
1 
 

Neural Network for Dynamic Human Motion Prediction 
 

Mohammad Bataineh, Timothy Marler, Karim Abdel-Malek, and Jasbir Arora 

Virtual Soldier Research Program – Center for Computer-Aided Design, The University of Iowa, 

Iowa City, IA, USA 

 

 

Email addresses: bataineh.moe@gmail.com (Mohammad Bataineh), 

tmarler@engineering.uiowa.edu (Timothy Marler), amalek@engineering.uiowa.edu (Karim 

Abdel-Malek), jasbir-arora@uiowa.edu (Jasbir Arora) 

Corresponding author: Mohammad Bataineh will handle correspondence at all stages of 

refereeing and publication, also post-publication. (Tel: +1-319-331-5454; Email: 

bataineh.moe@gmail.com; Address: 330 S. Madison Street. Iowa City, IA 52242. USA). 

 

Abstract 

Digital human models (DHMs) are critical for improved designs, injury prevention, and a better 

understanding of human behavior. Although many capabilities in the field are maturing, there are 

still opportunities for improvement, especially in motion prediction. Thus, this work investigates 

the use of an artificial neural network (ANN), specifically a general regression neural network 

(GRNN), to provide real-time computation of DHM motion prediction, where the underlying 

optimization problems are large and computationally complex. In initial experimentation, a 

GRNN is used successfully to simulate walking and jumping on a box while using physics-based 

human simulations as training data. Compared to direct computational simulations of dynamic 

motion, use of GRNN reduces the calculation time for each predicted motion from 1-40 minutes 

to a fraction of a second with no noticeable reduction in accuracy. This work lays the foundation 

for studying the effects of changes to training regiments on human performance. 

Keywords: digital human modeling, artificial neural networks, motion prediction, general 

regression neural network. 
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1. Introduction 

The use of digital humans is becoming more prevalent with the upstream design of any 

product or process that involves human interaction or human systems integration. In order to 

enhance the design process as effectively as possible, computationally fast human simulation and 

analysis become critical. The faster one can simulate and obtain feedback concerning human 

performance, the faster one can evaluate and refine designs. A cornerstone of human 

performance is simulated motion, which often requires dynamic analysis (consideration of 

forces, acceleration, and inertia, not just kinematics). However, accurate dynamic simulation and 

analysis can be computationally demanding, depending on the task being simulated. Therefore, 

this work presents the use of an artificial neural network (ANN) to provide fast motion 

simulation. 

Whether the motion tasks are simulated using data-based methods (Chaffin, 2002; 

Moeslund, Hilton, & Krüger, 2006), which depend on motion capture systems to track, record, 

and reproduce human motion during various tasks, or using physics-based methods (Xiang, 

Chung, et al., 2010), which primarily entail using optimization to predict motion, techniques for 

capturing one’s history and the consequent strategy for completing the task continue to be a 

challenge. Why do different people with similar capabilities and size, for instance, enter the same 

vehicle in different ways? Although various human modeling methods can capture the nuances 

of one’s motion or the cause and effect demonstrated with changes in parameters, few methods 

offer the ability to capture one’s strategy in approaching a task without significant input from the 

user.  Hence, there is a need for an algorithm that produces real-time motion prediction and can 

incorporate a history of experience. 

Motion-capture-based methods are limited in terms of their ability to produce different 

motions that correspond to changes in the task parameters, because the underlying algorithm 

depends on prerecorded data that cannot be changed due to the change in the task conditions. In 

addition, these methods do not incorporate dynamics; they do not capture effects of loads and 

inertia. Alternatively, physics-based methods like predictive dynamics (PD), which is an 

optimization-based motion prediction algorithm (Xiang, Chung, et al., 2010),  tend to be more 

flexible in showing the effects of changes in task parameters, especially with respect to 

dynamics. In addition, these methods are predictive; they predict human performance with 

minimal dependence on prerecorded data. Computational speed, however, can be a limiting 

factor with PD, when real-time performance feedback is needed. Depending on the task being 

simulated and its settings, PD can require up to 40 minutes (the PD algorithm is run on a 

Windows 7 computer with an Intel
®
 Core

™
 i3 processor and 8 GB of RAM), even with small 

changes in the configuration. A variety of techniques are being explored to address this 

challenge, and the use of an ANN is especially promising. 

An ANN can be used for real-time motion prediction and can be integrated with the 

physics-based motion simulation method, PD, in order to improve the computational speed when 

predicting a motion task. An ANN also provides a platform for incorporating alternative sources 

for real-time motion prediction, such as motion capture data, if desired. Unlike other simulation 

tools, ANNs are capable of providing acceptable simulations for a problem without the need for 

complex time-consuming algorithms. This work 1) demonstrates the feasibility and advantages 

of using ANNs for direct motion prediction, and 2) presents the use of one of the ANN types as 

an appropriate network for successful simulation of such problems. 

An ANN is a mathematical model for predicting system output, inspired by the structure 

and function of human biological neural networks. Compared to other simulation and statistical 

http://en.wikipedia.org/wiki/Mathematical_model
http://en.wikipedia.org/wiki/Biological_neural_networks
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tools, ANN is fast and produces relatively accurate and acceptable simulations for complex 

systems. ANNs entail two steps or processes. First they are trained using some form of pre-

existing data. Essentially, optimization is used to set model parameters. After its training process 

is completed, it is then run and provides relatively fast output given various input conditions. 

ANNs can be powerful tools for generalizing, which means providing accurate and acceptable 

results for all inputs conditions, many practical problems (Coit, Jackson, & Smith, 1998; 

Twomey & Smith, 1998), and hence have been used successfully in many digital human model 

(DHM)-related problems (Bataineh, 2015; Bataineh & Marler, 2013; Bataineh, Marler, & Abdel-

Malek, 2013; Bu, Okamoto, & Tsuji, 2009; Kang, Kim, Park, & Kim, 2007; Li, Li, & Song, 

2007; Zhang, Horváth, Molenbroek, & Snijders, 2010; Zhao, Zheng, & Wen, 2010). Motion-

related applications include, but are not limited to, robotics and controller system motion, motion 

analysis, reconstruction of dynamic objects, and time-series dynamic prediction and 

classification. In general, the main use of ANNs has been focused on human model posture 

prediction (Jung & Park, 1994; Zhang, et al., 2010) and motion prediction of robotics and 

dynamics systems (Frank, Davey, & Hunt, 2001; Stakem & AlRegib, 2008). One approach 

proposed the use of multiple ANNs in controlling a robot manipulator (Y. H. Kim & Lewis, 

1999). The system was evaluated successfully on a two-link robot manipulator, demonstrating 

the ANN’s ability to handle the nonlinear unknown parameters in the system manipulator. 

Moreover, the feedforward-backpropagation network, which was trained by gaits of various 

people, is used to recognize humans automatically (Yoo, Hwang, Moon, & Nixon, 2008). In 

other motion-related applications, ANNs have been used as an indirect source that led to 

providing improved motion predictions. Lung tumor motion during respiration was predicted in 

advance using ANNs (Isaksson, Jalden, & Murphy, 2005). Most of the preceding scholars use 

feedforward-backpropagation ANNs with single or few outputs to preserve accuracy. 

So far, ANNs have been applied only to very specific scenarios in DHM problems and 

have not been developed for robust use with complex problems like whole-body dynamic motion 

prediction. In general, ANNs have been used to solve confined systems with a relatively small 

number of inputs and outputs. Most applications have involved feedforward-backpropagation 

networks, which have memory and accuracy issues when used with a large number of inputs and 

outputs. Thus, this work explores using other types of ANNs for relatively large and complex 

human-modeling problems. 

The overarching hypothesis is that if designed/selected properly, ANNs can in fact be 

used to simulate human motion quickly and accurately, despite a relatively large number of 

outputs. We contend that a radial-basis network (RBN) is most appropriate, because it has the 

smallest number of parameters to be set when simulating a problem with a large number of 

outputs. In addition, it provides a global solution when optimizing the network parameter values 

(during the training process). Specifically, we propose using a general regression neural network 

(GRNN), which is a type of RBN. The work integrates GRNN with PD to increase the 

computational speed of PD with minimal detriment to accuracy. This is shown using two 

different simulated tasks with a large number of outputs (on the order of hundreds), both of 

which run in under one second. Eventually, PD can be replaced by GRNN, which is trained to 

provide a standalone instant motion simulation. The next section describes the necessary 

parameters (inputs and outputs) of the PD simulated tasks, as well as details of the underlying 

ANN architecture. 
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2. Methods 

2.1. Digital human model and physics-based motion prediction 

As a foundation for the proposed method, this section summarizes the digital human 

model as well as PD. This work capitalizes on and adds to a foundation of virtual human 

modeling capabilities, housed within a human model called Santos (Abdel-Malek, et al., 2006; 

Abdel-Malek, et al., 2007). Santos, as shown in Fig. 1, is a highly realistic, biomechanical 

computer-based human that predicts, among other things, static posture, dynamic motion, joint 

strength, and development of fatigue. Such capabilities can be used to predict and assess human 

function, providing task performance measures and ergonomic analysis. Thus, in a virtual world, 

Santos can help design and analyze various products and processes. In addition, Santos can help 

study and evaluate various restrictions and impediments, such as fatigue, reduced range of 

motion, environmental obstacles, etc. 

 

Fig. 1.  Schematic of the skeleton model for the virtual human model Santos. 

A key aspect of any virtual human is the ability to simulate human posture and motion 

realistically and quickly while considering external and internal loads/forces. With respect to 

motion, there are traditionally two types of dynamics problems that need to be addressed. In the 

first problem, called forward dynamics, the external forces and torques on the system are known 

and the motion of the system is desired. The problem is solved by integrating the governing 

equations of motion forward in time using a numerical algorithm. In the second problem, called 

inverse dynamics, the motion of the system is known (i.e., from motion capture), and the forces 

and torques causing the motions are calculated using the equations of motion. Both of these 

problems can be solved using traditional multi-body dynamics software. The problem of 

predictive dynamics arises when one wants to simulate the human motion for any task. In this 

problem, both the joint torques and the motion of the joint are unknown. Therefore, the problem 

becomes more difficult to solve. With the PD approach, the joint angles (one for each degree of 

freedom, or DOF) essentially provide design variables that are determined through optimization. 

The objective function(s) is one or more human performance measure, such as energy 
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consumption, discomfort, and joint displacement. Including the dynamic equations of motion as 

constraints then ensures that the laws of physics are satisfied. 

The specifics of PD (Xiang, Arora, Rahmatalla, & Abdel‐Malek, 2009; Xiang, Chung, et 

al., 2010) are summarized as follows. In general, predicting dynamic human motion is 

approached as an optimization problem (Arora, 2004), as shown in Equation 1. This formulation 

provides the context for the discussion of inputs and outputs used with the proposed neural 

network. Joint angle profiles over time are represented as B-spines, and the control points, which 

dictate the shape of the profile curve, serve as design variables in an optimization problem. The 

problem entails determining design variables  , which represent the control points (i.e., joint 

angle profiles) of all body DOFs, in order to minimize the objective function,     , subject to 

the physical equality (     ) and inequality (     ) constraints. The control points ( ) form B-

splines for all DOFs that simulate the motion of the DHM. Having more control points in a B-

spline leads to more accurate motion simulation but increases the number of design variables and 

can thus increase computational complexity.        is a vector that represents the reference 

motion provided by motion capture. 

 Find:              (control points for 55-DOFs) 

Minimize:                                         
   

Subject to:                     

                                      

Equations of motion, including reaction forces 

(1) 

The objective function      can vary slightly depending on the task being simulated, but 

it generally includes two components. First, the difference between the predicted motion q and a 

seed motion based on experimental motion capture is minimized (           ). This 

component helps represent one’s overall strategy when performing a task, as opposed to 

kinematic and dynamic nuances. The second component includes the tendency to minimize the 

joint torque being used to complete a task and thus minimize the energy being used 

(                   
  ). 

The constraints, which represent       and      , include the following: contact points 

(between the avatar and the environment), joint-angle limits that represent one’s range of motion 

(Marler et al., 2008), torque limits that represent one’s strength limits, restriction on the zero 

moment point (responsible for balance), ground reaction forces, and equations of motion. 

Since its development, PD has been used to simulate different motion tasks and scenarios 

(J. H. Kim, et al., 2008; J. H. Kim, Xiang, Yang, Arora, & Abdel-Malek, 2010; Kwon, et al., 

2014; Xiang, Arora, & Abdel-Malek, 2010, 2012; Xiang, Arora, Rahmatalla, et al., 2010). The 

inputs for each simulation take two forms: avatar-based and task-based. Avatar-based inputs 

include anthropometric parameters (i.e., skeletal link lengths, mass for body segments, etc.), joint 

ROMs, torque limits, which represent strength limits, and loads applied to the avatar as a result 

of external factors. Task-based inputs include parameters that define the characteristics of a task 

(i.e., step size in a walking task, box height in a jumping-on-the-box task, etc.). Each newly 

developed PD task/simulation is validated using motion capture and force plates (Rahmatalla, 

Xiang, Smith, Meusch, & Bhatt, 2011). 

Creating a large number of different task conditions (thousands) is difficult, because it 

can be time consuming. The running time for each case, even with minor condition changes, can 

take minutes to hours in order to complete and produce the simulation. The long running time is 

due to the large size of the PD problem with respect to the number of outputs. The number of 
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outputs in a PD task is approximately 500-700 outputs (i.e., the outputs represent   for all 55 

DOFs, which are the design variables), depending on the number of control points in each task, 

which can slow down the optimization. In addition, this process cannot be automated completely, 

because the simulations require some post-processing before considering the case acceptable and 

usable. Hence, the time-cost issue leads to a PD problem with a limited number of simulations 

available to be used by pattern recognition tools like ANN to be trained to provide real-time PD 

simulations. Therefore, a carefully selected type of ANN that is capable of being trained well 

with a limited number of simulations needs to be employed to provide the most acceptable 

simulation results. The following section illustrates the architecture of the proposed ANN for 

successful real-time simulation of a PD problem that has a limited number of training cases. 

2.2. General regression neural network (GRNN) 

This work proposes the use of a GRNN for simulating motion prediction in DHM. 

Among the types of RBN, which is known to be powerful when simulating large-scale and 

complex problems like motion, GRNN has the fewest parameters to be set among RBN types for  

successful use in DHM applications with relatively large problems (Bataineh, 2012). ANNs 

consist of three main parts (Fig. 2): (1) an input layer, (2) a hidden layer, and (3) an output layer. 

The input and output layers consist of the system’s inputs and outputs, respectively. The hidden 

layer represents the core of the ANN and consists of units called neurons. Inside the hidden 

neurons, which are also called the basis functions, the main mathematical calculations occur 

while processing the inputs and providing the proper outputs. 

 

Fig. 2.  General regression neural network architecture. 

The network input is represented by               ] and provides the input for each 

neuron in the hidden layer. R is the number of inputs, Q is the number of training cases as well as 

the hidden neurons [       ], and N is the number of outputs. The hidden neuron in the ANN 

receives input(s) from the input layer, completes a mathematical transformation/calculation, and 

sends the result to the neuron(s) of the output layer. 
Inside each hidden neuron, there is a radial transfer function that produces outputs 

depending on the provided input (Wasserman, 1993). Once the i
th

 hidden neuron receives the 

input x, the Euclidian norm of the difference between   and the hidden neuron’s center   
  is 
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calculated to produce    (Equation 2). Then, the value    is multiplied by the bias constant B to 

provide   , which is called the radial distance (Equation 3). The radial function output    is then 

calculated as a function of   , (Equation 4).
 

 

         
      

 

   

 (2) 

         (3) 

            (4) 

Each output neuron receives the hidden neuron’s output    as its input. The output neuron 

essentially combines the output of all hidden neurons in a weighted sum to provide the final 

network output (Equation 5). The vector   
  in the k

th
 output neuron represents the weight 

associated with that neuron necessary to provide the proper value for the k
th

 output   . The 

output layer has N neurons, where N is the number of outputs             . 
 

    
   

 
       

 

   
 
   

 (5) 

The training process in a GRNN involves determining the most appropriate value of each 

hidden neuron center   
  and each output weight vector   

 . The training cases are used as the 

hidden neuron centers, where the number of hidden neurons equals the number of training cases 

Q. The weighting vector is set as the outputs of the training cases. More details regarding the 

GRNN architecture are provided in the literature (Specht, 1991). 

2.3. GRNN for Motion Simulation 

The crux of the proposed method entails using an ANN to approximate dynamic motion 

prediction. In essence, an ANN is used to create a meta-model or hyper response surface of the 

PD computational model. Combining these two elements provides two modes of use. 

First, given that PD entails running a gradient-based optimization model, and ANN can 

be used to provide an initial guess for the optimization problem. With this mode, PD is run first, 

regardless of the computational demands, and is used to create a library of base simulations.  

These simulations are then used to train an ANN. With subsequent PD simulations, the ANN is 

used to provide an initial guess based on simulation parameters (i.e., avatar anthropometry, loads 

applied to the avatar from equipment, etc.). This initial guess then helps increase the speed of the 

optimization problem and thus the simulation. On the other hand, even with an appropriate (i.e., 

close to optimal) initial guess that is provided from the ANN, the complex nonconvex 

optimization in the PD algorithm is not always guaranteed to run faster. 

We contend that the results of the ANN can actually be used directly as a final solution in 

and of itself, and subsequent results prove this hypothesis. This process in inherently faster than 

running PD, training an ANN, and then running PD again. Alternatively, PD is run off line to 

produce training data, and the ANN is run to produce final results. Task characteristics (i.e. 

walking speed, jumping height, etc.) and avatar characteristics provide the input for a GRNN.  

Joint-angle profiles, joint-torque profiles, and ground reaction forces are the output (see Equation 

1). These parameters are first used to train a GRNN (one for each task). Then, conceivably, any 

set of input values can be used to run the GRNN and extract associated output values (simulation 

results). This in turn provides a new and relatively fast method for human motion prediction.  

Details regarding the inputs and outputs for the tasks of walking and jumping on a box are 

provided in the subsequent section. 
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3. Results 

The use of GRNN to simulate dynamic human motion quickly is applied and tested on 

two tasks: walking forward with a backpack, and jumping up on a box. The approximate results 

provided by the GRNN are compared to, and verified with those provided from the source 

predictive-dynamics models. The work of developing/running the training cases, training the 

network, and then executing/running the trained network is completed on a Windows 7 computer 

with an Intel
®

 Core
™

 2 processor and 8 GB of RAM. Since there is no optimization procedures 

in the GRNN training process, it is trained within approximately 2-5 seconds, where that 

includes setting the network parameters to their appropriate values (as indicated in Section 2.2). 

With the presented tasks, the run time for PD ranges between 1 and 40 minutes. The network-

predicted (approximated) motion outputs, which are all produced in a fraction of a second, are 

presented, evaluated, and compared with those exact (true) outputs from PD. After the network is 

trained with cases produced from PD, the network can simulate motions instantly for new 

conditions (i.e., test cases) that had never been used to train the network. To evaluate the network 

results of the test cases, all the produced motions from the GRNN and PD are compared visually 

and objectively. 

3.1. Example 1: Walking 

The first simulated task is walking forward with a backpack (Xiang, et al., 2009). The 

inputs for the task include: walking velocity, backpack weight, four lower-body link lengths 

(spine to hip, hip to knee, knee to ankle, and ankle to football), and three body joint ROMs. 

ROM is specified as upper and lower limits for the hip, knee, and ankle, each at flexion and 

extension. These specific joint ROMs are used (note that many others are stipulated as detailed 

by Marler et al., 2008), because changing their limits has significant effects on the resulting 

motion, whereas other ROMs have a relatively small effect on the task. Table 1 shows a typical 

range of values, for each input parameter, that reflect various scales of human anthropometric 

data. The training cases are formed as various combinations of these values, although not all 

permutations are used simply to reduce complexity. Velocity represents the speed of walking for 

Santos and is measured in m/sec. Value 1 and Value 2, respectively, typical minimum and 

maximum speeds for a person of average height. Each training case (set of input values) 

represents a point on a training grid. The consequent trained ANN can then be run using any set 

of inputs. Input values that do not mimic any training case represent what is called a test case 

(i.e., off-grid point). 

Table 1 

Input parameters for training the walking-forward task. 

Input parameter Value 1 Value 2 Value 3 

Velocity (m/s) 0.8 -- 1.6 

Backpack weight (N) 0 175 315 

Link1 (Spine to Hip) (cm) 7.8 8.8 9.8 

Link2 (Hip to Knee) (cm) 43.5 44.5 45.6 

Link3 (Knee to Ankle) (cm) 39.5 42.4 45.4 

Link4 (Ankle to Football) (cm) 11.3 11.7 12.1 

Joint1 (Hip)- lower limit (degrees) -123.3 -105 -90 

Joint1 (Hip)- upper limit (degrees) 8.7 5 2 

Joint2 (Knee)- lower limit (degrees) 5 10 20 

Joint2 (Knee)- upper limit (degrees) 149.7 130 110 
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Joint3 (Ankle)- lower limit (degrees) 7.3 15 20 

Joint3 (Ankle)- upper limit 71.6 60 50 

Thus, for the first training case, the velocity is set to Value 1, the backpack weight is set 

to Value 1, the group of avatar inputs correspond to the link lengths (the four inputs for body 

segments’ lengths) are set to Value 1, and the group of avatar inputs correspond to the joint 

limits (the six inputs for upper and lower joint limits) are set to Value 1. The next training case is 

created by keeping the backpack weight, the velocity, and the group of inputs correspond to the 

link lengths fixed at Value 1, and moving the group of avatar joint limits to Value 2. Then, the 

avatar joint limits are set to Value 3 to create the third training case. The same process is applied 

to create the next 3 training cases by setting velocity and backpack weight to Value 1, link 

lengths to Value 2, and using joint limits iteratively from Value 1 to Value 3. The following 3 

training cases are created using the previous settings, except the link lengths are set to Value 3. 

By the end of this step, nine training cases have been produced so far. Next, the velocity is set to 

Value 1, the backpack weight is set to Value 2, and the previous steps are repeated to create the 

next new nine training cases. Then, another nine training cases are created using Value 3 for the 

backpack weight. Thus far, 27 training cases have been produced after all the input values are 

used with fixed velocity at Value 1. Setting the velocity to Value 2 and repeating all the 

aforementioned procedures produces another set of 27 cases. Finally, after a manual post-

processing of the resulting 54 training cases, two training cases are removed because they are 

subjectively unacceptable due to visually odd motions. This results in 52 training cases in total. 

The network’s outputs in a PD task include control points for Santos’s joint-angle 

profiles for all 55 DOFs, as well as values for joint torques at specified time steps for certain 

specified DOFs. With the walking task, each joint profile consists of six control points that 

represent joint values at different times over the task. Hence, there are 330 outputs representing 

the joint angle profiles. Joint torques are considered for the six lower-joint DOFs (three for the 

hip, one for the knee, and two for the ankle), because these are the most highly articulated DOFs 

during the walking task. Assuming symmetry, the joint torques are evaluated at ten time steps 

during the walking task. This results in 60 additional output values. Thus, to summarize, the task 

is defined with 12 inputs and 390 outputs in total, and there are 52 training cases. 

Once the ANN has been trained, the ANN model for the walking task is tested using the 

conditions shown in Table 2. Each of these testing cases is analyzed by comparing the predicted 

network outputs and the exact PD results. The test cases include two off-grid points. Note that 

these cases are not used to train the network, so they help evaluate the general performance of 

the network prediction for off-grid (i.e., new unseen) test cases. These cases are chosen to cover 

different input combinations and with input values that are completely different from the values 

in the training cases (Table 1). The results of the test case are evaluated based on subjective 

motion, and on objective evaluation of joint angle profiles and joint torques. 

Table 2 
Input variables for two test cases. 

Input parameter Case 1 Case 2 

Velocity (m/s) 1.4 0.9 

Backpack weight (N) 220 63 

Link1 (Spine to Hip) (cm) 9 8 

Link2 (Hip to Knee) (cm) 44 43 

Link3 (Knee to Ankle) (cm) 41.4 45 



10 
 

Link4 (Ankle to Football) (cm) 12 11.3 

Joint1 (Hip)- lower limit (degrees) -98.6 -111 

Joint1 (Hip)- upper limit (degrees) 2.2 6.5 

Joint2 (Knee)- lower limit (degrees) 8 16 

Joint2 (Knee)- upper limit (degrees) 146 127.2 

Joint3 (Ankle)- lower limit (degrees) 12 7 

Joint3 (Ankle)- upper limit 57 70 

As a basic subjective analysis, the visual motion results for Case 1 and Case 2 are 

presented in Fig. 3. For this and all following cases, snapshots are taken at three different time 

frames of the total task time. The visual results for Case 1 show accurate network prediction of 

all joint profiles when compared to PD results; the motion produced from the network is visually 

comparable to that from the PD. With Case 2, Santos’s back is almost straight, which is a 

reflection of the input backpack weight of just 63 N. The relatively short step size reflects the 

relatively low walking velocity. Generally speaking, the visual subjective results are all realistic. 

 

Fig. 3.  Visual walking task results for test Case 1 and Case 2. 

As mentioned earlier, 330 of the network’s outputs represent joint angle profiles for the 

55 DOFs. Statistical comparison is performed on these outputs for both testing cases. The mean-

absolute error (MAE) values are calculated for joint angle profiles between the predicted values 

from the GRNN and the exact ones from the PD. The MAE are 0.029 and 0.033 for Case 1 and 

Case 2, respectively, which are relatively small, thus indicating agreement between the ANN 

results and the physics-based results (using predictive dynamics). 

As another objective test for the results, adjusted R-square values are calculated between 

the predicted GRNN results and the exact PD ones (Fig. 4). In both cases, accurate results are 

achieved; the R-squared values are above 0.99, and the visual results show minimal 

discrepancies. The slight increase in R-squared for Case 1 is simply the result of the neural-

network hypersurface providing slightly more accurate results for different points (sets of 

inputs). Interestingly, the scatter plot for Case 1 appears to suggest a decrease in accuracy. 
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However, the MAE result for this case provides the evidence for that accuracy level that matches 

the resulting R-squared value. Both results confirm the high correlation between the predicted 

and exact results. In addition, given that there are 330 data points, the number of points that 

visually deviate from the line in Case 1 is relatively small and numerically insignificant. In other 

words, in Case 1, the network produces different solutions for some of the joint angles that have 

minimal effect on the total motion behavior. 

 

Fig. 4.  Statistical plots and adjusted R-square values for the produced joint angle profiles in test Case 1 

and Case 2 in the task of walking forward. 

As with joint angle profiles, the MAEs are calculated for the produced joint-torque 

profiles. The results are 10.01 for Case 1 and 9.16 for Case 2. The adjusted R-square values are 

also plotted and calculated (see Fig. 5). Recall that 60 of the output values relate to torque 

profiles for specified DOFs. The values are approximately 0.96 and 0.88 for Cases 1 and 2, 

respectively. These calculated values are relatively high and generally acceptable. They are 

slightly different from those in Fig. 4, in part because the scale of the output is different, which 

can affect the accuracy of results produced from the network. Although inputs are already scaled, 

future work might include investigating the effects of normalizing output values during the 

training process. 

 

Fig. 5.  Statistical plots and adjusted R-square values for the produced joint torque profiles in test Case 1 

and Case 2 in the task of walking forward. 

On the other hand, these MAEs and R-square results are not quite as accurate as those for 

the joint angles, because each joint has a large range of torque values compared to the joint angle 

values. Moreover, there are many ranges for torque values at different joints, while the joint 

angles were all measured in radian (rad) and fell between +6.28 rad to -6.28 rad. Therefore, the 

network can predict the joint angle values, which are consistent for all DOFs, with less error 

compared to the variety joint torque range of values. 
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3.2. Example 2: Jumping on a Box 

The second example task for evaluating GRNN performance is jumping up on a box (Fig. 

6). This is a relatively complex task that has many constraints (i.e., feet and hands should be 

located at specific places) and requires highly accurate results. Box height is the primary task-

based input, because it has the greatest effect on the resulting motion profile. When training the 

GRNN, the box height ranges between 0.5 meter and 1 meter. Avatar-based inputs include four 

link lengths: spine-hip, hip-knee, knee-ankle, and ankle-football. Minimum and maximum values 

for these inputs are shown in Table 3. In order to generate training cases, first input values are set 

at their minima, and box height is increased in increments of 5 cm with all other parameters 

fixed. Then, input values are set at their maxima, and box height is decreased in increments of 5 

cm. This results in 22 training cases. 

 

Fig. 6.  Task of jumping up on a box. 

Table 3 
Input parameters and training values for the task of jumping up on a box. 

Input parameter Minimum Maximum 

Box height (cm) 50 100 

Link1 (Spine to Hip) (cm) 7.8 9 

Link2 (Hip to Knee) (cm) 38 43 

Link3 (Knee to Ankle) (cm) 39 39 

Link4 (Ankle to Football) (cm) 9 12 

The jumping task has two types of outputs: joint splines and ground reaction forces 

(GRF) for both feet. The total number of outputs is 370, with 330 outputs for joint splines and 40 

outputs for GRFs. 

As with the walking example, two off-grid testing cases (Table 4) are evaluated and 

analyzed visually and statistically. The visual results for Case 1 and Case 2 are compared in Fig. 

7: the left and right parts in each case represent motion segments over the task time for PD and 

GRNN, respectively. In Case 1, even though there were some differences for both motions due to 

the recording procedures of the snapshots, the motions had the same behavior over the task time, 

including the height of the feet and the hand positions. In Case 2, Santos’s hands and feet from 

the network’s predicted motion were also at the exact locations that the PD results provided. 
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Table 4 
Input variables for two test cases. 

Input parameter Case 1 Case 2 

Box height (cm) 0.68 0.92 

Link1 (Spine to Hip) (cm) 8.2 8.8 

Link2 (Hip to Knee) (cm) 40 42 

Link3 (Knee to Ankle) (cm) 39 39 

Link4 (Ankle to Football) (cm) 10 11 

 

Fig. 7.  Visual results for test Case 1 and Case 2 in the task of jumping up on a box. 

With respect to statistical evaluation, comparison between predicted GRNN outputs and 

exact PD ones is performed for both testing cases. The MAE values are calculated, and the 

results show small values with 0.017 and 0.015 for Case 1 and Case 2, respectively. 

In terms of adjusted R-square values, the results are shown in Fig. 8. The R-square values 

for angle profiles are approximately 1 for both testing cases, which suggests high accuracy of 

motion prediction produced from the GRNN. 

 
Fig. 8.  Statistical plots and adjusted R-square values for the produced joint angle profiles in test Case 1 

and Case 2 in the task of jumping up on a box. 

In terms of the GRNN prediction results for the GRFs, the results comparison with those 

provided from the PD show high R-square values for both Case 1 and Case 2 (Fig. 9). In 

addition, the MAE results for the GRF are calculated and the results are 0.38 and 0.53 for Case 1 
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and Case 2, respectively. In general, the statistical results suggest acceptable network-predicted 

solutions for the GRFs, and such results are enhanced by the relatively small simulation errors. 

 
Fig. 9.  Statistical plots and adjusted R-square values for the produced ground reaction forces in test 

Case 1 and Case 2 in the task of jumping up on a box. 

4. Discussion 

This work has demonstrated the successful use of ANNs for simulating dynamic human 

motion in real time, based on a library of physics-based simulations. The use of an ANN is 

shown to provide real-time motion prediction for a full-body DHM, using various tasks. The 

GRNN, in particular, is applied successfully as a powerful tool that can be trained quickly and 

without any memory problems, regardless of the size of the problem. This provides a new variant 

of physics-based human simulation with increased computational speed, which in turn allows 

one to conduct trade-off analyses more efficiently for evaluating products and processes form a 

human system integration perspective. 

As with any regression analysis or meta-model, the approximate solution is expected to 

deviate at least some minimal amount from the source model. We show that this deviations is 

acceptable when evaluated both objectively and subjectively. As is often the case with digital 

human modeling, although subjective results may seem identical when compared, quantitative 

results may differ slightly. Nonetheless, the ANN model performed well when compared to the 

predictive-dynamics source model. 

With the use of ANNs for motion prediction, the main issue that was successfully 

addressed is the computational time of producing PD outputs. The time is decreased from 

minutes to a fraction of a second. Even with a task that requires highly accurate results like the 

jumping on a box one, the simulation accuracy, as demonstrated, was preserved. Accuracy in 

such task is critical, especially where the hands and feet should be in contact with the box at 

some point during the task, and network results showed visual satisfaction of such constraints. 

Conceptually, the proposed process reflects how people actually learn and perform tasks. 

One’s reaction to specific scenarios is an interpolation, in part, of previously experienced 

scenarios. To be sure, rational thought and cognitive extrapolation play a role. However, the 

proposed method demonstrates a model for incorporating a learned history into task simulation. 

In fact, it provides a platform with which one can study how various experiences can affect 

performance and how variations in one’s learning set can alter a simulation. This has practical 

applications to the study and design of training regiments and education. 

This initial investigation into the use of GRNN for human modeling has presented some 

opportunities for future work. First, as is the case with most ANN applications, work is needed to 

determine the optimal number of training cases for a task. In order to ensure contact constraints 



15 
 

are satisfied, future work should include adding constraints to the network construction. In 

addition, we propose training the network to predict joint-center locations instead of joint angles, 

in order to produce more accurate results. Predicting joint angles with even small errors can 

sometimes produce inaccurate results, whereas predicting joint centers with small error should 

still provide acceptable results. Although the network is trained using simulations (predictive 

dynamics) that are presumably validated, and although this work presents the feasibility of the 

proposed method based on subjective validation, predictions from the actual ANN should be 

validated directly and objectively. Finally, as suggested with respect to joint torques, further 

work is needed to investigate the benefits of normalizing outputs during the training process. 
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