2 2 1 1 10 10
2006-2008 10 0 0 0 3 0 2 3 4 2 1 10 10
2009-2011 10 0 0 0 0 1 2 0 1 2 2 9 10
2012-2014 10 0 0 0 0 1 3 1 1 0 0 10 10
Entire Sample 10 0 0 1 2 2 7 2 7 1 1 10 10
% of acceptance 100 100 92 42 42 25 41 17 67 67 0 0

Table 4

Number of times that each distribution is rejected according to Kolmogorov-Smirnov (KS) and Anderson-
Darling (AD) test statistics in emerging markets. The first column of this table (excluding the last row) lists
the periods under consideration; the second column (excluding the last row) presents the number of emerging
markets considered in each period; the remaining columns (excluding the last row) presents the number of
times a distribution is rejected by the p-value test according to the KS and AD statistics. For instance, in the
sub-period 1979-1981, the generalized lambda distribution (GLD), Johnson Sy family, normal inverse Gaussian
(NIG) distribution, and g-and-h distribution are rejected neither according to the KS statistic nor according to
the AD statistic; the skewed-t distribution is rejected once according to the AD statistic and normal distribu-
tion is rejected 2 times according to both KS and AD statistics. The very last row of this table presents the
percentage of periods in which a particular distribution is accepted by the p-value test. For instance, the GLD is
never rejected in any of the sub-periods; therefore, its percentage of acceptance is 100% according to both KS
and AD statistics. The Johnson Sy family is rejected in the sub-periods 1982-1984, 1985-1987, 1988-1990, and
2009-2011 according to the KS statistic (rejected 4 times in 12 sub-periods; thus, the percentage of acceptance
is 8/12 x 100 ~ 67%) and is rejected in the sub-periods 1985-1987, 1991-1993, 1997-1999, 2003-2005, and
2009-2011 according to the AD statistic (rejected in 5 sub-periods out of 12 sub-periods; thus, the percentage
of acceptance is 7/12 x 100 ~ 58%).

Period # Markets  GLD Johnson S;  Skewed-t  NIG g-and-h Normal
KS AD KS AD KS AD KS AD KS AD KS AD
1979-1981 2 0 0 0 0 0 1 0 0 0 0 2 2
1982-1984 2 0 0 1 0 0 0 1 1 0 0 2 2
1985-1987 2 0 0 1 2 2 2 2 2 0 0 2 2
1988-1990 4 0 0 1 0 2 2 2 1 0 1 4 4
1991-1993 5 0 0 0 1 0 0 0 0 1 1 4 4
1994-1996 7 0 0 0 0 2 1 1 1 0 0 6 6
1997-1999 9 0 0 0 2 3 2 2 2 1 1 8 9
2000-2002 9 0 0 0 0 1 0 0 2 0 0 8 8
2003-2005 10 0 0 0 2 2 2 1 2 1 1 7 8
2006-2008 10 0 0 0 0 2 2 1 2 2 2 10 10
2009-2011 10 0 0 1 1 1 1 1 1 0 0 10 10
2012-2014 10 0 0 0 0 1 1 2 2 0 0 9 9
Entire Sample 10 0 0 1 2 4 5 4 5 4 4 10 10
% of acceptance 100 100 67 58 25 25 25 17 67 58 0 0
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Table 5

Value-at-Risk (VaR) failure rate results for the developed markets. This table presents the number of times
each distribution including the generalized lambda distribution (GLD), Johnson Sy family, skewed-t distribu-
tion, normal inverse Gaussian (NIG) distribution, g-and-h distribution, and normal distribution is rejected at
various significance levels for all developed markets in each sub-period according to the Kupiec likelihood
ratio test.

Period # Market Method Significance levels Total # Rejections
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Table 6
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Value-at-Risk (VaR) failure rate results for the emerging markets. This table presents the number of times each
distribution including the generalized lambda distribution (GLD), Johnson Sy family, skewed-t distribution, nor-
mal inverse Gaussian (NIG) distribution, g-and-h distribution, and normal distribution is rejected at various
significance levels for all emerging markets in each sub-period according to the Kupiec likelihood ratio test.

Period

# Market

Method

Significance levels

Total # Rejections
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Table 6 (continued)
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Period # Market Method Significance levels Total # Rejections
0.005 0.01 0.05 0.95 0.99 0.995
Entire Sample 10 GLD 0 0 0 0 0 0 0
Johnson Sy 1 1 0 0 1 2 5
Skewed-t 0 0 0 1 0 2 3
NIG 0 0 0 1 0 0 1
g-and-h 0 1 1 1 3 1 7
Normal 10 10 7 4 8 10 49

Thus, we conclude that the GLD also outperforms other distribu-
tions in terms of VaR performance.

5. Conclusion

An analysis of the empirical distribution of equity returns is
important to both academic researchers and financial experts and
has many implications in the calculation of risk measures such as
Value-at-Risk (VaR) and the pricing of equity options. Despite its
popularity in finance applications, it is now well known that the
normal distribution fails to capture certain characteristics of equity
return data. This has motivated researchers to investigate flexible
distributions with the ability to better represent stock return data.
Nevertheless, on a practical level, which distribution best suited for
modeling equity stock return data has remained an open question.

This paper contributes to the literature in the following two
ways: First, we investigate the relative performance of five widely
used flexible distributions in finance, specifically, the generalized
lambda distribution (GLD), Johnson system of distributions, skewed
Student-t distribution, normal inverse Gaussian (NIG) distribution,
and g-and-h distribution, for modeling the distribution of daily
equity index returns of ten developed and ten emerging markets
over the years 1979-2014. We also use the normal distribution as
a benchmark in our analysis. Second, we evaluate the implication
of our results for the implementation of the well-known risk
measure, VaR. Our analyses support the empirical evidence in the
previous research that the behavior of equity returns are far from
being normally distributed. We further show that the marginal
distribution of daily equity index returns can be well described by
the GLD. The relative stability of the GLD also makes it more favor-
able among other distributions. From a practical expert intelligent
system perspective, the GLD has the following advantages: (i) The
representation of the GLD as an inverse cumulative distribution
function makes it easy to quickly generate random variates from
the GLD in a Monte Carlo simulation, which is widely used in
risk management and the pricing of derivative securities. (ii)
The percentile representation of the GLD makes it convenient to
estimate the risk measures, such as VaR and expected shortfall.

In fitting the distributions to the observed data, we must
choose among several fitting methods from the previous research.
In making this choice, we consider the availability of off-the-shelf
algorithms that can be easily used by expert and intelligent sys-
tems. If such an algorithm is not available, then we implement the
easiest method. One potential limitation of our work is that the
implemented fitting methods may not be the “best” methods. This
limitation could be overcome by performing an intensive study to
examine the relative performance of fitting methods for each dis-
tribution considered in this paper. One such study that we are
aware of concerns the estimation of the parameters of the GLD
(Corlu & Meterelliyoz, 2015).

Our focus in this paper is on the unconditional distribution of
equity returns. As stock returns typically exhibit temporal depen-
dence, considering conditional homoskedastic models such ARMA
and conditional heteroskedastic models such as ARCH, GARCH, and
ARMA-GARCH models, where the residuals in these models follow

flexible distributions considered in this paper, could be of inter-
est from an expert and intelligent systems perspective. Another
future research avenue is related to the stability of the probabil-
ity distributions. As mentioned in the paper, stability is impor-
tant, especially for portfolio analysis and risk management. An
interesting problem to consider is how the performance of the
GLD would compare with some of the popular stable distributions
used in finance, such as stable Paretian laws. In addition, studying
the performance of the considered distributions using weekly and
monthly equity return data may produce different insights, just as
weekly and monthly data may exhibit different characteristics than
the daily data. Finally, another research idea is to extend our anal-
ysis on the behavior of distributions at the extreme values of each
market index return using risk measures other than VaR. Despite
being a widely used risk measure, VaR has been criticized for not
properly presenting the full picture of the risks a company faces.
In particular, a well-known shortcoming of VaR is that it is not
a coherent risk measure (Artzner, Delbaen, Eber, & Heath, 1999).
An alternative coherent risk measure is the expected shortfall, also
known as conditional VaR or tail loss. The extension of our analy-
sis using the expected shortfall as the risk measure may yield ad-
ditional insights.

Appendix A.1. Plots obtained using the Kolmogorov-Smirnov
test statistic

This Appendix presents the computed Kolmogorov-Smirnov
(KS) test statistic for developed and emerging markets consid-
ered in the paper under several distributions. Specifically, Fig. 1
presents the computed KS statistics for the developed markets of
Australia, France, Japan, and Singapore; Fig. 2 presents the com-
puted KS statistics for the developed markets of Spain, Switzer-
land, UK, and US; Fig. 3 presents the computed KS statistics for
the emerging markets of Brazil, Chile, China, and India; and Fig. 4
presents the computed KS statistics for the emerging markets of
Korea, Malaysia, Russia, and South Africa. In each figure, the KS
statistic is compared with respect to the following six distribu-
tions: the skewed-t distribution, the generalized lambda distribu-
tion (GLD), the normal inverse Gaussian (NIG) distribution, Johnson
Sy family, g-and-h distribution, and normal distribution.

Appendix A.2. Plots obtained using the Anderson-Darling test
statistic

This Appendix presents the computed Anderson-Darling (AD)
test statistic for developed and emerging markets considered in
the paper under several distributions. Specifically, Fig. 5 presents
the computed AD statistics for the developed markets of Aus-
tralia, France, Japan, and Singapore; Fig. 6 presents the computed
AD statistics for the developed markets of Spain, Switzerland, UK,
and US; Fig. 7 presents the computed AD statistics for the emerg-
ing markets of Brazil, Chile, China, and India; and Fig. 8 presents
the computed AD statistics for the emerging markets of Korea,
Malaysia, Russia, and South Africa. In each figure, the AD statistic
is compared with respect to the following five distributions: the
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Fig. 3. KS statistics for the emerging markets of Brazil, Chile, China, and India.
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Fig. 6. AD statistics for the developed markets of Spain, Switzerland, UK, and US.
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skewed-t distribution, the generalized lambda distribution (GLD),
the normal inverse Gaussian (NIG) distribution, Johnson Sy family,
and g-and-h distribution.
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