
A multi-objective PSO for job-shop scheduling problems  

D. Y. Shaa and Hsing-Hung Linb*  
aDepartment of Industrial Engineering and System Management, Chung Hua University,, Hsin Chu, Taiwan R.O.C.;  
bDepartment of Industrial Engineering and Management, National Chiao Tung University, Hsin Chu, Taiwan R.O.C. 
 
 

Abstract 

Most previous research into the job-shop scheduling problem has concentrated on finding a single optimal 

solution (e.g., makespan), even though the actual requirement of most production systems requires 

multi-objective optimization. The aim of this paper is to construct a particle swarm optimization (PSO) for an 

elaborate multi-objective job-shop scheduling problem. The original PSO was used to solve continuous 

optimization problems. Due to the discrete solution spaces of scheduling optimization problems, the authors 

modified the particle position representation, particle movement, and particle velocity in this study. The 

modified PSO was used to solve various benchmark problems. Test results demonstrated that the modified PSO 

performed better in search quality and efficiency than traditional evolutionary heuristics. 

 

 

Keywords: job-shop scheduling; particle swarm optimization; multiple objectives 

 

 

 

 

____________________________________________  
*Corresponding author. Email: hsinhung@gmail.com 



Introduction 

The job-shop scheduling problem (JSP) has been studied for more than 50 years in both academic and industrial 

environments. Jain et al. provided a concise overview of JSPs over the last few decades and highlighted the 

main techniques [10]. The JSP is the most difficult class of combinational optimization. Garey et 

al. demonstrated that JSPs are non-deterministic polynomial-time hard (NP-hard) [7]; hence we cannot find an 

exact solution in a reasonable computation time. The single-objective JSP has attracted wide research attention. 

Most studies of single-objective JSPs result in a schedule to minimize the time required to complete all jobs, i.e., 

to minimize the makespan (Cmax). Many approximate methods have been developed to overcome the limitations 

of exact enumeration techniques. These approximate approaches include simulated annealing (SA) [17], tabu 

search [18][19][24] and genetic algorithms (GA) [1][9][12][27]. However, real-world production systems 

require simultaneous achievement of multiple objective requirements. This means that the academic 

concentration of objectives in the JSP must been extended from single to multiple. Recent related JSP research 

with multiple objectives is summarized as below. 

Ponnambalam has offered a multi-objective GA to derive optimal machine-wise priority dispatching rules 

for resolving job-shop problems with objective functions that consider minimization of makespan, total 

tardiness, and total machine idle time[20]. Ponnambalam’s multi-objective genetic algorithm (MOGA) has 

been tested with various published benchmarks, and is capable of providing optimal or near-optimal solutions. 

A Pareto front provides a set of best solutions to determine the tradeoffs between the various objects, and good 

parameter settings and appropriate representations can enhance the behavior of an evolution algorithm. 

Esquivel et al. studied the influence of distinct parameter combinations as well as different chromosome 

representations [5]. Initial results showed that:  

(i) larger numbers of generations favor the building of a Pareto front because the search process does not 

stagnate, even though it may be rather slow, 



(ii)  multi-recombination helps to speed the search and to find a larger set size when seeking the Pareto 

optimal set, and 

(iii)  operation-based representation is better than priority-list and job-based representation  selected for 

contrast under  recombination methods.  

The Pareto archived simulated annealing (PASA) method, a meta-heuristic procedure based on the SA 

algorithm, was developed by Suresh to find non-dominated solution sets for the JSP with the objectives of 

minimizing the makespan and the mean flow time of jobs[25]. The superior performance of the PASA can be 

attributed to the mechanism it uses to accept the candidate solution. Candido et al. addressed JSPs with numbers 

of more realistic constraints, such as jobs with several subassembly levels, alternative processing plans for parts 

and alternative resources of operations, and the requirement for multiple resources to process an operation [3]. 

The robust procedure worked well in all problem instances and proved to be a promising tool for solving more 

realistic JSPs. Lei first designed a crowding-measure-based multi-objective evolutionary algorithm (CMOEA) 

that makes use of the crowding measure to adjust the external population and assign different fitness for 

individuals [14]. Compared to the strength Pareto evolutionary algorithm, CMOEA performs well in job-shop 

scheduling with two objectives including minimization of makespan and total tardiness. 

One of the latest evolutionary techniques for unconstrained continuous optimization is particle swarm 

optimization (PSO) proposed by Kennedy et al. [11]. PSO has been successfully used in different fields due to 

its ease of implementation and computational efficiency. Even so, application of PSO to the combination 

optimization problem is rare. Coello et al. provided an approach in which Pareto dominance is incorporated into 

PSO to allow the heuristic to handle problems with several object functions [4]. The algorithm uses a secondary 

repository of particles to guide particle flight. That approach was validated using several test functions and 

metrics drawn from the standard literature on evolutionary multi-objective optimization. The results show that 

the approach is highly competitive. Liang et al. invented a novel PSO-based algorithm for JSPs[16]. That 



algorithm effectively exploits the capability of distributed and parallel computing systems, with simulation 

results showing the possibility of high-quality solutions for typical benchmark problems. Lei presented a PSO 

for the multi-objective JSP to minimize makespan and total job tardiness simultaneously [15]. Job-shop 

scheduling can be converted into a continuous optimization problem by constructing the corresponding 

relationship between a real vector and a chromosome obtained using the priority rule-based representation 

method. The global best position selection is combined with crowding-measure-based archive maintenance to 

design a Pareto archive PSO. That algorithm is capable of producing a number of high-quality Pareto optimal 

scheduling plans.  

Hybrid algorithms that combine different approaches to build on their strengths have led to another branch 

of research. Wang et al. combined GA with SA in a hybrid framework, in which the GA was introduced to 

present a parallel search architecture, and SA was used to increase the probability of escape from local optima at 

high temperatures [27]. Computer simulation results showed that the hybrid strategy was very effective and 

robust, and could find optima for almost all benchmark instances. Xia et al. developed an easily implemented 

approach for the multi-objective flexible JSP based on the combination of PSO and SA [28]. They demonstrated 

that their proposed algorithm was a viable and effective approach to the multi-objective flexible JSP, especially 

for large-scale problems. Ripon extended the idea in the jumping genes genetic algorithm, a hybrid approach 

capable of searching for near-optimal and non-dominated solutions with better convergence by simultaneously 

optimizing criteria [21]. 

Previous literature indicates that there has been little study of the JSP with multiple objectives. In this study, 

we use a new evolutionary PSO technique to solve the JSP with multiple objectives.  

 



Job-shop scheduling problem 

A typical JSP can be formulated as follows. There are n jobs to be processed through m machines. Each job must 

pass through each machine once and only once. Each job should be processed through the machines in a 

particular order, and there are no precedence constraints among the different job operations. Each machine can 

perform only one job at a time, and it cannot be interrupted. In addition, the operation time is fixed and known in 

advance. The objective of the JSP is to find a schedule to minimize the time required to complete all jobs, that is, 

to minimize the makespan Cmax. In this study, we attempt to attain the three objectives (i.e., minimizing 

makespan, machine idle time, and total tardiness) simultaneously. We formulate the multi-objective JSP using 

the following notation: 

n is the total number of jobs to be scheduled 

m is the total number of machines in the process 

t(i, j) is the processing time for job i on machine j (i=1,2,…n), (j=1,2,…m) 

Li is the lateness of job i 

{π1, π2, …, πn} is the permutation of jobs 

The objectives considered in this paper are formulated as follows: 

Completion time (makespan) ),( jC π  

  )1,()1,( 11 ππ tC =          (1) 

nitCC iii ,...,2  )1,()1,()1,( 1 =+= − πππ        (2) 

mjjtjCjC ,...,2  ),()1,(),( 11 =+−= πππ         (3) 

mjnijtjCjCjC iiii ,...,2  ;,...,2  ),()}1,(),,(max{),( 1 ==+−= − ππππ    (4) 

Makespan, ),(max mCf nC π=         (5) 

Total tardiness, ] ,0max[
1

 ∑=
=

n

i
itardinesstotal Lf      (6) 



Total idle time, }...2|}}0),,()1,({max{)1,({
2

11  ∑ =−−+−=
=

−
n

i
iitimeidletotal mjjCjCjCf πππ   (7) 

 

PSO background 

PSO is based on observations of the social behavior of animals, such as birds in flocks or fish in schools, as well 

as on swarm theory. The population consisting of individuals or particles is initialized randomly. Each particle 

is assigned with a randomized velocity according to its own movement experience and that of the rest of the 

population. The relationship between the swarm and particles in PSO is similar to the relationship between the 

population and chromosomes in a GA.  

In PSO, the problem solution space is formulated as a search space. Each particle position in the search 

space is a correlated solution to the problem. Particles cooperate to determine the best position (solution) in the 

search space (solution space).  

Suppose that the search space is D-dimensional and there are ρ particles in the swarm. Particle i is located 

at position Xi={x1
i, x2

i, …, xD
i} and has velocity Vi={v1

i, v2
i, …, vD

i}, where i=1, 2, …,ρ. Based on the PSO 

algorithm, each particle move towards its own best position (pbest), denoted as Pbesti={pbest1
i, pbest2

i,…, 

pbestn
i}, and the best position of the whole swarm (gbest) is denoted as Gbest={gbest1, gbest2, …, gbestn} with 

each iteration. Each particle changes its position according to its velocity, which is randomly generated toward 

the pbest and gbest positions. For each particle r and dimension s, the new velocity vs
r and position xs

r of 

particles can be calculated by the following equations:  

)]1()1([)]1()1([)1()( 2211 −−−××+−−−××+−×= ττττττ r
s

r
s

r
s

r
s

r
s

r
s xgbestrandcxpbestrandcvwv  (8) 

)1()1()( −+−= τττ r
s

r
s

r
s vxx         (9) 



In Eqs. (8) and (9), τ is the iteration number. The inertial weight w is used to control exploration and exploitation. 

A large w value keeps the particles moving at high velocity and prevents them from becoming trapped in local 

optima. A small w value ensures a low particle velocity and encourages particles to exploit the same search area. 

The constants c1 and c2 are acceleration coefficients to determine whether particles prefer to move closer to the 

pbest or gbest positions. The rand1 and rand2 are two independent random numbers uniformly distributed 

between 0 and 1. The termination criterion of the PSO algorithm includes a maximum number of generations, a 

designated value of pbest, and lack of further improvement in pbest. The standard PSO process is outlined as 

follows:  

 

Step 1: Initialize a population of particles with random positions and velocities in a D-dimensional search space.  

Step 2: Update the velocity of each particle using Eq. (8).  

Step 3: Update the position of each particle using Eq. (9).  

Step 4: Map the position of each particle into the solution space and evaluate its fitness value according to the 

desired optimization fitness function. Simultaneously update the pbest and gbest positions if necessary.  

Step 5: Loop to Step 2 until the termination criterion is met, usually after a sufficient good fitness or a maximum 

number of iterations.  

 

The original PSO was designed for a continuous solution space. We must modify the PSO position 

representation, particle velocity, and particle movement so they work better with combinational optimization 

problems. These changes are described in next section.  



 

Proposed method 

There are four types of feasible schedules in JSPs, including inadmissible, semi-active, active, and non-delay. 

The optimal schedule is guaranteed to be an active schedule. We can decode a particle position into an active 

schedule employing Giffler and Thompson’s [8] heuristic. There are two different representations of particle 

position associated with a schedule. The results of Zhang [29] demonstrated that permutation-based position 

representation outperforms priority-based representation. While choosing to implement permutation-based 

position presentation, we must also adjust the particle velocity and particle movement. In addition, we also 

propose the maintenance of Pareto optima and a diversification procedure to achieve better performance.  

 

Position representation 

In this study, we randomly generated a group of particles (solutions) represented by a permutation sequence that 

is an ordered list of operations. For an n-job m-machine problem, the position of particle k can be represented by 

an m×n matrix, i.e., 





















=

k
mn

k
m

k
m

k
n

kk

k
n

kk

k

xxx

xxx

xxx

X

...

...

...

21

22221

11211

MMM
 , where k

ijx  denotes the priority of operation ijo , which means the operation of job j 

that must be processed on machine i.  

The Giffler and Thompson (G&T) algorithm is briefly described below. 

 

Notation: 



(i,j) is the operation of job j that must be processed on machine i 

S is the partial schedule that contains scheduled operations 

Ω is the set of operations that can be scheduled 

s(i,j) is the earliest time at which operation (i,j) belonging to Ω can be started. 

p(i,j) is the processing time of operation (i,j). 

f(i,j) is the earliest time at which operation (i,j) belonging to Ω can be finished, f(i,j) = s(i,j) + p(i,j) . 

 

G&T algorithm: 

 

Step 1: Initialize φ=S ; Ω to contain all operations without predecessors. 

Step 2: Determine }{ min ),(),(
*

jiji ff Ω∈=  and the machine m* on which f* can be realized. 

Step 3:  

(1) Identify the operation set Ω∈′′ ) ,( ji  such that ) ,( ji ′′  requires machine m*, and *
),( fs ji <′′  

(2) Choose (i, j) from the operation set identified in Step 3(1) with the largest priority. 

(3) Add (i, j) to S. 

(4) Assign s(i,j) as the starting time of (i, j). 

Step 4: If a complete schedule has been generated, stop. Otherwise, delete (i, j) from Ω, include its immediate 

successor in Ω, and then go to Step 2. 

 

Table 1 shows the mechanism of the G&T algorithm using a 2×2 example. The position of particle k 

is 







=

21

12kX . 

 



Initialization 

Step 1: φ=S ; Ω={(1, 1), (2, 2)}. 

Iteration 1 

Step 2: s(1,1)=0, s(2,2)=0, f(1,1)=5, f(2,2)=4; f*=min{f(1,1),f(2,2)}=4, m*=2. 

Step 3: Identify the operation set {(2, 2)}; choose operation (2, 2) that has the largest priority, and add it 

into schedule S. 

Step 4: Update Ω={(1,1), (1,2)}; go to Step 2. 

Iteration 2 

Step 2: s(1,1)=0, s(1,2)=4, f(1,1)=5, f(1,2)=7; f*=min{f(1,1),f(1,2)}=5, m*=1. 

Step 3: Identify the operation set {(1, 1), (1, 2)}; choose operation (1, 2) that has the largest priority, and 

add it into schedule S. 

Step 4: Update Ω={(1, 1)}; go to Step 2. 

Iteration 3 

Step 2: s(1,1)=7, f(1,1)=12; f*=min{f(1,1)}=12, m*=1. 

Step 3: Identify the operation set {(1, 1)}; choose operation (1, 1) that has the largest priority, and add it 

into schedule S. 

Step 4: Update Ω={(2, 1)}; go to Step 2. 

Iteration 4 

Step 2: s(2,1)=12, f(2,1)=16; f*=min{f(2,1)}=16, m*=2. 

Step 3: Identify the operation set {(2, 1)}; choose operation (2, 1) that has the largest priority, and add it 

into schedule S. 

Step 4: A complete schedule has been generated, so stop the process. 

 



The proposed PSO differs from the original PSO in the information stored in the pbest and gbest solutions. 

While the original PSO keeps the best positions found so far, the proposed PSO maintains the best schedule 

generated by the G&T algorithm. In the previous example, the schedule Sk rather than the position Xk is retained 

in the pbest and gbest solutions, where Sk is 








12

12
. The movement of particles is modified in accordance with 

the representation of particle position based on the insertion operator. 

 

Particle velocity 

The original PSO velocity concept assumes that each particle moves according to the velocity determined by the 

distance between the previous position of the particle and the gbest (pbest) solution. The two major purposes of 

the particle velocity are to keep the particle moving toward the gbest and pbest solutions, and to maintain inertia 

to prevent particles from becoming trapped in local optima. 

In the proposed PSO, we concentrate on preventing particles from becoming trapped in local optima rather 

than moving them toward the gbest (pbest) solution. If the priority value is increased or decreased by the present 

velocity in the current iteration, we keep the priority value increasing or decreasing at the beginning of the next 

iteration with probability w, which is the inertial weight in PSO. The larger the value of w, the more the iteration 

priority value keeps increasing or decreasing, and the more the difficult it is for the particle to return to its 

current position. For an n-job problem, the velocity of particle k can be represented as 

 . particle of  of velocity  theis   where},1,0,1{ ], ...  [ 21 kjvvvvvV i
k
i

k
i

k
n

kkk −∈=  

The initial velocity of particles is generated randomly. Instead of considering the distance from k
ix  to 

)( i
k
i gbestpbest , our PSO considers whether the value of k

ix  is larger or smaller than )( i
k
i gbestpbest . If k

ix  

decreases in the present iteration, this mean that )( i
k
i gbestpbest  is smaller than kix  and k

ix  is set moving toward 



)( i
k
i gbestpbest  by letting k

iv � –1. Therefore, in the next iteration, kix is kept decreasing by one (i.e., 

k
ix �

k
ix  –1) with probability w. Conversely, if k

ix  increases in this iteration, then )( i
k
i gbestpbest  is larger than 

k
ix , and k

ix  is set moving toward )( i
k
i gbestpbest  by setting k

iv � 1. Therefore, in the next iteration, k
ix  is kept 

increasing by one (i.e., kix �
k
ix  + 1) with probability w. 

The inertial weight w influences the velocity of the particles in the PSO. We randomly update velocities at 

the beginning of the iteration. For each particle k and operation j i , if k
iv  does not equal to 0, kiv will be set to 0 

with probability (1–w). This forces k
ix  to stop increasing or decreasing continuously in this iteration with 

probability (1–w) while k
ix  keeps increasing or decreasing.  

 

Particle movement 

The particle movement is based on the swap operator proposed by Sha et al. [22][23].  

 

Notation: 

k
ix  is the schedule list at machine i of particle k. 

k
ipbest  is the schedule list at machine i of the kth pbest solution. 

igbest  is the schedule list at machine i of the gbest solution. 

c1 and c2 are constants between 0 and 1 such that 121 ≤+ cc . 

 

The swap procedure occurs as shown below. 

Step 1: Randomly choose a position ζ from k
ix . 

Step 2: Mark the job on position ζ of k
ix  by Λ1. 



Step 3: If the random number rand < c1 then seek the position of Λ1 in k
ipbest ; otherwise, seek the position 

of Λ1 in igbest . Denote the position that has been found in k
ipbest  or igbest  by ζ′, and the job in 

position ζ′ of k
ix  by Λ2. 

Step 4: If Λ2 has been denoted, 0
1

=k
iJv , and 0

2
=k

iJv , then swap Λ1 and Λ2 in k
ix , 1

1
←k

iJv . 

Step 5: If all the positions of kix  have been considered, then stop. If not, and if ζ < n, then ζ←ζ+1; 

otherwise, ζ←1. Go to Step 2. 

 

For example, consider the 6-job problem where k
ix =[4 2 1 3 6 5], k

ipbest =[1 5 4 2 6 3], igbest=[3 2 6 4 5 1], 

k
iv =[0 0 1 0 0 0], c1=0.6, and c2=0.2.  

Step 1: The position of kix  is randomly chosen: ζ=3. 

Step 2: The job in the 3rd position of k
ix  is job 1, i.e., Λ1=1. 

Step 3: A random number rand is generated; assume rand=0.7. Since rand > c1, we compare each position 

of igbest  with Λ1 and the matched position ζ′=6. The job in the 6th position of kix  is job 5, i.e., 

Λ2=5.  

Step 4: Since 04 =k
iv  and 05 =k

iv , swap jobs 1 and 5 in kix  so k
ix =[4 2 5 3 6 1]. Then let 14 ←k

iv  and 

k
iv =[0 0 1 1 0 0].  

Step 5: Let ζ←4 and go to Step 2. Repeat the process until all positions of k
ix  have been considered. 

 



Diversification strategy 

If all the particles have the same non-dominated solutions, they will be trapped in local optima. To prevent this 

from happening, a diversification strategy is proposed to keep the non-dominated solutions different. Once any 

new solution is generated by particles, the non-dominating solution set will be updated in these three situations: 

(i) If the solution of the particle dominates the gbest solution, assign the particle solution to the gbest.  

(ii)  If the solution of the particle equals to any solution in the non-dominated solution set, replace the 

non-dominated solution with the particle solution.  

(iii)  If the solution of the particle is dominated by the worst non-dominated solution and not equal to any 

non-dominated solution, set the worst non-dominated solution equal to the particle solution. 

 

Computational results 

The proposed multi-objective PSO (MOPSO) algorithm was tested on benchmark problems obtained from 

the OR-Library [2][26]. The program was coded in Visual C++ and run 40 times on each problem on a Pentium 

4 3.0-GHz computer with 1 GB of RAM running Windows XP. During the pilot experiment, we used four 

swarm sizes N (10, 30, 60, and 80) to test the algorithm. The outcome of N=80 was best, so that value was used 

in all further tests. Parameters c1 and c2 were tested at various values in the range 0.1–0.7 in increments of 0.2. 

The inertial weight w was reduced from wmax to wmin during iterations, where wmax was set to 0.5, 0.7, and 0.9, 

and wmin was set to 0.1, 0.3, and 0.5. The combination of c1=0.7, c2=0.1, wmax=0.7 and wmin=0.3 gave the best 

results. The maximum iteration limit was set to 60 and the maximum archive size was set to 80. 

The MOGA proposed by Ponnambalam et al. [19] was chosen as a baseline against which to compare the 

performance of our PSO algorithm. The objectives considered in the MOGA algorithm are minimization of 

makespan, minimization of total tardiness, and minimization of machine idle time. The MOGA methodology is 



based on the machine-wise priority dispatching rule (pdr) and the G&T procedure [8]. The each gene represents 

a pdr code. The G&T procedure was used to generate an active feasible schedule. The MOGA fitness function is 

the weighted sum of makespan, total tardiness, and total idle time of machines with random weights. 

The computation results showed that the relative error of the solution for Cmax and total idle time 

determined by the proposed MOPSO was better in 23 out of 23 problems than the MOGA. In 22 of the 23 

problems, the proposed PSO performed better for the solution considering total tardiness. Overall, the proposed 

MOPSO was superior to the MOGA in solving the JSP with multiple objectives.  

 

Conclusion 

While there has been a large amount of research into the JSP, most of this has focused on minimizing the 

maximum completion time (i.e., makespan). There exist other objectives in the real world, such as the 

minimization of machine idle time that might help improve efficiency and reduce production costs. PSO, 

inspired by the behavior of birds in flocks and fish in schools, has the advantages of simple structure, easy 

implementation, immediate accessibility, short search time, and robustness. However, few applications of PSO 

to multi-objective JSPs can be found in the literature. Therefore, we presented a MOPSO method for solving the 

JSP with multiple objectives, including minimization of makespan, total tardiness, and total machine idle time. 

The original PSO was proposed for continuous optimization problems. To make it suitable for job-shop 

scheduling (i.e., a combinational problem), we modified the representation of particle position, particle 

movement, and particle velocity. We also introduced a mutation operator and used a diversification strategy. 

The results demonstrated that the proposed MOPSO could obtain more optimal solutions than the MOGA. The 

relative error ratios of each problem scenario in our MOPSO algorithm were less than in the MOGA. The 



performance measure results also revealed that the proposed MOPSO algorithm outperformed MOGA in 

simultaneously minimizing makespan, total tardiness, and total machine idle time. 

We will attempt to apply MOPSO to other shop scheduling problems with multiple objectives in future 

research. Other possible topics for further study include the modification of the particle position representation, 

particle movement, and particle velocity. In addition, issues related to Pareto optimization, such as solution 

maintenance strategy and performance measurement, merit future investigation. 

 

Acknowledgments 

This study was supported by a grant from the National Science Council of Taiwan 

(NSC-96-2221-E-216-052MY3). 

Appendices 

Pseudo-code of the PSO for the multi-objective JSP is as follows. 

 

Initialize a population of particles with random positions. 

for each particle k do  

 Evaluate Xk (the position of particle k) 

 Save the pbestk to optimal solution set S 

end for 

Set gbest solution equal to the best pbestk 

repeat 

 Updates particles velocities 

 for each particle k do  



  Move particle k 

Evaluate Xk 

Update gbest, pbest, and S 

 end for 

until maximum iteration limit is reached 

 

References 

[1]Bean, J., 1994. “Genetic algorithms and random keys for sequencing and optimization,” Operations Research Society of America 

(ORSA) Journal on Computing, 6, 154–160. 

[2]Beasley J.E., 1990. "OR-Library: distributing test problems by electronic mail", Journal of the Operational Research Society 41(11) 

pp1069-1072. 

[3]Candido, M. A. B., Khator, S.K. & Barcia, R.M., 1998. “A genetic algorithm based procedure for more realistic job shop 

scheduling problems,” International Journal of Production Research, 36(12), 3437–3457. 

[4]Coello, C.A., Plido, G.T. & Lechga, M.S., 2004. “Handling multiple objectives with particle swarm optimization,” IEEE 

Transactions on Evolutionary Computation, 8(3), 256–278. 

[5]Esquivel, S.C., Ferrero, S.W. & Gallard, R.H., 2002. “Parameter settings and representations in Pareto-based optimization for job 

shop scheduling,” Cybernetics and Systems: An international Journal, 33, 559–578. 

[6]Fisher, H. & Thompson, G. L., 1963. Industrial Scheduling, Englewood Cliffs, NJ: Prentice-Hall. 

[7]Garey, M. R., Johnson, D. S. & Sethi, R., 1976. “The complexity of flowshop and jobshop scheduling,” Mathematics of Operations 

Research, 1, 117–129. 

[8]Giffler, J. & Thompson, G. L., 1960. “Algorithms for solving production scheduling problems,” Operations Research, 8, 487–503. 

[9]Gonçalves, J. F., Mendes, J. J. M. & Resende, M. G. C., 2005. “A hybrid genetic algorithm for the job shop scheduling problem,” 

European Journal of Operational Research, 167(1), 77–95. 



[10]Jain, A.S. & Meeran, S., 1999. “Deterministic job-shop scheduling: Past, present and future,” European Journal of Operational 

Research, 113, 390–434. 

[11]Kennedy, J. and R. Eberhart (1995), Particle swarm optimization. Proceedings of IEEE International Conference on Neural 

Networks 1995, 1942-1948. 

[12]Kobayashi, S., Ono, I. & Yamamura, M., 1995. “An efficient genetic algorithm for job shop scheduling problems,” In L. J. 

Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms (pp. 506–511). San Francisco, CA: 

Morgan Kaufman Publishers. 

[13]Lawrence, S., 1984. “Resource constrained project scheduling: An experimental investigation of heuristic scheduling 

techniques,” Graduate School of Industrial Administration (GSIA), Carnegie Mellon University, Pittsburgh, PA. 

[15]Lei, D. & Wu, Z., 2006. “Crowding-measure-based multi-objective evolutionary algorithm for job shop scheduling,” 

International Journal of Advanced Manufacturing Technology, 30, 112–117. 

 [14]Lei, D., 2008. “A Pareto archive particle swarm optimization for multi-objective job shop scheduling,” Computers & Industrial 

Engineering, 54(4), 960–971. 

[16]Liang Y.C., Ge, H.W., Zho, Y. & Guo, X.C., 2005. “A particle swarm optimization-based algorithm for job-shop scheduling 

problems,” International Journal of Computational Methods, 2(3), 419–430. 

 [17]Lourenço, H. R., 1995. “Local optimization and the job-shop scheduling problem,” European Journal of Operational Research, 

83, 347–364. 

[18]Nowicki, E. & Smutnicki, C., 1996. “A fast taboo search algorithm for the job shop problem,” Management Science, 42(6), 

797–813. 

[19]Pezzella, F. & Merelli, E., 2000. “A tabu search method guided by shifting bottleneck for the job shop scheduling problem,” 

European Journal of Operational Research, 120(2), 297–310. 

[20]Ponnambalam S. G., Ramkumar, V. & Jawahar, N., 2001. “A multi-objective genetic algorithm for job shop scheduling.” 

Production Planning and Control, 12(8), 764–774. 

[21]Ripon, K. S. N., 2007. “Hybrid evolutionary approach for multi-objective job-shop scheduling problem,” Malaysian Journal of 

Computer Science, 20(2), 183–198. 



[22]Sha, D.Y. & Hsu, C.-Y., 2006, “A hybrid particle swarm optimization for job shop scheduling problem,” Computers & Industrial 

Engineering, 51(4), 791–808. 

[23]Sha, D.Y. & Hsu, C.-Y., 2008. “A new particle swarm optimization for the open shop scheduling problem,” Computers & 

Operations Research, 35, 3243–3261. 

[24]Sun, D., Batta, R. & Lin, L., 1995. “Effective job shop scheduling through active chain manipulation,” Computers & Operations 

Research, 22(2), 159–172. 

[25]Suresh R.K. & Mohanasndaram, K.M. 2006., “Pareto archived simulated annealing for job shop scheduling with multiple 

objectives,” International Journal of Advanced Manufacturing Technology, 29, 184–196. 

[26]Taillard, E.D., 1993. “Benchmarks for basic scheduling problems,” European Journal of Operational Research, 64, 278–285. 

[27]Wang, L. & Zheng, D.-Z., 2001. “An effective hybrid optimization strategy for job-shop scheduling problems,” Computers & 

Operations Research, 28, 585–596. 

[28]Xia, W. & Wu, Z., 2005. “An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems,” 

Computers & Industrial Engineering, 48, 409–425. 

[29]Zhang, H., Li, X., Li H., Hang F. 2005. “Particle swarm optimization-based schemes for resource-constrained project 

scheduling,” Automation in Construction 14(3), 393–404. 

 

 

 

 

 

 

 

 

 



Table 1 2×2 example 

Jobs Machine sequence Processing times 

1 1, 2 p(1,2)=5; p(2,1)=4 

2 2, 1 p(2,2)=4; p(1,2)=3 

 

Table 2 Comparison of MOGA and MOPSO with three objectives. 

Benchmark N m 
Makespan 
(MOGA) 

Makespan 
(MOPSO) 

% 
Deviation 

Machine 
 idle time 
(MOGA) 

Machine 
idle time 

(MOPSO) 

% 
Deviation 

Total 
tardiness 
(MOGA) 

Total 
tardiness 

(MOPSO) 

% 
Deviation 

abz5 10 10 1587 1338 0 8097 3978 0 1948 611 0 

abz6 10 10 1369 1046 0 7744 2937 0 1882 339 0 

ft06 6 6 76 56 0 259 100 0 31 3 0 

ft10 10 10 1496 1045 0 9851 1999 0 3459 1534 0 

orb01 10 10 1704 1181 0 11631 3909 0 3052 191 0 

orb02 10 10 1284 1029 0 7585 3539 0 1565 137 0 

orb03 10 10 1643 1114 0 11138 3788 0 4140 247 0 

orb04 10 10 1543 1122 0 9802 3921 0 4951 221 0 

orb05 10 10 1323 1013 0 8322 3727 0 2195 30 0 

orb06 10 10 1645 1144 0 10836 3478 0 2601 0 0 

orb07 10 10 583 302 0 3423 1381 0 699 0 0 

orb08 10 10 1340 1000 0 8840 3542 0 3498 253 0 

orb09 10 10 1462 1044 0 9439 4224 0 2029 0 0 

orb10 10 10 1382 1077 0 8271 4177 0 1806 0 0 

la01 10 5 1256 709 0 3431 571 0 3324 721 0 

la02 10 5 1066 713 0 2687 573 0 2081 425 0 

la03 10 5 821 671 0 1722 633 0 1926 373 0 

la04 10 5 861 631 0 1798 557 0 3194 673 0 

la05 10 5 893 593 0 2182 473 0 1716 736 0 



la16 10 10 1452 1040 0 9169 2718 0 1127 1417 0.25732 

la17 10 10 1172 889 0 7044 3365 0 1779 53 0 

la19 10 10 1251 938 0 7164 2796 0 1581 733 0 

la20 10 10 1419 985 0 8745 2883 0 1451 407 0 

 
 

The English in this document has been checked by at least two professional editors, both native speakers of English. For a 

certificate, see:  

 

http://www.textcheck.com/cgi-bin/certificate.cgi?id=LbNsng  


