A multi-objective PSO for job-shop scheduling problems

D.Y. Sh&andHsing-Hung Lift"

®Departmenbf Industrial Engineering and System Managementyr@tHua University,, Hsin Chu, Taiwan R.O.C.;
®Department of Industrial Engineering and Managemalational Chiao Tung University, Hsin Chu, TaiwRrO.C.

Abstract

Most previous research into the job-shop schedyirudplem has concentrated on finding a single ogdtim
solution (e.g., makespan), even though the actaguirement of most production systems requires
multi-objective optimization. The aim of this papeto construct a particle swarm optimization (B$8 an
elaborate multi-objective job-shop scheduling peoil The original PSO was used to solve continuous
optimization problems. Due to the discrete solupaces of scheduling optimization problems, thtbas
modified the particle position representation, iglgt movement, and particle velocity in this studye
modified PSO was used to solve various benchmand@ms. Test results demonstrated that the mod#&0

performed better in search quality and efficiert@rt traditional evolutionary heuristics.

Keywords: job-shop scheduling; particle swarm optimizationjltiple objectives

*Corresponding author. Email: hsinhung@gmail.com

I ntroduction

The job-shop scheduling problem (JSP) has beerresitim more than 50 years in both academic anasimil
environments. Jain et al. provided a concise oeenof JSPs over the last few decades and hightigthte
main techniques [10]. The JSP is the most difficclihss of combinational optimization. Garey et
al. demonstrated that JSPs are non-determinisiyopamial-time hard (NP-hard) [7]; hence we canniotl fan
exact solution in a reasonable computation time. Sihgle-objective JSP has attracted wide resestehtion.
Most studies of single-objective JSPs result ioheedule to minimize the time required to compldtphs, i.e.,

to minimize the makespag{a.y. Many approximate methods have been developedaxcome the limitations
of exact enumeration techniques. These approxiagteoaches include simulated annealing (SA) [BHut
search [18][19][24] and genetic algorithms (GA)[#1]12][27]. However, real-world production systems
require simultaneous achievement of multiple olbjectrequirements. This means that the academic
concentration of objectives in the JSP must beéenebed from single to multiple. Recent related d&earch
with multiple objectives is summarized as below.

Ponnambalam has offered a multi-objective GA taveenptimal machine-wise priority dispatching rules
for resolving job-shop problems with objective ftions that consider minimization of makespan, total
tardiness, and total machine idle time[20]. Ponraar’s multi-objective genetic algorithm (MOGA) has
been tested with various published benchmarksjsacapable of providing optimal or near-optimalumns.

A Pareto front provides a set of best solutionddtermine the tradeoffs between the various ohjaats good
parameter settings and appropriate representatansenhance the behavior of an evolution algorithm.
Esquivel et al. studied the influence of distinetrgmeter combinations as well as different chrommeso
representations [5]. Initial results showed that:

(i) larger numbers of generations favor the building Bfareto front because the search process does not

stagnate, even though it may be rather slow,

(i) multi-recombination helps to speed the search arfthd a larger set size when seeking the Pareto

optimal set, and

(i) operation-based representation is better thanifyrist and job-based representation selected for

contrast under recombination methods.

The Pareto archived simulated annealing (PASA) atkth meta-heuristic procedure based on the SA
algorithm, was developed by Suresh to find non-cated solution sets for the JSP with the objectofes
minimizing the makespan and the mean flow timeob&[25]. The superior performance of the PASA can b
attributed to the mechanism it uses to acceptdhdidate solution. Candido et al. addressed JSRswwmbers
of more realistic constraints, such as jobs witress subassembly levels, alternative processiagsalor parts
and alternative resources of operations, and tpgnement for multiple resources to process anaijar [3].
The robust procedure worked well in all problentanses and proved to be a promising tool for sglvirore
realistic JSPs. Lei first designed a crowding-measased multi-objective evolutionary algorithm (OEA)
that makes use of the crowding measure to adjesesternal population and assign different fitness
individuals [14]. Compared to the strength Paretadionary algorithm, CMOEA performs well in jolirap
scheduling with two objectives including minimizatiof makespan and total tardiness.

One of the latest evolutionary techniques for ust@mned continuous optimization is particle swarm
optimization (PSO) proposed by Kennedy et al. [PBO has been successfully used in different filosto
its ease of implementation and computational efficy. Even so, application of PSO to the combinatio
optimization problem is rare. Coello et al. prodd approach in which Pareto dominance is incatpdrinto
PSO to allow the heuristic to handle problems wéteral object functions [4]. The algorithm usegeondary
repository of particles to guide particle flighthdt approach was validated using several test iturectand
metrics drawn from the standard literature on evahary multi-objective optimization. The resultsosv that

the approach is highly competitive. Liang et akented a novel PSO-based algorithm for JSPs[164t Th

algorithm effectively exploits the capability ofstlibuted and parallel computing systems, with $atnon
results showing the possibility of high-quality siabns for typical benchmark problems. Lei presérad?SO
for the multi-objective JSP to minimize makespanl &otal job tardiness simultaneously [15]. Job-shop
scheduling can be converted into a continuous opdition problem by constructing the corresponding
relationship between a real vector and a chromosolt@ned using the priority rule-based representat
method. The global best position selection is comthiwith crowding-measure-based archive maintenemce
design a Pareto archive PSO. That algorithm isldepaf producing a number of high-quality Paretdiropl
scheduling plans.

Hybrid algorithms that combine different approacteeuild on their strengths have led to anothanbh
of research. Wang et al. combined GA with SA inyarid framework, in which the GA was introduced to
present a parallel search architecture, and SAused to increase the probability of escape froralloptima at
high temperatures [27]. Computer simulation ressitswed that the hybrid strategy was very effectind
robust, and could find optima for almost all benehkninstances. Xia et al. developed an easily impleed
approach for the multi-objective flexible JSP basedhe combination of PSO and SA [28]. They dertratex
that their proposed algorithm was a viable andcéiffe approach to the multi-objective flexible J8Bpecially
for large-scale problems. Ripon extended the ideghe jumping genes genetic algorithm, a hybridreggh
capable of searching for near-optimal and non-datesh solutions with better convergence by simutiasky
optimizing criteria [21].

Previous literature indicates that there has big&mdtudy of the JSP with multiple objectivesthis study,

we use a new evolutionary PSO technique to sold8P with multiple objectives.

Job-shop scheduling problem

A typical JSP can be formulated as follows. Theengobs to be processed througimachines. Each job must
pass through each machine once and only once. jghckhould be processed through the machines in a
particular order, and there are no precedence reamist among the different job operations. Eachimmaccan
perform only one job at a time, and it cannot heriipted. In addition, the operation time is fixaed known in
advance. The objective of the JSP is to find adelego minimize the time required to completgaliks, that is,
to minimize the makespa@max In this study, we attempt to attain the threeeotiyes (i.e., minimizing
makespan, machine idle time, and total tardinesg)l&aneously. We formulate the multi-objective J&hg
the following notation:

n is the total number of jobs to be scheduled

m s the total number of machines in the process

t(i, j) is the processing time for jolon maching (i=1,2,..n), (=1,2,..m)

L; is the lateness of jab

{m1, 7o, ..., Wn} is the permutation of jobs
The objectives considered in this paper are fortadlas follows:

Completion time (makespai@(7, j)

C(r.0) =t(75 1) (1)

C(7) =C(m_1) +t(75) i=2...,n (2)
C(m,j)=C(m,j - +t(,j) j=2,...m 3)

C(7, 1) = max{C(75 -1, }),C(rm, j 1)} +t(7g,j) i =2...,n; j=2,...m 4)
Makespan,f.,... = C(z,,m) (5)

n
Total tardiness fiota)tardiness= > mMax[o, L] (6)

. . . n . - .
Total idle time, fyoaiigietime ={C(7m, j 1) + 2{max{C(75, -1 -C(7—1,])0}} |] =2..m} (7)

i=2

PSO background

PSO is based on observations of the social behakanimals, such as birds in flocks or fish in@als, as well
as on swarm theory. The population consisting dividuals or particles is initialized randomly. Eggarticle
is assigned with a randomized velocity accordingg@wn movement experience and that of the reite
population. The relationship between the swarmparticles in PSO is similar to the relationshipvesn the
population and chromosomes in a GA.

In PSO, the problem solution space is formulated asarch space. Each particle position in theclsear
space is a correlated solution to the problemidbastcooperate to determine the best positionu{®al) in the
search space (solution space).

Suppose that the search spade-gimensional and there gvgarticles in the swarm. Partidlés located
at positionX'={x', %', ..., %'} and has velocit\//'={vy', \, ..., ¥}, wherei=1, 2, ...p. Based on the PSO
algorithm, each particle move towards its own hsition pbes}, denoted a®best={pbest', pbest,...,
pbest’}, and the best position of the whole swaghés} is denoted aEbest{gbest, gbes}, ..., gbes} with
each iteration. Each particle changes its posamrording to its velocity, which is randomly genedatoward
the pbestand gbestpositions. For each particleand dimensiors, the new velocitys and positionxs of

particles can be calculated by the following ecprai
VL (1) = wx Vg (7 1) + ¢; xrand; X[pbest (7 —1) - x{ (7 -1)] + ¢, xrand, x[gbesk (r -1) - x5 (7 -1)] (8)

xs (1) = x5 (1 -1) +vs (7 =) 9)

In Egs. (8) and (9) is the iteration number. The inertial weighis used to control exploration and exploitation.
A largew value keeps the particles moving at high veloaitg prevents them from becoming trapped in local
optima. A smallv value ensures a low particle velocity and encoesgmrticles to exploit the same search area.
The constants; andc, are acceleration coefficients to determine wheplagticles prefer to move closer to the
pbestor gbestpositions. Therand, andrand, are two independent random numbers uniformly itsted
between 0 and 1. The termination criterion of tB®Ralgorithm includes a maximum number of genenatia
designated value gdbest and lack of further improvement pbest The standard PSO process is outlined as

follows:

Step 1: Initialize a population of particles windom positions and velocities iDadimensional search space.

Step 2: Update the velocity of each particle ugig(8).

Step 3: Update the position of each particle ugiqg(9).

Step 4: Map the position of each particle intogbkition space and evaluate its fithess value daugto the
desired optimization fitness function. Simultandpugpdate thgpbestandgbestpositions if necessary.

Step 5: Loop to Step 2 until the termination crdeiis met, usually after a sufficient good fithess maximum

number of iterations.

The original PSO was designed for a continuoustisoluspace. We must modify the PSO position
representation, particle velocity, and particle sroent so they work better with combinational optiion

problems. These changes are described in nexbsecti

Proposed method

There are four types of feasible schedules in J8Blsiding inadmissible, semi-active, active, amh+uelay.
The optimal schedule is guaranteed to be an astihedule. We can decode a particle position intacane
schedule employing Giffler and Thompson’s [8] hstici There are two different representations ofigla
position associated with a schedule. The resul#@haing [29] demonstrated that permutation-basedipos
representation outperforms priority-based represgiemt. While choosing to implement permutation-loase
position presentation, we must also adjust theighartelocity and particle movement. In additiore aiso

propose the maintenance of Pareto optima and astfication procedure to achieve better performance

Position representation

In this study, we randomly generated a group diglas (solutions) represented by a permutationisece that
is an ordered list of operations. Forrajob m-machine problem, the position of partiklean be represented by

anmxn matrix, i.e.,

Kk k
X1 X2 - X
k| XK XK K
X% =| 72l 72z T2n - wherex; denotes the priority of operatiag) , which means the operation of jpb
Kk k
Xm Xm2 - Xmn

that must be processed on machine

The Giffler and Thompson (G&T) algorithm is briefigscribed below.

Notation:

(i,)) is the operation of jopthat must be processed on machine

Sis the partial schedule that contains scheduledadions

Q is the set of operations that can be scheduled

i IS the earliest time at which operati@g belonging ta2 can be started.
PG, is the processing time of operati@).

fq; Is the earliest time at which operati@f) belonging ta can be finishedy = i) + P -
G&T algorithm:

Step 1: InitializeS=¢; Q to contain all operations without predecessors.
Step 2: Determing * = ming jyne { g j)} and the machine on whichf can be realized.
Step 3:
(1) Identify the operation s&t’, j')0Q such that(i’, j') requires machine, and S, i) < £

(2) Choosei(j) from the operation set identified in Step 3(1)hthe largest priority.
(3)Add (, j)toS
(4) Assigns;j) as the starting time of, {).
Step 4: If a complete schedule has been genewsttgal, Otherwise, deletg {) from Q, include its immediate

successor if, and then go to Step 2.

Table 1 shows the mechanism of the G&T algorithrmgisa 2x2 example. The position of partidte

w21
is XX = :
12

Initialization
Step 1:S=¢; Q={(1, 1), (2, 2)}.
Iteration 1
Step 2:51.170, S2.270, 175, f274; f =min{fr 1)f2 2)=4, m =2.
Step 3: Identify the operation set {(2, 2)}; choageeration (2, 2) that has the largest priorityd add it
into schedule&.
Step 4: Updat®={(1,1), (1,2)}; go to Step 2.
Iteration 2
Step 2:51.170, Su.274, fu.175, fa2=7; =min{f1 1)f1 2}=5, m =1.
Step 3: Identify the operation set {(1, 1), (1,;2hoose operation (1, 2) that has the largestifyi@and
add it into schedul&
Step 4: Updat€@={(1, 1)}; go to Step 2.
Iteration 3
Step 2:51.177, fu1712;f =min{f 1}=12, m =1.
Step 3: Identify the operation set {(1, 1)}; choageeration (1, 1) that has the largest priorityd add it
into schedule&.
Step 4: Updat@={(2, 1)}; go to Step 2.
Iteration 4
Step 2:52.1712,f2.1716; f =min{f1}=16, m =2.
Step 3: Identify the operation set {(2, 1)}; choageeration (2, 1) that has the largest priorityd add it
into schedule&.

Step 4: A complete schedule has been generatathgohe process.

The proposed PSO differs from the original PSQeihformation stored in thebestandgbestsolutions.
While the original PSO keeps the best positionsidoso far, the proposed PSO maintains the beststzhe

generated by the G&T algorithm. In the previousnepi, the schedul® rather than the positiok<is retained

. . 121 . . e .
in thepbestandgbestsolutions, wher&' is L J . The movement of particles is modified in accomawith

the representation of particle position based eririkertion operator.

Particle velocity

The original PSO velocity concept assumes that parditle moves according to the velocity determdibg the
distance between the previous position of the @daréind thegbest(pbesj solution. The two major purposes of
the particle velocity are to keep the particle mgvioward thgbestandpbestsolutions, and to maintain inertia
to prevent particles from becoming trapped in lagima.

In the proposed PSO, we concentrate on prevendérigies from becoming trapped in local optima eath
than moving them toward tlgbest(pbesj solution. If the priority value is increased @cdeased by the present
velocity in the current iteration, we keep the ptiovalue increasing or decreasing at the begimoiithe next
iteration with probabilityw, which is the inertial weight in PSO. The lardes value ofv, the more the iteration
priority value keeps increasing or decreasing, dx@dmore the difficult it is for the particle totuen to its

current position. For anrjob problem, the velocity of particlecan be represented as

VK =[vivE Ve, v O{-101}, wherev® is thevelocityof j, of particlek.
The initial velocity of particles is generated randy. Instead of considering the distance fraiFnto
k

pbesf(gbes;), our PSO considers whether the valuexi'ﬁ)ﬁs larger or smaller thapbesf(gbesg). If x;

decreases in the present iteration, this mearptimf(gbes;) is smaller thar»qk and xik is set moving toward

pbesf (gbest) by letting v€ « —1. Therefore, in the next iteration® is kept decreasing by one (i.e.,
xK < xX —1) with probabilityw. Conversely, ifx¢ increases in this iteration, thesbest (gbest) is larger than
x<, and x¥ is set moving towargpbesf (gbest) by settingvX « 1. Therefore, in the next iteratior® is kept
increasing by one (i.exk « xX + 1) with probabilityw.

The inertial weightv influences the velocity of the particles in thed?$Ve randomly update velocities at
the beginning of the iteration. For each particknd operatioy , if v¢ does not equal to @ikwill be setto 0

with probability (1w). This forces><ik to stop increasing or decreasing continuouslyhis tteration with

probability (1-w) while >qk keeps increasing or decreasing.

Particle movement

The particle movement is based on the swap opepadposed by Sha et al. [22][23].

Notation:

xX is the schedule list at machinef particlek.

pbesf is the schedule list at machinef thekth pbestsolution.
gbest is the schedule list at machinef thegbestsolution.

¢: andc; are constants between 0 and 1 suchdpat, <1.

The swap procedure occurs as shown below.

Step 1: Randomly choose a positipitom xX .

Step 2: Mark the job on positi@grof x¢ by A;.

Step 3: If the random numbiemd < c; then seek the position 8 in pbesf; otherwise, seek the position
of A1 in gbest. Denote the position that has been foungiresf or gbest by &7, and the job in
position” of xX by Ax.

Step 4: IfA, has been denoteoli'g1 =0, and vi'jz =0, then swap\;andAzin xX, vi'jl - 1.

Step 5: If all the positions ofik have been considered, then stop. If not, and<fn, then{ — {+1;

otherwise{ — 1. Go to Step 2.

For example, consider the 6-job problem whefe[4 2 1 3 6 5], pbesf=[1 5 4 2 6 3],gbest=[3 2 6 4 5 1],
vK=[0 01 0 0 0]¢,=0.6, anct,=0.2.
Step 1: The position ofX is randomly choser=3.
Step 2: The job in the 3rd position rq‘f isjob 1,i.e.A1=1.
Step 3: Arandom numbeand is generated; assumend=0.7. Sinceand > ¢;, we compare each position
of gbest with A;and the matched positiaf=6. The job in the 6th position oqk is job 5, i.e.,
A2=5.
Step 4: Since/y =0 andvk =0, swap jobs 1 and 5 iR¢ sox¥=[4 2 5 3 6 1]. Then letX — 1 and
vk=[001100].

Step 5: Let’ — 4 and go to Step 2. Repeat the process until altipos of xik have been considered.

Diversification strategy

If all the particles have the same non-dominatégtiems, they will be trapped in local optima. Tiepent this
from happening, a diversification strategy is pregubto keep the non-dominated solutions diffe@nte any
new solution is generated by particles, the nonidatimg solution set will be updated in these thsiteations:
(i) If the solution of the particle dominates tjigestsolution, assign the particle solution to gieest
(i) If the solution of the particle equals to any santin the non-dominated solution set, replace the
non-dominated solution with the particle solution.
(iif) If the solution of the particle is dominated by therst non-dominated solution and not equal to any

non-dominated solution, set the worst non-dominatddtion equal to the particle solution.

Computational results

The proposed multi-objective PSO (MOPSO) algorithas tested on benchmark problems obtained from
the OR-Library [2][26]. The program was coded irsd¥l C++ and run 40 times on each problem on alrent
4 3.0-GHz computer with 1 GB of RAM running Window®. During the pilot experiment, we used four
swarm sized (10, 30, 60, and 80) to test the algorithm. Thie@me ofN=80 was best, so that value was used
in all further tests. Parametarsandc, were tested at various values in the range 0.lirOricrements of 0.2.
The inertial weightv was reduced fromvyaxto Wmin during iterations, wherenaxwas set to 0.5, 0.7, and 0.9,
andwnn was set to 0.1, 0.3, and 0.5. The combinatiogye8.7,¢,=0.1,Wma=0.7 andwmi=0.3 gave the best
results. The maximum iteration limit was set toa@ the maximum archive size was set to 80.

The MOGA proposed by Ponnambalam et al. [19] waseh as a baseline against which to compare the
performance of our PSO algorithm. The objectivessatered in the MOGA algorithm are minimization of

makespan, minimization of total tardiness, and mization of machine idle time. The MOGA methodolagy

based on the machine-wise priority dispatching (o) and the G&T procedure [8]. The each geneasgnts
a pdr code. The G&T procedure was used to genanadetive feasible schedule. The MOGA fitness fionds
the weighted sum of makespan, total tardinessi@adtlidle time of machines with random weights.

The computation results showed that the relativereof the solution forCn.x and total idle time
determined by the proposed MOPSO was better in23®023 problems than the MOGA. In 22 of the 23
problems, the proposed PSO performed better fosdhaion considering total tardiness. Overall, pheposed

MOPSO was superior to the MOGA in solving the J3tR multiple objectives.

Conclusion

While there has been a large amount of researolthiet JSP, most of this has focused on minimizneg t
maximum completion time (i.e., makespan). Theresterther objectives in the real world, such as the
minimization of machine idle time that might helpprove efficiency and reduce production costs. PSO,
inspired by the behavior of birds in flocks anchfis schools, has the advantages of simple streiceasy
implementation, immediate accessibility, short skedime, and robustness. However, few applicataidSO
to multi-objective JSPs can be found in the litgrat Therefore, we presented a MOPSO method feingplhe
JSP with multiple objectives, including minimizatiof makespan, total tardiness, and total macluileetime.

The original PSO was proposed for continuous opttion problems. To make it suitable for job-shop
scheduling (i.e., a combinational problem), we rfiedi the representation of particle position, pdeti
movement, and particle velocity. We also introduaathutation operator and used a diversificatioatsgy.
The results demonstrated that the proposed MOP8Id obtain more optimal solutions than the MOGAeTh

relative error ratios of each problem scenario un MIOPSO algorithm were less than in the MOGA. The

performance measure results also revealed thapribgosed MOPSO algorithm outperformed MOGA in
simultaneously minimizing makespan, total tardinessl total machine idle time.

We will attempt to apply MOPSO to other shop sclieduproblems with multiple objectives in future
research. Other possible topics for further studjuide the modification of the particle positiopresentation,
particle movement, and particle velocity. In aduhtiissues related to Pareto optimization, suckoagion

maintenance strategy and performance measurement fature investigation.

Acknowledgments

This study was supported by a grant from the NationScience Council of Taiwan

(NSC-96-2221-E-216-052MY 3).
Appendices

Pseudo-code of the PSO for the multi-objective i3S follows.

Initialize a population of particles with randomsgmns.
for each particlé do
EvaluateX® (the position of particle k)
Save thepbesf to optimal solution se$
end for
Setgbestsolution equal to the begbest
repeat
Updates particles velocities

for each particlé do

Move particlek
Evaluatex*
Updategbest pbest andS
end for

until maximum iteration limit is reached

References

[1]Bean, J., 1994. “Genetic algorithms and randayskfor sequencing and optimizatio@perations Research Society of America

(ORSA) Journal on Computin, 154—160.

[2]Beasley J.E., 1990. "OR-Library: distributingt@roblems by electronic mail", Journal of the pienal Research Society 41(11)

pp1069-1072.

[3]Candido, M. A. B., Khator, S.K. & Barcia, R.M1998. “A genetic algorithm based procedure for maalistic job shop

scheduling problems/Jhternational Journal of Production Resear@6(12), 3437-3457.

[4]Coello, C.A., Plido, G.T. & Lechga, M.S., 200ZHandling multiple objectives with particle swarnptonization,” IEEE

Transactions on Evolutionary Computatj@&{3), 256-278.

[5]Esquivel, S.C., Ferrero, S.W. & Gallard, R.HO02. “Parameter settings and representations iet¢*aased optimization for job

shop scheduling,Cybernetics and Systems: An international Jour8al559-578.
[6]Fisher, H. & Thompson, G. L., 196Mdustrial SchedulingeEnglewood Cliffs, NJ: Prentice-Hall.

[7]1Garey, M. R., Johnson, D. S. & Sethi, R., 197te complexity of flowshop and jobshop schedulingathematics of Operations

Researchl, 117-129.
[8]Giffler, J. & Thompson, G. L., 1960. “Algorithnfsr solving production scheduling problem®perations ResearcB, 487-503.

[9]Gongalves, J. F., Mendes, J. J. M. & ResendeGMC., 2005. “A hybrid genetic algorithm for thebjshop scheduling problem,”

European Journal of Operational Resear&f7(1), 77-95.

[10]Jain, A.S. & Meeran, S., 1999. “Deterministidishop scheduling: Past, present and futiarbpean Journal of Operational

Research113, 390-434.

[11]Kennedy, J. and R. Eberhart (1995), Particlarswoptimization. Proceedings of IEEE InternatioBainference on Neural

Networks 1995, 1942-1948.

[12]Kobayashi, S., Ono, I. & Yamamura, M., 1995.n‘&fficient genetic algorithm for job shop schedgliproblems,” In L. J.
Eshelman (Ed.)Proceedings of the Sixth International ConfereneeGenetic Algorithmgpp. 506-511). San Francisco, CA:

Morgan Kaufman Publishers.

[13]Lawrence, S., 1984. “Resource constrained ptogcheduling: An experimental investigation of t&ic scheduling

techniques,” Graduate School of Industrial Admiison (GSIA), Carnegie Mellon University, Pittsighr PA.

[15]Lei, D. & Wu, Z., 2006. “Crowding-measure-baseaulti-objective evolutionary algorithm for job gmoscheduling,”

International Journal of Advanced Manufacturing fierology 30, 112-117.

[14]Lei, D., 2008. “A Pareto archive particle swaoptimization for multi-objective job shop schddgl” Computers & Industrial

Engineering54(4), 960-971.

[16]Liang Y.C., Ge, H.W., Zho, Y. & Guo, X.C., 200%A particle swarm optimization-based algorithnr fob-shop scheduling

problems,”International Journal of Computational Metho@§3), 419-430.

[17]Lourenco, H. R., 1995. “Local optimization atie job-shop scheduling problenEuropean Journal of Operational Research

83, 347-364.

[18]Nowicki, E. & Smutnicki, C., 1996. “A fast tabosearch algorithm for the job shop probleml&nagement Sciencd2(6),

797-813.

[19]Pezzella, F. & Merelli, E., 2000. “A tabu selanmethod guided by shifting bottleneck for the gimp scheduling problem,”

European Journal of Operational Resear&B0(2), 297-310.

[20]Ponnambalam S. G., Ramkumar, V. & Jawahar,28Q1. “A multi-objective genetic algorithm for jokhop scheduling.”

Production Planning and Contrpl2(8), 764—774.

[21]Ripon, K. S. N., 2007. “Hybrid evolutionary ajmach for multi-objective job-shop scheduling peahl” Malaysian Journal of

Computer Scienc0(2), 183-198.

[22]Sha, D.Y. & Hsu, C.-Y., 2006, “A hybrid partekwarm optimization for job shop scheduling probleComputers & Industrial

Engineering51(4), 791-808.

[23]Sha, D.Y. & Hsu, C.-Y., 2008. “A new particlevarm optimization for the open shop scheduling o’ Computers &

Operations ResearcBb, 3243—-3261.

[24]Sun, D., Batta, R. & Lin, L., 1995. “Effectiyjeb shop scheduling through active chain manipoilgtiComputers & Operations

Research22(2), 159-172.

[25]Suresh R.K. & Mohanasndaram, K.M. 2006., “Paratchived simulated annealing for job shop schedulith multiple

objectives,”International Journal of Advanced Manufacturing firology 29, 184—-196.
[26]Taillard, E.D., 1993. “Benchmarks for basic edhling problems,European Journal of Operational Resear6h, 278—285.

[27]Wang, L. & Zheng, D.-Z., 2001. “An effective biyd optimization strategy for job-shop schedulprgblems,”Computers &

Operations Researcgh8, 585-596.

[28]Xia, W. & Wu, Z., 2005. “An effective hybrid dimization approach for multi-objective flexibleljeshop scheduling problems,”

Computers & Industrial Engineering8, 409-425.

[29]zhang, H., Li, X., Li H., Hang F. 2005. “Pattc swarm optimization-based schemes for resourostcained project

scheduling,”Automation in Constructiofb4(3), 393—404.

Table 1 2x2 example

Jobs Machine sequence Processing times
1 1,2 P,275; P14
2 2,1 Pe.274; P23

Table 2 Comparison of MOGA and MOPSO with threesotiyes.

Machine Machine Total Total

Benchmark N m Makespan Makespan % idle time idle time % tardiness tardiness %
(MOGA) (MOPSO) Deviation (MOGA) (MOPSO) Deviation (MOGA) (MOPSO)DeV'atlon
abz5 10 10 1587 1338 0 8097 3978 0 1948 611
abz6 10 10 1369 1046 0 7744 2937 0 1882 339
ft06 6 6 76 56 0 259 100 0 31 3
ft10 10 10 1496 1045 0 9851 1999 0 3459 1534
orb01 10 10 1704 1181 0 11631 3909 0 3052 191
orb02 10 10 1284 1029 0 7585 3539 0 1565 137
orb03 10 10 1643 1114 0 11138 3788 0 4140 247
orb04 10 10 1543 1122 0 9802 3921 0 4951 221
orb05 10 10 1323 1013 0 8322 3727 0 2195 30
orb06 10 10 1645 1144 0 10836 3478 0 2601 0
orb07 10 10 583 302 0 3423 1381 0 699 0
orb08 10 10 1340 1000 0 8840 3542 0 3498 253
orb09 10 10 1462 1044 0 9439 4224 0 2029 0
orb10 10 10 1382 1077 0 8271 4177 0 1806 0
la01 10 5 1256 709 0 3431 571 0 3324 721
la02 10 5 1066 713 0 2687 573 0 2081 425
la03 10 5 821 671 0 1722 633 0 1926 373
la04 10 5 861 631 0 1798 557 0 3194 673

la05 10 5 893 593 0 2182 473 0 1716 736

lal6 10 10 1452 1040 0 9169 2718 0 1127 1417 0.25732

lal7 10 10 1172 889 0 7044 3365 0 1779 53 0
lal9 10 10 1251 938 0 7164 2796 0 1581 733 0
la20 10 10 1419 985 0 8745 2883 0 1451 407 0

The English in this document has been checked laaat two professional editors, both native spesaEEnglish. For a
certificate, see:

http://www.textcheck.com/cgi-bin/certificate.cgi2icbNsng

