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Valid models require defined levels

A.T. Bahilla*, F. Szidarovszkya, R. Bottab and E.D. Smitha

aSystems and Industrial Engineering, University of Arizona, Tucson, AZ, USA; bBAE Systems, San Diego,
CA, USA
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A common mistake in modeling systems is mixing elements of different levels in the same
model. This paper explains levels, shows how levels can be obtained with decomposition
techniques and gives many examples of levels in models, architectures and frameworks.
Examples are given that show the confusion that results when levels are mixed. The paper
shows that complex models are usually composed of many aspects. Each aspect has levels and
the levels of one aspect are different from the levels of another aspect. The model must be
constructed using elements of the same level for each aspect.
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1. Examples of levels in different disciplines

Identifying levels in models is a basic modeling principle. This principle is not specific to any

field of application: it applies to models in general. This paper shows many examples of levels

in many fields of endeavour. The concepts presented in this paper are not restricted to

engineering.

A common mistake in modeling systems is mixing elements of different levels in the

same model. Therefore, an important task in designing and modeling systems is identifying

the level of the proposed model and its elements. However, the term level is often used

rather cavalierly, so here we will give a definition, and several examples. First the

dictionary definition: “level n. 1.a. Relative position or rank on a scale. 1.b. A relative

degree, as of achievement, intensity, or concentration . . . 3. Position along a vertical axis;

height or depth.”

The concept of examining a system at many physical orders of magnitude was presented by

Boeke (1957). Later Eames and Eames (1968) created a film of this concept and finally Morrison

and Morrison (1977) popularized the idea with the book Powers of Ten. These authors treated

physical decomposition as more and more levels of detail.

We tried to create a canonical prescription for levels in systems, but the best we could do is

present many examples of levels from many different fields. After our presentation of these

examples we present half-dozen examples of failures that were caused by level mistakes. Then

we present some generalizations that are meant to help modelers and designers to define levels

and avoid mistakes in mixing elements of different levels. We also suggest some reasons why it

so hard to keep levels consistent in a system. One of the primary reasons is that different aspects

of a system have different levels.
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Physical Decomposition is a commonly used decomposition technique. For

systems engineers, physical decomposition often offers these levels (Morganwalp and Sage

2003)

1. Enterprise

2. Family of systems

3. Systems

4. Segment

5. Element

6. Subsystems

7. Components

8. Subassembly

9. Parts

An army is divided into divisions, regiments, battalions, companies, platoons and solders. In

Julius Caesar’s time there was a ten to one ratio of the sizes of these elements. That is, ten solders

comprised a platoon and there were ten platoons in a company, which was commanded by a

centurion.

Functional Decomposition is another way to create various levels. MIL STD 499A said that

the preferred way to design a system was functional decomposition. Start with the top-level

system function and decompose it to lower and lower levels. Students used to query, “When do

you stop decomposing?” We used to answer, “When you get a function small enough to be

designed by a team of people.” However, we now answer, “When you get a function that can be

implemented by a commercial off the shelf component (Botta et al. 2006).” Here is an example

of functional decomposition for an automobile:

Move people

. Accommodate people

† Provide seats

† Entertain people

– Provide auditory stimulation

– Provide visual images

† Provide comfortable environment

– Heat interior

– Cool humans in the car

– Provide fresh air

– Sound proof interior from exterior

† Protect occupants

– Deploy air bags in a crash

– Absorb collision energy in crumple zones

† Move the automobile

† Overcome friction

† Accelerate

– Produce lateral acceleration

– Produce translational acceleration

@ Increase forward speed

@ Decrease forward speed

† Move in a smooth manner

– Minimize shocks

A.T. Bahill et al.554
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In the Business community, a work breakdown structure (WBS) shows different levels of work

packages. Project Management books (Kerzner 2003) describe the WBS like this:

In system design, use cases describe the required functionality of a system. Cockburn (2001)

says that an important slot in a use case is the level. His levels from top to bottom are

Cockburn (2001) says that you raise the level by asking, “Why is the actor doing this?” and

you lower the level by asking, “How is the actor going to do this?” J. D. Baker said, “A use case

diagram with the use cases of Login and Play Global Thermonuclear Warwould be difficult to
implement.” Login is at the lowest level, commonly called a sub-function or sub-goal. Play
Global Thermonuclear War is an example of the highest-level use case, commonly called the

Very-high summary level or an Essential use case. Use case diagrams should not mix use cases

of different levels.

The National Security Agency (2006) decomposes signals intelligence as

Intelligence—applied knowledge

Knowledge—facts relationships, context

Information—discrete facts, entities

Data—bit streams, receptacles

Signals—electrical impulses, sensors

The field of threat assessment has the following levels of abstraction:

Situation and threat assessment

Adaptive agents

Template matching

Feature extraction

Database assimilation

Fused multispectral images

Sensor data

Work breakdown structure levels

Level Responsibility Example

1 Management Program
2 Project
3 Task
4 Technical Subtask
5 Work package
6 Level of effort

Levels in use cases

Design scope Goal level Icon

Organization (black box) Very-high summary Cloud
Organization (white box) Summary Kite
System (black box) User goal Sea level
System (white box) Subfunction Fish
Component Too low for a use case Clam

International Journal of General Systems 555
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The lowest level is data from sources such as synthetic aperture radar, infrared detectors, GPS,

electro-optical sensors and intelligence. Data from many sources are fused into multispectral

images and these are condensed into a database (Waltz and Llinas 2000). Then particular

features are extracted (features include things such as objects, heartbeats of an

electrocardiogram, etc.). These features are matched against templates such as wing, wheel,

QRS complex, etc. These templates are passed to agents (Ferber 1999). These agents support one

or more of the relevant alternatives. These agents can trigger a preplanned sequence of activities.

For example, one might recommend that if agent A does X and agent B does Y, then hypothesize

Q, for which an appropriate sequence of actions might be to scan agent A with source R, launch

airplane S and if source R shows that agent A did Z then launch weapon T.

Science is organized in levels as shown in the following table based on Kang and Mavris

(2005).

The retina of the eye is arranged in layers. First, we will give an anatomical description

(structure, what) of these layers and then we will give a physiological description (function,

how). This example is included to show that the concept of levels is not restricted to models of

man-made systems.

Anatomically the retina has seven layers. The dark stained layers contain cell bodies and the

white layers contain axons and dendrites. The photoreceptor layer contains the outer segments of

the rods and cones. The outer nuclear layer contains the cell bodies of the photoreceptors.

The outer plexiform layer contains the connections from the photoreceptors to the bipolar and

horizontal cells and also the horizontal interconnections of the horizontal cells. The inner nuclear

layer contains the cell bodies of the bipolar, horizontal and amacrine cells. The inner plexiform

layer contains the connections from the bipolar cells to the ganglion cells and the amacrine cells

and also the dynamic horizontal interconnections of the amacrine cells. The ganglion cell layer

contains the cell bodies of the ganglion cells. And finally, the optic fiber layer contains the axons

running from the ganglion cells to the brain (Warwick 1976).

Physiologically each layer of the retina has a different purpose. The vertical signal

pathway is from the rod and cone photoreceptors to the bipolar cells to the ganglion cells and

then up to the brain. However, there are also horizontal signal processing layers (Kaufman and

Alm 2002).

Diffuse light excites a photoreceptor and turns it on. That photoreceptor excites its bipolar

cell and that bipolar cell in turn excites its ganglion cell. However, the diffuse light also excites

the neighboring photoreceptors. They excite their horizontal cells, which inhibit the central

photoreceptor’s bipolar cell. Therefore, the central bipolar cell is silent. However, a small spot

of light excites only the central photoreceptor and not its neighbors. Therefore, the central

bipolar cell will not be inhibited by its neighbors. It will get excited and it will excite its

Science is organized in levels

Level (scientific field) Typical mechanisms

Ecosystem (ecology) Predation, symbiosis, mimicry
Organism (biology) Growth factors, apoptosis, morphogenetic operators
Cell (biology) Mitosis, meiosis, genes
Organelle (microbiology) Enzymes, membranes, transport
Molecule (chemistry) Bonds, active sites, mass action
Atoms (physics) Protons, neutrons, electrons
Nucleus (physics) Quarks, gluons

A.T. Bahill et al.556
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ganglion cell, which will fire at a high rate. In summary, photoreceptors respond to individual

points of light. Whereas, bipolar cells respond to static patterns of light. In the case described

here, they respond to a small spot of light surrounded by darkness.

Next, the bipolar cells excite their ganglion cells and also the surrounding amacrine cells.

If the light pattern is moving then the amacrine cell modulation will affect the firing of the

ganglion cells. Thus, the ganglion cells respond to dynamic patterns of light. There are many

types of ganglion cells. We have just described on-center off-surround cells. There are also

on-off cells and opponent color processing cells. In the retina, the photoreceptors respond to

illumination. All other cells in the retina respond to patterns, movement and transients.

The ganglion cells send their signals to the lateral geniculate nucleus and from there to the

visual cortex.

Our visual system sees borders and contours. We see the world as a pattern of lines. This

system of lateral inhibition in the retina is the first step towards sharpening contours and picking

up on borders between light and dark. The ganglion cell ignores diffuse light, but a specific

pattern of light will turn it on. Higher up in the cortex, all these dots will be combined into lines,

which will be combined into curves, etc. Other areas of the cortex of the brain have a similar

layered structure.

The Hearsay speech understanding system used the blackboard architecture (Erman et al.

1980). The key features of the blackboard architecture are multiple cooperating sources,

multiple competing hypotheses, multiple levels of abstraction, feedback to the sources and the

blackboard, which is an associative memory. In order to understand speech, the Hearsay system

used the acoustic waveform to identify phonemes, which were then transformed into syllables.

The syllables were used to generate word candidates and the words were used to hypothesize

phrases. Finally the phrases were arranged into potential sentences. Each of these levels had its

own specialized computer processor that communicated with other processors through the

blackboard. Figure 1 shows an abstract blackboard with information being passed between

levels in a speech understanding task.

Artificial neural networks are hardware and software systems that are very good at pattern

recognition, if many examples of correct categorization are available. There are a dozen

common types of artificial neural networks. Most of the variation is in how the weights are

adjusted. Back propagation is probably one of the most common types. Back propagation

artificial neural networks typically have five layers: an input layer, the input-weight layer, the

hidden layer, the output weight layer and the output layer. Often a second hidden layer and

another layer of weights are added (Szidarovszky and Bahill 1998).

Figure 1. Illustration of a blackboard with information being passed between levels in a speech
understanding task.
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Levels in digital computer simulations are summarized nicely in the following table derived

from Zeigler et al. (2000).

They write that systems analysis is a process for modeling and subsequently understanding

existing systems. It is a process of going down through the levels. Whereas systems design is a

process of climbing up through the levels. This compares well with Cockburn’s statement that

you raise the level by asking, “Why is the actor doing this?” and you lower the level by asking,

“How is the actor going to do this?”

What seems to be common to all of these examples is that (1) there are about seven plus or

minus two levels (Miller 1956), (2) each level addresses a different purpose and (3) the low-

levels have detailed information and the high levels are abstract.

2. Related terms

Abstraction. So now, let us try to describe abstraction. Here are some dictionary definitions:

“abstract adj. 1. Considered apart from concrete existence . . . 4. Thought of or stated without

reference to a specific instance.” “abstraction n. The process of extracting the underlying

essence, removing dependence on real world objects.” Abstraction allows designers and

modelers to describe a problem at a high level by hiding low-level information. In general, the

higher the level of abstraction, the more things the system hides from the user.

In 1945, Pablo Picasso made a wash drawing of a bull. A month later, he finished his 11th

state of abstraction, which was composed of six lines. Célestin said, “When you stand before his

eleventh bull, it’s hard to imagine the work that went into it” (Picasso 2006). At another time, he

did an abstraction of his wife’s face in six stages. Picasso and Henri Matisse concurrently

developed abstractionism in modern art.

Digital computer simulations are written in levels

Level Name What we know at this level

5 (highest) Coupled component systems Components and how they are coupled together. The
components should be systems themselves, thereby
producing hierarchical structures

4 State transitions How states are affected by inputs, that is, given an initial
state we know the new state after the input is finished;
what outputs are generated in each state

3 System experiments Given an initial state, every input trajectory produces a
predictable output trajectory

2 Input/output behavior Time-indexed data collected from the source system, which
consists of input/output pairs

1 (lowest) Source system Inputs to apply, variables to measure and how to observe
them over time

Figure 2. A sequence of images going from real to abstract that describe respectively a single person
under certain circumstances, dozens of people, hundreds of people, thousands of people, millions of people
and (almost) all people. Drawings are by Angelo Hammond. Copyright q, 2005, Bahill, from http://www/
sie.arizona.edu/sysengr/slides/ used with permission.
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McCloud (1993) relates abstraction to universality. The more abstract a cartoon image is, the

more people it will describe. The photograph in Figure 2 is singular: it describes one person.

Whereas the smiley face cartoon is universal: it describes all people.

Abstration is not just eliminating detail; rather abstraction focuses on and changes specific

details. Depending upon the details you focus on, you will get different abstractions of the same

object. For example in software you might be interested in a sequence of objects {a–f}. If all you

want to do is extract or replace objects, then you can abstract this sequence as an array. But if you

also want to insert and remove objects, then you should abstract it as a list. Therefore, low-pass

or high-pass filtering is not abstraction. Abstraction may require human intelligence, not a digital

filter. Figure 3 shows low-pass and high-pass filtering.

Generalization is different from abstraction. Bjarne Stroustrup said, “There is always the

temptation to provide just the solution to a particular problem. However, unless we try

to generalize and see the problem as an example of a general class of problems, we may miss

important parts of the solution to our particular problems and fail to find concepts and general

solutions that could help us in the future.”

Generalization usually goes from the bottom to the top. For example, you might start with a

pile of data points. You could organize them into a scatter graph and then fit the data with a

function (e.g. spline) or statistical technique (e.g. Poison distribution). To further generalize you

could generate equations to describe the data. Finally, those equations could be organized into

vectors and matrices. Each step up removes detail and increases the generality of the result.

Going from the top to the bottom, there is a design method called consistent elaboration

(Wymore 1993, pp. 178–180). In it, the designer starts with a high-level system model and then

iteratively and systematically expands the input ports, output ports and state variables to create

lower levels.

In the unified modeling language (UML) (OMG 2006) generalization, which is related to

inheritance, takes you up the hierarchy and specialization takes you down.

Figure 3. An image of a person (left), a low-pass filtered version of that image (center) and a high-pass
filtered version (right). Copyright q, 2005, Bahill, from http://www/sie.arizona.edu/sysengr/slides/ used
with permission.

CMMI Levels

Level Characterization of the maturity of an organization’s processes

5 Optimizing Focus is on process improvement
4 Quantitatively Managed Process is measured and controlled
3 Defined Process is characterized for the organization and is proactive
2 Managed Process is characterized for projects and is often reactive
1 Initial Process is unpredictable, poorly controlled and reactive

International Journal of General Systems 559
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The capability maturity model integration (CMMI) categorizes organizations into five levels

according to the maturity of their processes (Chrissis et al. 2003).

The low-level processes are detailed and concrete. The high-level processes are more

abstract. Organizations are supposed to build themselves up, adding levels as they mature.

Granularity refers to the level of detail or the level of abstraction of each model. The analogy

is to rocks. Tiny rocks are called sand, small rocks are called gravel, larger rocks are called

pebbles, even larger ones are river stones and big ones are called boulders. A driveway is often

paved with gravel, where each rock is of the same size.

3. Level of abstraction is usually relative

Abstraction level is relative rather than absolute. It is a partial ordering over elements. We can

say that one element is at a higher-level than another is, but we cannot describe that level

absolutely.

For example, a government agency might have the following WBS

1. Homeland Security

2. Navy

3. Aircraft carrier task force

4. Airplanes

5. Weapon systems

6. Missiles

Whereas a missile manufacture might have

1. Family of missiles

2. Air-to-air missile

3. Ordnance

4. Safing system

5. Arming, firing and fuzing

6. Thermal batteries

And the battery manufacture might have another WBS . . .

An exception to the relativeness of decomposition is the open system interconnection (OSI)

architecture for telecommunication. The OSI uses a seven-layer model where each successive

abstract layer is built on top of a lower abstract layer (CISCO 2006).

1. The application layer contains user programs, such as Telnet, XML, HTTP, SSH and FTP.

2. Thepresentation layer formats and encrypts data tobe sent across a network. Protocols at this

layer are part of the operating systems of each computer.

3. The session layer specifies how to establish a communication session with a remote

computer. It specifies how to login to a remote computer and how to authenticate passwords.

It provides a way of knowing where to restart the transmission of data if a connection is

temporarily lost.

4. The transport layer hides details of network-dependent information from the higher layers.

The transport layer sends packets from machine-to-machine and guarantees that packets

arrive in the correct order andnumber.TheTransmissionControlProtocol (TCP) is primarily

in this layer.

5. The network layer determines howmessages are routed within the network. It transfers data

sequences from source to destination. The Internet Protocol (IP) is primarily in this layer.

A.T. Bahill et al.560
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6. The data link layer is concerned with the transmission of blocks (frames) of data. At this

layer, data packets are encoded and decoded into bits. It detects and possibly corrects errors

that may occur in the physical layer.

7. Thephysical layer transmits a bit streamat the electrical andmechanical level. It provides the

hardware for sending and receiving data on a carrier. RS-232 is a standard in this layer.

Entities in one level can communicate with entities in the same level and with entities

one layer above and below: but that is it. Communications cannot skip a level. The OSI is

only a model, not a standard. Therefore, it is not mandatory. The more modern universal

serial bus (USB) Specification (www.usb.org) is an Open Standard. It only considers the

lower three layers: Function Layer, USB Device Layer and USB Bus Interface Layer.

Likewise the integrated services digital network (ISDN) operates in the lower three layers.

Internet Reference Model has only five layers and they encompass all seven OSI layers

(Comer 2004).

Software is often designed with the following layered architecture (Evans 2004).

User interface (or presentation) layer

Application layer

Domain layer

Infrastructure layer

Some interlevel interactions such as dependencies and action initiation may be unidirectional.

This simplifies the implementation.

4. Why is defining levels important?

Consider the activity diagram of Figure 4 from baseball for one pitch and responses to it. Assume

(1) a groundball is hit into fair territory, (2) the ball is fielded and thrown to first base, (3) the

fielder on first base catches the throw and (4) there are no other base runners.

Now consider the Batter in this activity diagram. We could model the state of his mind with

the following attributes and states:

experience: rookie, veteran, imminent free agent

salary: considered too low, considered too high, commensurate with earned respect

physiology: age, health, on disabled list

competition: other players at his position

Does this model fit with the activity diagram? No, because it is at a different level.

Let us reconsider the Batter in the activity diagram again. We could model the state of his

mind with the following attributes and states:

count: balls, strikes, outs

mentalModels: speed of last pitch, umpire’s last call

situation: runners on base

signals: last signal from coach

Does this model fit with the activity diagram? Yes, because it is at the same level.

Figure 5 shows class diagrams for the Batter of the activity diagram in Figure 4. Class

diagrams have three compartments: the top compartment contains the name, the middle

compartment contains the attributes (things that are stored in memory) and the bottom

compartment contains the operations or functions that the class performs. Figure 5 shows a class

International Journal of General Systems 561
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diagram at the salary negotiation level (left) and a class diagram at the batting level (right).

The diagram on the right fits the activity diagram of Figure 4; whereas the one on the left does

not. If in a single model one diagram is at one level and another is at a different level, then you

should expect a failure to communicate.

Figure 4. An activity diagram for one pitch and a partial response to it (Assuming it is a groundball hit into
fair territory. The fielder on first base catches the throw. There are no other base runners.). Copyright q,
2004, Bahill, from http://www/sie.arizona.edu/sysengr/slides/ used with permission.
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Bahill has stated, “The most common student mistake in modeling that I have observed in

four decades of teaching is creating elements at different levels in the same model; for example

writing a use case at a high level and a creating a class diagram at a low level.”

Scaling up an old design can cause levels mistakes. It would be easy to design a red brick

arch to span a small creek, but if this same design were used for a bridge across the Grand

Canyon, you should expect failure. A design that is successful at one level might not be

successful at a higher-level. Bahill and Henderson (2005) studied two dozen famous failures and

concluded that two of them were due to faulty scale up of an old design. The next four examples

are based on this paper.

The original Tacoma Narrows Bridge was a scale up of an old design. But the strait where

they built it had strong winds: the bridge became unstable in these crosswinds and it collapsed in

1940. The George Washington Bridge over the Hudson River in New Your City was built with

the same design ten years earlier. It came in under budget and ahead of schedule. It currently

carries 300,000 vehicles per day. It did not resonate and self-destruct. The George Washington

Bridge had a Ratio of Length to Cross Section Area of about 4. For the Tacoma Narrows Bridge

they increased the level of the Ratio of Length to Cross Section Area to about 63. This change in

level caused the failure. Scaling up an old design often causes level mismatches.

The French Ariane 4 missile was successful in launching satellites. However, the French

thought that they could make more money if they made this missile larger. So they built the

Ariane 5. It blew up on its first launch destroying a billion dollars worth of satellites.

The designers faultily assumed that their design that worked at one level of physical size would

work at the next higher-level. It did not. The software and the hardware were at different levels.

The computer software was at the old level and the newer, bigger Ariane 5 missile was at a

higher-level.

The Space Shuttle Challenger blew up in 1986. Beforehand, perceptive engineers were

focused on the low-level risks: low temperature and possible failure of the O-rings (Feynman

1985, Tufte 1997). But the managers were so focused on the high-level political consequences

Figure 5. Class diagrams for the Batter of Figure 4 at the incorrect (left) and the correct (right) level.

Scale up of an old bridge design

Bridge Length (m) Width (m) Depth (m) Ratio of length to cross section area

George Washington Bridge 1450 37 10 4
Tacoma narrows Bridge 1800 12 2.4 63
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of delaying the launch that they did not pay attention to low-level details like the effect of

temperature on O-rings. One group was thinking a low-level and another group was thinking at a

high level.

On the Mars Climate Orbiter, the prime contractor, Lockheed Martin, used English units

for the satellite thrusters while the operator, JPL, used SI units for the model of the thrusters.

Therefore, there was a mismatch between the space-based satellite and the ground-based

model. Every time the thrusters fired, error accumulated between the satellite and the model.

This caused the calculated orbit altitude at Mars to be wrong. Therefore, instead of orbiting, it

entered the atmosphere and burned up. Giving the units of measurement is a low-level

modeling task. Using different levels of measurements is a fatal modeling flaw.

The system designer must produce designs for both the product and the process that will

produce it. In one of Bahill’s graduate system design classes, the best student project design

contained the following requirements (Abadi and Bahill 2003, p. 112)

1. Acquisition Time (in months) baseline ¼ 3 months. The number of months required to

complete the design in order to get the product to market.

2. Acquisition Cost (in dollars). The project should be completed within the budget

established for this effort: $425,000.

3. Manufacturing Cost (in dollars/racket) Baseline ¼ $24. The tennis racket design must

consider the expense of manufacturing.

These three requirements were presented at the same level: this was a mistake. The second of

these requirements is clearly a process requirement and therefore should not be in the product

documents. They were presented at the same level, implying that they were siblings. In reality

there should have been a trace relationship, a parent–child relationship, between them. In the

UML community (OMG 2006) the process documents are called the Business Model, and they

are separate from the product documents. In a requirements specification, tractability is very

important (Daniels and Bahill 2004). Traceability is a manifestation of levels.

Possible reasons for level mistakes. A typical system evolves through the following life

cycle phases: State the Problem, Discover Requirements, Investigate Alternatives, Design the

System, Implementation, Operation and Maintenance and Retirement. Different components

will progress through their life cycle phases at different rates, which should produce the

opportunity for level mismatches. Other potential reasons for level mismatches include not

understanding levels in the initial formulation and organizational hierarchies that create havoc.

Models with use cases at different levels of abstraction will be hard to understand.

Furthermore some parts of the system will seem to be high priority just because they are

elaborated more, whereas other parts will seem less important because they are modeled briefly

(Övergaard and Palmkvist 2005).

Mistakes in mixing elements of different levels are common in abstract systems, but not in

physical systems, because such mistakes would be ridiculously obvious in physical systems. For

example, a model railroader would never put an N-gauge tunnel in an HO gauge model railroad.

Similarly a naval modeler would never put a 1:144 scale model of an F-22 on the deck of a 1:500

scale model of the U. S. S. Ronald Reagan.

5. Multiple aspects

Not only do systems have multiple levels, but there are also multiple aspects that must be

considered. In this paper, we have shown functional decomposition, physical decomposition

and task decomposition (a WBS). There is also requirements decomposition (which we have

not shown in this paper, see Hooks and Farry 2001 and Bahill and Dean 2007). We could look
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at all four of these aspects for most systems. Previously, we discussed two aspects of the retina:

anatomy and physiology. The Zachman (1987) framework uses the following aspects: Scope,

Business Model, System Model, Technology Model, Detailed Representation and Real System

(Bahill et al. 2006). These are aspects, not levels: a business model, for example, can have a lot

of detail in it (Cohen 2003, Cohen and Wallace 2003). To help a team operate a complex

system the documentation should address the following three aspects: equipment knowledge,

task knowledge and team knowledge (Rouse et al. 1992).

We will now show an explicit example of many levels for two different aspects of a system.

The following table shows two aspects of a softball game played by an NCAA Women Softball

team.

These two aspects are orthogonal: contents of a box in the left column are not related to

contents of a box in the right column, except at the level where they intersect: models for one

pitch will be related to the spin, speed and deflection of the ball. A system should not contain

models of the sweet spot and also models for the rotation of the moon. The levels in the

decomposition of the performance aspect are independent of the levels in the decomposition of

the physical aspect. Putting “One Career” and “Expansion of the universe” in the same model

would make no sense. The only conjunction that makes sense is the intersection “One pitch” and

“Spin, speed and deflection.”

Naive students of physiology and anatomy are often confused, because they expect

congruence between anatomical and physiological levels. But in general it does not exist. There

is no one-to-one match in the levels that we have described for the retina of the eye.

The UML uses the following diagrams to describe various aspects of a system: use case, use

case diagram, communication diagram, sequence diagram, class diagram, state machine

diagram, activity diagram and deployment diagram. The IDEF0 modeling scheme cleared up a

lot of confusion when they separated inputs into two aspects: data and control.

Ten levels in two aspects of a softball game

Performance aspect Physical aspect

One career Expansion of universe
One season Rotation of sun
One game Rotation of moon
One inning Rotation of Earth: Coriolis forces
One at-bat Weather: Gulf Stream, barometric pressure
One pitch and subsequent activity Atmosphere: lift, drag, temperature, humidity, winds
One pitch ( ) Spin, speed and deflection
One collision 3D structure: four concentric shells
The sweet spot Material: yarn, cork, rubber, horsehide
One vibrational mode Atomic structure

Martin Glinz’s (www.ifi.unizh.ch/,glinz) four aspects of abstraction

Whole General High-level Type

" composition " generalization " service " classification
# decomposition # specialization # usage # instantiation
Part Special Low-level Instance
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Each aspect of a system will be decomposed into levels. But the levels for one aspect are

independent of the levels of another aspect. A system has a physical decomposition, a

functional decomposition and a requirements decomposition. It would be a mistake to allocate

a high-level system function to a low-level part. It would be a mistake to link a detailed

low-level requirement to a top-level system function. Developing requirements in the use

cases helps keep the levels of the functions and the requirements the same (Daniels and

Bahill 2004).

6. Generalizations about modeling

All components in a model should be at the same level, but models can be broken into submodels

that are arranged hierarchically in levels. Models should only exchange inputs and outputs with

other models of the same level, or maybe one level higher or lower. In Figure 6, models 0, 1 and

2 are at one level. They exchange information with each other. In this figure, Model 1 has its own

functions, has interface definitions and it uses submodels 1.1, 1.2 and 1.3. These submodels

exchange information with each other, with model 1 in the level above and with models 1.3.1,

1.3.2 and 1.3.3 in the level below. However, as shown in Figure 6, models should not skip levels

in exchanging information. Feedback loops are not an exception to this rule.

Figure 6 applies to modeling, analysis, system design and organizational functioning. For all

of these tasks it is important to pay attention to the levels of the communicating entities. For

example, if Figure 6 were an organization chart, then person 1.3.1 would routinely communicate

with 1.3.2, 1.3.3, 1.3.1.1, 1.3.1.2, 1.3.1.3 and 1.3. But if 1.3.1 were to communicate with 1.2,

then he or she would have to be very careful to keep 1.3 informed, because the normal interfaces

for that communication would not have been defined.

You cannot skip levels in the judicial system. If a policeman gives you a traffic ticket, you

cannot appeal it immediately to the US Supreme Court. You must first go through all of the

lower courts.

We now present a summary example of various levels in a task. This example is that of

codebreaking and it comes from Kahn (1996).

Tasks in different levels for codebreaking

Level of abstraction Content Comments

Proof Diplomatic tricks Prove that your translation is correct
Translations If Captain Dreyfus has not had

relations with you . . .
Use the sentence and an Italian translator

to get this translation
Sentences Se Capitano Dreyfus non ha

avuto relazione . . .
Use individual words to get this sentence

Words Dreyfus Use the plaintext and the Baravelli
Codebook to get this word

Plaintext 227 1 98 306 Use the ciphertext and the cipher to get
this plaintext

Ciphertext (Telegram) 527 3 88 706 Use the international Morse code message
and a transcription table
to get this cipher text

International Morse code ††††† †† – – – – – †††
††† – – – – – †† – – – ††
– – ††† – – – – – – ††††

This is the original transmission
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Information goes up and down this hierarchy, but it cannot skip levels. The right column in

the above table describes the upward process. An example going downward is that

cryptographers found thatDr at the word level would be coded as 227 in the plaintext level. Then

they discovered that 227 of the plaintext level corresponded to 527 of the ciphertext level. This

helped them to discover the cipher that was used.

There are many aspects to codebreaking. In addition to the cryptology shown above,

frequency analysis studies the rate of message traffic between network nodes. Spies aid the

collecting of human intelligence. Photoreconnaissance missions gather imagery information.

These aspects are all decomposed into their own independent levels.

Most systems are designed as hierarchies of components. Interconnecting components adds

complexity, problems and concerns. Typically a model will be interested in its inputs, outputs,

functions and states: for simplicity let’s call these variables. When a model is interconnected

with another model, it now becomes interested in some of the other model’s variables: but it

cannot get away with that. It must contend with all of the other models variables. This is what

adds complexity. A second problem produced by interconnecting components concerns the way

the variables are described. The variables of low-level models will typically be designed with

high accuracy. Whereas variables in higher-level models will be described with statistical

distributions characterized by the type, mean, variance and multiple modes, which are all more

uncertain than the variables in the low-level models. Merging high-accuracy variables of the

low-level models with uncertain summary statistics of the higher-level models is dangerous: it

could destroy the validity of the low-level models. A third consideration needed because of

interconnecting components concerns inputs and outputs. When low-level models are integrated

into higher-level systems the inputs and outputs of interest are changed. The low-level models

are concerned with the interaction of high-accuracy low-level inputs and outputs. Whereas the

higher-level system (and the external world) ignores these low-level inputs and outputs and is

only concerned with the higher-level inputs and outputs.

Resnick (1994) noted that many layered systems exhibit emergent behaviours.

He documented how seemingly straightforward extrapolation from a lower level often fails to

predict behaviour at a higher-level. This occurred in his simulation of an ant colony. No ant gives

orders or tells other ants what to do. Instead, each ant reacts to stimuli and leaves behind a

pheromone trail, which provides a stimulus to other ants. Each ant is an autonomous unit that

reacts depending on its local environment and its genetically encoded rules. No single ant is

intelligent, but ant colonies exhibit complex behaviour. Emergent behaviour means that the

system is capable of doing something that was not planned in the design of the constituent parts.

Figure 6. Models should be hierarchical. Models should not skip levels in exchanging information.
Copyright q, 2004, Bahill, from http://www/sie.arizona.edu/sysengr/slides/ used with permission.
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It is a new concept in the system of systems architecture spawned by the DoD evolutionary

acquisition life cycle model.

Wilber (2000) in his Theory of Everything organizes things into levels of holons. He says that

if a level of holons is completely destroyed, then all of the levels of holons above it are also

destroyed, but none of the levels of holons below are destroyed. For example, a lesion in the

lateral geniculate nucleus will stop image processing in the visual cortex, but the cells in the

retina will continue to function correctly. In codebreaking, if we eliminate the language

translators, then we will not be able to understand the messages, but the cryptologists will still be

able to continue their low-level work. In the CMMI, if the Integrated Project Management

Process (level 3) were destroyed then Quantitative Project Management (level 4) would be

impossible, but Project Planning (level 2) could continue.

We cannot describe in general what levels should be for systems that have evolved.

However, in models where the levels were designed, we might be able to extract general

principles. In this paper, we described two models where the levels were designed: the OSI

seven-layer architecture model for telecommunication and the CMMI.

The CMMI (http://www.sei.cmu.edu/cmmi/) consists of industry best practices that address

thedevelopment andmaintenanceof products and services over the total system life cycle (Chrissis

et al. 2003). In the CMMI, the five levels of institutional maturity are defined. Then it is explained

which of the 25 process areas should be in each level. A process area is a collection of related

processes. Each process area is a different aspect of the company. Each process area has a

description, specific goals and generic goals. The description contains a purpose statement,

introductorynotes and an explanationof relatedprocess areas.The specificgoals are unique to each

process area: they vary in number and complexity from process area to process area. The specific

goals are achieved by performing specific practices, which are supported by typical work products

and subpractices. The generic goals are grouped according to common features. The statement of

each generic goal is the same for all process areas. The generic goals are achieved by performing

generic practices that must be individually elaborated for each process area. The process areas are

at different levels of abstraction. For example, Causal Analysis and Resolution (level 5) is a more

abstract process area than Supplier Agreement Management (level 2).

A company implements a CMMI model by creating processes that satisfy each process area

and assembling these into a model that describes how that company does business. This is an

evolutionary procedure taking the company from level 1 through level 2, to level 3 and for a

verywell run company through level 4 all thewayup to level 5.Aparticular process areawould not

be added to the company’s model until after its lower-level process areas had already been

included. A company’s implementation of any individual process area is usually hierarchical.

Now, what general principles can we extract from the CMMI model? The levels are defined.

Each process area is identified as belonging to a particular level. Each process area description

states how each process is invoked. The model is arranged in a hierarchy and each process area is

hierarchical. All process areas have the same general structure. However, process areas in the

same level have greater similarities than process areas in different levels. The relationships

between process areas are described. Of the 101 relationships that are listed, only 12 skip levels

and these skip-level relationships are carefully defined. Processes at higher-levels are more

abstract. The process areas are the aspects of the model.

Why is it hard to get the level right? (1) Getting the correct level for amodel of a component is a

complex activity, because, for example, each component could be in a different phase of its life

cycle. Therefore, at any one time, different components could exist at different levels of detail.

A model may need to contain abstractions of these components. So each component might need a

different amount of abstraction. (2) There is no known general principle by means of which levels

may be established. (3) Many aspects of each component must be modeled. Each aspect has levels
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and the levels of one aspect are different from the levels of another aspect. The model must be

constructed using elements of the same level from the different aspects.

7. Summary

Most systems are impossible to study in their entirety, but they are made up of hierarchies of smaller

subsystems that can be studied. Simon (1962) discussed the necessity for such hierarchies in complex

systems. He showed thatmost complex systems are decomposable, enabling subsystems to be studied

outside the entire hierarchy. For example, when modeling the movement of a pitched baseball, it is

sufficient to apply Newtonian mechanics considering only gravity, the ball’s velocity and the ball’s

spin (Bahill andBaldwin 2007). One need not be concerned about electron orbits or themotions of the

sun and the moon. Forces that are important when studying objects of one order of magnitude seldom

have an effect on objects of another order of magnitude.
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