
Expert Systems with Applications 36 (2009) 5424–5431
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
An expert system for the diagnosis of faults in rotating machinery using
adaptive order-tracking algorithm

Jian-Da Wu a,*, Mingsian R. Bai b, Fu-Cheng Su b, Chin-Wei Huang c

a Institute of Vehicle Engineering, National Changhua University of Education, 1 Jin-De Road, Changhua City, Changhua 500, Taiwan, ROC
b Department of Mechanical Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan, ROC
c Department of Mechanical and Automation Engineering, Da-Yeh University, Changhua, Taiwan, ROC

a r t i c l e i n f o a b s t r a c t
Keywords:
Signal processing

Fault diagnosis
Order-tracking
Adaptive RLS filter
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.06.059

* Corresponding author.
E-mail address: jdwu@cc.ncue.edu.tw (J.-D. Wu).
This paper describes an application of an adaptive order-tracking technique for the diagnosis of faults in
rotating machinery. Conventional methods of order-tracking are primarily based on Fourier analysis with
reference to shaft speed. Unfortunately, in some applications of order-tracking performance is limited,
such as when a smearing problem arises and also in a multiple independent shaft system. In this study,
the proposed fault diagnostic system is based on a recursive least-square (RLS) filtering algorithm. The
problem is treated as the tracking of various frequency bandpass signals. Order amplitudes can be calcu-
lated with high-resolution in real-time implementation. The algorithm is implemented on a digital signal
processor (DSP) platform for diagnosis and evaluated by experimental investigation. An experimental
investigation is implemented to evaluate the proposed system in two applications of gear-set defect diag-
nosis and in the diagnosis of damaged engine turbocharger blades. The results of the experiments indi-
cate that the proposed algorithm is effective in fault diagnosis for both experimental cases. Furthermore,
a characteristic analysis and experimental comparison of a vibration signal and a sound emission signal
for the present algorithm are also presented in this report.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Traditionally, the condition of rotating machinery such as fans,
compressors, motors and engines can be monitored by measuring
the respective vibration signal or sound emission signal. These sig-
nals normally consist of a combination of the basic frequency with
discrete or narrowband frequency components and the harmonics
thereof, most of which are related to the revolution of the machin-
ery. The sound emission and vibration energy are increased when
the machinery is damaged. An example result of a sound emission
power spectrum level measured from the wheel-blades of an inter-
nal combustion (IC) engine turbocharger is shown in Fig. 1. The
conventional fault diagnostic technique is to observe the ampli-
tude difference in the time or the frequency domain for diagnosis
of damage.

Recently, the order-tracking technique has become an impor-
tant approach for diagnosing fault in rotating machinery. Interest
in diagnosis using the order-tracking technique has grown signifi-
cantly, having advanced with the progress of digital signal process-
ing algorithms and technology in the last two decades (Biswas,
Pandey, Bluni, & Samman, 1994;Chen, Du, & Qu, 1995; Gelle, Colas,
ll rights reserved.
& Serviere, 2001; Lin & Qu, 2000; Shibata, Takahashi, & Shirai,
2000). The conventional order-tracking method is primarily based
on Fourier analysis with reference to shaft revolution (Lee & White,
1998; Vold & Leuridan, 1993). Unfortunately, re-sampling process-
ing is generally required in the fast Fourier transform (FFT) meth-
ods to compromise between time and frequency resolution for
varying revolutions. However, in the conventional FFT methods, a
smearing problem generally arises in practical implementation,
particularly at low revolution speeds. In addition, the conventional
methods are ineffective for application to certain critical conditions
such as a fixed sampling frequency, and FFT analysis with a track-
ing technique is ineffective when the shaft speed varies rapidly.

In this study, an adaptive order-tracking fault diagnostic tech-
nique using both vibration signals and sound emissions is applied
to the diagnosis of damage in gear-sets and engine turbocharger
blades. According to recent studies by Haykin (1996) and Bai, Jeng,
and Chen (2002) there exists some conclusions for adaptive filter-
ing algorithms and their application to order-tracking techniques.
The proposed adaptive fault diagnostic system is based on the
recursive least-square (RLS) algorithm (Bai et al., 2002). Similar
to conventional methods, the RLS method also requires informa-
tion on shaft or engine revolution. The algorithm is essentially
sample-based; thus, order amplitudes can be calculated in a real-
time fashion. The method is well suited for high-resolution
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Fig. 1. Sound power spectrum level of sound emissions from turbocharger blades. A solid line depicts blades without damage; broken lines depict blades of which one is
damaged.
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tracking of closely spaced orders or crossing orders. The filter algo-
rithm is implemented in a TMS320C32 DSP platform for evaluating
the performance in a practical application of the diagnosis of dam-
age in gear-sets and IC engine turbocharger blades.

In fault diagnostic techniques to date, measurement of the
vibration signal has become most widely used when a reference
signal is available. Unfortunately, in some practical applications,
such a vibration signal is unavailable. Measurement of high-fre-
quency sound emissions serves as a promising alternative to con-
dition monitoring of many types of rotating machinery (Mba,
2002; Toutountzakis & Mba, 2003). During operation of the
machinery, defects at different locations will generate characteris-
Transversal filter 
ˆ ( 1)w n −

Adaptive weight 

control mechanism

Input vector 
( )u n

*ξ (n)
k(nΣ Σd*(n)

+

_

)1()(H −
∧

nn wu

Gain

a

b

Fig. 2. Representations of RLS algorithm. (a) B
tic frequencies. However, in the present study, both vibration sig-
nals and sound emission signals are used to evaluate the
proposed diagnostic technique. The details of the proposed adap-
tive filtering with an RLS algorithm are described in the following
section.

2. Principle of adaptive order-tracking technique using RLS
algorithm

The conventional algorithms used in fault diagnostic techniques
fall into two categories. One is Fourier transform with a fixed sam-
pling rate for obtaining frequency domain information; the other is
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Fig. 3. A comparison of convergence speeds and estimation errors in various adaptive filters. A solid line depicts the Kalman filter; a dash-dot line depicts the RLS; a dotted
line depicts the LMS.

DSP controller

Mic.

Gear 2

Gear 1Coupling

Frequency converter 

Accelerometer

Fiber optical sensor

Motor

D/A A/D A/DA/D

Fig. 4. Experimental arrangement of gear-set defect diagnosis.
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tracking with various sampling rates. The second method employs
a re-sampling scheme synchronous with the shaft revolution. The
time domain data are hence converted to revolution-domain data.
Then the FFT is also applied to obtain the order spectrum with re-
spect to engine speed. Both the time and the frequency resolution
of this approach are essentially varied with the shaft speed. This
FFT order-tracking method relies on accurate measurement of
the tachometer signal. In general, the vibration signal or the sound
emission signal generated by rotating machinery essentially con-
sists of a combination of the basic frequency with narrowband fre-
quency components and its harmonic frequencies, most of which
are related to the revolution of the machine. Bai et al. (2002) pro-
posed an RLS algorithm for adaptive order-tracking technique. In
this work, the vibration signal x(t) containing k orders generated
by one rotating shaft can be written as

xðtÞ ¼ ½cos½hðtÞ� � sin½hðtÞ� cos½2hðtÞ� � sin½2hðtÞ� � � � cos½khðtÞ�
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where AkI and AkQ denote the in-phase and quadrature components,
respectively, of kth order. Note that

AkI ¼ Ak cos /k; AkQ ¼ Ak sin /k: ð2Þ

The amplitude of kth order can be written as

jAkj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

kIi þ A2
kQ

q
: ð3Þ

and the phase of the kth order is obtained by

/k ¼ tan�1 AkQ

AkI

� �
: ð4Þ

For a discrete-time system, Eq. (1) can be expressed as
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Fig. 6. Order figures of vibration signals for gear-set using adaptive RLS filter. A
solid line depicts gear without defect; a dashed line depicts gear with a defect.
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where n is the discrete-time index (Oppenheim & Schafer, 1999). To
solve Eq. (5), collect 2k samples of xðnÞ to form
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Fig. 7. Order figures of sound emission signals for gear-set using adaptive RLS filter.
A solid line depicts gear without defect; a dashed line depicts gear with a defect.
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Here it is assumed that the 2k amplitude parameters AI and AQ

remain constant within the interval ½n;nþ 2k� 1�. In view of the
special structure of the signal described in Eq. (1), the order-track-
ing problem can be recast into a parameter identification form. The
estimation error

eðnÞ ¼ xðnÞ �wTðnÞuðnÞ; ð7Þ

uTðnÞ ¼ ½cos½hðnÞ� � sin½hðnÞ� cos½2hðnÞ�
� sin½2hðnÞ� � � � cos½khðnÞ� � sin½khðnÞ�� ð8Þ

is the regressor;

WTðnÞ ¼ ½A1IðnÞ A1Q ðnÞ A2IðnÞ A2Q ðnÞ � � � AkIðnÞ AkQ ðnÞ�
ð9Þ

is the parameter vector; x(n) is the measurement error. Note that
the vector u(n) consists of angular displacements of the shaft; the
Fig. 8. (a) Damaged turbocharger compress-wheel-blades. (b) Make sure that turbocharg
Anglin, 1993).
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of all orders to be identified.

The parameter identification problem in Eq. (7) can be solved by
the method of least-squares (Denbigh, 1998). The problem
amounts to finding optimal parameters ŵðnÞ so that the perfor-
mance index f(n) is minimized as

fðnÞ ¼
Xn

i¼1

kn�ijeðiÞj2; ð10Þ

where the forgetting factor k exponentially weighs the estimation
error from the present to the past. Fig. 2 shows the block diagram
and signal-flow graph of the RLS algorithm. The optimal solution
of the problem can be recursively solved by using the following
RLS algorithm (Haykin, 1996):

kðnÞ ¼ k�1Pðn� 1ÞuðnÞ
1þ k�1uHðnÞPðn� 1ÞuðnÞ

ð11Þ
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nðnÞ ¼ dðnÞ � ŵ H ðn� 1ÞuðnÞ; ð12Þ

ŵðnÞ ¼ ŵðn� 1Þ þ kðnÞn�ðnÞ; ð13Þ

PðnÞ ¼ k�1Pðn� 1Þ � k�1kðnÞuHðnÞPðn� 1Þ: ð14Þ

In this procedure, matrix P(n) is the inverse of the auto-correla-
tion matrix of input vector u, nðnÞ is the a priori estimation error,
and k(n) is the gain vector. To initialize the RLS algorithm, the ini-
tial conditions are generally taken to be ŵð0Þ ¼ 0M�1, where M is
the number of parameters and Pð0Þ ¼ d�1I, where I is an M �M
identity matrix and d is a small positive constant. One reason for
using the RLS order-tracking technique is that the rate of conver-
gence of the RLS algorithm is typically an order of magnitude faster
than the traditional LMS algorithm.

In order to provide valid understand of the characteristic in
adaptive filtering algorithms. A comparison of convergence speeds
and the mean-square-error (MSE) in various adaptive filters, i.e.,
Fig. 10. Order figures of sound emission signals for engine speed at 800 rpm using
adaptive RLS filter. A solid line depicts blades without any damage; dashed line
depicts blades with one fault.
LMS, RLS, and Kalman filter in simulation is shown as Fig. 3. The re-
sults have shown that the Kalman filter has the quickest conver-
gence speed, converging at the iteration number of 800, the RLS
converges at 1500, and LMS converges at 2800. That is because
the Kalman filter algorithm takes into account the noise factor
and is well structured with sophisticated considerations. However,
the Kalman filter may be exploited as the basis for deriving an
adaptive filtering algorithm appropriate to the complex calculation
situations. In particular, each updated estimate of the state is com-
puted from the previous estimate and the new input data, so the
previous estimate requires storage. Comparatively, the RLS filter
algorithm is rather simple in filtering design.

3. Experimental verification of fault diagnostic systems

In the experimental investigation, two experiments are imple-
mented to evaluate the proposed RLS filtering algorithm. One is a
gear-set defect diagnosis using both the vibration signal and the
sound emission signal; the other is a diagnosis of damaged IC en-
gine turbocharger wheel-blades by using a sound emission signal.

3.1. Application 1: gear-set defect diagnosis

The experimental setup for the gear-set defect diagnostic sys-
tem is shown in Fig. 4. The horsepower of the DC servo motor is
0.5 with a maximum revolution of 3000 rpm. The motor can be
controlled by using a DSP controller. An optical fiber sensor
(LM339) is used to detect motor revolution and angular displace-
ment as reference signals in the diagnostic system. The vibration
signal and sound emission are measured by using an accelerometer
(PCB 353B15) and a condenser microphone (ACO P4012). The pro-
posed diagnostic system is implemented on a 60 MHz floating-
point TMS320C32 DSP equipped with two 16-bit analog I/O chan-
nels by using the adaptive RLS algorithm. In applying the proposed
high-resolution order-tracking methods, some parameters need to
be determined, such as the number of tracking orders N^order and
forgetting factor k in the proposed RLS algorithm.

In addition, the experimental implementation of the gear-set is
at various speed conditions. The experimental conditions are indi-
cated in Fig. 5, where the gear-set is operated as a running-up
schedule. The experimental results from order figures using a
vibration signal are shown in Fig. 6; the order figures using a sound
Fig. 11. Sound pressure amplitude in test schedule for diagnosis of faults in
turbocharger blades. A solid line depicts blades without any damage; a dashed line
depicts blades with one fault.
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emission signal are shown in Fig. 7. The experimental results dem-
onstrate that the proposed diagnostic system is effective in defect
diagnosis by using both vibration and sound emission signals. The
ordered figures can be saved as a data bank for practical fault diag-
nosis. Furthermore, order-tracking is one of the important tools for
feature extraction of rotating machinery. The order amplitude fig-
ure gives the information of the harmonic order signal in the
mechanical system. Ordinarily, the amplitude of fault conditions
is higher than without fault condition. So it is very easy to distin-
guish the fault and without fault conditions.

3.2. Application 2: diagnosis of damaged IC engine turbocharger
wheel-blades

An IC engine can produce more power at the same speed if a
forced induction system is used to improve volumetric efficiency.
Such a system consists of air pumps or blowers that force more
Fig. 12. Order figures of sound emission signals for engine run-up test. A solid line
depicts blades without any damage; a dashed line depicts blades with one fault.
air-fuel mixture into the engine combustion chamber. Normally
they may produce 35–60% more power than a naturally-aspirated
engine (Crouse & Anglin, 1993). However, the turbocharger system
requires periodic maintenance to prevent early failure. Frequent
causes of turbocharger failure are sand and other particles striking
the blades, as in the case of the turbo blades shown in Fig. 8a. Con-
ventional diagnosis of damaged blades is to conduct a visual
inspection when the engine is cool or check to make sure that
the turbocharger shaft-wheel assembly turns freely and smoothly
by rotating it by hand, as shown in Fig. 8b. Obviously, the conven-
tional inspection is not a precision approach for diagnosis of dam-
age; it also is not a suitable method for diagnosis when the engine
is running. The conventional FFT methods with a fixed sampling
frequency also are ineffective for this application because normal
operation of the engine varies rapidly.

In fault diagnostic techniques to date, the vibration signal has
become the most widely used method when a vibration signal is
available. Unfortunately, in some applications of fault diagnostic
systems, a vibration reference signal is unavailable. In this applica-
tion, only the sound emission signal is used to evaluate the pro-
posed system in the diagnosis of a damaged turbocharger under
fixed revolution, acceleration and deceleration conditions. The
experimental arrangement for the diagnosis of damaged turbo-
charger wheel-blades is depicted in Fig. 9. A four-cylinder, four-
stroke, 2.8-l IC engine with a turbocharger system is used in this
application. A fiber-optic sensor is utilized to detect the revolution
signal that is related to the sound emission from the wheel-blades.
In this experimental implementation, the related reference signal
from the engine can be measured by the ignition system or the
wheel-blade signal. However, the ignition system may have sub-
stantial interference that will affect the performance; therefore,
the reference signal is picked up near the wheel-blades by using
a fiber-optic sensor. To verify the filtering algorithm in order-track-
ing, a preliminary test was conducted in an engine with a fixed rev-
olution of 800 rpm. The order figures using a sound emission signal
are shown in Fig. 10. In a practical condition, an engine may be
operated by running-up or casting down. Although the high sweep
rates make accurate order measurement difficult, the proposed
adaptive order-tracking is suitable for such a condition. In order
to verify the adaptive filter, the test schedule for the diagnosis of
damaged turbocharger blades is shown in Fig. 11. The ordered fig-
ures using a sound emission signal are shown in Fig. 12. The exper-
imental results demonstrate that the proposed diagnostic system is
effective in fault diagnosis by using sound emission signals. The or-
dered figures and data also can be saved as a data bank for practical
fault diagnosis.
4. Conclusions

An order-tracking technique exploiting adaptive filtering based
on an RLS algorithm for tracking the orders of vibration and sound
emission signals in the diagnosis of defects in a gear-set and in
damaged engine turbocharger wheel-blades has been applied. In
this method, the order-tracking problem was treated as parameter
identification and calculated at a high-resolution. Although, the
Kalman filter is the alternative method when the uncertainty fac-
tors of the entire system are taken into consideration. However,
in some cases the design is more complex than the RLS algorithm.
In the present study, the contribution is emphasized in the practi-
cal application of gear-set defect diagnosis and diagnosis of dam-
aged IC engine turbocharger wheel-blades by using the proposed
RLS filtering algorithm. The results of the experiments indicated
that the RLS algorithm is effective in fault diagnosis for both exper-
imental cases. Various adaptive filtering algorithms are expected to
be used in different applications; future research should focus on
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the development of a robust adaptive filtering algorithm to accom-
modate perturbation as well as uncertainties in the diagnostic
system.
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