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In this paper, a robust radial basis function (RBF) network based classifier is proposed for polarimetric
synthetic aperture radar (SAR) images. The proposed feature extraction process utilizes the covariance
matrix elements, the H/a/A decomposition based features combined with the backscattering power
(span), and the gray level co-occurrence matrix (GLCM) based texture features, which are projected onto
a lower dimensional feature space using principal components analysis. For the classifier training, both
conventional backpropagation (BP) and multidimensional particle swarm optimization (MD-PSO) based
dynamic clustering are explored. By combining complete polarimetric covariance matrix and eigenvalue
decomposition based pixel values with textural information (contrast, correlation, energy, and homoge-
neity) in the feature set, and employing automated evolutionary RBF classifier for the pattern recognition
unit, the overall classification performance is shown to be significantly improved. An experimental study
is performed using the fully polarimetric San Francisco Bay and Flevoland data sets acquired by the NASA/
Jet Propulsion Laboratory Airborne SAR (AIRSAR) at L-band to evaluate the performance of the proposed
classifier. Classification results (in terms of confusion matrix, overall accuracy and classification map)
compared with the major state of the art algorithms demonstrate the effectiveness of the proposed
RBF network classifier.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Image and data classification techniques play an important role
in the automatic analysis and interpretation of remote sensing
data. Particularly polarimetric synthetic aperture radar (SAR) data
poses a challenging problem in this field due to complexity of mea-
sured information from its multiple polarimetric channels. Re-
cently, the number of applications which use data provided by
the SAR systems having fully polarimetric capability have been
increasing. Over the past decade, there has been extensive research
in the area of the segmentation and classification of polarimetric
SAR data. In the literature, the classification algorithms for polari-
metric SAR can be divided into three main classes: (1) classification
based on physical scattering mechanisms inherent in data (Pottier
& Lee, 2000; van Zyl, 1989), (2) classification based on statistical
characteristics of data (Lee et al., 1999; Wu, Ji, Yu, & Su, 2008)
and (3) classification based on image processing techniques (Ince,
2010; Tan, Lim, & Ewe, 2007; Ye & Lu, 2002). Additionally, there
has been several works using some combinations of the above clas-
sification approaches (Lee et al., 1999; Pottier & Lee, 2000). While
these approaches to the polarimetric SAR classification problem
can be based on either supervised or unsupervised methods, their
ll rights reserved.

: +90 2324888475.
performance and suitability usually depend on applications and
the availability of ground truth.

As one of the earlier algorithms, Kong, Swartz, Yueh, Novak, and
Shin (1988) derived a distance measure based on the complex
Gaussian distribution and used it for maximum-likelihood (ML)
classification of single-look complex polarimetric SAR data. Then,
Lee, Grunes, and Kwok (1994) used the statistical properties of a fully
polarimetric SAR to perform a supervised classification based on
complex Wishart distribution. Afterwards, Cloude and Pottier
(1997) proposed an unsupervised classification algorithm based on
their target decomposition theory. Target entropy (H) and target
average scattering mechanism (scattering angle, a) calculated from
this decomposition have been widely used in polarimetric SAR clas-
sification. For multilook data represented in covariance or coherency
matrices, Lee et al. (1999) proposed a new unsupervised classifica-
tion method based on combination of polarimetric target decompo-
sition (Cloude & Pottier, 1997) and the maximum likelihood
classifier using the complex Wishart distribution. The unsupervised
Wishart classifier has an iterative procedure based on the well-
known K-means algorithm, and has become a preferred benchmark
algorithm due to its computational efficiency and generally good
performance. However, this classifier still has some significant
drawbacks since it entirely relies on K-means for actual clustering,
such as it may converge to local optima, the number of clusters
should be fixed a priori, its performance is sensitive to the

http://dx.doi.org/10.1016/j.eswa.2011.09.082
mailto:turker.ince@ieu.edu.tr
http://dx.doi.org/10.1016/j.eswa.2011.09.082
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


T. Ince et al. / Expert Systems with Applications 39 (2012) 4710–4717 4711
initialization and its convergence depends on several parameters.
Recently, a two-stage unsupervised clustering based on the EM algo-
rithm (Khan, Yang, & Zhang, 2007) is presented for classification of
polarimetric SAR images. The EM algorithm estimates parameters
of the probability distribution functions which represent the ele-
ments of a 9-dimensional feature vector, consisting of six magni-
tudes and three angles of a coherency matrix. Markov random field
(MRF) clustering based method (Tran, Wehrens, Hoekman, &
Buydens, 2005) exploiting the spatial relation between adjacent pix-
els in polarimetric SAR images has been presented. In (Ye & Lu, 2002),
a new wavelet-based texture image segmentation algorithm is suc-
cessfully applied to unsupervised SAR image segmentation problem.

More recently, neural network based approaches (Yang, Wang, &
Jiao, 2009; Zhang, Wu, & Wei, 2009; Zhang, Zou, Zhang, & Zhang,
2010) for classification of polarimetric synthetic aperture radar data
have been shown to outperform other aforementioned well-known
techniques. Compared with other approaches, neural network clas-
sifiers have the advantage of adaptability to the data without mak-
ing a priori assumption of a particular probability model or
distribution. However, their performance depends on the network
structure, training data, initialization, and parameters. Designing
an optimal ANN classifier structure and its parameters to maximize
the classification accuracy is still a crucial and challenging task. In
this study, RBF network classifier which is optimally designed by
the evolutionary search technique, multidimensional particle
swarm optimization (MD-PSO) (Kiranyaz, Ince, Yildirim, & Gabbouj,
2010), is employed. RBFs are chosen due to their robustness, faster
learning capability compared with other feedforward networks,
and superior performance with simpler network architectures. Ear-
lier work on RBF classifiers for polarimetric SAR image classification
has demonstrated a potential for performance improvement over
conventional techniques (Ince, 2010). The proposed polarimetric
SAR feature vector includes full covariance matrix, the H/a/A
decomposition based features combined with the backscattering
power (Span), and the gray level co-occurrence matrix (GLCM) based
texture features as suggested by the results of previous studies
(Clausi & Yue, 2004; Ersahin, Scheuchl, & Cumming, 2004). The per-
formance of the proposed RBF network based classifier is evaluated
using the fully polarimetric San Francisco Bay and Flevoland data
sets acquired by the NASA/Jet Propulsion Laboratory Airborne SAR
(AIRSAR) at L-band. The classification results (in terms of confusion
matrix, overall accuracy and classification map) are compared with
competing state of the art classifiers.

The rest of the paper is organized as follows. Section 2 briefly
presents the basic theory of polarimetric SAR for this paper includ-
ing the Cloude–Pottier decomposition. The feature extraction
methodology for the proposed polarimetric SAR image classifica-
tion system is described in Section 3. Then, the RBF network funda-
mentals, its training algorithms, and an overview of the proposed
classifier technique are presented in Section 4. Section 5 describes
the experimental test results on real polarimetric SAR data. Finally,
Section 6 concludes the paper.
2. Polarimetric sar data processing

Polarimetric radars often measure the complex scattering ma-
trix, [S], produced by a target under study with the objective to infer
its physical properties. Assuming linear horizontal and vertical
polarizations for transmitting and receiving, [S] can be expressed as

S ¼
Shh Shv

Svh Svv

� �
ð1Þ

Reciprocity theorem applies in a monostatic system configura-
tion, Shv = Svh. For coherent scatterers only, the decompositions of
the measured scattering matrix [S] can be employed to character-
ize the scattering mechanisms of such targets. One way to analyze
coherent targets is the Pauli decomposition (Lee et al., 1999),

which expresses [S] in the so-called Pauli basis ½S�a ¼ 1ffiffi
2
p
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Shv . Hence, by
means of the Pauli decomposition, all polarimetric information in
[S] could be represented in a single RGB image by combining the
intensities |a|2, |b|2 and |c|2, which determine the power scattered
by different types of scatterers such as single- or odd-bounce scat-
tering, double- or even-bounce scattering, and orthogonal polariza-
tion returns by the volume scattering. There are several other
coherent decomposition theorems such as the Krogager decomposi-
tion, the Cameron decomposition, and SDH (Sphere, Diplane, Helix)
decomposition all of which aim to express the measured scattering
matrix by the radar as the combination of scattering responses of
coherent scatterers.

Alternatively, the second order polarimetric descriptors of the
average polarimetric covariance h[C]i and the coherency h[T]i
matrices can be derived from the scattering matrix and employed
to extract physical information from the observed scattering pro-
cess. The elements of the covariance matrix, [C], can be written
in terms of three unique polarimetric components of complex scat-
tering matrix:

C11 ¼ ShhS�hh; C21 ¼ S�hhShv

C22 ¼ ShvS�hv ; C32 ¼ S�hhSvv

C33 ¼ SvvS�vv ; C11 ¼ S�hhSvv

ð3Þ

For single-look processed polarimetric SAR data, the three
polarimetric components (HH, HV, and VV) has a multivariate
complex Gaussian distribution and the complex covariance ma-
trix form has a complex Wishart distribution (Lee et al., 1994).
Due to presence of speckle noise and random vector scattering
from surface or volume, polarimetric SAR data are often multi-
look processed by averaging n neighboring pixels. By using the
Pauli based scattering matrix for a pixel i, ki ¼ ½Shh þ Svv ; Shh�
Svv ;2Shv �T=

ffiffiffi
2
p

, the multi-look coherency matrix, h[T]i, can be
written as

hTi ¼ 1
n

Xn

i¼1

kik
�T
i ð4Þ

Both coherency h[T]i and covariance h[C]i are 3 � 3 Hermitian
positive semidefinite matrices, and since they can be converted
into one another by a linear transform, both are equivalent repre-
sentations of the target polarimetric information.

The incoherent target decomposition theorems such as the
Freeman decomposition, the Huynen decomposition, and the
Cloude–Pottier (or H/a/A) decomposition employ the second or-
der polarimetric representations of PolSAR data (such as covari-
ance matrix or coherency matrix) to characterize distributed
scatterers. The H/a/A decomposition (Cloude & Pottier, 1996) is
based on eigen analysis of the polarimetric coherency matrix,
h[T]i:

hTi ¼ k1e1e�T1 þ k2e2e�T2 þ k3e3e�T3 ð5Þ

where k1 > k2 > k3 P 0 are real eigenvalues and the corresponding
orthonormal eigenvectors ei (representing three scattering mecha-
nisms) are

ei ¼ ei/i ½cos ai; sin ai cos bie
idi ; sin ai sin bie

ici �T ð6Þ
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Cloude and Pottier defined entropy H, average of set of four an-
gles �a, �b, �d, and �c, and anisotropy A for analysis of the physical
information related to the scattering characteristics of a medium:

H ¼ �
X3

i¼1

pilog3pi where pi ¼
kiP3
i¼1ki

ð7Þ

�a ¼
X3

i¼1

piai; �b ¼
X3

i¼1

pibi;
�d ¼

X3

i¼1

pidi; �c ¼
X3

i¼1

pici ð8Þ

A ¼ p2 � p3

p2 þ p3
ð9Þ

For a multi-look coherency matrix, the entropy, 0 6 H 6 1, rep-
resents the randomness of a scattering medium between isotropic
scattering (H = 0) and fully random scattering (H = 1), while the
average alpha angle can be related to target average scattering
mechanisms from single-bounce (or surface) scattering ð�a � 0Þ to
dipole (or volume) scattering ð�a � p=4Þ to double-bounce scatter-
ing ð�a � p=2Þ. Due to basis invariance of the target decomposition,
H and �a are roll invariant hence they do not depend on orientation
of target about the radar line of sight. Additionally, information
about target’s total backscattered power can be determined by
the span as

span ¼
X3

i¼1

ki ð10Þ

Entropy (H), estimate of the average alpha angle (�a), and span calcu-
lated by the above noncoherent target decomposition method have
been commonly used as polarimetric features of a scatterer in many
target classification schemes (Fang, Wen, & Yirong, 2006; Lee et al.,
1999).

3. Feature extraction

The proposed feature extraction process utilizes the complete
covariance matrix information, the gray level co-occurrence ma-
trix (GLCM) based texture features, and the backscattering power
(span) combined with the H/a/A decomposition (Cloude &
Pottier, 1997). The feature vector from the Cloude–Pottier
decomposition includes entropy (H), anisotropy (A), estimates
of the set of average angles (�a, �b, �d, and �c), three real eigen-
values (k1; k2; k3), and span. As suggested by the previous studies
(Clausi, 2002; Zhang et al., 2009) appropriate texture measures
for SAR imagery based on the gray level co-occurrence probabil-
ities are included in the feature set to improve its discrimination
power and classification accuracy. In this study, contrast, correla-
tion, energy, and homogeneity features are extracted from nor-
malized GLCMs which are calculated using interpixel distance
of 2 and averaging over four possible orientation settings
(h = 0�, 45�, 90�, 135�). To reduce the dimensionality (and redun-
dancy) of input feature space, the principal components trans-
form is applied to these inputs and the most principal
components (which contain about 95% of overall energy in the
original feature matrix) are then selected to form a resultant fea-
ture vector for each imaged pixel. Dimensionality reduction of
input feature information improves efficiency of learning for a
neural network classifier due to a smaller number of input nodes
(to avoid curse of dimensionality) (Pittner & Kamarthi, 1999) and
reduces computation time. For the purpose of normalizing and
scaling the feature vector, each feature dimension is first nor-
malized to have a zero mean and unity standard deviation be-
fore principal component analysis (PCA) is applied, and
following the PCA outputs are linearly scaled into [�1,1]
interval.
4. RBF neural networks

An artificial neural network (ANN) consists of a set of connected
processing units, usually called neurons or nodes. ANNs can be de-
scribed as directed graphs, where each node performs some activa-
tion function to its inputs and then gives the result forward to be
the input of some other neurons until the output neurons are
reached. ANNs can be divided into feedforward and recurrent net-
works according to their connectivity. In a recurrent ANN there can
be backward loops in the network structure, while in feedforward
ANNs such loops are not allowed. A popular type of feedforward
ANN is the radial basis function (RBF) network (Poggio & Girosi,
1989), which has always two layers in addition to the passive input
layer: a hidden layer of RBF units and a linear output layer. Only
the output layer has connection weights and biases. The activation
function of the kth RBF unit is defined as

yk ¼ u
kX � lkk

r2
k

� �
ð11Þ

where u is a radial basis function or, in other words, a strictly posi-
tive radially symmetric function, which has a unique maximum at
N-dimensional center lk and whose value drops rapidly close to
zero away from the center. rk is the width of the peak around the
center lk. The activation function gets noteworthy values only
when the distance between the N-dimensional input X and the cen-
ter lk, kX � lkk is smaller than the width rk. The most commonly
used activation function in RBF networks is the Gaussian basis func-
tion defined as

yk ¼ exp �kX � lkk
2

2r2
k

 !
ð12Þ

where lk and rk are the mean and standard deviation, respectively,
and ||�|| denotes the Euclidean norm. More detailed information
about RBF networks can be obtained from Poggio and Girosi
(1989) and Haykin (1998).

In this study, two distinct training methods for RBF network
classifiers, the traditional backpropagation (BP) and particle swarm
optimization (PSO) are investigated. For the BP algorithm, RPROP
enhancement is used when training RBF networks. The main differ-
ence in RPROP is that it modifies the update-values for each
parameter according to the sequence of signs of partial derivatives.
This only leads to a faster convergence, while the problems of a
hill-climbing algorithm are not solved. Further details about BP
and RPROP can be found in Chauvin and Rumelhart (1995) and
Riedmiller and Braun (1993), respectively. In order to determine
(near-) optimal network architecture for a given problem, we apply
exhaustive BP training over every network configuration in the
architecture space defined. For PSO-based training, the proposed
approach is to apply multi-dimensional particle swarm optimiza-
tion (MD-PSO) based dynamic clustering (Kiranyaz, Ince, Yildirim,
& Gabbouj, 2009) to determine the optimal (with respect to mini-
mizing a given cost function for the input–output mapping) num-
ber of Gaussian neurons with their correct parameters (centroids
and variances). Afterwards, BP can conveniently be used to com-
pute the remaining network parameters, weights (w) and bias (h)
of the each output layer neuron. The overview of the proposed
classifier for polarimetric SAR image is shown in Fig. 1.

5. Experimental results

In this section, two test images of an urban area (San Fran-
cisco Bay, CA) and an agricultural area (Flevoland in the Nether-
lands), both acquired by the NASA/Jet Propulsion Laboratory’s
Airborne SAR (AIRSAR) at L-band, were chosen for performance
evaluation of the proposed RBF network classifier. Both data sets
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Fig. 1. Overview of the evolutionary RBF network classifier design for polarimetric SAR image.

Fig. 2. Pauli image of 600 � 600 pixel sub-area of San Francisco Bay (left) with the 5 � 5 refined Lee filter used. The training and testing areas for three classes are shown
using red rectangles and circles respectively. The aerial photograph for this area (right) provided by the US Geological Survey taken on October, 1993 can be used as ground-
truth. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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have been widely used in the polarimetric SAR literature over
the last two decades (Ersahin et al., 2004; Ferro-Famil, Pottier,
& Lee, 2001; Fukuda & Hirosawa, 1999), and distributed as mul-
ti-look processed and publicly available through the polarimetric
SAR data processing and educational tool (PolSARpro) by ESA
(The Polarimetric SAR Data Processing and Educational Tool
(PolSARPro). The original four-look fully polarimetric SAR data
of the San Francisco Bay, having a dimension of 900 � 1024 pix-
els, provides good coverage of both natural (sea, mountains, for-
ests, etc.) and man-made targets (buildings, streets, parks, golf
course, etc.) with a more complex inner structure. For the pur-
pose of comparing the classification results with the Wishart
(Lee et al., 1999) and the NN-based (Zhang et al., 2009) classifi-
ers, the sub-area (Fig. 2) with size 600 � 600 is extracted and
used. The aerial photographs for this area which can be used
as ground-truth are provided by the TerraServer Web site (U.S.
Geological Survey Images). In this study, no speckle filtering is
applied to originally four-look processed covariance matrix data
and before GLCM based texture feature generation to retain
the resolution and to preserve the texture information. However,
additional averaging, such as using the polarimetry preserving
refined Lee filter (Lee, Grunes, & de Grandi, 1999) with 5 � 5
window, of coherency matrix should be performed prior to the
Cloude–Pottier decomposition (Cloude & Pottier, 1997). For
MD-PSO based clustering algorithm, the typical internal PSO
parameters (c1, c2 and w) are used as in Shi and Eberhart
(1998), also explained in Kiranyaz, Ince, Yildirim, and Gabbouj
(2009). For all experiments in this section, the two critical PSO
parameters, swarm size (S) and number of iterations (IterNo),
are set as 40 and 1000, respectively.



Fig. 3. The classification results of the proposed RBF-PSO technique on the
extracted 600 � 600 sub-image of San Francisco Bay (black denotes sea, gray urban
areas, white vegetated zones).

Fig. 4. The classification results of the proposed RBF-MDPSO technique for the
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To test the performance of the proposed classifier and compare
its classification results, the same training and testing areas for the
three classes from the sub San Francisco area (as shown on the
Pauli-based decomposition image in Fig. 2), the sea (15,810, 6723
pixels respectively), urban areas (9362, 6800), and the vegetated
zones (5064, 6534), which are manually selected in an earlier study
(Zhang et al., 2009), are used. The confusion matrix of the proposed
evolutionary RBF method on the training and testing areas are gi-
ven in Table 1. The classification accuracy values are averaged over
10 independent runs. From the results, the main drawback of the
proposed method is the separation of vegetated zones from urban
areas. Compared to two other competing techniques, the proposed
method is able to differentiate better the uniform areas corre-
sponding to main classes of scattering such asthe ocean, vegeta-
tion, and building areas. In Table 2, the overall accuracies in
training and testing areas for the proposed RBF classifier trained
using the BP and MD-PSO algorithms and two competing methods,
the Wishart Maximum Likelihood (WML) classifier (Lee et al.,
1999) and the NN-based classifier (Zhang et al., 2009), are com-
pared. The average accuracies over 10 independent runs for the
best configuration of the RBF-BP and RBF-PSO classifiers are re-
ported. The proposed RBF classifier trained by the global PSO algo-
rithm is superior to the NN-based, WML, and RBF-BP based
methods with higher accuracies in both training (99.50%) and test-
ing (98.96%) areas. Fig. 3 shows the classification results on the
whole sub-area image for the RBF-PSO based classifier. The classi-
fication map of the whole San Francisco Bay image produced by the
same classifier is given in Fig. 4 for a qualitative (visual) perfor-
mance evaluation. The evolutionary RBF classifier has the structure
of 11 input neurons, 21 Gaussian neurons which the cluster cen-
troids and variance (lk and rk) are determined by MD-PSO based
dynamic clustering the training data, and 3 output neurons.

The classification results in Table 2 have been produced by
using a high percentage (60%) of total (training and testing com-
bined) pixels for training. The proposed classifier is also tested by
limiting the percentage of total pixels which were used for classi-
fier training to less than 1% of the total pixels to be classified. The
results over the same testing data set are shown in Table 3. In this
case, the RBF network classifier trained by the BP or MD-PSO algo-
rithms performed still at a high level, achieving accuracies over
95% and 98% respectively. Generally, a relatively smaller training
data set can avoid over-fitting and improve generalization perfor-
mance of a classifier over larger data sets.

In order to test robustness of the proposed RBF network classi-
fier trained by the MD-PSO based dynamic clustering, 20 indepen-
dent runs are performed over the San Francisco area image and the
Table 1
Summary table of pixel-by-pixel classification results of the proposed RBF-MDPSO
method for the training and testing data of San Francisco Bay.

Training data Test data

Sea Urb Veg Sea Urb Veg

Sea 14,264 4 0 6804 0 0
Urb 11 9422 22 10 6927 23
Veg 10 87 4496 21 162 6786

Table 2
Overall performance comparison (in percent) for San Francisco Bay dataset. The best
performances are indicated in bold.

Method Training area Testing area

RBF-BP 98.00 95.70
WML (Lee et al., 1999) 97.23 96.16
NN (Zhang et al., 2009) 99.42 98.64
RBF-PSO 99.50 98.96

original (900 � 1024) San Francisco Bay image (black denotes sea, gray urban areas,
white vegetated zones).

Table 3
Overall performance (in percent) using smaller training set (<1% of total pixels) for
San Francisco Bay dataset.

Method Training area Testing area

RBF-BP 100 95.60
RBF-PSO 100 98.54
resulting cluster number histogram is plotted in Fig. 5. Addition-
ally, the plots of a typical run showing the fitness score and dimen-
sion versus number of iterations for MD-PSO operation are
presented in the left side of Fig. 5. Based on overall clustering re-
sults, it is found that the number of clusters (the optimal number
of Gaussian neurons) and their centroids extracted from the MD-
PSO based dynamic clustering are generally consistent, indicating
the proposed technique is robust (or repeatable).



Fig. 5. Fitness score (left top) and dimension (left bottom) plots versus iteration number for a typical MD-PSO run. The resulting histogram plot (right) of cluster numbers
which are determined by the proposed method.

Table 4
Overall performance comparison (in percent) for Flevoland dataset. The best
performances are indicated in bold.

Method Training area Testing area

ECHO (Chen et al., 2007) – 81.30
Wavelet-based (Fukuda & Hirosawa, 1999) – 88.28
RBF-BP 95.50 92.05
NN (Zhang et al., 2009) 98.62 92.87
RBF-PSO 95.55 93.36

T. Ince et al. / Expert Systems with Applications 39 (2012) 4710–4717 4715
Next, the proposed evolutionary RBF classifier with the sug-
gested feature set has been applied to the polarimetric image of
the Flevoland site, an agricultural area (consists of primarily crop
fields and forested areas) in The Netherlands. This original four-
look fully polarimetric SAR data has a dimension of 750 � 1024
pixels with 11 identified crop classes {stem beans, potatoes, lu-
cerne, wheat, peas, sugar beet, rape seed, grass, forest, bare soil,
and water}. The available ground truth for eleven classes can be
found in Ainsworth, Kelly, and Lee (2009). To compare classifica-
tion results the same eleven training and testing sets are used with
those of the NN-based (Zhang et al., 2009), wavelet-based (Fukuda
& Hirosawa, 1999), and ECHO (Chen, Li, Pang, & Tian, 2007) classi-
fiers. In Table 4, the overall accuracies in training and testing areas
of the Flevoland dataset for the proposed RBF classifier trained
Table 5
Summary table of pixel-by-pixel classification results (in percent) of the proposed RBF-M

Training (Testing) data

Water Forest Stem beans Potatoes Lucerne

Water 99(98) 0(0) 0(0) 0(0) 0(0)
Forest 0(0) 95(97) 0(0) 0(0) 1(0)
Stem beans 0(0) 0(0) 95(97) 0(0) 5(2)
Potatoes 0(0) 0(0) 0(0) 99(96) 0(0)
Lucerne 0(0) 0(0) 2(2) 0(0) 98(97)
Wheat 0(0) 0(0) 0(0) 0(0) 2(4)
Peas 0(0) 0(0) 0(0) 0(0) 0(0)
Sugar beet 0(0) 0(0) 0(0) 0(0) 0(0)
Bare soil 0(0) 0(0) 0(0) 0(0) 0(0)
Grass 0(0) 0(0) 0(0) 0(0) 1(0)
Rape seed 2(2) 0(0) 0(0) 0(0) 0(0)
using the BP and MD-PSO algorithms and three state of the art
methods, the ECHO (Chen et al., 2007), wavelet-based (Fukuda &
Hirosawa, 1999), and NN-based (Zhang et al., 2009) classifiers,
are shown. The overall classification accuracies of the proposed
RBF-based classifier framework are quite high. The percentage of
correctly classified training and testing pixels in the Flevoland L-
band image for the proposed evolutionary (MD-PSO) RBF method
are given in Table 5. Fig. 6 shows the classification results of the
proposed evolutionary RBF classifier for the Flevoland image.

The computational complexity of the proposed method depends
on the following distinct processes: the pre-processing stage, fea-
ture extraction, post-processing, and RBF network classifier with
MD-PSO dynamic clustering based training. Computation times
of the first three stages are deterministic while a precise computa-
tional complexity analysis for the RBF training stage is not feasible
as the proposed dynamic clustering technique based on PSO is in
stochastic nature. All experiments in this section are performed
on a computer with P-IV 2.4 GHz CPU and 1 GB RAM. Based on
our experiments, for the data of San Francisco Bay area with a
dimension of 900 � 1024 data points (D = 921,600), it takes
30 min to perform feature extraction and necessary pre- and
post-processing stages. Most of this time is used to compute the
GLCM and four texture features calculated from it. For computa-
tional complexity of RBF classifier training using MD-PSO process,
there are certain attributes which directly affect the complexity
DPSO method for the training and testing data of Flevoland.

Wheat Peas Sugar beet Bare soil Grass Rape seed

0(0) 0(0) 0(0) 0(0) 0(0) 1(2)
0(0) 1(0) 1(0) 0(0) 2(3) 0(0)
0(1) 0(0) 0(0) 0(0) 0(0) 0(0)
0(0) 0(0) 1(4) 0(0) 0(0) 0(0)
0(0) 0(0) 0(0) 0(0) 0(1) 0(0)
91(86) 4(4) 1(3) 0(0) 2(3) 0(0)
1(0) 94(88) 2(7) 0(0) 0(0) 3(5)
0(2) 0(1) 95(91) 0(0) 4(5) 1(1)
0(2) 0(0) 0(0) 99(97) 0(0) 1(1)
0(1) 0(0) 2(4) 0(0) 97(95) 0(0)
2(2) 1(2) 3(2) 3(7) 0(0) 89(85)



Fig. 6. The classification results of the proposed RBF-MDPSO technique on the L-
band AIRSAR data over Flevoland.
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such as swarm size (S), the number of iteration (IterNo) to termi-
nate the MD PSO process, and the dimensions of data space (D).
While the problem determines D, the computational complexity
can still be controlled by S and IterNo settings. The further details
of computational complexity analysis for the dynamic clustering
technique based on MD-PSO can be found in Kiranyaz et al.
(2010). For the same dataset, the average (over 10 runs) processing
time to perform evolutionary RBF classifier training is found to be
30 min.
6. Conclusion

This paper presents a new polarimetric SAR image classification
framework which is based on an efficient formation of covariance
matrix elements, H/a/A decomposition with the backscattered
power (span) information, and GLCM based texture features, and
the RBF network classifier. Two different learning algorithms, the
classical backpropagation and multidimensional particle swarm
optimization, were applied for the proposed classifier training. In
addition to determining the correct network parameters, the latter
evolutionary technique (MD-PSO) also finds the best RBF network
architecture (optimum number of Gaussian neurons and their cen-
troids) within an architecture space and for a given input data
space. The overall classification accuracies and qualitative classifi-
cation maps for the San Francisco Bay and Flevoland datasets dem-
onstrate the effectiveness of the proposed classification framework
using an evolutionary RBF network classifier. Based on the experi-
mental results using real polarimetric SAR data, the proposed
method performs well compared to several state-of-the-art classi-
fiers, however, more experiments using large volume of available
data should be done for a general conclusion. The proposed tech-
nique employs evolutionary MD-PSO process for simultaneous
training and evolution of RBF networks to achieve more accurate,
robust, and automatic classification of polarimetric SAR images.
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