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Abstract
This article illustrates how the paintings of visual artists activate multiple brain processes that con-
tribute to their conscious perception. Paintings of different artists may activate different combinations 
of brain processes to achieve their artist’s aesthetic goals. Neural models of how advanced brains see 
have characterized various of these processes. These models are used to explain how paintings of 
Jo Baer, Banksy, Ross Bleckner, Gene Davis, Charles Hawthorne, Henry Hensche, Henri Matisse, 
Claude Monet, Jules Olitski, and Frank Stella may achieve their aesthetic effects. These ten painters 
were chosen to illustrate processes that range from discounting the illuminant and lightness anchor-
ing, to boundary and texture grouping and classification, through filling-in of surface brightness and 
color, to spatial attention, conscious seeing, and eye movement control. The models hereby clarify 
how humans consciously see paintings, and paintings illuminate how humans see.
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“…nobody wants to be told that somebody sees better than they do. But I  
believe it is the case. Some painters are experts…they have given their lives to 
it…Now that to me is the glory of art.”

(Sergy Mann et al., 2016, p. 267)
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1.  Introduction

1.1.  Paintings as Probes of Brain Processes

Whenever an artist manipulates a canvas, and experiences conscious percepts 
of an emerging painting, the artist is performing an experiment that probes 
different combinations of the brain processes whereby we see. Artists typi-
cally succeed in doing so without having explicit knowledge about the brain 
processes that mediate between painterly manipulation and percept. The par-
ticular interests and aesthetic sensibilities of different artists have led each 
of them to instinctively emphasize different combinations of these brain pro-
cesses. These different combinations may be one hallmark of different artists’ 
styles, and indeed of entire artistic movements, and they evolve with each 
artist’s experiences of the world.

By working to achieve aesthetic and conceptual goals on two-dimensional 
surfaces, painters have hereby explored and exploited principles of the human 
visual system. As a result of this process, there is an incredible richness of 
issues that paintings elicit, both scientific and aesthetic. This article address-
es various of these issues through a discussion of specific paintings by well-
known artists that exploit different combinations of brain processes in order to 
achieve their aesthetic goals. Illustrative paintings or painterly theories by ten 
artists will be given a unified analysis in the light of neural design principles 
and mechanisms that have been articulated and computationally characterized 
by the most advanced neural models of how advanced brains consciously see. 
Where appropriate, the structure of the examined paintings will be tied to the 
artist’s intentions, or to reviews of the artist’s work written by art historians, 
curators, or critics.

There are many other sources available that link the science of vision to the 
appreciation of art. The informative and beautiful books by Margaret Living-
stone (Livingstone, 2002) and Semir Zeki (Zeki, 1999) are particularly nota-
ble. However, these are contributions by leading experimental neuroscientists 
that describe fascinating facts about the brain and visual perception, but do not 
explain how brain mechanisms give rise to conscious visual percepts. There is 
also a vast field of art history and aesthetic theory, and many alternative neu-
ral models, that do not make the link between brain dynamics and conscious 
psychological experiences, and will thus not be further discussed.

Cavanagh (2005) has noted that “discrepancies between the real world and 
the world depicted by artists reveal as much about the brain within us as the 
artist reveals about the world around us” (p. 307). This article explains some 
of the ways in which visual percepts differ from the ‘real world’, notably how 
certain visual illusions have been exploited in paintings by artists. The main 
focus of the article is not, however, on discrepancies between the real world 
and the world depicted by artists, but is rather upon the brain organizational 
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principles and mechanisms that lead to conscious visual percepts, and how 
these principles and mechanisms have influenced the paintings of different 
artists.

Other writers have questioned the ability of science to clarify how humans 
appreciate the beauty of artworks. For example, Conway and Rehding (2013) 
write that “it is an open question whether an analysis of artworks, no matter 
how celebrated, will yield universal principles of beauty” and that “rational 
reductionist approaches to the neural basis for beauty… may well distill out 
the very thing one wants to understand… Its progress in uncovering a beauty 
instinct, if it exists, may be accelerated if the field were to abandon a pursuit 
of beauty per se and focus instead on uncovering the relevant mechanisms of 
decision making and reward and the basis for subjective preferences… This 
would mark a return to a pursuit of the mechanisms underlying sensory knowl-
edge: the original conception of aesthetics.”

The current article makes no attempt to describe “universal principles of 
beauty.” Nor does it “focus on uncovering the relevant mechanisms of deci-
sion making and reward and the basic for subjective preferences.” Such an 
analysis would require the study of how perceptual, cognitive, and emotional 
processes interact. Although there are some promising approaches to try-
ing to understand aesthetic emotions by using mathematical models of the 
mind (e.g., Perlovsky, 2010), our goal is to first try to better understand the 
brain mechanisms of perception and cognition whereby humans see paint-
ings, and whereby painters have achieved their aesthetic goals. There are also 
related modeling studies of how the perceptual and cognitive processes that 
are described herein interact with emotional processes to create conscious ex-
periences of seeing, knowing, and feeling (e.g., Grossberg, 2013, 2017). We 
believe that these more comprehensive theoretical insights will more easily be 
applied to an appreciation of how visual art is experienced when it can build 
upon insights such as those described herein.

This article accordingly describes illustrative paintings or painterly the-
ories of ten artists in light of neural models such as the Form-And-Color-
And-DEpth (FACADE) model of 3D vision and figure–ground perception 
(e.g., Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997; Kelly and 
Grossberg, 2000), and the 3D LAMINART model of how identified lami-
nar circuits in visual cortex embody and extend FACADE design principles 
and mechanisms (e.g., Cao and Grossberg, 2005, 2012; Fang and Grossberg, 
2009; Grossberg, 1999; Grossberg, Mingolla, and Ross, 1997; Grossberg and 
Yazdanbakhsh, 2005). These are currently the most advanced computational 
theories of how brains see. In particular, these models have provided unified 
explanations and predictions of much more psychological and neurobiological 
data about vision than other models. They are also the only available neural 
models that propose an explanation of what happens in a viewer’s brain when 
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having a conscious visual experience, including the viewing of a painting. 
These models will therefore be used to link paintings, as visual inputs, to the 
brain mechanisms that create conscious visual percepts of the paintings. This 
discussion is organized in a way that may shed new light on artists’ aesthetic 
struggles, and on how humans see the paintings that resulted from them.

The article thus begins with a review of key concepts and mechanisms from 
these models as a basis for discussing particular paintings by different artists. 
The article hereby continues in the tradition of the Grossberg (2008) article 
on The Art of Seeing and Painting, but with an expanded selection of artists to 
emphasize different combinations of brain processes. Using these examples, 
artists can, in the future, have at their disposal a more precise knowledge of 
how their painterly manipulations may give rise to the conscious percepts  
of a completed painting.

There is a vast experimental literature about vision that is relevant to the 
chosen paintings, but that cannot be comprehensively reviewed in this article 
for lack of space. Key data will nonetheless be described in order to make 
specific points. Interested readers can find many other data described and ex-
plained in the cited modeling articles, as well as various data that these models 
have successfully predicted. There are also alternative vision models that will 
not be discussed because they do not incorporate key concepts and mecha-
nisms that will be needed below to carry out our analyses and do not provide 
a linking hypothesis to conscious seeing. Comparative analyses of various of 
these models can also be found in the cited modeling articles.

1.2.  From Gist to Scene Understanding

When one first looks at any scene, whether it is in a painting or in the physi-
cal three-dimensional world, the information extracted from it most quickly is 
the gist (Friedman, 1979; Intraub, 1999; Oliva, 2005; Potter, 1976; Potter and 
Levy, 1969). Gist is capable of providing, within a single glance, sufficient 
information for recognizing what type of scene it is, whether of a city street, 
forest, mountain, coast, or countryside; cf., Oliva and Torralba (2001) and 
Grossberg and Huang (2009). Our discussions below will review how the gist 
of a scene can be computed from properties of the basic functional units of 
vision—boundaries and surfaces—as can a wide range of other scenic proper-
ties, including 3D shape, boundary groupings, texture, shading, color, bright-
ness, and object identity. All of these properties can interact to influence how 
a 3D scene or a 2D painting can generate a context-sensitive 3D representation 
in the mind of a viewer.

Gist can be derived from a process that is primarily bottom-up; that is, 
one that can be derived from information coming from a scene to the retinas, 
which then send signals that propagate ever deeper into the brain. Top-down 
processes can also strongly influence the 3D representations that we see; that 
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is, processes that begin at higher levels of brain processing and send signals 
that propagate towards levels ever closer to our retinas. These top-down pro-
cesses include volitionally-controlled spatial attention and scenic expectations 
that are based upon knowledge of objects and scenes that have been learned 
from previous experience. Our mechanistic account will invoke both bottom-
up and top-down processes to derive its unified comparative analysis of dif-
ferent paintings.

The emphasis on top-down vs. bottom-up processes has a long history in  
visual perception, and has triggered an enduring controversy about how we 
see and recognize the world. Hermann von Helmholtz, one of the greatest 
scientists of the nineteenth century, advocated a top-down view when he 
proposed that we see using unconscious inferences, or learned expectations 
(Fig. 1), to see what we expect to see, based on past experiences. In con-
trast, Gaetano Kanizsa provided brilliant counterexamples to Helmholtz’s  
hypothesis using images, such as the one in Fig. 2 (right panel), that violate 
expectations (Kanizsa 1955, 1974, 1979). Here, the percept of an emergent 
cross whose horizontal bars lie behind the emergent square, but whose vertical 
bars lie in front of it, should be impossible if our learned expectations about 
squares usually being flat determined the percept. Kanizsa emphasized the 
power of bottom-up visual processes, such as adaptive filtering and perceptual 
grouping, that act directly on visual scenes and images at early stages of brain 
processing.

Both Helmholtz and Kanizsa were partly correct. A more comprehensive 
understanding has arisen from neural models that explain how bottom-up and 

Figure 1.  Helmholtz emphasized top-down effects on perception, which he called “unconscious 
inferences.” This concept embodied the idea that we see what we expect to see based upon past 
experiences. Kanizsa, in contrast, emphasized that perceptual processes for seeing often do not 
lead to percepts that would be expected from learned familiarity.
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top-down processes work together to generate an attentive consensus, or adap-
tive resonance, between what is there in the world and what we expect to see 
based upon our past experiences. Such a consensus typically involves all the 
processes of adaptive filtering, perceptual grouping, and attentive matching of 
learned expectations with bottom-up data. This Adaptive Resonance Theory, or 
ART, also explains how we can rapidly learn about a changing world through-
out life, and become conscious of events as we do so (Carpenter and Grossberg, 
1987, 1991; Grossberg, 1976, 1980, 2013, 2017). Helmholtz and Kanizsa could 
not fully make these connections because they did not have the critical intuitive 
and mathematical concepts needed to express them clearly. ART concepts will 
be summarized in Sect. 2.3 and beyond as one of the tools in our analysis. To 
get started, key bottom-up processes first need to be reviewed.

2.  Theoretical Introduction

This section reviews some of the basic neural principles and mechanisms 
that will be used to discuss paintings by several artists. Section 3 will build 
upon this introduction to provide additional information that will also be 
needed. Section 4 will apply this information to analyze paintings by Jo Baer, 
Banksy,  Ross Bleckner, Gene Davis, Charles Hawthorne, Henry Hensche, 
Henri Matisse, Claude Monet, Jules Olitski, and Frank Stella, whose paintings 
benefit from different combinations of visual properties.

2.1.  Boundary Completion and Surface Filling-In

The functional units of visual perception are 3D boundaries and surfaces, or 
more exactly, 3D representations of completed boundary groupings and of 

Figure  2.  Kanizsa stratification images. (Left) The left image is most frequently seen as a 
cross in front of a partially occluded square. The percept is, however, bistable with the square 
occasionally seen in front of the cross. In each percept, the ambiguous white within the 
boundaries of the figure that is seen in front belongs to that figure, so that the other figure is 
completed amodally behind it. (Right) When vertical lines bound the vertical bars of the square, 
the corresponding bars are seen in front of the square. Despite this fact, the horizontal bars of 
the square are most frequently seen behind the vertical bars of the cross. This latter percept 
violates expectations that are based on past experiences with flat crosses and squares.
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filled-in surfaces (Grossberg, 1987a, b, 1994). The words ‘completed’ and 
‘filled-in’ refer to processes that deal with the incomplete nature of boundary 
and surface information that is propagated bottom-up to the brain from each 
retina. The nature of the incompleteness may be due to the environment, or to 
the structure of the retina itself.

Figure 3 shows a famous example of a Dalmatian in Snow wherein the 
incompleteness of boundaries comes from the visual environment. When we 
first look at this picture, it may just look like an array of black splotches of 
different sizes, densities, and orientations across the picture. Gradually, how-
ever, we can recognize the Dalmatian in it when boundary groupings form in 
our brain between the black splotches. These emergent boundaries are visual 
illusions that are not in the image itself. They are created in the visual cortex. 
Despite being illusory, however, these boundary groupings are very useful in 
enabling us to recognize the dog. This is particularly remarkable because the 
emergent boundaries are perceptually invisible, or amodal; they are not lighter 
or darker than the white background, nor a different color, nor perceived at 
a different depth. This percept illustrates that we can consciously recognize 
invisible boundaries. Both invisible and visible boundary groupings help us 
to group image fragments into object boundaries that are sufficient for object 
recognition.

Figure 3.  Dalmatian in Snow. The initial percept of black splotches on white paper gradually 
becomes recognizable as a Dalmatian in snow as amodal boundaries get completed between the 
splotches of the Dalmatian's body.
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The Dalmatian in Snow example illustrates that some boundaries are invis-
ible. Grossberg (1984, 1987a, b, 1994, 1997) predicted, moreover, that “all 
boundaries are invisible”, at least within the boundary formation stream of 
the visual cortex. Some other examples of this boundary property are provided 
in Fig. 4. Figure 4 (upper row) includes a Kanizsa square (left panel) and a 
reverse-contrast Kanizsa square (right panel).

The Kanizsa square is a visual illusion that is induced by boundary comple-
tion between pairs of collinear pacman edges. The square is visible because 
each of the four black pacmen induces bright contrasts within the square. 
These contrasts can then spread, or fill-in, surface brightness or color within 
the illusory square boundary until they hit either the real pacman boundaries 
or the illusory square boundaries. This flow of brightness and color behaves 
much like a fluid that diffuses away from a source. Boundaries act like a dam 

Figure 4.  (Left, upper row) In the percept of a Kanizsa square, the illusory boundary square 
is rendered visible due to the enhanced brightness inside the square relative to the background. 
See the computer simulation in Fig. 6. (Right, upper row) The boundary of the reverse-contrast 
Kanizsa square can be recognized without being seen because the dark and light inducers due to 
the pacman figures generate a gray color during surface filling-in. See the computer simulation 
in Fig. 7. (Lower row) As the circumference of the gray disk is traversed, the polarity with 
respect to the background repeatedly reverses between dark–light and light–dark contrasts as 
black and white regions of the background are traversed. Complex cells in V1 can nonetheless 
respond at every position of the circumference because they pool opposite contrast polarities 
(i.e., are ‘insensitive to contrast polarity’) at every position.
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that contains the flow of brightness and color, and keeps it from flowing out-
side the contours of the boundary. By acting like barriers, or obstructions, 
to the flow of brightness and color, boundaries can make themselves visible 
by causing a different brightness or color to occur on opposite sides of the 
boundary. Both types of boundaries, whether induced directly by pacman im-
age contrasts or completed between pairs of pacmen, act as barriers to further 
spreading of brightness. After filling-in is complete, the interior of the square 
appears brighter than the background around it.

The reverse-contrast Kanizsa square is also a visual illusion that can be 
consciously recognized. As with the Kanizsa square, it is induced by bound-
ary completion between pairs of collinear pacman edges. However, each edge 
in such a pair has an opposite contrast (dark/light or light/dark) relative to the 
gray background. Despite having opposite contrasts, these pacmen can still 
induce illusory contours between them. This can happen because, in response 
to like-oriented boundary signals at each position, the brain adds both dark/
light and light/dark boundary inputs at a cell type that can respond to both 
polarities. This is accomplished in two processing stages. The first stage uses 
orientationally-tuned cells at each position whose receptive fields are sensitive 
to just one polarity, either dark/light or light/dark, but not both. These cells 
are called simple cells (Figure 5a). At each position, simple cells with similar 

Figure 5.  (Left) Oppositely polarized, but like oriented, simple cells at each position add their 
inputs at a complex cell. The complex cell, in turn, inputs to the first and second competitive 
stages. The first stage creates hypercomplex cells using an on-center off-surround network across 
position and within orientation. The second stage uses a push-pull tonically-active competition 
within position and across orientation. Together, the two competitive stages can create end 
cuts at line ends and other high curvature positions on contours. (Right) On-cells at the second 
competitive stage excite bipole cells with the same orientational preference. Off-cells (in solid 
red), that are transiently turned on when the on-cells shut off, inhibit the bipole cell.
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orientational tuning, but opposite contrast polarity preference, add their inputs 
at the next processing stage. The cells that add these inputs are called complex 
cells (Figure 5a). Both simple and complex cells occur in the first region of vi-
sual cortical processing, which is called V1. Hubel and Wiesel (1968) received 
the Nobel prize for their discovery of simple and complex cells. Boundary 
completion occurs at a later processing stage than the complex cells. Because 
boundary completion cells receive their inputs after the stage of complex cells 
(Fig. 5a, b), boundary completion can occur between inputs with opposite 
contrast polarities, as in the reverse-contrast Kanizsa square.

Unlike the percept of the Kanizsa square, the interior brightness of the 
reverse-contrast Kanizsa square percept does not look significantly different 
from that outside the square. This is because the two white pacmen induce en-
hanced darkness within the square, whereas the two black pacmen induce 
enhanced brightness. When these opposing contrasts fill-in within the interior 
of the square, they tend to average across space and cancel out.

Figures 6 and 7 show computer simulations of how these percepts can be 
generated. These simulations were published in Gove et al. (1995). Figure 6b 

Figure  6.  Simulation of a Kanizsa square percept. (Left, upper row) Kanizsa square input 
image. (Right, upper row) Feature contours computed via discounting of the illuminant. Note 
the ‘brightness buttons’ inside each of the four pacman figures. (Left, lower row) Completed 
boundaries. (Right, lower row) Filled-in surface brightnesses. Note that the interior of the 
square is brighter than its background due to the filling-in of the four brightness buttons within 
the square. (Reprinted with permission from Gove et al., 1995).
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shows the feature contours that are induced just inside the pacman boundaries. 
These feature contours are the regions of enhanced brightness that are due to 
the black pacmen. The feature contours fill-in within the square boundary that 
is created by boundary completion (Fig. 6c) to create a percept of enhanced 
brightness throughout the square surface, as shown in Fig. 6d.

A simulation of the percept in response to the reverse-contrast Kanizsa 
square is shown in Fig. 7. Whereas bright feature contours are induced just 
inside the boundaries of the two black pacmen at the bottom of the figure, 
as in Fig. 6b, dark feature contours are induced just inside the boundaries of 
the two white pacmen at the top of the figure (Fig. 7b). Because these dark 
and bright feature contours are approximately balanced, the filled-in surface 
color inside the square is indistinguishable from the filled-in surface color 
outside of the square (Fig. 7d), so that the square boundary is recognized but 
not seen.

Figure 7.  Simulation of a reverse-contrast Kanizsa square percept. (Left, upper row) Reverse-
contrast Kanizsa square input image. (Right, upper row) Feature contours computed via 
discounting of the illuminant. Note the ‘brightness buttons’ inside each of the two black pacman 
figures at the bottom of the image, and the two ‘darkness buttons’ inside each of the two white 
pacman figures at the top of the image. (Left, lower row) Completed boundaries. (Right, lower 
row) Filled-in surface brightnesses. Note that the interior of the square has the same brightness 
as its background because the bright and dark buttons average out during filling-in to create an 
intermediate level of brightness. (Reprinted with permission from Gove et al., 1995).
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The reverse-contrast Kanizsa square percept thus provides another example 
of invisible boundaries. These boundaries are invisible for two different kinds 
of reasons: To begin, because complex cells pool opposite contrast polari-
ties at each position, they cannot distinguish between dark/light and light/dark 
contrasts; hence “all boundaries are invisible” within the boundary forma-
tion system. Indeed, complex cells are known to pool inputs from opposite 
polarities of both achromatic and chromatic inputs (e.g., Thorell et al., 1984). 
Secondly, in this particular example, the effects of the brightness inducers 
tend to cancel out after surface filling-in occurs, so the surface percept does 
not distinguish the brightness inside the square from that outside the square. 
As a result, in response to a properly balanced reverse-contrast Kanizsa square 
stimulus, surface brightness cannot demarcate the positions of the invisible 
boundaries using a visible filled-in brightness difference across the boundary. 
The salience, or strength, of the boundary signals can, however, do so, even if 
the boundaries cannot be consciously seen.

It should be noted that, although neurophysiologists like Thorell et al. 
(1984) reported experimentally how complex cells pool signals from differ-
ent simple cell polarities, they believed that these data implied that complex 
cells “must surely be considered color cells in the broadest sense” (p. 768). In 
contrast, Grossberg (1984) predicted that “all boundaries are invisible” and 
that complex cells are amodal boundary detectors that pool together signals 
from multiple simple cell detectors in order to build the best possible bound-
ary signals. This conclusion is derived from a theoretical analysis of how 
boundary completion and surface filling-in interact to generate consciously 
visible percepts.

The image in Fig. 4 (lower row) illustrates an important consequence of 
the fact that opposite polarity boundary signals are added by complex cells 
at each position. The gray disks in this image lie in front of a black and white 
checkerboard. As the circumference of each gray disk is traversed, the relative 
contrasts reverse, from black–white to white–black and back again. Because 
complex cells exist, a boundary can form around the entire circumference of 
the gray disk. If, instead, the brain computed separate black–white or white–
black boundaries using only simple cells, these boundaries would have four 
big holes in them through which brightness could easily flow. Complex cells 
prevent this perceptual calamity from occurring. But they do so only at the 
cost that “all boundaries are invisible”: Because they add signals from oppo-
site contrast polarities at each position, they cannot signal whether the contrast 
goes from light-to-dark or dark-to-light.

The image in Fig. 4 (lower row) was yet another example that Kanizsa intro-
duced to argue against Helmholtz’s position that all seeing is based on a type 
of knowledge-based hypothesis testing, or unconscious inference. Kanizsa 
noted that our experiences with regular black-and-white checkerboards should 
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lead us to expect that a white square is occluded by the gray disk in the lower 
left of the image, and a black square is occluded by the gray disk in the upper 
right of the image. Instead, there is a strong percept of an amodally completed 
black cross behind the gray disk in the lower left, and of a white cross behind 
the gray disk in the upper right, again contradicting a purely top-down expla-
nation of what observers see.

The fact that “all boundaries are invisible” has strongly influenced the 
painterly techniques and theories of many famous artists, as was illustrated 
in Grossberg (2008). More examples of its influence on the history of art are 
summarized herein.

Before moving on to such considerations, it is important to realize that the 
retina itself can create incomplete boundaries out of complete ones that are re-
ceived from a visual scene. This is because each eye contains a blind spot and 
retinal veins (Fig. 8). The blind spot is the place on the retina where multiple 
pathways from photodetectors at other positions on the retina are gathered 

Figure 8.  (Upper row) A cross section of the eye showing the blind spot and retinal veins, as 
well as the fact that light goes through all the retinal layers before hitting the photoreceptors. 
(Lower row) Top-down view of the retina, showing how big the blind spot and retinal veins are 
relative to the fovea, which is the high-resolution region of the retina. (Images adapted with 
permission from Webvision-University of Utah).
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Figure 9.  Diagram of anatomical connections and neuronal selectivities of early visual areas in 
the macaque monkey. LGN = Lateral Geniculate Nucleus; V1 = striate visual cortex; V2, V3, 
V4, MT = prestriate cortical areas. The surface stream goes through the blobs and thin stripes 
(in the green box) to cortical area V4 and inferotemporal areas. The boundary stream goes 
through interblobs and interstripes (in the red box) to V4. The motion stream goes through V1 
and MT to the parietal areas. (Adapted with permission from De Yoe and Van Essen, 1988).

together to form the optic nerve. The optic nerve sends visual signals from the 
retina into the brain. The retinal veins cover multiple positions on the retina in 
order to nourish it.

The positions that are covered by the blind spot and the retinal veins cannot 
send visual signals to the brain from objects in the world. The brain needs to 
complete the boundaries in these occluded positions in the same way that it 
completes boundaries between the black splotches of the Dalmatian.

2.2.  Boundaries and Surfaces Are Computationally Complementary

If “all boundaries are invisible”, then how do we see anything at all, let alone 
a beautiful painting? Grossberg (1984, 1987a, b, 1994, 1997) predicted that 
“all conscious percepts of visual qualia are surface percepts”. To accomplish 
this, every visual scene is processed by two parallel processing streams in the 
visual cortex, as illustrated by the famous diagram in Fig. 9 due to DeYoe 
and Van Essen (1988). Boundaries are computed within the interblob corti-
cal stream (shown in red), which passes from the retina through the lateral 
geniculate nucleus (LGN), onwards through the interblobs of cortical area V1 
to the interstripes (or pale stripes) of cortical area V2, and up to cortical area 
V4. Surfaces are computed within the blob cortical stream (shown in green), 
which passes from the retina through the LGN, onwards through the blobs of 
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Figure 10.  Complementary properties of boundary completion and surface filling-in. See text 
for details.

the cortical area V1 to the thin stripes of cortical area V2, and up to cortical 
area V4.

Why are two parallel cortical streams needed? This is true because bound-
ary completion and surface filling-in have been demonstrated by neural mod-
els and supportive data to obey computationally complementary properties 
(Grossberg, 1984, 1994, 2000, in press). As summarized in Figure 10 and 
illustrated by the percepts generated by the images in Figs 2–4, boundaries 
form inwardly between pairs or greater numbers of inducers, are oriented, 
and are insensitive to direction-of-contrast. This last property is just another 
way of saying that the boundary system pools inputs at complex cells from 
opposite contrast polarity simple cells at each position (Fig. 5a). In contrast, 
surfaces fill-in outwardly from individual inducers in an unoriented way, and 
are sensitive to direction-of-contrast. This last property is just another way of 
saying that the surface stream can use contrast differences to generate con-
scious percepts of visual qualia. These three pairs of boundary and surface 
properties (outward vs. inward, unoriented vs. oriented, sensitive vs. insen-
sitive to direction-of-contrast) are clearly complementary. In particular, the 
properties needed to complete a boundary cannot be used to fill-in a surface, 
and conversely. Interactions between both streams are needed to generate vi-
sual percepts.
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2.3.  Discounting the Illuminant

We have already seen that surface filling-in is needed to compensate both for 
retinal occlusions, like the blind spot and retinal veins, and for incomplete 
scenic information, like the Dalmatian in Snow. There is another reason why 
filling-in is needed, and that is because we see the world when it is illumi-
nated by many different light sources that change their color and intensity 
both across a scene and throughout the day. Somehow the brain needs to com-
pensate for this variability in lighting, or else it would confuse variable il-
lumination information with unvarying properties of object shape and color. 
This compensatory process is called discounting the illuminant. Even Helm-
holtz was aware of the critical role of this process, but he did not understand 
how it worked. Later scientists like Edwin Land and his colleagues introduced 
models, such as the Retinex model, to better characterize its properties; e.g., 
Land (1964, 1977) and Land and McCann (1971). However, a computational 
neural model of how filling-in works in concert with boundary completion 
in response to both 2D pictures and 3D scenes was accomplished only later, 
by the FACADE and 3D LAMINART models (e.g., Bhatt et al., 2007; Cao 
and Grossberg, 2005; Fang and Grossberg, 2009; Grossberg, 1987a, b, 1994, 
1997; Grossberg et al., 2007; Grossberg and McLoughlin, 1997; Grossberg 
and Mingolla, 1985a; Grossberg and Swaminathan, 2004).

In particular, in order to eliminate (most of) the variability of illumination 
across a scene that could cause wildly unstable shape and color percepts, fea-
ture contours are computed at positions where luminance or color contrasts 
change rapidly enough across space. Such positions often occur along a sur-
face’s boundaries, also called boundary contours to distinguish them from 
the feature contours (Fig. 11, upper row). After discounting of the illuminant 
takes place, the surviving feature contours compute brightness and color sig-
nals that are relatively uncontaminated by varying illumination levels. They 
can do this because the contrast changes where they are computed are due 
primarily to changes in the material properties, called reflectances, of the un-
derlying objects, whereas the illumination level changes little, if at all, across 
such a contrast change. The illuminant-discounted feature contour signals can 
then, at a subsequent processing stage, trigger filling-in of their brightnesses 
or colors across the surface until they hit the boundary contours that enclose 
the surface (Fig. 11, left, lower row).

Boundaries are computed at multiple depths, and trigger filling-in of col-
ors and brightnesses only at those depths where the feature contours and 
boundary contours are parallel and adjacent to one another (Grossberg, 1994;  
Fig. 12). Filling-in occurs in networks within the surface stream that are called 
Filling-In-DOmains, or FIDOs. There are multiple FIDOs to enable filling-
in of multiple opponent colors (red–green, blue–yellow) and achromatic  

Downloaded from Brill.com04/06/2021 01:46:22AM
via free access



	 Art & Perception 5 (2017) 1–95	 17

Figure  11.  (Upper row) After discounting of the illuminant in response to a uniformly 
illuminated red square, a closed boundary (in blue) surrounds the square at the depth that it is 
perceived. Just within the boundary, feature contours (in red) code the surface color with the 
illuminant discounted. (Left, lower row) After surface filling-in occurs, the feature contours fill 
in the entire square boundary, and are prevented from spreading beyond it. (Right, lower row) 
If the boundary has a big enough break in it, then surface color can spread outside in during 
filling-in, thereby creating similar contrasts both inside and outside the boundary.

brightnesses (light–dark) at multiple depths. The three pairs of opponent 
FIDOs at every depth in Fig. 12 schematize this property.

Many painters have struggled to represent the difference between the real 
colors of objects and the illumination that is reflected from them and onto 
other objects. Their success in doing so is all the more remarkable considering 
that they see the world only after the illuminant has been discounted, which is 
also true of us as we look at their paintings.

2.4.  Gist as a Coarse Boundary/Surface Texture Category

Given that boundaries and surfaces are the functional units of visual percep-
tion, how is gist perceived? This is an active area of research in both biological 
vision and computer vision. Grossberg and Huang (2009) proposed a simple 
biological answer to this question in their ARTSCENE model; in the same pa-
per they also review other scene classification models and review comparative 
benchmark simulations of these models. The ARTSCENE model classifies 
the gist of a scene as a texture category that is derived from coarse boundary 
and surface representations that are derived from the scene. This texture rep-
resentation was input to a network that could learn to categorize, or classify, 
textures into different scene types; e.g., coast, forest, mountain, countryside. 
The same kind of categorizing network can be used to classify both textures 
and objects. It will be reviewed in the next section.
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Grossberg and Huang (2009) further proposed how, after a glimpse of a 
scene enables its gist to be classified, the eyes may wander around the scene 
to accumulate additional information about it. ARTSCENE assumes that the 
eyes look at bigger regions of a scene with higher probability, other things be-
ing equal. For example, the largest region in a coast scene may be the ocean, so 
the eyes may look at the ocean with higher probability. ARTSCENE explains 
how spatial attention could select such a region from the rest of the scene and, 
after doing so, learn to classify that texture with its own recognition category.

Before going on, more should be said about what recognition categories 
do. A recognition category responds selectively to the distributed features of 
a scene or painting, and not to very different scenes or paintings. Typically, a 
single population of cells, or small number of such populations, defines such 
a category, much smaller than the number of cells in the scene or painting that 
they represent. In this sense, a category ‘compresses’ the scene or painting into 
a selective recognition event. It is a ‘symbol’ of the scene or painting. Whereas 

Figure 12.  Multiple depth-selective boundary contours (BC) are sensitive to different ranges 
of receptive field sizes, or spatial scales. Each BC boundary can send topographic signals to the 
corresponding depth-selective surface Filling-In DOmain, or FIDO. These signals can trigger 
filling-in of feature contour (FC) signals that are positionally aligned with them within their 
BC. The BC signals reach all three double-opponent FIDOs (see three pairs of FIDOs) at their 
depth. The FC signals reach all depth-selective FIDOs, but are captured only at depths where 
there are BC signals that are positionally aligned with them. These BC signals act both as 
filling-in generators and filling-in barriers. BC signals can also influence FIDOs with nearby 
depth preferences, but less strongly, thereby enabling continuous perception of depth to occur in 
response to a finite number of BC and FC representations. These nearby BC-to-FC connections 
are not shown, for simplicity.
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individual pixels of a scene or painting have no meaning, the selective acti-
vation of a category by such a distributed input provides a context-sensitive 
internal index that a particular scene or painting is being viewed.

In the ARTSCENE model, after the gist of a scene is categorized, the mod-
el’s attentional focus shifts two or three more times, thereby allowing spatial 
attention to focus upon a few of the biggest textures of the scene; e.g., ocean, 
sky, grass, trees, etc. These texture categories are also categorized, and all of 
their recognition decisions are allowed to ‘vote’ for the scenic category. This 
simple voting procedure generates a more accurate prediction than gist alone, 
indeed a prediction that achieves human levels of gist recognition, and that did 
better than other, more complicated, models for computing gist.

In summary, one of the first things that a viewer of a painting may notice is 
the gist of the painting. This may include information that it is a painting of a 
certain kind of scene, or that it is a painting by a particular artist. Section 4.13 
notes that some artists, such as Claude Monet, created their paintings with this 
insight in mind.

2.5.  Texture and Object Learning, Recognition, and Prediction  
by Adaptive Resonance

In order to recognize the contents in a painting, one needs to be able to recognize 
the textures and the objects of which it is composed, even if these objects are 
just simple lines and curves. Learning about any new texture or object requires 
solving the stability–plasticity dilemma (Grossberg, 1980). The stability–
plasticity dilemma asks how the brain is able to learn quickly about new objects 
and events without just as quickly forgetting previously learned, but still useful, 
memories. Adaptive Resonance Theory, or ART, proposed how this problem 
can be solved (Carpenter and Grossberg, 1987, 1991; Grossberg, 1976, 1980, 
2013). ART is currently the most advanced cognitive and neural theory in the 
specific sense that it has explained and predicted the most psychological and 
neurobiological data, and each of its foundational principles and mechanisms 
has been supported by such data, as reviewed in Grossberg (2013).

To solve the stability–plasticity dilemma, ART uses matching between 
bottom-up input patterns and learned top-down expectations at feature-
selective networks of cells (Fig. 13). A top-down expectation is released by a 
currently active recognition category. Such expectations may be thought of as 
predictions that the brain releases in particular contexts. These predictions are 
matched against incoming data from the world.

In the absence of bottom-up inputs, top-down expectations usually only 
prime, sensitize, or modulate their targets cells with the object prototype that 
the top-down expectation has learned. The concept of priming can be under-
stood by the example of asking a viewer of a painting to look for a particular 
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object in it. If the viewer activates an expectation of seeing the object, the 
expectation, by itself, does not usually generate a conscious percept of the ob-
ject. That would be akin to hallucinating the object. Rather, when the viewer’s 
eyes happen to look at or near the object, the object will be more quickly rec-
ognized than if the expectation were not active. This happens because, when 
a top-down expectation is active, a bottom-up input pattern that matches the 
expectation at feature-selective cells can more rapidly and vigorously activate 
these cells to suprathreshold values than in the absence of the expectation.

How is such a top-down expectation learned? Before any top-down learn-
ing of the expectation has occurred, all top-down adaptive weights, or long-
term memory (LTM) traces, within the pathways from the category level to 
the feature are large and uniformly distributed. These uniformly distributed 
large adaptive weights enable the top-down LTM traces of the category that is 
chosen on the first learning trial to match whatever feature pattern activated it, 
and thus to allow learning to begin. Prototype learning on subsequent learning 
trials prunes these weights to match the critical feature pattern (marked by 
the light green region at the feature level in Fig. 13) that is learned from the 
sequence of all the input patterns that can activate the category.

Learning occurs within an ART system when a good enough match occurs 
between a bottom-up input pattern and a top-down expectation on a given 

Figure 13.  A feature–category resonance is triggered when bottom-up signals from a distributed 
feature pattern are sufficiently well matched with top-down signals from an activated category. 
This resonance synchronizes, amplifies, and prolongs the responses of the active cells—both 
the attended feature pattern and the active category—and can trigger learning in the adaptive 
weights, or long-term memory (LTM) traces, within the bottom-up adaptive filter pathways 
from feature pattern to category, and within the top-down expectation pathways from category 
to feature pattern. STM = Short-term memory.
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learning trial. A good enough match triggers a context-sensitive resonance 
between the active cells in the feature and category levels. Such a resonance is 
supported by the mutual exchange of bottom-up excitatory signals within the 
adaptive pathways from active feature cells to the active category, and of top-
down excitatory signals within the adaptive pathways from the active category 
cells to the active feature cells (Fig. 13). The resonance prolongs, synchro-
nizes, and amplifies the activities of both the attended critical feature pattern 
and the active category; hence the name feature–category resonance for this 
dynamical state. A feature–category resonance triggers fast learning by the 
adaptive weights in both the bottom-up and top-down pathways that join these 
representations; hence the name Adaptive Resonance Theory. By also inhibit-
ing irrelevant outlier feature cells that do not resonate during this match-based 
learning process, ART also solves the stability–plasticity dilemma.

2.6. � ART Matching Rule: Attention, Biased Competition,  
and Predictive Coding

Attention within such an ART circuit obeys the ART Matching Rule. This 
Rule is embodied by top-down, modulatory on-center, off-surround circuits 
that read out the learned expectations to be matched against bottom-up input 
patterns (Fig. 14). This matching process has the following properties: When  
a bottom-up input pattern is received at a processing stage, it can activate 
its target cells, if nothing else is happening. When a top-down expectation 
pattern is received at this stage, it can provide excitatory modulatory, or 
priming, signals to cells in its on-center, and inhibitory signals to cells in its 
off-surround. The on-center is modulatory because the off-surround also in-
hibits the on-center cells (Fig. 14), and these excitatory and inhibitory inputs 
are approximately balanced (‘one-against-one’). When a bottom-up input 
pattern and a top-down expectation are both active, cells that receive both 
bottom-up excitatory inputs and top-down excitatory priming signals can fire 
(‘two-against-one’) with amplified and synchronized activities, while other 
cells are inhibited (Fig. 14b). In this way, only cells can fire whose features 
are ‘expected’ by the top-down expectation, and an attentional focus starts 
to form at these cells.

Many psychological, anatomical, and neurophysiological experiments 
have provided support for the ART Matching Rule prediction of how 
attention works. These data support the predicted modulatory on-center, 
off-surround interactions; excitatory priming of features in the on-center; 
suppression of features in the off-surround; and amplification of matched 
data (e.g., Bullier et al., 1996; Caputo and Guerra, 1998; Downing, 1988; 
Hupé et al., 1997; Mounts, 2000; Reynolds et al., 1999; Sillito et al., 
1994; Somers et al., 1999; Steinman et al., 1995; Vanduffell et al., 2000). 
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Figure 14.  How an ART model searches for, learns, and recognizes a new recognition category 
using cycles of match-induced resonance and mismatch-induced reset. Active cells are shaded 
gray; inhibited cells are not shaded. (a) Input pattern I is instated across feature detectors at 
level F1 as an activity pattern X, at the same time that it generates excitatory signals to the 
orienting system A with a gain ρ that is called the vigilance parameter. Activity pattern X 
generates inhibitory signals to the orienting system A as it generates a bottom-up input pattern 
S through the adaptive filter to the category level F2. A dynamic balance within A between 
excitatory inputs from I and inhibitory inputs from S keeps A quiet. The bottom-up signals 
in S are multiplied by learned adaptive weights to form the input pattern T to F2. The inputs 
T are contrast-enhanced and normalized within F2 by recurrent lateral inhibitory signals that 
obey the membrane equations of neurophysiology, otherwise called shunting interactions. 
This competition leads to selection and activation of a small number of cells within F2 that 
receive the largest inputs. In this figure, a winner-take-all category is chosen, represented 
by a single cell (or cell population). The chosen cells represent the category Y that codes for 
the feature pattern at F1. (b) The category activity Y generates top-down signals U that are 
multiplied by adaptive weights to form a prototype, or critical feature pattern, V that encodes 
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The way in which the off-surround competition biases attention using the 
ART Matching Rule has led to the term ‘biased competition’ used by vari-
ous experimental neurophysiologists (Desimone, 1998; Kastner and Un-
gerleider, 2001). The property of the ART Matching Rule that bottom-up 
signals may be enhanced when matched by top-down signals is supported 
by many neurophysiological experiments that have reported the facilitatory 
effect of attentional feedback (Luck et al., 1997; Roelfsema et al., 1998; 
Sillito et al., 1994).

Various other data have supported ART predictions about how processes 
of consciousness, learning, expectation, attention, resonance, and synchrony  
are related in the brain. For example, attention and learning are linked in  
a manner consistent with ART predictions about visual perceptual learning 
(e.g., Ahissar and Hochstein 1993, 1997; Ito et al., 1998; Lu and Dosher, 
2004), auditory learning (e.g., Gao and Suga, 1998), and somatosensory 
learning (e.g., Krupa et al., 1999 and Parker and Dostrovsky, 1999). ART 
has also predicted links between attention and synchronous oscillations that 
were subsequently experimentally reported (e.g., Buschman and Miller, 2007; 
Engel et al., 2001; Gregoriou et al., 2009; Grossberg, 2009; Pollen, 1999), 
and between synchronous oscillations and consciousness (e.g., Lamme, 2006; 
Llinas et al. 1998; Singer, 1998).

The above citations are just a subset from a vast experimental literature. All 
the predictions of ART have analogous levels of experimental support. Illus-
trative experiments will be cited throughout the article, as appropriate.

the expectation that the active F2 category has learned for what feature pattern to expect at F1. 
This top-down expectation input V creates an excitatory modulatory signal at F1 cells in its 
on-center, at the same time that it inhibits F1 cells in its off-surround (ART Matching Rule). 
If V mismatches I at F1, then a new STM activity pattern X* (the gray pattern), is selected 
at cells where the patterns match well enough. In other words, X* is active at I features that 
are confirmed by V. Mismatched features (white area) are inhibited. When X changes to X*, 
total inhibition decreases from F1 to A. (c) If inhibition decreases sufficiently, A releases a 
nonspecific arousal burst to F2; that is, ‘novel events are arousing’. Within the orienting sys-
tem A, the vigilance parameter ρ determines how bad a match will be tolerated before a burst 
of nonspecific arousal is triggered. This arousal burst triggers a memory search for a better-
matching category, as follows: Arousal resets F2 by inhibiting Y. (d) After Y is inhibited, X 
is reinstated and Y stays inhibited as X activates a different category, that is represented by a 
different activity winner-take-all category Y*, at F2. Search continues until a better matching, 
or novel, category is selected. When search ends, an attentive resonance triggers learning of  
the attended data in adaptive weights within both the bottom-up and top-down pathways (see 
Fig. 13). As learning stabilizes, inputs I can activate their globally best-matching categories 
directly through the adaptive filter, without activating the orienting system. (Adapted with per-
mission from Carpenter and Grossberg, 1987).

Figure 14 (Continued).

Downloaded from Brill.com04/06/2021 01:46:22AM
via free access



24	 S. Grossberg, L. Zajac / Art & Perception 5 (2017) 1–95

Before leaving the topic of how expectations embody predictions about 
what may or may not happen next in the world, it is important to realize that 
not all theories of predictive coding are supported by the experiments that con-
firm the ART Matching Rule. In particular, these data do not support Bayesian 
‘explaining away’ models in which matches with top-down feedback causes 
only suppression, leaving only the unmatched data, or ‘prediction error’, for 
further processing (Mumford, 1992; Rao and Ballard, 1999). Such inhibitory 
matching does occur in the brain, but it typically controls spatial and motor 
representations (see Grossberg, 2013, for a review). There are fundamental 
reasons for this difference in matching schemes between perceptual–cognitive  
ART-like matching and spatial-motor inhibitory matching, also called VAM-
like matching. One of the most important reasons is that only the ART Match-
ing Rule solves the stability–plasticity dilemma. See Carpenter and Grossberg 
(1987) for a mathematical proof.

2.7. � Symbol Grounding and Complementary Attentional  
and Orienting Systems

The resonant state combines computationally complementary properties of 
the network into a context-sensitive representation that can be the basis of an 
object’s meaning. In particular, individual pixels or features of a painting or 
scene are meaningless. Pixels and features become meaningful only as part of 
the spatial context of the other pixels and features that surround them. Activat-
ing the category of a painting, or scene, provides context-selectivity because 
the category responds selectively to specific combinations of features which 
define that scene, but not to those that characterize different paintings. How-
ever, the category itself has no knowledge of what feature patterns cause it to 
fire, or indeed any information about the object or painting that activates it. 
The resonant state binds together the distributed features of the painting with 
its category. This bound state represents both the identity of the painting and 
the features that define it. In this way, a feature–category resonance provides a 
solution of the symbol grounding problem (Harnad, 1990).

Category learning in ART is controlled by interactions between an atten-
tional system and an orienting system (Fig. 14). These two systems embody 
yet another type of computationally complementary laws (Grossberg, 1980, 
2000). The attentional system (levels F1 and F2 in Fig. 14) carries out pro-
cesses like attention, category learning, expectation, and resonance. The ori-
enting system (level A in Fig. 14) enables the attentional system to learn about 
novel information using processes like reset, memory search, and hypothesis 
testing. The attentional system includes brain regions like temporal cortex and 
prefrontal cortex. The orienting system includes brain regions like the nonspe-
cific thalamus and hippocampus.
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If an input pattern causes a sufficiently bad mismatch to occur within the at-
tentional system, it will activate the orienting system (Fig. 14c). The orienting 
system, in turn, resets the active category and initiates a search for a better-
matching category, possibly an entirely new one (Fig. 14d).

Within the orienting system, a vigilance parameter ρ (see Fig. 14) de-
termines the generality of the learned categories. If vigilance is high, then 
learning of a concrete or specific category occurs, such as recognition of a 
frontal view of a friend’s face, or of the painting called Impression, Sunrise 
by Monet. If vigilance is low, then learning of an abstract or general category 
occurs, such as recognition that everyone has a face, or that one is viewing 
an Impressionist painting. In general, vigilance is chosen as low as possible 
to conserve memory resources, without causing a reduction in predictive suc-
cess. Because the baseline level of vigilance is initially set at the lowest level 
that led to predictive success in the past, ART models try to learn the most 
general category that is consistent with the data. This tendency can lead to 
the type of overgeneralization that is seen in young children (Brooks et al., 
1999) until subsequent learning leads to category refinement (Tomasello and 
Herron, 1988).

When a given task requires a finer categorization, vigilance is raised. In-
deed, vigilance can be automatically adjusted to learn either specific or general 
information in response to predictive failures, or disconfirmations, within each 
environment. Such a predictive failure could occur, for example, if a viewer 
of a painting believes that it is by Monet, whereas it is really by Sisley. Within 
ART, such a predictive disconfirmation causes a shift in attention to focus on 
a different combination of features that can successfully be used to recognize 
that this painting is by Sisley, and perhaps to recognize other paintings by him 
as well.

One type of automatic adjustment of vigilance in response to a predictive 
disconfirmation is the following. Suppose that on every learning trial, a pre-
dictive failure causes vigilance to increase by the smallest amount that can 
trigger a memory search for a new recognition category that can correct the 
error. As a result of such a memory search, a category will be learned that is 
just general enough to eliminate the error. When this happens, match track-
ing is said to occur, because vigilance tracks the degree of match between the 
input pattern and the expected prototype. Match tracking leads to minimax 
learning, or learning that can minimize predictive errors while it maximizes 
category generality. In other words, match tracking uses the minimum memo-
ry resources that are needed to correct the predictive error. Because vigilance 
can vary during match tracking in a manner that reflects current predictive 
success, recognition categories capable of encoding widely differing degrees 
of generalization or abstraction can be learned by a single ART system (Car-
penter and Grossberg, 1987, 1991).
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Since the concept of vigilance control was first published by Carpenter and 
Grossberg, quite a bit of new data has been published that supports ART predic-
tions about how vigilance may be regulated in the brain, through brain regions 
like the nucleus basalis and neurotransmitters such as acetylcholine (Grossberg 
and Versace, 2008; Palma et al. 2012a, b). It has also been predicted that vigi-
lance cannot dynamically adjust itself in some individuals, leading to problems 
of attention, learning, and recognition. Grossberg and Seidman (2006) have, 
for example, proposed that various individuals with autism have their vigilance 
stuck at an abnormally high value, leading to the learning of abnormally con-
crete and hyperspecific recognition categories, as well as to a correspondingly 
narrow focus of attention. It is known that there is abnormal cholinergic activ-
ity in the parietal and frontal cortices of autistic individuals that is correlated 
with abnormalities in the nucleus basalis (Perry et al., 2001), consistent with 
the predicted role of the nucleus basalis and ACh in regulating vigilance.

Much of the recognition learning that we do is unsupervised. In other 
words, it goes on without an explicit teacher telling us the answers. Unsuper-
vised learning clusters different input patterns into the same category based 
upon the similarity of their feature patterns using the world itself as a teacher. 
However, there are many instances where supervised learning is needed. In 
other words, a teacher provides predictive answers. Here, the recognition 
category learns to activate the answer that the teacher provides. Supervised 
learning is needed to identify what type of scene one is viewing by answering 
with the name of the scene type; e.g., beach, forest, mountain, etc. Supervised 
learning is also needed to say what artist has created a particular painting, 
or what artistic movement it illustrates. When an ART system predicts that 
a painting by Sisley is really by Monet, and it is provided with the correct 
answer, the system can spontaneously drive a memory search leading to a 
new focus of attention that can better recognize the painting as a Sisley. Much 
experimental evidence supports the hypothesis that a similar process goes on 
in human observers, as reviewed in the above archival articles.

2.8.  Invariant Category Learning, Recognition, and Search

The discussion in Sect. 2.4 mentioned the utility of scanning a scene or pic-
ture with eye movements in order to accumulate more information about it, 
such as when recognizing scene type using the ARTSCENE model. However, 
such scanning raises a fundamental problem. Much of our learning about 
objects takes place by classifying multiple views of a novel object into a 
view-invariant object category, without the benefit of a teacher, as our eyes 
freely scan a complicated scene, or picture. Why do not views from multiple 
objects get erroneously bound together to activate a single category? More 
generally, how does invariant category learning bind together different ap-
pearances of an object, not only as it is seen from the perspective of multiple 
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Figure  15.  ARTSCAN Search macrocircuit. Invariant category learning and recognition. 
The dashed boxes indicate the boundary and surface processes. The green arrows represent 
the excitatory cortical signals from the Where cortical stream to the What cortical stream 
whereby invariant category learning and recognition, and reinforcement learning, occur. The 
red connections ending in circular disks indicate inhibitory connections. ITa: anterior part of 
inferotemporal cortex; ITp: posterior part of inferotemporal cortex; PPC: posterior parietal 
cortex; LIP: lateral intra-parietal cortex; LGN: lateral geniculate nucleus; ORB: orbitofrontal 
cortex; Amyg: amygdala; BG: basal ganglia; PFC: prefrontal cortex; FEF: frontal eye fields; 
SC: superior colliculus; V1 and V2: primary and secondary visual areas, V3 and V4: visual 
areas 3 and 4. (Reprinted with permission from Chang et al., 2014).

views, but also at multiple positions, and distances—and thus sizes—relative 
to our retinas? Moreover, having learned such invariant object categories, 
how do we use them to efficiently search a scene for a valued object, such as 
a much-loved picture in a museum? This latter problem is often called the 
Where’s Waldo Problem. A solution to this suite of problems is needed every 
time we scan a painting from multiple perspectives.

The 3D ARTSCAN Search model (Figs 15 and 16) predicts how valued ob-
jects are learned, recognized, and searched as our eyes freely scan a 3D scene 
or 2D painting (Cao et al., 2011; Chang et al., 2014; Fazl et al., 2009; Foley 
et al., 2012; Grossberg, 2009; Grossberg et al., 2011, 2014). Accomplishing 
this combination of basic competences requires interactions between mul-
tiple brain regions whose dynamics embody processes of spatial and object 
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attention, invariant object category learning, predictive remapping, reinforce-
ment learning and motivation, and attentive visual search. 3D ARTSCAN 
Search proposes how spatial attention modulates invariant category learning 
in the manner that is reviewed in the next section. This analysis clarifies how 
spatial attention can focus on the different textures that make up a scene, as 
was discussed for the ARTSCENE model in Sect. 2.4. Within ARTSCAN 
Search, the ART model circuitry that was reviewed in Sects 2.5 and 2.6 is 
used to learn view-specific and position-specific categories that are bound 
together into invariant categories by the regulatory machinery of the more 
comprehensive 3D ARTSCAN Search circuitry.

3D ARTSCAN Search provides functional explanations and predictions of 
neurobiological data about interactions between multiple brain regions, in-
cluding cortical areas V1, V2, V3a, V4, PPC, LIP, ITp, ITa, and PFC, as illus-
trated in Figs 15 and 16. 3D ARTSCAN Search is thus not just a neural model. 

Figure 16.  ARTSCAN Search macrocircuit for Where's Waldo search. Both a cognitive search 
driven by an object's name via the prefrontal cortex, or a value-driven search driven by the 
affective value of the object via the amygdala, can initiate a search for a desired object via (What 
cortical stream)-to-(Where cortical stream) interactions. The black arrows represent bottom-
up excitatory input signals. The blue arrows represent top-down excitatory search signals. 
Abbreviations are the same as in the caption of Fig. 15. (Reprinted with permission from Chang 
et al., 2014).
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Rather, it is a neural architecture that tries to explain how a significant fraction 
of the visual brain works together to attend, learn, recognize, and search for 
valued objects in complicated scenes. With this kind of model in hand, it is 
possible to explain how a person viewing a painting from any viewpoint can 
understand not only its properties as a texture, as during recognition of its gist, 
but also what objects are represented within it.

2.9.  Attentional Shrouds Modulate Invariant Category Learning

Many visual scientists have observed that spatial attention tends to fit itself 
to the shape of an attended object. Tyler and Kontsevich (1995) called such 
a form-fitting distribution of spatial attention an attentional shroud. The 
ARTSCAN model, on which the 3D ARTSCAN Search model built, proposed 
how an attentional shroud maintains its activity within the posterior parietal 
cortex, or PPC, of the dorsal, or Where, cortical stream during active scanning 
of an attended object’s surface. ARTSCAN also predicted how shrouds regu-
late learning of an invariant object category in the following way (Fazl et al., 
2009; Grossberg, 2007, 2009).

When the eyes fixate on a particular view of an attended object, the brain 
can rapidly learn a view-specific category of that object using an ART circuit. 
To fix ideas, suppose that such a view-specific category is learned in the pos-
terior inferotemporal cortex, or ITp (Fig. 15). The first view-specific category 
to be learned in ITp activates some cells in the anterior inferotemporal cortex, 
or ITa. These ITa cells will become an invariant object category as they are 
associated with multiple view-specific categories in ITp that represent differ-
ent views of the object. An attentional shroud keeps the ITa cells active while 
multiple view-specific categories get associated with them through time. This 
happens as follows.

As the eyes move relative to the object’s surface, they may fixate on dif-
ferent views of the object than the initial one. When this happens, the first 
view-specific category is inhibited by ART mismatch (Fig. 14b, c) thereby 
enabling a view-specific category of the new object view to be learned in ITp 
(Fig. 14d). When the first view-specific category is inhibited, the cells that it 
activated in ITa are not inhibited. They remain active so that the new view-
specific category can be associated with them. As the eyes continue to scan 
the object, all the newly learned view-specific categories can continue to be 
associated with the active ITa cells. In this way, the ITa cells learn to fire in 
response to all the ITp categories that have been associated with it; that is, the 
ITa cells become a view-invariant object category.

Why did not the ITa cells shut down when the first view-specific category 
was inhibited, given that these ITp cells activated these ITa cells in the first 
place, and their inputs to ITa are eliminated when the first view-specific cat-
egory is inhibited? The ARTSCAN model, and its 3D ARTSCAN Search 
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Figure 17.  When spatial attention is maintained on an object’s surface via a surface–shroud 
resonance, the shroud inhibits parietal Category Reset cells that would otherwise inhibit the 
invariant Object Category representation of that object that is being learned in ITa (see Fig. 15). 
When there is a spatial attention shift to another object, the shroud collapses and transiently 
disinhibits the parietal Category Reset cells. The Category Reset cells, in turn, inhibit the currently 
active invariant Object Category representation in ITa, thereby enabling an invariant Object 
Category representation of the newly attended object to be learned. While feedback between 
an Object Surface representation and its attentional shroud maintains Spatial Attention on that 
Object Surface, feedback is also occurring between V2 Object Surface and Object Boundary 
representations. The feedback signals from surfaces to boundaries are called Surface Contour 
signals. Surface Contour signals initiate figure–ground separation of objects in the scene from 
one another and from their backgrounds (see Fig. 44 and surrounding text). Surface Contour 
signals are more active at the positions of salient features due to the way that they are computed. 
In response to the rectangular image in this figure (see also Fig. 11), they are most active at the 
rectangle corners. They can therefore also be used as the target positions of eye movements with 
which to scan salient features of the attended object surface, such as these corners, and thereby 
to trigger the learning of multiple View Category representations in ITp that can be fused via 
associative learning into an invariant Object Category representation (see Fig. 15).

generalization, predicts that the shroud protects the ITa cells from getting re-
set, even while view-specific categories in ITp are reset, as the eyes explore 
an object. The shroud does this by inhibiting an ITa reset mechanism in the 
parietal cortex that would otherwise have inhibited ITa (Fig. 17). When the 
eyes move to attend a new object, this reset mechanisms is disinhibited, and 
can inhibit ITa.

At around the same time that the ARTSCAN model was published, Chiu 
and Yantis (2009) published data that provide strong support for prediction that 
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spatial attention in the posterior parietal cortex, or PPC, regulates the inhibi-
tory reset of invariant object categories in ITa. Using rapid event-related MRI 
to record brain activity in humans, they found that a shift of spatial attention 
evokes a transient domain-independent signal in the medial superior parietal 
lobule that corresponds to a shift in categorization rules. In ARTSCAN, col-
lapse of an attentional shroud (spatial attention shift) disinhibits the parietal 
reset mechanism (transient signal) that inhibits the previous view-invariant 
object category and allows activation of a new one (shift in categorization 
rules). The transient signal is domain-independent because all objects inhibit 
the parietal reset cells while their shrouds are active, and these reset cells can 
inhibit all invariant object category representations in ITa. The collapse of the 
shroud also enables the eyes to move to another surface, whereupon a new 
view-specific and view-invariant object category can be learned. The cycle 
can then repeat itself. Many other data support this prediction as well. See 
Grossberg (2013, 2017) for reviews, as well as the other articles that devel-
oped the 3D ARTSCAN Search architecture.

2.10. � Surface–shroud and Feature–category Resonances: Conscious Seeing 
and Knowing

How can a viewer pay sustained attention to an interesting object, scene, or pic-
ture while scanning its interesting features? This translates into the mechanistic 
question: How does shroud activity persist during active scanning of an object, 
scene, or picture? Looking at an object generates a surface representation of 
the object in the prestriate visual cortex, including cortical area V4, as was dis-
cussed in Sect. 2.1. The surface representation, in turn, activates a shroud in the 
posterior parietal cortex, or PPC. Several different objects can simultaneously 
compete for spatial attention in PPC. All of them also send positive feedback 
signals back to their generative surfaces, thereby creating what is called a recur-
rent, or feedback, on-center off-surround network (Fig. 18). The on-center con-
sists of the positive feedback signals between the surface in V4 and its shroud in 
PPC. The off-surround consists of the recurrent inhibitory signals within PPC 
whereby the shrouds compete with each other.

It has been known for many years how such a network can contrast-enhance, 
or choose, the representation that starts with the most activity (e.g., Grossberg, 
1973, 1980). When this happens, the winning shroud focuses spatial attention 
on its surface (Fig. 18). The positive feedback loop sustains spatial attention 
on the object surface while it amplifies and synchronizes the activities of the 
attended cells, thereby leading to what is called a surface–shroud resonance 
between a surface representation (e.g., in cortical area V4) and spatial atten-
tion (e.g., in PPC).

The concept of a surface–shroud resonance also provides new insights 
into basic issues such as: How do we consciously see? How is what we 
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Figure 18.  A cross section of the luminance of a simple Perceptual Surface representation, 
say in prestriate cortical area V4, contains a more luminous region, seen as a rectangle in cross 
section, and a less luminous region, also a rectangle in cross section. Each active surface sends 
bottom-up topographic excitatory signals (green upward-pointing arrows) to a Spatial Attention 
network in posterior parietal cortex (PPC). The PPC cells that receive inputs from the more 
luminous surface become more active than those which receive inputs from the less luminous 
surface. Cells in PPC compete among themselves (red arrows) and send topographic excitatory 
feedback signals back to their surfaces (green downward-pointing arrows). These interactions 
create a recurrent on-center off-surround network that is capable of contrast-enhancing the 
PPC activities, thereby creating a surface-fitting attentional shroud with which to focus spatial 
attention upon the more luminous surface. The top-down excitatory signals also increase the 
perceived contrast of the attended surface (enhanced surface activation in pale blue), as has been 
shown in both psychophysical experiments (e.g., Carrasco et al., 2000) and neurophysiological 
experiments (e.g., Reynolds and Desimone, 2003).

see related to what we recognize? Grossberg (2009) proposed that we con-
sciously see surface–shroud resonances; that is, we see the visual qualia of 
a surface when they are synchronized and amplified within a surface–shroud 
resonance. Such a resonance can propagate both top-down from V4 to lower 
cortical levels, such as V2 and V1, as well as bottom-up to higher cortical 
areas, such as the prefrontal cortex, or PFC, thereby synchronizing an entire 
cortical hierarchy.

The hypothesis that a surface–shroud resonance supports conscious see-
ing of visual qualia provides an answer to a basic question that was raised by 
two previous predictions. The first prediction was made when ART was first 
being introduced (e.g., Grossberg, 1980); namely, that “all conscious events 
are resonant events”. The second prediction was made when the properties of 
boundaries and surfaces were articulated (e.g., Grossberg, 1987a, b, 1994); 
namely, that “all conscious percepts of visual qualia are surface percepts”; see 
Sect. 2.1. Combining these two predictions leads to the question: What kind 
of resonance supports conscious percepts of visual qualia? The prediction by 
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Grossberg (2009) is: a surface–shroud resonance. Grossberg (2017) explains 
many data about conscious and unconscious visual perception in normal indi-
viduals and clinical patients using surface–shroud resonances.

How do we recognize what we see? While a surface–shroud resonance 
is being activated between V4 and PPC, the brain is also activating known 
recognition categories, or learning new ones, via interactions between brain 
regions such as V2, V4, ITp, and ITa. These latter interactions cause a feature–
category resonance (Fig. 13) to occur. Surface–shroud resonances for seeing 
and feature–category resonances for recognizing are linked via prestriate corti-
cal areas like V4, with the surface–shroud resonances including Where corti-
cal stream regions like PPC, and the feature–category resonances including 
What cortical stream regions like IT. When the two kinds of resonances get 
synchronized to each other via their shared representations in the visual cortex, 
we can simultaneously see and know things about an attended object (Fig. 19).

The above concepts clarify how an observer may become conscious of dif-
ferent views of a painting, and simultaneously know things about them, as the 
observer’s spatial attention shifts from one part of the painting to the next.

2.11. � Scene Understanding, Contextually-Cued Search, and Episodic 
Learning and Memory

The ARTSCENE model (Sect. 2.4) clarifies how the gist of a scene can be 
learned, and how gist may be refined by spatial attention shifts across space 
that learn finer textures of a scene (Grossberg and Huang, 2009). Indeed, each 
attention shift enables a newly attended region to be selected using its own 
attentional shroud, which then restricts learning to that region’s texture cat-
egory. The 3D ARTSCAN Search model clarifies, in addition, how we can 
learn to recognize and search for valued objects in such a scene.

Figure  19.  Coordinating conscious seeing and recognizing. A surface–shroud resonance 
for conscious seeing may be synchronized with a feature–prototype resonance for conscious 
knowing via shared circuits in prestriate cortical areas V2 and V4, despite the fact that the 
spatial attentional shroud is in the Where stream and the recognition category is in the What 
stream.
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Figure 20.  The ARTSTREAM Search model computes object contexts in the perirhinal cortex 
(PRC) and spatial contexts in the parahippocampal cortex (PHC). This contextual information 
enables PRC and PHC to interact with the ventral prefrontal cortex (VPFC) and dorsolateral 
prefrontal cortex (DLPFC) to compute object and spatial plans that can control object and 
spatial searches for desired goal objects. See text for details. (Reprinted with permission from 
Huang and Grossberg, 2010).

Neither of these models proposes how, as the eyes scan a scene, they learn 
to accumulate contextual information about the kind of scene that it is. For ex-
ample, when a refrigerator and a sink are viewed in sequence, an expectation 
of other kitchen appliances, like stoves and microwaves, may be primed, rather 
than of beds or beaches. If the refrigerator and sink are familiar, and in familiar 
positions relative to one another, then more definite expectations of particular 
kitchen appliances and their positions may be primed. The same is true for 
any scene, including a painting, leading to expectations whose confirmation 
or violation after a shift of attention may influence both our recognition, and 
our aesthetic appreciation, of it.

The ARTSCENE Search model (Fig. 20; Huang and Grossberg, 2010) goes 
beyond the ARTSCENE model to propose how object and spatial contexts 
about a scene, or picture, can be created as our eyes sequentially scan it, and 
then be used to more efficiently search for desired goal objects based upon 
this stored information. ARTSCENE Search has been used to quantitatively 
simulate many challenging data about what is called contextual cueing within 
the cognitive science literature; e.g., data of Brockmole et al. (2006), Chun 
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(2000), Chun and Jiang (1998), Jiang and Chun (2001), Jiang and Wagner 
(2004), Lleras and von Mühlenen (2004), and Olson and Chun (2002). An 
object context accumulates information about the sequence of objects that the 
eyes foveate as they scan a scene. Such sequential information is stored in an 
object working memory. The contents of this working memory can then be 
used to learn a special kind of recognition category that is called an object list 
chunk, or plan. Learning and activation of such a plan as a series of eye move-
ments unfolds represents that particular object context. In much the same way, 
a spatial context accumulates information about the sequence of positions that 
the eyes foveate as they scan a scene. Such sequential information is stored in 
a spatial working memory. The contents of this working memory can then be 
used to learn a special kind of recognition category that is called a spatial list 
chunk, or plan. Object and spatial plans can be used to direct a search for ad-
ditional objects that are expected after such an object and spatial context have 
been experienced, as well as to read out sensory expectations of these objects 
that prime us to expect to see them.

The signals from active object and spatial plans may be combined to ‘vote’ 
for the object that a viewer most probably expects to see, as well as the posi-
tion where this object is expected to be seen. This kind of knowledge begins 
to achieve context-sensitive scene understanding. It helps us to understand a 
painting as an entity within which certain combinations of objects, textures, 
and colors occur where we expect them to be.

ARTSCENE Search clarifies how the brain does this using interactions be-
tween multiple brain regions. In addition to the brain regions that are mod-
eled by the 3D ARTSCAN Search model, the ARTSCENE Search model also 
includes interactions of the perirhinal and parahippocampal cortices with the 
temporal, parietal, and prefrontal cortices (Fig. 20). Object contexts are com-
puted in the perirhinal cortex, and spatial contexts are computed in the para-
hippocampal cortex. Their interactions with object and spatial plans in the 
prefrontal cortex read out visual expectations of what and where new objects, 
textures, and colors are expected to be seen.

With these mechanisms also available, a viewer of a painting can more 
intelligently explore different parts of a painting based upon its gist and other 
regions of the painting that have already been viewed.

3.  How Boundaries Are Completed and Surfaces Filled-in  
with Brightness and Color

3.1. � From Complementary Boundaries and Surfaces  
to Complementary Consistency

As summarized in Sect. 2, all visual percepts are built up from interactions 
between boundary and surface representations. These representations are 

Downloaded from Brill.com04/06/2021 01:46:22AM
via free access



36	 S. Grossberg, L. Zajac / Art & Perception 5 (2017) 1–95

processed in parallel cortical processing streams (Fig. 9) that individually 
compute computationally complementary properties (Fig. 10). Interactions 
between these streams, across multiple processing stages, overcome their 
complementary deficiencies to compute effective representations of the world. 
Said in another way, these interactions convert computations that obey com-
plementary laws into a consistent percept, hereby achieving the property of 
complementary consistency. In order to better understand important properties 
of many different kinds of paintings, additional information is needed about 
how boundaries are completed and surfaces filled-in.

3.2. � Oriented Filtering, Spatial and Orientational Competition,  
and Bipole Grouping

The boundary signals that activate the brain may be incomplete either because 
they receive incomplete inputs from the world, as illustrated by the famous 
example of a Dalmatian in Snow (Fig. 3), or because they are processed by 
the retina across the blind spot or retinal veins (Fig. 8). Oriented filtering by 
simple cells and complex cells (Fig. 5) cannot complete these incomplete 
boundary fragments. However, output signals from complex cells input to a 
subsequent processing stage where boundary completion may be realized by 
a process called bipole grouping (Fig. 5). Bipole grouping cells can cooperate 
together to complete boundaries when their (almost) collinear and (almost) 
like-oriented neighbors are also activated. Bipole grouping hereby completes 
boundaries inwardly between pairs, or greater numbers, of (almost)-collinear 
and (almost)-like-oriented cells. Bipole grouping is thus an oriented process, 
and can occur between image contrasts with opposite contrast polarities, and is 
in this sense insensitive to contrast polarity, because bipole cells are activated 
by complex cells.

There is a vast experimental literature about properties of the perceptual 
grouping process of which bipole grouping forms a part. See Wagemans et al. 
(2012a, b) for a useful review.

The grouping properties of bipole cells were predicted and simulated in 
a neural network vision model by Cohen and Grossberg (1984), Grossberg 
(1984), and Grossberg and Mingolla (1985a, b). Cells with the predicted bi-
pole properties were first reported to occur in cortical area V2 based upon 
neurophysiological experiments by von der Heydt et al. (1984). Laminar cor-
tical models of how the brain sees (e.g., Grossberg, 1999, and Grossberg and 
Raizada, 2000) proposed, moreover, how recurrent long-range excitatory in-
teractions between neurons in layer 2/3 of V2, supplemented by short-range 
inhibitory interneurons, can realize the bipole grouping property (Fig. 21), 
and thereby explain consistent anatomical data.
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Figure  21.  How bipole cells in layer 2/3 of cortical area V2 as modeled within the 3D 
LAMINART model complete boundaries between pacman inducers of a Kanizsa square. 
(A) Kanizsa square stimulus. (B) Response of a horizontally-oriented bipole cell to a horizontal 
edge of one pacman figure. The pacman-activated horizontally-tuned bipole cell sends excitato-
ry signals (vertical spikes) along its horizontally-oriented long-range excitatory horizontal con-
nections to a nearby bipole cell. The horizontal connections also excite short-range disynaptic 
inhibitory interneurons (more vertical spikes) that inhibit the target bipole cell. The inhibitory 
interneurons also inhibit each other (still more vertical spikes), thereby normalizing their total 
activity in response to different combinations of inputs. The excitation and inhibition that con-
verge upon a bipole cell tend to cancel each other (‘one-against-one’), thereby preventing indi-
vidual inducers from causing widespread horizontal activation across the visual field. (C) When 
two collinear pacmen are presented, pairs of horizontally-tuned bipole cells on opposite sides 
of an intervening target bipole cell can summate their excitatory inputs at that cell, as they also 
activate their short-range inhibitory interneurons. The inhibitory interneurons again inhibit the 
target bipole cell, but also use recurrent interactions to inhibit each other. As a result of these 
recurrent inhibitory connections, the total inhibition on the bipole cell from all the active inter-
neurons is normalized, and the bipole cell can fire (‘two-against-one’). In this way, bipole cells 
can build illusory contours inwardly between pairs of inducers, but not outwardly from a single 
inducer. (Adapted with permission from Grossberg and Raizada, 2000).
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Figures 5 and 21 note that boundary completion is oriented. How is this 
property achieved? To initiate boundary processing, the brain uses simple cells 
and complex cells, which are oriented contrast detectors in cortical area V1, as 
noted in Sect. 2. Orientationally-selective tuning of cells has limitations, how-
ever. By averaging input contrasts across their receptive fields, simple cells 
and complex cells enable the brain to avoid the need to use a large number of 
different specialized detectors to edges, or shading, or texture, and some other 
highly specific visual properties. Instead, a single simple cell and complex cell 
can respond to edges, shading, and texture, among other visual properties, that 
roughly share the orientation and spatial scale of their receptive fields. For 
example, in Fig. 22, a vertically oriented simple cell with a dark–light polarity 
can respond at the right edge of a vertical black bar on a white background. 
Such a simple cell can also respond to the contrast difference that is caused by 
two vertically oriented black dots on the white background. However, such a 
simple cell cannot respond to the white background itself, because the back-
ground has uniform luminance. Nor can a horizontally oriented simple cell 
respond to the vertical black bar.

This efficiency also leads to computational uncertainties. For example, the 
oriented receptive fields of simple cells and complex cells cannot respond at 
the ends of thin lines, or other high curvature contours, as illustrated by the 
computer simulation in Fig. 23 (left image). Such a hole in a boundary is 
called an end gap. Without further processing, the end gaps in the boundaries 
at line ends would allow brightness and color to flow out of every line end due 
to surface filling-in, leading to perceptually disastrous consequences.

To prevent this perceptual catastrophe, additional processing stages are 
needed subsequent to complex cells. Grossberg (1984) and Grossberg and 
Mingolla (1985a) predicted and modeled how this additional processing 
can be accomplished in two stages (Fig. 5): Complex cells are proposed 
to input to a subsequent processing stage via a spatial competition. Cells 
at this next stage are often called hypercomplex cells (Hubel and Wiesel, 
1968). They receive inputs from the complex cells via an on-center off-
surround network: Each complex cell excites the hypercomplex cell at its 
position with the same orientational preference, while inhibiting nearby 
hypercomplex cells with the same, or similar, orientational preferences. Due 
to the off-surround, the responses of hypercomplex cells are sensitive to the 
length of input lines, since line inputs that fall within a strong region of 
inhibition within the off-surround are suppressed. The cells that are affected 
by this on-center off-surround spatial competition are said to constitute the 
first competitive stage.

Many boundaries would still remain incomplete if boundary processing 
stopped with the first competitive stage. For example, line end boundaries 
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Figure  23.  Computer simulations of the responses of simple cells at the end of a thin line 
(in gray). (Left) Simulated activities at different positions of simple cells with prescribed 
orientational tuning are represented by the lengths of lines at the same positions and with the 
same orientations. The largest responses occur in vertically oriented simple cells at the two 
sides of the line, but no responses occur at the end of the line. (Right) The first and second 
competitive stages (Fig. 5) create a boundary at the line end (end cut) that is positionally accurate 
but orientationally fuzzy. (Reprinted with permission from Grossberg and Mingolla, 1985b).

Figure 22.  How simple cells that are sensitive to specific positions, contrast polarities, and 
orientations respond to contrastive stimuli. See text for details.
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would still have a hole in them, and the two Kanizsa squares in Fig. 4 would 
continue to be seen and recognized as four spatially disjoint pacman figures.

The cells of the first competitive stage activate cells at a second competitive 
stage. These latter cells compete with other cells at the same position that have 
different orientational tuning (Fig. 5). The maximal mutual inhibition occurs 
between cells that prefer perpendicular orientations. Cells at the second com-
petitive stage are also tonically active, which means that they are continuously 
activated by an internal energy source. However, their mutual inhibition holds 
down their activity when all orientations receive no external inputs. Suppose, 
however, that a cell in the second competitive stage lies just beyond the end 
of a line. Then it will be additionally inhibited by cells at the line end from 
the first competitive stage. Then its inhibition of other cells at its position 
in the  second competitive stage will also be reduced, notably of cells that 
code the perpendicular orientation, and orientations close to it. These latter 
cells are hereby disinhibited, and can create a boundary at the line end. Such 
a boundary is called an end cut (Fig. 23, right). The spread of brightness and 
color signals out of every line end is prevented by their end cuts.

In summary, the two competitive stages compensate for the missing bound-
aries at the end of a vertical thin line as follows: The competition across the 
hypercomplex cells at the first competitive stage is across position and within 
orientation, whereas the competition across the hypercomplex cells at the sec-
ond competitive stage is within position and across orientation. At the first 
competitive stage, active vertically oriented complex cells near the line end 
inhibit vertically oriented hypercomplex cells just beyond the line end. When 
these cells are inhibited, their inhibition of cells at their position that are tuned 
to other orientations is removed. The most inhibition is removed from cells 
that are preferentially tuned to the horizontal orientation. These horizontally 
oriented cells are hereby disinhibited, and create line ends, or end cuts, that 
complete the boundary at the line end, and are capable of containing the line’s 
brightness and color within its borders.

Designers of letter fonts often attach a small line, or serif, to the end of a 
stroke in a letter. There are many possible historical explanations of serifs, or 
“Roman” typefaces, but one psychological benefit of them is to strengthen the 
boundary at a line end.

Although cells at the second competitive stage can complete the boundaries 
at line ends, they cannot complete boundaries due to incomplete textures such 
as the Dalmatian in Snow (Fig. 3), or across the blind spot and retinal veins 
(Fig. 8). Cells at the second competitive stage input to bipole cells that can 
carry out boundary completion (Fig. 5). Because cells that are tuned to several 
different orientations are activated at each line end at the second competitive 
stage (Fig. 23, right), bipole cells can group across space in any of several 
orientations, depending upon which of these orientations line up best across 
space and have the most support from inputs in the scene or picture.
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3.3.  Hierarchical Resolution of Uncertainty

These spatial and orientational competitive interactions are part of a process 
that is called hierarchical resolution of uncertainty (Grossberg, 1984, 1994; 
Grossberg and Mingolla, 1985a) whereby uncertainties caused by lower lev-
els of boundary processing are compensated by processes at higher cortical 
levels.

Why is hierarchical resolution of uncertainty needed? Why does not the 
brain just define perfect edge detectors that do not fail to detect line ends? A 
basic reason for this has already been briefly noted; namely, simple cells are 
not just edge detectors. They are oriented local contrast detectors that can re-
spond to edges, textures, shading, and depth differences. If the brain defined 
edge detectors instead, then it would also have to define many other types of 
specialized detectors. It would then be faced with the extremely challenging 
problem of figuring out how to put together the specialized information that 
is detected by all these different kinds of detectors. Such a fusion of informa-
tion could be rendered impossible by the fact that many properties of scenes 
and paintings contain edges, textures, shading, and depth all overlaid in the 
same locations. Specialized detectors could not respond accurately to such an 
overlay of properties.

Instead, the brain starts to build boundaries with simple cells, which can 
respond to all of these different types of properties, albeit imperfectly, and 
then uses hierarchical resolution of uncertainty to compensate for where 
these detectors are insensitive to image data. It turns out that the interactions 
that accomplish hierarchical resolution of uncertainty also play many other 
useful roles in visual perception. Indeed, several hierarchical resolutions of 
uncertainty are used to generate the visual percepts that we consciously see. 
Three more of them are summarized below, one having to do with the pro-
cess of boundary grouping, another with surface filling-in, and the third with 
figure–ground separation. The general conclusion is that the brain does not 
eliminate uncertainty too soon. It takes advantage of uncertainty until pro-
cessing stages are reached at which uncertainty can profitably be drastically 
reduced or eliminated. Many artists have also understood this point, at least 
implicitly, with the Impressionists, such as Claude Monet (see Sect. 4.1), and 
other plein air painters being notable examples.

3.4. � Neon Color Spreading: Coordinating End Gaps, End Cuts,  
and Fuzzy-to-Sharp Groupings

Many experimental data and percepts support the idea of hierarchical resolu-
tion of uncertainty and how it works. For example, evidence of how end cuts 
usually prevent spurious filling-in from occurring can be seen in some per-
cepts due to the fact that, although the two competitive stages work most of 
the time, they do not contain spurious color spreading in response to all scenes 
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and pictures. A famous example of color spreading from line ends is shown 
in Fig. 24. It is called neon color spreading. Neon color spreading illustrates 
key properties of color filling-in, in addition to how end gaps and end cuts are 
formed. The image in Fig. 24 consists of circular annuli, part of which are 
black and part blue. When viewing this figure, an illusory square can be seen 
that is filled with blue ‘neon’ color, even though the only blue in the image is 
in the concentric blue circular arcs.

Neon color spreading was reported in Varin (1971), who studied a “chro-
matic spreading” effect that was induced when viewing an image similar to the 
one in Figure 24. Van Tuijl (1975) independently introduced images that gave 
rise to percepts that he called “neon-like color spreading”. To explain the per-
cept in Figure 24, first note that the black and blue arcs in Fig. 24 both create 
boundaries in our brains. At the positions where the differently colored bound-
aries join, the boundaries caused by the black arcs cause end gaps to occur at 
the ends of the boundaries caused by the blue arcs, at positions where they abut 
the black arcs. For this to occur, the contrast of the black arcs with respect to the 
white background must be chosen larger than the contrast of the blue arcs with 
respect to the white background. The boundaries formed by these contrasts are 
contrast-sensitive, so that the boundaries formed by the black–white contrasts 
are stronger than those formed by the blue–white contrasts, and can thus inhibit 
these spatially abutting weaker boundaries using the spatial competition of the 
first competitive stage, just as they do in Fig. 23 (left).

Although the heuristics of these operations are simple to describe, to ac-
tually make them work requires that one uses the correct cellular laws and 
network interactions. This fact can be illustrated when we try to answer the 
following question: If spatial competition occurs along an entire line, then 
why does not the balanced inhibition along the entire interior of the line sup-
press it entirely? The entire line could have been inhibited if spatial competi-
tion just subtracts activity from its target cells. Instead, a form of competition 
is used that is called shunting competition, which fortunately is the kind of 

Figure 24.  A neon color spreading stimulus. See text for an explanation of how the illusory 
square boundary is formed between the positions where the black and blue arcs touch, and how 
blue color spills out of the blue line ends to fill-in the emergent square with blue color.

Downloaded from Brill.com04/06/2021 01:46:22AM
via free access



	 Art & Perception 5 (2017) 1–95	 43

competition that is obeyed by the membrane equations that define the prop-
erties of neurons. Shunting competition does not just subtract activity from 
inhibited cells. Instead, it also divides the activity of these cells. Shunting 
competition can be designed so that, when the strength of competition be-
tween nearby cells is the same, such as along a black arc, then the activities 
of these cells are reduced, but not eliminated, by an amount that is sensitive 
to the relative activities of all the neighboring cells. This property is called 
contrast normalization. However, at positions where the weaker blue arc  
inputs receive shunting competition from nearby black arc inputs, shunting 
competition can cause holes, or end gaps, in blue arc boundaries at positions 
that lie just beyond the ends of black arc boundaries.

The spatial competition that causes end gaps in response to a neon color 
spreading image can also cause end cuts when the first competitive stage in-
hibits cell activities at the second competitive stage, as in Fig. 23 (right). In 
particular, cells at the second competitive stage that are tuned to other orienta-
tions, notably the perpendicular orientation, are disinhibited and thereby cre-
ate end cuts. Thus, both end gaps and end cuts can occur where the black arcs 
abut the less-contrastive blue arcs in a neon color spreading image.

Because end cuts occur at multiple line ends in response to the neon color 
spreading image, the end cuts activate bipole cells that can cooperate across 
space to complete a boundary with the shape of an illusory square.

Bipole grouping can occur even when the adjacent end cuts do not have 
the same orientational preference. Grouping can happen because these ori-
entations are similar enough to be grouped by the bipole cell receptive fields. 
These receptive fields prefer to group collinear orientations, but can also group 
non-collinear orientations with a strength that decreases with the orientational 
difference from the preferred orientation and the physical distance from the 
bipole cell body (Grossberg and Mingolla, 1985b), as noted in Fig. 25. These 
receptive field properties can arise during development of the bipole cells as 
they are exposed to the statistics of many scenes and images. See Grossberg 
and Swaminathan (2004) and Grossberg and Williamson, (2001) for computer 
simulations of how bipole receptive fields can develop.

Due to this uncertainty in the bipole cell receptive fields, bipole cells can 
interact together to complete boundaries in response to collinear, perpendicu-
lar, or oblique inducers (Fig. 26). Each of these final boundary groupings typi-
cally appears to be spatially sharp, despite the uncertainty, or fuzziness, in the 
number of possible inducing orientations before a final grouping is chosen. 
This property of transforming an initially fuzzy orientational and positional 
grouping choice into a sharp final grouping is a second example of hierarchi-
cal resolution of uncertainty.

This particular hierarchical resolution solves the following problem: The 
probability that pairs of nearby inducers are perfectly aligned across space is 
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vanishingly small, especially when one considers that the design and place-
ment of neurons is not perfect. Despite this limitation, it is important to be 
able to initiate grouping between them. The fuzzy bipole cell receptive fields 
enable this to occur (Fig. 25), and a band of grouping possibilities is initially 
generated (Fig. 27). Once grouping begins, however, cooperative and com-
petitive bipole cell interactions choose the strongest grouping and inhibit the 
weaker ones, thereby converting a fuzzy initial grouping into a sharp final 
grouping. When the strongest inducers differ in orientation and position, the 
final boundary groupings may go through the locally preferred end cut ori-
entations; namely, the orientations that are perpendicular to their line ends  
(Fig. 28, upper row). However, if there is no sufficiently simple grouping that 
can go through the perpendicular end cuts, then a grouping may form that 
goes through weaker end cut orientations (Fig. 28, lower row). The boundary 
completion process chooses the grouping that has the most evidence in sup-
port of it, using the same cooperative and competitive interactions that induce 
end gaps and end cuts. These interactions realize a kind of probabilistic hy-
pothesis testing that chooses the best supported grouping from uncertain data.

Figure  25.  (Left, upper row) This image shows the receptive field of the bipole cell that 
was simulated by Grossberg and Mingolla (1985b). The black dot represents the position of 
the bipole cell body. The other markings represent the receptive field of the cell. The length 
and orientation of each line represents the relative strength of the bipole cell receptive field’s 
reaction to an input at that position with that orientation. Colinear, like-oriented inputs are 
favored, but nearby orientations and positions can also influence bipole cell firing. (right, upper 
row) This image depicts the “association field” that was described by Field et al. (1993) as 
a result of their psychophysical experiments. As in the bipole cell receptive field, collinear 
inputs are favored, but nearby orientations and positions can also have an effect. (Left, lower 
row) This figure shows the version of bipole grouping modeled by Heitger and von der Heydt 
(1993). (Right, lower row) This figure shows the version of the bipole cell that was modeled by 
Williams and Jacobs (1997).
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Figure  26.  Gestalt grouping by bipole cells, notably how bipole cells can build illusory 
boundaries that are parallel, perpendicular, or diagonal in orientation relative to their inducing 
stimuli. (a, c, e, g) In each case, the inducing stimuli are three rows of three vertically oriented 
bars. The bars are moved relative to one another to illustrate how Gestalt grouping laws can 
lead to (b) vertical groupings, (d) vertical and horizontal groupings, (f) horizontal groupings, 
and (h) diagonal groupings. (Reprinted with permission from Grossberg and Mingolla, 1985b).

Figure 27.  (Left) An initially fuzzy grouping can form in response to the multiple orientations 
that are created within end cuts; see Figure 23 (right). (Right) A sharp grouping, after the 
grouping process equilibrates, chooses the grouping with the most support from the totality of 
its inducers, while suppressing weaker groupings via short-range competitive interactions, as 
illustrated by Fig. 5.
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Figure  28.  (Upper row) Two stimuli that lead to illusory contours that are perpendicular to 
their inducing line ends. Here the locally-preferred perpendicular inducer orientations win in the 
globally chosen grouping. (Lower row) Here the emergent square boundary generates constraints 
that can only be satisfied by non-perpendicular orientations within the end cuts at the inducing 
line ends. Thus this global grouping is not built on globally preferred perpendicular end cuts.

The simulations in Figs 23 and 26 illustrate another important property of 
boundary completion. Note that, in addition to the end cuts that enable line 
ends to group, there are also small horizontal boundaries that are created on 
both sides of the vertical boundary inducers in each input. However, these 
small horizontal boundaries do not create emergent horizontal boundaries 
between pairs of inputs along the entirety of their sides. If this did happen, 
then many spurious boundary groupings would occur. They do not occur 
because of a property that is called spatial impenetrability (Grossberg and 
Mingolla, 1985b). Spatial impenetrability is achieved by the fact that (e.g.)  
horizontally-oriented bipole cells are inhibited by vertically-oriented hyper-
complex cells at the same positions (Fig. 5b). In the middle of a verti-
cal line input, a combination of horizontal and vertical responses prevents 
horizontally-oriented bipole cells from “penetrating” these vertical inducers. 
Only at line ends are there enough like-oriented cell responses to be able 
to induce boundaries, whether collinear (Fig. 4) or almost perpendicular to 
(Fig. 28) the line’s orientation.

In summary, the illusory contours that are illustrated in Figs 4, 24, 26, 
and 28 can be quite sharp, despite the fuzziness of the end cut orientations, 
because bipole cells interact via feedback with spatial and orientational com-
petition to inhibit weaker cell responses (Figs 5 and 21). This sharpening of 
end cuts during illusory contour formation is another example of hierarchical 
resolution of uncertainty: The initial fuzziness is needed to initiate bound-
ary grouping (Fig. 27) but risks a loss of acuity. The ensuing sharpening by 
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cooperative–competitive feedback interactions permits the final grouping to 
form without a loss of acuity.

When considering properties of this boundary choice, another question 
arises whose answer also requires that cellular and network computations be 
done in the correct way. This question asks how strong the boundary choice 
will be? There are scores of examples that illustrate the need for boundary 
strength to covary with the number, spatial separation, relative orientation, 
and contrast of the boundary inducers. These constraints are often called Ge-
stalt grouping laws. One can summarize them heuristically by saying that the 
degree of commitment—in this case, boundary strength—should covary with 
the amount of evidence. The computational challenge is that cooperative-
competitive feedback interactions that make a boundary choice could easily 
cause the winning cells to attain their maximal activities, and thus be insensi-
tive to the amount of evidence. This could cause catastrophic problems if the 
amount of evidence is needed to determine adaptive choices at later process-
ing stages. It has been shown that the laminar circuits of the visual cortex en-
able such choices to be made without losing analog sensitivity to the Gestalt 
grouping laws (e.g., Grossberg and Raizada, 2000; Grossberg et al., 1997), a 
property that Grossberg has called analog coherence.

3.5. � Neon Color Spreading: How Discounting the Illuminant Is Compensated 
by Filling-in

In response to the neon color spreading image in Fig. 24, blue color can flow 
out of the end gaps in the broken boundaries. This spreading, or filling-in, of 
blue color across space continues until the color hits the square that is made 
up of both pacman and illusory boundaries, which together prevent its further 
spread. Thus, both real and illusory boundaries act as barriers to the filling-in 
of brightness or color. In summary, the process of end cutting that completes 
line ends, and thus illustrates the first hierarchical resolution of uncertainty, 
can also create end gaps through which brightness or color can flow when a 
stronger boundary abuts a collinear weaker boundary. The end cuts can, in 
turn, cooperate via bipole grouping to complete an illusory boundary that can 
contain this flow of brightness or color, thereby illustrating a second hierarchi-
cal resolution of uncertainty.

Neon color spreading also provides a third example of hierarchical resolu-
tion of uncertainty. Recall from Sect. 2.1 that the process of discounting the 
illuminant computes feature contour signals that significantly eliminate effects 
of the illuminant, in order to compute properties of the object itself, such as its 
reflectances. Feature contour signals tend to occur along boundary contours 
(Fig. 11) because those are the positions where image contrasts may occur 
rapidly across space. Intuitively, one can think of feature contours as a kind 
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of color or brightness contour that is localized in space. In order to recover 
surface properties of an object, such as its color and brightness, in a way that 
is relatively insensitive to illumination changes, filling-in of feature contours 
occurs at a processing stage that is subsequent to discounting the illuminant 
(Fig. 12). Thus, the filling-in that is observed during neon color spreading 
illustrates a hierarchical resolution of uncertainty whereby feature contours 
are computed to discount the illuminant, and then the feature contours induce 
filling-in within the boundary contours to recover surface color and brightness.

In summary, the charming but seemingly unimportant percept of neon color 
spreading may be understood as the combined effect of three hierarchical reso-
lutions of uncertainty, each of which is essential for the visual system to work 
well. The insights that we have gleaned about how neon color spreading oc-
curs will be used below to help clarify effects that various artists have achieved 
in their paintings.

3.6.  Seeing a 2D Image of a Shaded Ellipse as a 3D Surface: Boundary Webs

The examples to the present have focused on 2D properties of visual percepts. 
However, even in response to the Kanizsa square in Fig. 4, the completed 
square can consciously be seen ‘in front of’ four partially occluded discs 
whose unoccluded parts can be seen as pacman figures. This percept leads to 
the general question: How does a 2D picture give rise to a 3D percept? Were it 
not for this property, 2D paintings might never have been invented to represent 
aspects of the 3D world that humans experience every day. FACADE theory 
(e.g., Grossberg, 1994, 1997; Grossberg and McLoughlin, 1997), and its re-
finement and generalization by the 3D LAMINART model of how the lami-
nar circuits of visual cortex see (e.g., Cao and Grossberg, 2005; Grossberg, 
1999; Fang and Grossberg, 2009; Grossberg and Raizada, 2000; Grossberg 
and Swaminathan, 2004; Grossberg and Yazdanbakhsh, 2005), explain how 
the brain mechanisms that have evolved to see the 3D visual world can au-
tomatically generate 3D representations of 2D pictures. Aspects of how this 
proposed to happen will now be reviewed.

The 3D percept that is generated by a 2D picture of a shaded ellipse is 
one possible place to start this explanation (Fig. 29, left). Despite its simplic-
ity, this picture raises fundamental issues about how vision works, issues that 
have influenced the art of many painters. One of the first issues concerns the 
difference between an edge detector and a boundary detector that is sensitive 
to edges, shading, texture, and depth. Recall that the brain does not use edge 
detectors if only to avoid having to process and fuse information from a pro-
liferation of specialized detectors. Instead, oriented simple cells are used, and 
their uncertain computations are compensated by hierarchical resolutions of 
uncertainty (Fig. 5). If the brain did use edge detectors, then it could compute 
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only the bounding edge of the ellipse. If this were the only boundary that 
formed, then the gray colors within the ellipse could all spread throughout its 
interior surface via filling-in to generate a flat percept of a uniformly gray el-
lipse, just as occurs during filling-in of a Kanizsa square (Figs 4 and 6). This 
is not, however, what is seen.

Instead, the brain computes a dense array of boundaries that configure 
themselves along the isophotes, or equal luminance positions, of the gradients 
of shading and texture in an image or scene. Such an array is called a boundary 
web (Grossberg, 1987a, b; Grossberg and Mingolla, 1987; Grossberg et al., 
2007). Oriented simple cells of a given size can respond the elliptical form of 
the shaded gradient along these isophotes to generate such a boundary web. 
The web’s boundaries parallel one another from the bounding contour of the 
ellipse inwards towards its interior. Each of the small compartments in the web 
can trap its local shade of gray and prevent it from spreading via filling-in to a 
larger region of the ellipse.

If this is indeed the case, then why is this boundary web not visible? There 
are two answers to this question. The first answer is that ‘all boundaries are 
invisible’. The second answer is that the invisible boundary web reveals itself 
through the smooth gradient of gray color that it trap within its compartments 
to form a shaded surface percept.

Using simple cells with a single receptive field size, or spatial scale, is not 
sufficient to generate a percept of a depthful, or 3D, shaded ellipse. For this 
to happen, multiple simple cell spatial scales need to simultaneously respond 

Figure  29.  (Left) A shaded 2D ellipse generates a compelling rounded 3D shape percept 
because of the way in which multiple-scale boundary webs react to the shading gradients and 
capture the gray color within their form-sensitive compartments in depth-selective filling-in 
domains. (Right) A smooth rounded 3D shape percept is generated from a spatially discrete set 
of 2D black patches, again by using multiple-scale boundary webs and their interactions with 
depth-selective filling-in domains.
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to the image. Other things being equal (which is not always the case), large 
boundary scales code ‘near’ and small scales code ‘far’, if only because objects 
of a given size caste larger images on the retinas as they are viewed at nearer 
distances. This property is often called the size-disparity correlation (Julesz 
and Schumer, 1981; Kulikowski, 1978; Richards and Kaye, 1974; Schor and 
Tyler, 1981; Schor and Wood, 1983; Schor et al., 1984; Tyler, 1975, 1983). 
In particular, complex cells with larger receptive fields can binocularly fuse 
a broader range of binocular disparities than can cells with smaller receptive 
fields, and thus can represent a larger range of depths, with the largest dispari-
ties often coding the nearest depths.

In response to a picture of a 2D shaded ellipse, each scale of simple cells 
activates its own network of complex, hypercomplex, and bipole cells (Fig. 5),  
and each network of bipole cells responds differently to the gradient of gray 
shading in the ellipse: The smallest scale generates the narrowest band of 
boundaries in its web. This boundary web lies adjacent to the bounding con-
tour of the ellipse. The largest scales generate the broadest bands of boundar-
ies. Larger boundary webs can more deeply penetrate into the interior of the 
ellipse. Said in another way, other things being equal, smaller scale simple cells 
can fire more easily nearer to the bounding edge of the ellipse. As the spatial 
gradient of shading becomes more gradual with distance from the bounding 
edge, it becomes harder for smaller scales to respond to this gradient. Thus, 
other things being equal, larger scales tend to respond more as the distance 
from the bounding edge increases. As a result of the size-disparity correlation, 
the boundary webs nearer to the middle of the ellipse code a nearer depth than 
the ones near the bounding edge of the ellipse.

It should also be noted, however, that larger scales do not always code for 
nearer depths, due to the way in which multiple spatial scales interact with 
grouping properties. These exceptions will not be needed to make our main 
points here. They are explained in Grossberg (1994), along with a more detailed 
explanation of when and how larger spatial scales do code for nearer depths.

Each boundary scale, in turn, maximally activates a Filling-In DOmain, or 
FIDO, which controls filling-in of surface brightness and color at the corre-
sponding depth (Fig. 12). In particular, each boundary web traps gray shading 
within itself at the corresponding FIDO. The spatial distribution of filled-in 
contrasts across all these depth-selective FIDOs represents the perceived 3D 
shape of the elliptical surface. Many details need to be carefully developed 
for this simple scheme to work properly, but the main idea should be clear.

These datails are mathematically modeled in the LIGHTSHAFT (LIGHT-
ness-and-SHApe-From-Texture) model of Grossberg et al. (2007). Percepts 
such as the smooth 3D shape that is generated by the spatially discrete 2D 
texture in Fig. 29 (right) are explained by LIGHTSHAFT, whose explanation 
is supported by quantitative simulations of parametric psychophysical data 
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about such percepts. Here too one needs to ask: If different boundary web 
scales generate a depthful percept of surface form and lightness by differen-
tially generating filling-in of the texture contrasts within them, then why are 
not these boundary webs visible? Again the answer is that invisible bound-
ary webs reveal themselves by the way in which they selectively organize the 
filling-in of surface contrasts within their respective Filling-In Domains.

3.7.  Chiaroscuro and Perspective

How multiple-scale boundary webs can create 3D percepts from a 2D image, 
as in response to the images in Fig. 29, also explains the effects achieved by 
the painterly technique of chiaroscuro. Leonardo da Vinci was one of the first 
painters to use the chiaroscuro technique to create bulging 3D percepts from 
2D paintings.

Koenderink et al. (2015) have discussed the paintings of several other art-
ists from the perspective that they derive depthful object percepts using a vari-
ety of ‘relief articulation techniques’ that can all be interpreted, and explained, 
by how they activate multiple-scale, and often coarse, boundary webs, even 
when the techniques do not respect basic physical constraints such as the loca-
tion of light sources.

Vanderbosch et al. (2015) have additionally considered conditions under 
which changing a uniform background color may influence the perceived 
depthful relief of simple objects, such as shaded spherical images, that the 
backgrounds surround, and how these insights may be used to analyze paint-
ings that employ various techniques to generate coarse boundary webs with 
which to trap their lightnesses and colors. A typical demonstration (their  
Fig. 2) compares three identically shaded gray spherical images against three 
different uniform backgrounds that are white, black, or gray. The white and 
black backgrounds both cause a fixed direction-of-contrast (from object to 
background) at every position along the bounding contour of the correspond-
ing spherical image, albeit one that goes from dark-to-light when the back-
ground is white, and from light-to-dark when the background is black. In con-
trast, the gray background generates a light-to-dark direction-of-contrast at 
the top of its spherical image, and a dark-to-light direction-or-contrast at the 
bottom of its image, with intermediate contrasts in between. This third image 
raises the same issue as the image in Fig. 4 (lower row), wherein direction-of-
contrast flips along the bounding contour of an object. Again, complex cells, 
by pooling over opposite contrast polarities (Fig. 5a), can generate a continu-
ous boundary around the entire spherical image, except at the unique pair of 
positions where there is zero contrast between image and background, due 
to the reversal of relative contrast around the bounding contour. This infini-
tesimal break in the boundary may be completed by collinear bipole grouping 
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(Fig. 5b). These images also illustrate that the steepness of the boundary webs 
within the shaded spheres is greater in the case of the gray background, due to 
the contrast reversal around that sphere’s bounding contour, and thus create a 
percept of greater relief, just as changes in the steepness of shading and texture 
gradients in the images of Fig. 29 control their perceived relief.

Koenderink et al. (2016) consider a different property of images around 
whose bounding contours relative contrast reverses continuously from dark-to-
light to light-to-dark; e.g., their Fig. 1. They call the zero-contrast positions of 
such a contour a ‘passage’ and consider passages within the broader context that 
“many pictures are approximately piecewise uniform quilts…[Their] borders 
may occasionally get lost and sometimes pick up again, creating a ‘passage’ 
that partly blends adjacent patches. This type of structure is widely discussed in 
treatises on painting technique” (p. 185). Its various painterly effects can also 
be explained using the mechanisms that are described in the current article.

The same sorts of multiple-scale boundary webs can be used to explain 
3D percepts that are caused by perspective in a 2D picture, or the systematic 
reduction of spatial scale as a vanishing point on the horizon is approached. 
Perspective has been regularly used in paintings since the time of the Re-
naissance. The bigger scales, other things being equal, create a percept of a 
nearer surface, while the smaller scales create a percept of a surface that is 
farther away, as in the size-disparity correlation. The ambiguous depths that 
multiple-scale filters code is disambiguated to create percepts of relative depth 
by scale-to-depth and depth-to-scale maps, cooperative-competitive bound-
ary interactions, and the depth-selective filling-in of surface representations 
under the control of the resultant boundaries, in much the same way as the 
LIGHTSHAFT model explains the percept of Fig. 29 (right).

3.8.  Recognition Without Seeing, and Seeing to Reach

We are almost ready to focus more completely upon how various painters 
have exploited for their aesthetic goals different combinations of processes 
that control how our brains see. Before doing so, it is relevant to the goals of 
this article to ask: Why do we consciously see at all?

Many people, if they have thought about this basic issue at all, may con-
clude after reflection that ‘we see things to recognize them’. These people 
include artists who have thought deeply about how they see the world. For 
example, Mann et al. (2016, p. 270) has written: “The main purpose of this 
conscious macular vision is to enable us to recognize,” where macular vi-
sion is the kind of high acuity vision that is achieved using the fovea (Fig. 8). 
However, the fact that ‘all boundaries are invisible’ contradicts this claim, at 
least as a general explanation of why we consciously see, because these invis-
ible boundaries enable us to consciously recognize many emergent structures 
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without seeing them; e.g., Fig. 2 (left), Figure 3, Fig. 4 (right, top row), and 
(see below) Fig. 41 (left).

Grossberg (2017) has proposed how a surface–shroud resonance may  
(Fig. 18) support conscious seeing when it is triggered between prestriate vi-
sual cortical area V4 and the posterior parietal cortex, or PPC, while propagat-
ing top-down to cortical areas such as V2 and V1, and bottom-up to cortical 
areas such as the prefrontal cortex, or PFC. This analysis proposes how such a 
surface–shroud resonance enables a conscious brain to control effective look-
ing and reaching movements towards the unoccluded surfaces of overlapping 
objects (see Fig. 41, left, below). It is also proposed that conscious hearing 
is organized to enable effective vocalizing and speaking, and conscious feel-
ing is organized to enable effective actions towards valued goal objects in the 
world. These conclusions are supported by explanations of psychological and 
neurobiological data from normal subjects and clinical patients that have no 
other explanations at present.

These conclusions do not deny that visible representations may also aug-
ment human abilities to recognize objects, and to enjoy the beauty of the world, 
after the evolutionary pressures for creating brain processes that could support 
conscious representations had already acted. It is interesting to contemplate 
from this perspective the following quote of Mann et al. (2017, pp. 274–275) 
about an experience that he had when painting after he became blind: “…I put 
ultramarine on a brush and painted the top right hand corner of the canvas and 
I had one of the most extraordinary sensations of my life. I saw the canvas go 
blue.” It is of interest that Mann believed that we “see to recognize” even after 
he experienced the powerful link between seeing and acting.

4.  Towards Neural Explanations of Painting Percepts

4.1.  Claude Monet, Coarse Boundary Webs, and Uncertainty

Claude Monet, who lived from 1840 to 1926, was one of the founders of the 
French Impressionist movement, which derived its name from his painting 
called Impression, Soleil Levant (Impression, Sunrise). This painting was ex-
hibited in 1874 in an exhibition that was organized by Monet and his associates 
as an alternative to the Salon de Paris. Monet’s use of color significantly de-
parted from the established Academic painting style that dominated the Salon 
de Paris. The surfaces of his paintings of natural scenes are built up from small 
brushstrokes. Using these discrete, but juxtaposed, color elements, Monet cre-
ated complex surfaces that induce amodal boundary webs, which define the 
structures of object forms. These emergent forms can be seen and recognized 
even though the individual compartments from which they are composed are 
also often clearly visible when spatial attentional shrouds focus upon them.
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Without a certain degree of orientational uncertainty embedded in the hu-
man visual system (Figs 23 and 25), long-range cooperative boundary comple-
tion and emergent segmentation would be nearly impossible in response to 
Monet’s paintings. His paintings exemplify the paradoxical prediction that ori-
entationally ‘fuzzy’ computations often lead to sharp segmentations (Fig. 27) 
because hardly any sharp edges are in them. Edges, forms, and the light that 
falls on them are perceived despite the fact that the paintings are irregular, noisy 
surfaces composed of varying densities of luminance and color patches.

Monet’s brushstrokes induce boundary webs in which many of the com-
partments within a form are nearly equiluminant and there may be stronger 
boundary signals between forms. This combination facilitates color spreading 
within forms and better separation of brightness and color differences between 
forms. Figure 30 (upper row) shows four paintings from Monet’s Rouen Ca-
thedral series and their grayscale counterparts (Fig. 30, lower row). This fa-
mous series, created in the 1890s, includes over 30 paintings of similar views 
of the Rouen Cathedral at different times of day. The grayscale versions of 
these paintings demonstrate the near equiluminance of the brushstrokes with-
in forms and places in which brightness and color differences significantly 
influence the groupings that differentiate between forms, including the dif-
ferentiation between the cathedral and the sky. Monet took advantage of the 
statistical uncertainty that our visual system is designed to overcome to create 
work in which both color and luminance play a role in creating form, rather 
than luminance alone, as in the first and fourth images from left to right. Tak-
ing the color out of Monet’s paintings removes some critical closed boundar-
ies that allow us to segregate forms. It is because the boundary system pools 
both chromatic color and brightness signals at complex cells that boundaries 
can remain that may be due almost entirely to a color difference, without a 
corresponding achromatic brightness difference, as in the fourth image to the 
right in the upper row of Fig. 30.

Figure 31 contains images of two paintings from Monet’s Rouen cathe-
dral series that illustrate how different lighting of the same object can lead to 
dramatically different percepts, in part by causing different boundary webs. 
The left painting captures the lighting on the cathedral facade while the sun 
is setting, whereas the right painting does so in full sunlight. The right paint-
ing generates a more depthful percept than does the left one. This is due to 
multiple factors interacting together. One factor is that the colors in the left 
painting are more equiluminant, and the ensuing boundary webs coarser and 
more uniform. The strong gradients of light that are evident in the right paint-
ing, including effects of sharp architectural features and shadows, are not seen 
in the left painting. Note in addition that, due to the greater range of contrasts 
in the right painting, many more nearly horizontal boundaries are clearly seen 
to be occluded by vertical boundaries. Such occlusions often occur at visual 
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Figure 30.  (Upper row) A set of four paintings by Monet of the Rouen cathedral at different 
times of day (all painted in 1894). (Lower row) Achromatic rendering of the four Monet 
paintings, illustrating where nearly equiluminant parts of the paintings occur, and thus which 
groupings depend primarily upon color differences, rather than luminance differences. See text 
for details.

Figure  31.  Two paintings of the Rouen cathedral by Monet at different times of day (also 
painted in 1894). See text for details.
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features that are called T-junctions. Such boundary occlusions can generate 
percepts of depth in the absence of any other visual cues. An explanation 
of how this may happen is given in Sect.  4.7 when figure–ground separa-
tion is discussed. As will be shown below, T-junctions can help to trigger 
figure–ground separation using basic properties of the boundary completion 
and surface filling-in processes, without the need for specialized T-junction 
detectors.

Kass et al. (2015) have discussed the Rouen cathedral series from the per-
spective of how prototypes are formed from a set of exemplars, or instances, 
of an object that humans are learning to recognize. To that end, the authors 
compare different instances in the Rouen Cathedral series with an average  
of these paintings (their Fig. 4). The authors note that these instances “would 
result in a more stable concept and robust mental representation of the cathe-
dral in the minds of those viewing the series” (p. 145), and commented about 
how painting a series of instances influenced later developments in several 
artistic movements, including Conceptual Art. As noted in Sect. 2.5, however, 
a prototype of an object is not just an average of its exemplars. Rather, a proto-
type is a critical feature pattern that is discovered by incremental learning of 
a series of object exemplars that activate the same recognition category. This 
critical feature pattern also constitutes the feature set upon which attention 
focuses when viewing an exemplar of the object. Thus, although incremental 
viewing of a series of Rouen Cathedral exemplars may indeed result in learn-
ing ‘a more stable concept’ of the Cathedral, that concept is not just the aver-
age of the exemplars. Rather, the prototype helps to focus selective attention 
upon the features that viewers use to identify and appreciate the object after 
learning about it.

4.2. � Boundary Webs from Color Field Paintings of Jules Olitski that “Hang 
Like a Cloud”

Nearly a century after the Impressionists did their work, Color Field painting 
began to flourish in the United States. This term is generally used to describe 
the canonical Color Field painters (e.g., Mark Rothko, Barnett Newman) who 
were part of the larger Abstract Expressionist movement and their successors, 
who painted in the 1960s and 1970s (e.g., Jules Olitski, Helen Frankenthaler). 
The Color Field painters were primarily concerned with exploring the pure 
emotional power of color. Thus, color—particularly contained within large, 
undisrupted surfaces—is a dominant element in these paintings. Jules Olitski 
created several such paintings when he lived and worked in New York City. By 
1965, Olitski developed a technique in which he sprayed paint onto unprimed 
canvases and created some of his most famous paintings, which are accord-
ingly called ‘spray paintings’ (Fig. 32).
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Figure 32.  Four paintings by Jules Olitski. Julius and His Friends (1967) (upper left), Instant 
Loveland (1968) (lower left), Lysander-1 (1970) (upper right), Comprehensive Dream (1965) 
(lower right). See text for details.

Spraying paint onto a canvas in fine mists gave Olitski control over the 
color density on the canvas. In contrast to many of Monet’s paintings, in 
which the viewer can discern a multitude of individual brushstrokes con-
tained within a coarse boundary web, it is impossible to visually perceive dis-
crete colored units within the fine boundary webs in Olitski’s spray paintings, 
as is also the case in the example of a shaded ellipse (Fig. 29, left panel). 
Unlike the boundary webs for the shaded ellipse, however, the boundary webs 
that spread over the surface of Olitski’s spray paintings present a sense of 
ambiguous depth to the viewer. It is easy to imagine that one is staring into 
a space filled with colored fog or into the sky during a sunset free of discrete 
clouds when looking at these paintings. Olitski intentionally created this ef-
fect, writing that: “When the conception of internal form is governed by 
edge, color … appears to remain on or above the surface. I think … of color 
as being seen in and throughout, not solely on, the surface” (Riggs, 1997). 
Others recognized this quality, as well. The art critic Rosalind Krauss wrote: 
“…the very seeing of the painting in all its literalness poses a question about 
where the surface is. To see Olitski’s color means to see the surface itself as 
elusive and unaligned” (Riggs, 1997). Occasional sharp spatial discontinui-
ties in some of these paintings awaken in the viewer an acknowledgement that 
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drawing plays little or no role in creating the surface percept that is induced 
by most of the painting.

The principles of FACADE theory and the 3D LAMINART model (Sect. 2.1) 
clarify why the structure of Olitski’s spray paintings create the sense that one 
is looking into a mist of color within a three-dimensional space. These models 
highlight the importance of closed boundary contours to create percepts of 
surfaces that are restricted to specific depth planes (Figs 11 and 12). Within the 
mists of color in Olitski’s paintings, sharp, closed boundary contours are not 
perceptible. Instead, very gradual chromatic and luminance gradients coexist, 
thereby enabling multiple scales to form boundary webs, and to thereby cap-
ture color shading on multiple depth-selective surfaces whose gradients often 
coexist at similar positions. Unlike the example of the shaded ellipse (Fig. 29, 
left), these gradients and their boundary webs do not vary in either orientation 
or scale in a systematic way across space. Thus, we do not perceive the shaded 
surfaces of these paintings to be clearly contained within one depth plane. In 
this way, Olitski was able to achieve color that is “seen in and throughout”.

Another factor that may contribute to the percept of amorphous depth is 
the gradual brightness and color gradations on the surface. The property of 
proximity-luminance covariance (Dosher et al., 1986; Egusa, 1983) describes 
the fact that increasing brightness can make a surface look closer. A similar 
property obtains when brighter Kanizsa squares look closer. Grossberg (2014) 
provides an explanation of this kind of effect using mechanisms that also help 
to ensure complementary consistency (Sect. 3.1) and figure–ground separa-
tion (see Sect. 4.8 below).

It remains to ask: Why does the web within the painting appear as a ‘col-
ored mist’ in an ambiguous three-dimensional space that is separate from the 
rectangular boundary of the painting? Why does the web appear as mist rather 
than as a surface that is ‘attached’ to the rectangular canvas like the boundary 
web of the shaded ellipse in Fig. 29 (left) seems to be attached to its bounding 
contour? One factor is that the orientations of the boundary webs induced by 
the interior of the painting tend to be parallel to the isophotes of each surface. 
However, these isophotes are not parallel to, and indeed are incongruent with, 
in both orientation and scale, the rectangular boundary of the canvas. This is 
unlike the case of the shaded ellipse, whose boundary webs are consistent with 
the bounding contour of the ellipse. These incongruities in Olitski’s paintings 
disrupt the nesting and attachment of the boundary web structures within the 
painting with the bounding contour of the rectangular frame of the painting, 
and helps to explain why the color in Olitski’s spray paintings “hangs like a 
cloud, but does not lose its shape” (Anonymous, 2016).

The only visible boundary contours within Olitski’s spray paintings are 
the edges of the canvas itself and the framing lines he introduced along the 
edges of some of the paintings, which the famous American critic Clement 
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Greenberg named selvage (Olitski, 1994) (Fig. 32, left). The word selvage can 
be used in many contexts (e.g., textiles, manufacturing), but generally refers to 
an edge added to a material to finish it, prevent it from fraying, or allow it to 
be handled. In contrast to the mists of color, the depth plane of the selvage in 
Olitski’s paintings is unambiguous. The selvage is always perceived as being 
on the surface of canvas due to the sharp boundaries that contain it, and there-
by can ‘visually ground’ the viewer in the depth plane of the picture’s frame.

4.3.  Watercolor Illusion, Jo Baer, and Mach Bands

Before turning to a discussion of figure–ground separation due to partially 
occluded boundaries, let us consider other examples of how boundary webs 
with multiple spatial scales can generate depthful percepts, even if there are 
no occluded boundaries. This is first illustrated using a display that induces the 
watercolor illusion (Fig. 33) that has been intensely studied by Baingio Pinna 
and his colleagues since the 1980s (http://www.scholarpedia.org/article/Wa-
tercolor_illusion). Variants of the watercolor illusion have also been featured 
in the works of visual artists, notably paintings of Jo Baer, since the 1960s. 
After explaining how the watercolor illusion, including its depthful figure–
ground properties, can be elicited, some of Jo Baer’s paintings that exhibit 
properties of the watercolor illusion will also be discussed.

Inspection of Fig. 33 induces the watercolor illusion percept because a 
more contrastive and undulating purple band abuts a less contrastive yellow 
band. The most obvious property of the illusion is the yellow color that fills 
the entire interior of the region surrounded by these boundaries. Pinna and 
Grossberg (2005) have explained this percept, and many of its variants, using 

Figure  33.  An example of the watercolor illusion due to Baingio Pinna. (Reprinted with 
permission from Pinna and Reeves, 2006.) See text for details.
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properties of spatial competition, or the first competitive stage (Fig. 5), of 
the boundary contour system. In particular, the boundary that is formed be-
tween the purple band and the white background is stronger than the bound-
ary that is formed between the yellow band and the white background. The 
boundary that is formed at the purple–yellow contour is also weaker than  
that between the purple–white contour, but stronger than that between the  
yellow–white contour. Due to spatial competition, the stronger boundaries  
inhibit the yellow–white boundary more than conversely, thereby weakening 
the yellow–white boundary and allowing yellow color to spill out beyond it 
to fill-in the entire surface within. The undulating shape of the contours cre-
ates longer boundaries per unit area through which color can spread, thereby 
intensifying the effect. Basic properties of perceptual grouping, notably of 
hierarchical resolution of uncertainty, hereby help to explain the watercolor 
illusion in this and many of its variations.

The watercolor illusion can also generate a 3D percept. Just as in response 
to a shaded ellipse, there is formed in response to the image in Fig. 33 a spa-
tial array of successively weaker boundary strengths, from purple–white to 
purple–yellow to yellow°white, as the distance increases from the most con-
trastive purple–white edge of the display. These successively weaker bound-
ary responses constitute a boundary web, albeit a more spatially discrete one 
than the one formed in response to a shaded ellipse. When this multiple-scale 
boundary web traps the corresponding colors (Fig. 12), it can generate a 
rounded appearance of the percept, with the filled-in yellow surface looking 
a little closer, using the same size–disparity correlation mechanisms that also 
play a role in creating chiaroscuro percepts.

Jo Baer demonstrated the watercolor illusion in some of her paintings from 
the 1960s in New York City. Baer was at that time interested in working with 
black, white, and color in a minimalist style; that is, without direct reference 
to anything outside the painting (Boersma, 1995). Her series of three paint-
ings called Primary Light Group: Red, Green, Blue, shown in Fig. 34, exhib-
its watercolor properties, and Baer and others in the art world recognized the 
role of active perception that is induced by these paintings. For example, in 
a catalogue for a Baer exhibit that included paintings of like those in Fig. 34, 
David Elliot wrote: “The positioning of colour in this way … induced certain 
optical effects which were not part of the physical make-up of the painting. 
The existence of these effects was wholly dependent upon the perceptual re-
sponses of the viewer” (“Jo Baer: Stations of the Spectrum”, n.d.).

Baer studied biology at the University of Washington, Seattle and physi-
ological psychology at the New School in New York, which equipped her to 
understand why the colors in her paintings were different from the colors that 
were perceived. In an interview published in 1995 in BOMB Magazine (Boers-
ma, 1995), Baer said: “I was always curious why the color on the palette was 
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different than the color on the painting. I knew what I wanted something to 
look like, and I found that the means to do it were so different than the end 
result. And then I was very pleased to discover the reasons why”. Baer wrote 
about some of these reasons in an article for Aspen Magazine (1970–’71): 
“Tucked in between the white and black, the narrow color band gains a vast 
brightness due to…distinct edge effects working at the color interfaces…
[these]…brightness contrast effects push the color band…higher into lumi-
nosity through a physiological neural phenomenon called Mach bands” (Baer, 
1970–’71). Baer wrote that she “intuitively fashioned” the paintings in the 
style of those shown in Fig. 34 with her knowledge of Mach bands and retinal 
physiology data “somewhere in mind” (Baer, 1970–’71), as reflected in the 
title of the painting shown in Fig. 34, which includes the word “light” in the 
title, and her description of these paintings as containing “primary colors of 
light” (“Jo Baer, primary light group: red, green, blue”, n.d.).

The Mach bands to which Baer refers is an optical illusion that enhances 
the contrast between abutting regions composed of slightly different lumi-
nances, just as the black band can enhance the contrast of the less luminous 
color band, and the color band can influence the perceived contrast of the 
white interior.

However, it is not local contrast effects like Mach Bands that create the 
watercolor properties of Baer’s paintings. Rather, it is a combination of spatial 
competition within the boundary stream followed by surface filling-in within 
the surface stream (Fig. 9). Indeed, when viewing the paintings in Fig. 34, the 
white central area of the painting on the left appears to have a red/pink tint, 
in the middle painting appears to have a green tint, and in the painting on the 
right appears to have a blue/purple tint. The same spatial competition that 
helps to explain the watercolor illusion explains these percepts as well because 
the luminance contrast between the dark band and the white wall is larger than 
between the colored band and the white interior of the painting. As a result, 

Figure 34.  The three paintings by Joe Baer called Primary Light Group: Red, Green, Blue 
(1964–’65). See text for details.
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the boundary between the dark band and the white wall is stronger than the 
boundary between the colored band and the white interior. Spatial competi-
tion between the stronger, white–black boundary and the weaker color–white 
boundary weakens the color–white boundary, leading to color spreading, or 
surface filling-in, within the interior white surface of each painting. When 
viewing several of these paintings side-by-side in the same room, as in Fig. 34, 
the effects of color spreading are even more striking.

4.4.  Lightness Anchoring and Self-Luminosity

Some paintings, such as those of Ross Bleckner that are discussed in Sect. 4.6, 
generate percepts of self-luminosity. How are self-luminous percepts gener-
ated just using paint? This section and the next one describe two different 
neural mechanisms whereby self-luminosity can be induced. Both of these 
mechanisms are exploited in many of Bleckner’s paintings.

As discussed in Sects 2.1 and 3.5, reliable object colors may be perceived 
under widely different lighting conditions because the visual system can ‘dis-
count the illuminant’ to compute surface properties based on changes in re-
flectance across boundaries. As noted in Sects 3.4 and 3.5 during the discus-
sion of how boundary interactions can lead to neon color spreading, on-center 
off-surround networks whose cells obey shunting dynamics are capable of 
contrast normalization. Contrast normalization can also occur when these net-
works process the luminances and colors within a scene or picture. Contrast 
normalization leads to discounting of the illuminant by enabling cell activi-
ties to compute reflectances, or the relative amounts of light reflected from 
a surface to the eyes within each wavelength of light. This process does not, 
however, compute the absolute perceived brightnesses of a scene. A more so-
phisticated way of saying this is that this process does not use the full dynamic 
range of the cells that estimate surface brightnesses and colors. How does the 
brain use the full dynamic range of cells to compute estimates of the absolute 
brightnesses of scenes and of specific objects within them?

There is a rich and often paradoxical experimental literature about how the 
brain sees the absolute brightnesses of scenes and the objects within them. 
This literature provides examples of self-luminosity among the many percepts 
that can be generated through this process. Other famous effects include: the 
Gelb effect, whereby a black surface can look white when it is intensely illu-
minated; and the Area effect that is often demonstrated by placing a viewing 
subject’s head within a dome that is divided into two regions. When the high-
est luminance area occupies more than half of the visual field, it appears white 
while the darker part looks gray. When the darker luminance area occupies 
more than half of the visual field, it tends to look increasingly white, while 
the lighter area appears to be self-luminous. Alan Gilchrist and his colleagues 
(e.g., Gilchrist et al., 1999) have been leaders in demonstrating such effects, 
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which they attribute to a process of anchoring; namely, the process where-
by the brain uses its full dynamic range to compute brightnesses and colors. 
Great predecessors in the study of how anchoring may work include Helm-
holtz (1866) and Wallach (1948, 1976). Indeed, Wallach proposed the highest-
luminance-as-white (HLAW) rules whereby the perceptual quality ‘white’ is 
assigned to the highest luminance in a scene, and gray values of less luminous 
surface regions are assigned relative to the white standard. Although this rule 
works in many situations, there are many other situations in which it leads to 
the wrong answer.

The anchored Filling-In Lightness Model (aFILM) of Grossberg and Hong 
(2006) and Hong and Grossberg (2004) describes an alternative neural model 
of how the full dynamic range of neurons is used in processing the absolute 
lightness of scenes, and along the way explains and simulates all of the experi-
mental anchoring effects that are reviewed in Gilchrist et al. (1999), including 
a mechanistic explanation of how percepts of self-luminosity occur. aFILM 
revises the Wallach HLAW rule by using a blurred-highest-contrast-as-white 
(BHCAW) rule that overcomes problems with the Wallach rule and, when em-
bedded in suitable model processing stages (Fig. 35), can explain and simulate 
many anchoring data.

Figure 35.  Macrocircuit of the aFILM model for lightness anchoring The final BHCAW stage 
of the model causes the lightness anchoring that can lead to percepts of self-luminance, among 
other striking effects. See text for details. (Reprinted with permission from Grossberg and 
Hong, 2006).
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Figure 36A illustrates how the BHCAW rule anchors whiteness and, with 
it, the gray shades in a scene, whereas Fig. 36B proposes how a percept of 
self-luminosity may be generated in response to different scenic conditions. 
The aFILM model proposes that a scene is anchored to the highest lumi-
nance that is computed after it is processed through a blurring kernel. If the 
area of highest luminance in the scene is the same size or larger than the 
blurring kernel, as occurs in Fig. 36A, then this region is perceived as white. 
However, if the area of highest luminance in the scene is smaller than the 
blurring kernel, as occurs in Fig. 36B, then the scene is again anchored to 
the blurred highest luminance as white, but this corresponds to a luminance 
that is lower than the highest luminance in the scene. This allows the high-
est luminance in the scene to be perceived as being ‘brighter than white’, or 
self-luminous.

Self-luminosity is one of many percepts that the highest-luminance-as-
white (HLAW) model cannot explain. This is because self-luminous regions 
are typically perceived as having a lightness value that is higher than white, 
but the HLAW model sets the highest luminance in a stimulus to equal white.

4.5.  Boundary Webs, Glare, Double Brilliant Illusion, and Gloss

The spatial context in which a luminance occurs within a scene can also cre-
ate a percept of self-luminosity, even without the intervention of the BHCAW 
rule, notably when a region of prescribed luminance is surrounded by a suit-
able form-selective luminance gradient. This can be seen in examples such 
as the glare effect (Zavagno, 1999; Zavagno et al., 2004), the double brilliant 
illusion (Bressan, 2001), and percepts of gloss (Beck and Prazdny, 1981), 
which are illustrated in Fig. 37.

Figure 36.  How the aFILM model explains self-luminous percepts using a blurred-highest-
contrast-as-white (BHCAW) kernel. Whether self-luminosity is perceived or not due to the 
model mechanism depends upon whether the scenic region is as big or bigger than the blurring 
kernel, as in (A), or smaller than the blurring kernel, as in (B). See text for details. (Reprinted 
with permission from Grossberg and Hong, 2006).
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Figure  37.  Stimuli that induce a percept of glare (left, upper row), of the double brilliant 
illusion (upper row, right column), and of gloss due to attachment of a highlight to a matte vase 
(left, lower row). Model computer simulation of the double brilliant illusion (right, lower row). 
(Figures reprinted with permission from Zavagno, 1999; Bressan, 2001; Beck and Prazdny, 
1981; and Grossberg and Hong, 2006, in the reported order).

In the glare effect (Fig. 37, left, upper row), the interior white region of all 
four figures is the same, but an increasingly strong luminance gradient sur-
rounds this region as one proceeds from the left figure in the first row to the 
right figure in the second row. The percept in response to the strongest gradient 
in the lower right image is one of a glowing self-luminosity, with lesser effects 
occurring in response to the weaker luminance gradients. This effect may be 
explained as the result of the boundary webs that are generated in response to 
the luminance gradients and how they control the filling-in of lightness within 
themselves and abutting regions. In particular, such a boundary web is like a 
continuous version of the boundary web that enables color spreading to occur 
out of the weakest boundary in the watercolor illusion (Fig. 33) or Joe Baer’s 
paintings (Fig. 34). Due to these boundary webs, more lightness can spread into 
the central square as the steepness of the boundary gradient strengths increases.

Koenderink et al. (2016) describe the glare percept that is generated by Fig. 37  
(left, upper row) as being “whiter than white”; see their Fig. 5 (left). This 
description may cause confusion from a mechanistic point of view, because 
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those self-luminous percepts that may be thought of as ‘whiter than white’ 
due to the BHCAW mechanism (Fig. 36, right) seem to be caused by different 
mechanisms than those which create the glare effect.

A similar way of thinking helps to explain the double brilliant illusion that 
is illustrated in Fig. 37 (right, upper row), along with a schematic in Fig. 37 
(right, bottom two rows) of how the aFILM model explains and simulates it 
using mathematically rigorous embodiments of these concepts.

Finally, consider the gloss effect that is perceived in response to Fig. 37  
(left, lower row). Here two almost identical vases are shown. In the left 
vase, a highlight has been added to a local region of the vase surface. 
Remarkably, this local change makes the entire vase look glossy compared 
with the matte vase to the right from which it was constructed. This glossy 
percept has been explained (Grossberg and Mingolla, 1987) by the way in 
which the boundary web that is induced by the highlight is assimilated into 
the boundary web that is generated by the rest of the vase’s form. The light-
ness within the highlight can hereby spread to abutting areas of the vase, 
rendering its appearance glossy. As with the case of the shaded ellipse, 
this boundary web is invisible and is seen only through the gradients of 
surface lightnesses that it traps within its compartments. In support of this 
explanation, Beck and Prazdny (1981) showed that changing the gradual 
luminance gradient of the highlight to a spatially abrupt one, or changing 
its relative orientation with respect to the rest of the vase, can eliminate 
the glossy percept.

4.6.  Ross Bleckner’s Self-Luminous Paintings

Ross Bleckner, who has worked as a painter in New York for the past several 
decades, has described his paintings as attempts to “eke out of a formal code 
a maximum amount of light” (Rankin, 1987). Bleckner does this, not by 
painting large surface areas with high reflectances or bright colors, but rather 
by creating compositions of small, star-like, circular regions that are per-
ceived as self-luminous (Fig. 38). At least three interacting properties of the 
paintings in Fig. 38 contribute to their self-luminosity: high luminance areas 
relative to a dark background, their small size, and the smooth luminance gra-
dient that surrounds many of them. The large luminance difference enhances 
the effects of brightness contrast; the small size can create self-luminosity 
via the BHCAW rule (Fig. 36); and the luminance gradient can enhance 
self-luminosity using boundary webs, much as in in percepts like the glare 
and double-brilliant percepts that are induced by Fig. 37. When the points of  
light surrounded by a boundary web are magnified, as in the center of Fig. 38, 
they still appear to be highly self-luminous, despite their larger size. This per-
cept illustrates the independence of the BHCAW rule and the self-luminosity 
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effects of boundary webs, as in Fig. 37, since the boundary web is still present 
even when the figure is too large for the BHCAW rule to cause self-luminosity.

The images in Fig. 39, a painting (right) and a photo (left) by Bleckner, fur-
ther illustrate the power of surrounding a high-luminance point with a dense 
boundary web. In the image on the left, the large yellow circular regions appear 
to be self-luminous. In contrast, the yellow circular regions in the painting on 
the right are surrounded by sharp, black contours that isolate them from being 
enhanced by spreading color from surrounding regions, since sharp boundar-
ies act as filling-in barriers, as in the percept of neon color spreading (Fig. 24). 
Even the smallest high-luminance points in the painting in Fig. 39 are thus not 
as self-luminous as the points within Fig. 38, which receive the added benefits 
of self-luminosity due to boundary webs.

4.7. � Gene Davis’s Depth from Proximity-Luminance Covariance  
and Color Assimilation

Depth can be conveyed through different means. Binocular disparity between 
left and right eye views of an object in depth is one important cue. Size is 
another important factor, if only because of the size–disparity correlation 
(Sect. 3.6), which summarizes the property that larger objects tend to appear 
closer, while smaller objects tend to appear farther away. Shading can also cre-
ate a three-dimensional percept by generating multiple-scale form-sensitive 
boundary webs, as another manifestation of the size-disparity correlation, 
with examples in the works of Monet (Figs 30 and 31), Olitski (Fig. 32), and 
Bleckner (Figs 38 and 39) of how very different painterly percepts can be 
generated by different boundary web configurations and how they organize the 
filling-in of surface brightness and color.

The paintings of Gene Davis provide additional examples of how bound-
ary groupings can influence painterly percepts that can induce percepts of 
different relative depths. Although Gene Davis was a journalist, he began to  
paint seriously in Washington D.C. in 1950. His vertical stripe compositions 
(Fig. 40) are the paintings for which he is most well known and they also 
comprise the vast majority of his life’s work. These paintings are interesting 
stimuli from the perspective of scene stratification because many of them 
do not contain size differences, shading, or recognizable objects, although 
some stripe paintings did contain stripes with shading and/or physical size 
differences. The painting in Fig. 40 (left, upper row) is called Black Popcorn.  
Despite the lack of explicit depth cues, the ‘brightest’stripes—namely, the 
four intermingled yellow and pale blue stripes located approximately one-
third of the length of the canvas from the left—appear to be in the nearest 
depth plane. In contrast, in Flamingo (Fig. 40, right, upper row), both individ-
ual stripes and stripe groupings can be perceived as nearer or further in depth, 
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Figure 38.  Two paintings by Ross Bleckner that exhibit self-luminosity. (left) Galaxy Painting 
(1993). (right) Galaxy with Birds (1993). (center) details from Galaxy Painting. See text for 
details.

Figure 39.  A painting (right, Insertion Sequence, 2002) and a photograph (left, Untitled) by 
Ross Bleckner that illustrate how luminance gradients, or the absence thereof, may or may not 
support self-luminous percepts. See text for details.
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again with brighter stripes appearing closer. Some of the neural mechanisms 
that influence these depth percepts are now discussed.

Color similarities and/or near-equiluminance between stripes in these paint-
ings can influence whether spatial attention is drawn to individual stripes or 
groups of stripes. The achromatic versions of the two paintings more clearly 
show regions where color assimilation is facilitated, notably the much smaller 
differences in luminance of the stripes within Black Popcorn (Fig. 40, left, 
lower row) than of Flamingo (Fig. 40, right, lower row). The boundaries be-
tween stripes that have low luminance contrast are weak, thereby facilitating 
increased surface filling-in across several stripes. Such color assimilation calls 
to mind the watercolor illusion (Fig. 33) and the paintings of Jo Baer (Fig. 34). 
As a result of weak boundaries and color assimilation, an attentional shroud 
(Figs 17 and 18) that is larger than one stripe is more easily formed during 
viewing of Black Popcorn, thereby enabling viewers to perceive multiple 
stripes as one object under the same shroud.

In Flamingo, individual bright stripes tend to be isolated between individu-
al or groups of dimmer stripes and the luminance and color of adjacent stripes 

Figure 40.  Two paintings by Gene Davis, Black Popcorn (left, upper row), and Flamingo (right, 
upper row), and their achromatic versions (lower row). The different combinations of colors 
and luminances in the two paintings influence their perceptual groupings and color filling-in 
dynamics and, with them, the attentional shrouds that they induce, along with percepts of nearer 
vs. further regions of the paintings. See text for details.
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vary more across space compared to those in Black Popcorn. As discussed 
in the context of multiple-scale boundary webs and proximity–luminance 
covariance in Sects 3.6 and 4.2, respectively, both relative size and relative 
brightness influence depth percepts. Larger objects tend to appear closer to 
the viewer because they more strongly activate larger spatial scales in the vi-
sual system. Because of this, the grouping of bright stripes into larger units 
results in larger filters being sensitive to them, which can cause them to appear 
closer to the viewer because of the size–disparity correlation. Their relative 
brightness can, in addition, cooperate with this effect to make them appear 
closer because of proximity–luminance covariance. These properties help to 
explain why the four-stripe unit in the left part of Black Popcorn appears to 
be nearer than the individual bright white stripes in Flamingo, despite the fact 
that the latter stripes appear to be brighter than any individual stripe in Black 
Popcorn. These Flamingo stripes can benefit from proximity–luminance co-
variance, but not from the size–disparity correlation. Thus, despite the appar-
ent simplicity of the iterated vertical stripes in the paintings of Gene Davis, 
the interactive effects of relative boundary strength, color assimilation, and 
spatial attention influence their percepts of relative depth using interactions 
between the neural processes that create both the size-disparity correlation 
and proximity-luminance covariance.

4.8. � Figure–Ground Separation: Seeing and Recognizing Partially  
Occluded Objects

Many of the percepts that have already been discussed depend upon boundar-
ies that can be completed directly from their image contrasts. When boundaries 
overlap as in 2D pictures of partially occluded objects, as they do vividly in 
the Monet painting in Fig. 31 (right), then additional cues to depth become 
available and influence what is consciously seen and recognized. Figure 41 
(left) illustrates this fact in a simple example. This figure is composed of three 
abutting rectangles in a 2D picture. It is hard, however, not to perceive it as a 

Figure  41.  (Left) Three abutting rectangles create a compelling percept of a horizontal 
rectangle that partially occludes a further vertical rectangle. (Right) The text explains how the 
unoccluded regions of the vertical rectangle can be amodally completed behind the horizontal 
rectangle to create a percept of a partially occluded vertical rectangle. See text for details.
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large horizontal rectangle that partially occludes a large vertical rectangle that 
lies ‘behind’ the horizontal rectangle (Fig. 41, right). Examples such as these 
provide useful probes to clarify how brain designs for 3D vision in the natural 
world have enabled 2D pictures to generate representations of the 3D world, 
and hereby created a foundation for all pictorial art, movies, TV, and all other 
cultural advances that depend upon this possibility.

The implications of this process for paintings are thus of enormous im-
portance. Answering the following question therefore cannot be avoided: 
How does the simple 2D picture in Fig. 41 (left) give rise to a 3D percept? 
It may at first be thought that this is due to what is learned by many experi-
ences with partially occluded objects. However, Kanizsa (1979) has shown 
with many compelling examples (e.g., Fig. 2, right, and Fig. 4, lower row) 
that many perceptual properties persist even when viewing unfamiliar pic-
tures. In fact, percept in Fig. 41 (left) follows directly from basic properties 
of boundary grouping that have already been reviewed. This fact helps to 
answer the question: How might such a seemingly sophisticated process like 
figure–ground perception have arisen during evolution? FACADE theory and 
the 3D LAMINART model clarify how the key properties of figure–ground 
perception arise from basic properties of perceptual grouping and comple-
mentary consistency (Sect. 3.1).

To get started, consider one of the T-junctions in Fig. 41 (left); that is, a 
place where a horizontal boundary (the top of the T) is intersected by a verti-
cal boundary (its stem), as in the top left image of Fig. 42a. The top middle 
image of Fig. 42a depicts the long-range oriented cooperation that activates 
bipole grouping cells, and the shorter-range competition that inhibits nearby 
bipole cells as part of the grouping selection process (also see Fig. 21). 
Consider how such grouping cells respond when they are centered where the 
top and stem join. We first consider bipole cells that have the orientational 
preference of the top (horizontal) of the T, and then bipole cells that have the 
orientational preference of the stem (vertical) of the T. As in the discussion 
of neon color spreading (Sects 3.4 and 3.5), a bipole cell that has the same 
orientation as the top receives excitatory inputs to both sides of its receptive 
field, and can thus strongly inhibit nearby bipole cells that respond preferen-
tially to different orientations. A bipole cell that has the same vertical orien-
tation as the stem gets excitatory inputs from only one side of its receptive 
field, so can either not respond at all, or can respond at best weakly. As a 
result, just as in the example of neon color spreading, an end gap is created 
in the stem boundary near where it intersects the top boundary, as in the top 
right image of Fig. 42a. Color can then spread across the end gap to both 
sides of this boundary, as it does during neon color spreading. This process 
enables figure–ground perception to begin when it interacts with processes 
leading to complementary consistency (Sect. 3.1), in a manner that is now 
explained.
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4.9.  Complementary Consistency: Surface Contours and Eye Movements

Multiple boundary and surface representations are needed to represent a 3D 
scene during normal vision. Each of these boundary and surface representa-
tions can selectively respond to a different range of depths from an observ-
er (Figure  12). The form- and depth-sensitive filling in of all these surface 
representations, or Filling-In-DOmains (FIDOs), gives rise to the 3D per-
cept. In particular, FACADE theory predicts how binocular boundary signals 
are topographically projected, from where they form in layer 2/3 of the in-
terstripes  of cortical area V2, to the monocular surface FIDOs within the 
thin stripes of cortical area V2 (Fig. 43). These boundaries act as filling-in gen-
erators that initiate filling-in of surface brightness and color at positions where 
the boundary contour and feature contour signals are positionally aligned. After 

Figure 42.  (a) These three images describe how, in response to a T-junction in an image, bipole 
grouping can cause an end gap to occur at the end of the stem boundary. This occurs because 
the horizontally-oriented bipole cell bodies near where the top of the T touches its stem get 
excitatory inputs from both branches of their receptive fields (middle image). In contrast, the 
vertically-oriented bipole cells at this intersection get excitatory inputs from only one branch 
of their receptive fields. As a result, short-range competition is much stronger from the vertical 
bipoles to the horizontal bipoles than conversely, and thereby causes an end gap to form in the 
stem boundary near where the top and stem of the T intersect (right image). (b) The Necker 
cube can be perceived as a 3D cube in two different ways that oscillate bistably through time. (c) 
When spatial attention is focused upon each circular disk, it appears darker and nearer. (Figure 
(c) is reprinted from Tse, 2005, with permission).
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filling-in is initiated, boundaries also act as filling-in barriers that prevent the 
filling-in of brightness and color from crossing object boundaries (Grossberg, 
1994), as they do in all the percepts that have already been described.

If a boundary at a given depth is closed (Fig. 11, upper row), then it can 
contain the filling-in of an object’s feature contour signals within it (Fig. 11, 
lower row, left). If the boundary at a different depth has a sufficiently big gap 
in it, then surface brightness and color can spread through the gap and sur-
round the boundary on both sides, thereby equalizing the contrasts on both 
sides of the boundary (Fig. 11, lower row, right). Only a closed boundary can 
contribute to the final visible 3D percept. This last fact helps to explain how 
end gaps, such as those that occur during neon color spreading in Fig. 24, and 
in response to the abutting rectangles in Figs 41 and 42a, can contribute to 
figure–ground separation.

How do closed boundaries help to form a visible 3D percept? How does this 
process also help to ensure complementary consistency, and to thereby, as a 

Figure  43.  Macrocircuit of the 3D LAMINART model of 3D vision and figure–ground 
perception. See text for details. (Reprinted with permission from Cao and Grossberg, 2005).
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surprising consequence, contribute to figure–ground separation? In addition to 
the boundary-to-surface interactions that act as filling-in generators and bar-
riers (Fig. 12), there are also surface-to-boundary feedback interactions from 
filled-in surfaces in the V2 thin stripes to the corresponding depth-selective 
boundaries in the V2 interstripes (Fig. 44). This feedback is carried out by sur-
face contour signals. They are called surface contour signals because they are 
generated at the bounding contours of surface regions that fill-in brightness or 
color within a closed boundary (e.g., Fig. 11, lower row, left). As a result, the 
positions of surface contours and of the closed boundaries that surround the 
region are the same (Fig. 44).

Surface contours form at these positions because the outputs from the 
filled-in surface regions are generated by a contrast-sensitive on-center off-
surround network. The inhibitory connections of this network’s off-surround 
act across position and within depth, and thus within a FIDO, to generate 
output signals only at positions where the filled-in contrasts change rap-
idly across space. These are precisely the positions where boundaries block 
the further spread of the filling-in process. Surface contour signals are not, 
however, generated at boundary positions near a big enough boundary gap, 
such as an end gap, because brightnesses and colors can then spread across 
the gap and equalize on both sides of the boundary, thereby causing zero 
contrast, which generates no output from the contrast-sensitive network (e.g., 
Fig. 11, lower row, right).

Surface contour output signals generate feedback signals to the bound-
ary representations that induced them (Fig. 44). These feedback signals are 
delivered to the boundary representations by another on-center off-surround 
network. The inhibitory surface-to-boundary connections of this network act 
within position and across depth (Fig. 45): The on-center signals strengthen 
the boundaries that generated the successfully filled-in surfaces. They can 
do this because surface contours occur at the same positions as the boundar-
ies that contain surface filling-in. The off-surround signals inhibit redundant 
boundaries at the same positions but farther depths. This inhibitory process is 
called boundary pruning.

Surface contour signals achieve complementary consistency by strengthen-
ing consistent boundaries and pruning redundant boundaries. The inhibited 
inconsistent boundaries can then contribute to neither seeing nor recogni-
tion in the final percept. Only boundaries and surfaces that can contribute to  
seeing and/or recognition remain. In addition, inhibiting redundant boundaries 
prevents them from causing recognition of irrelevant contour fragments (see 
Fang and Grossberg (2009)).

As noted above, surface contour signals are generated by a contrast-sensitive 
on-center off-surround network. Their inhibitory signals are therefore weak-
er at high curvature points, such as the corners of the rectangle depicted in 
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Figure  44.  This figure depicts how surface contour surface-to-boundary feedback signals 
are generated from the model’s V2 Thin Stripes to its V2 Pale Stripes. Surface contours that 
are generated at the bounding contours of filled-in surfaces that are surrounded by closed 
boundaries. In this figure, they occur at Depth 1 of the V2 Thin Stripes. Surfaces that are 
surrounded by closed boundaries are filled-in in the manner depicted in Fig. 11 (left). These 
surface contour feedback signals strengthen the V2 Pale Stripe boundaries that caused them 
at the same depth (green arrows to Depth 1 boundaries), while inhibiting boundaries at the 
same positions but further depths (red arrows to Depth 2 boundaries). Because surface contours 
are generated by contrast-sensitive on-center off-surround networks, they are strongest near 
high curvature positions, which can be used to direct attention—that is, to serve as ‘attention 
pointers’ (Cavanagh et al., 2010). Attention pointers play several roles in the model (Fazl et 
al., 2009): They can control predictive remapping signals that maintain a stable head-centered 
representation of a shroud as the eyes movement, thereby helping to assure visual stability. They 
can also direct spatial attention and eye movements to scan the salient features on an object 
surface, and thereby enable multiple view-specific categorical representations of the object to 
be learned, and linked by associative learning with an emerging invariant object categorical 
representation. After incomplete boundaries at the farther Depth 2 are eliminated by using 
surface contour inhibitory signals from the filled-in surface at Depth 1, other boundaries of 
partially occluded objects, as in Fig. 41 (left), can be amodally completed behind them, as 
in Fig. 41 (right). This fact illustrates how surface contours help to initiate figure–ground 
separation and the completion of partially occluded object representations.
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Figure 17. Such high curvature points are often the positions of salient features 
of an object. As noted in Figure 17, these salient feature positions are chosen 
one at a time, in order of signal strength, to compute target positions that con-
trol where the eyes will move on an attended surface.

The ARTSCAN model hereby clarifies how several important processes 
during visual perception and recognition are coordinated: focusing spatial at-
tention on an object of interest, enabling invariant object category learning 
and recognition of the object, and control of scanning eye movements to sa-
lient features, and thus different views, of an object while it is attended, so that 
invariant object categories can be learned.

4.10.  From boundary pruning to figure–ground separation

Eliminating redundant boundaries at farther depths via boundary pruning also 
allows figure–ground perception to begin. For example, in response to the 

Figure 45.  Surface contour inhibitory signals, such as the red arrows in Fig. 44, decrease in 
strength as the depth difference between the filled-in surface and the boundaries increases. In 
other words, there is an off-surround within position and across depth that becomes weaker as 
the depth difference increases. The strength of inhibition of boundaries across depth is depicted 
with a cross section of the inhibitory off-surround across depth that is caused by surface contour 
outputs. The top curve shows the inhibitory signals in response to a less bright stimulus. The 
bottom curve shows the inhibitory signals in response to a more bright stimulus. The numerals 
1 and 2 indicate one of the depths where the two sets of inhibitory signals are equal. This 
illustrates how the brighter stimulus can inhibit boundaries at more depths between that of 
the stimulus and its inducers, thereby making the brighter stimulus stand out more in depth. 
This property helps to explain why brighter Kanizsa squares look closer (Bradley and Dumais, 
1984; Kanizsa, 1955, 1974; Purghé and Coren, 1992), other things being equal. (Reprinted with 
permission from Grossberg, 2014).
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image of three rectangles in Figure 41 (left panel), there are four T-junctions 
where end gaps will form. Only the horizontal rectangle is then surrounded 
by a closed boundary, so only the bounding contours of the horizontal rect-
angle will generate surface contour feedback signals. These surface contours 
use near-to-far inhibition to eliminate redundant copies of the boundaries 
of the horizontal rectangle at farther depths, using the network in Figure 44. 
The two pairs of collinear vertical boundaries due to the T stems then have no  
obstructing horizontal boundaries between them at farther depths. They can 
therefore use bipole grouping cells to complete a vertical boundary between them  
(Figure 41, right panel), hereby forming two complete vertical boundaries that 
are part of a complete vertically oriented rectangle. Because this boundary 
completion occurs at farther depths, the completed vertical rectangle lies “be-
hind” the horizontal rectangle.

Why are the occluded parts of the vertical rectangle’s boundary invisible? 
This is easy to explain, because all boundaries are invisible! The harder part is 
to explain why only the unoccluded surface regions of opaque objects are vis-
ible. These visible surface percepts are predicted to occur in cortical area V4, 
whereas cortical area V2 is proposed to generate amodal recognition of the 
occluded parts of the scene. A complete explanation of how this distinction 
between amodal recognition by V2 and modal seeing and recognition by V4 
goes beyond the scope of the present article. See Grossberg (1997, 2017) for 
a heuristic explanation, and Grossberg and Yazdanbakhsh (2005) and Kelly 
and Grossberg (2000) for computer simulations of figure–ground percepts that 
support this explanation.

We have hereby seen how basic mechanisms of perceptual grouping and 
complementary consistency can give rise to properties of figure–ground  
perception, notably 3D percepts of partially-occluded objects, in response to 
2D pictures. These mechanisms also help to explain temporally bistable 3D 
percepts, such as the 3D Necker cube percepts that oscillate in response to the 
2D picture in Fig. 42b (Necker, 1832; for explanation and computer simula-
tions, see Grossberg and Swaminathan, 2004), and the percept wherein at-
tending to one disk is a display of three overlapping disks (Fig. 42c) makes 
that disk look nearer and brighter (Tse, 2005; for explanation and computer 
simulations, see Grossberg and Yazdanbakhsh, 2005), among many other per-
cepts. Now let us return to more examples of how particular artists have used 
these properties to create 3D percepts in response to viewing 2D paintings that 
include figure–ground manipulations.

4.11.  From Boundary Pruning to Proximity-Luminance Covariance

The boundary pruning mechanisms that are summarized in Fig. 44 also 
help to explain properties of proximity–luminance covariance as part of the  
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figure–ground separation process. This is because of the way that the surface 
contour inhibitory signals in Fig. 44 are delivered to the boundary system 
(Grossberg, 2014, 2017). These inhibitory signals are part of an off-surround 
network whose strength decreases with the distance from the source cell. This 
‘distance’ translates into a depth difference (Fig. 45). The strength of the in-
hibitory surface contour signal thus decreases as the depth difference increas-
es between the surface that generates the signal and its recipient boundaries.

A brighter surface generates a larger surface contour signal. This larger 
surface contour signal causes more inhibition to occur at every depth that the 
off-surround can inhibit. By increasing these inhibitory signals, the depth dif-
ference increases between the figural surface and the depth of the background 
surface that can generate boundaries after the inhibition acts. Hence, brighter 
surfaces look closer than their backgrounds.

4.12.  Frank Stella, Occlusions, Kineticism, and Surface–Shroud Resonances

The luminance and color structure within a painting affects its figural group-
ing and stratification, and this in turn affects the formation of attentional 
shrouds that determine where viewers look at it. Section 4.7 discussed how 
larger stripe groupings within Davis’s paintings result in the formation of 
surface–shroud resonances (Fig. 18) on nearer depth planes. This section dis-
cusses how different combinations of surface–shroud resonances may form 
in response to multiple groupings that include partial occlusions in response 
to Frank Stella’s Protractor paintings. The paintings in Stella’s Protractor 
series are completely abstract, brightly colored, and contain a number of in-
terwoven and/or overlapping figures. The series is called the Protractor series 
because the paintings in this series are based on the semi-circular form of a 
protractor. Figure 46 shows Firuzabad (top) and Khurasan Gate (Variation) 
I (bottom). In describing Firuzabad and other similarly-structured paintings, 
Stella wrote: “I was looking for a really symmetrical base and the protrac-
tor image provided that for me. Firuzabad is a good example of looking for 
stability and trying to create as much instability as possible. ‘Cause those 
things are like bicycle wheels spinning around’” (“Frank Stella and the art 
of the protractor”; Anonymous, 2000).

Stella also describes being inspired by decorative art in Iran in which pat-
terns “doubled back on themselves” (Engberg, 2005). Furthermore, others 
have described these paintings as having an “engaging kineticism” (Engberg, 
2005). The paintings containing interwoven patterns within Stella’s Protractor 
series are visually dynamic and create a sense of movement in the viewer.

FACADE theory together with ARTSCAN model principles can explain the 
sense of visual movement and rhythm within many of Stella’s Protractor series 
paintings. In Firuzabad, the circular form of the outer protractor shapes mir-
rors the shapes of the interlocking rings within the painting. The T-junctions 
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where the surfaces of differently-colored segments meet signal which seg-
ments weave in front of other segments. FACADE theory predicts that this 
is the result of the end gaps that form at T-junctions due to the long-range co-
operation and short-range competition properties of boundary grouping using 
bipole cells (Sect. 4.8). End gaps support boundary completion of the nearer 
figure and create holes in the boundaries of the figure that is ‘behind’ the nearer 
figure. This boundary discontinuity prevents filling in of the ‘more distant’ fig-
ure in the nearest FIDO, just as it does in response to the image in Fig. 41. As 
a result of boundary pruning, surface pruning, and surface-to-boundary feed-
back (Fig. 44), the boundary of the ‘more distant’ figure is amodally completed 
and its surface filled-in in a FIDO that is behind the nearer figure. Only the non-
occluded part of each figure is consciously seen, but whole protractor figures 
may nonetheless be amodally recognized.

The center region of Firuzabad contains a number of interwoven segments, 
some of which are recognized as whole protractors due to amodal completion, 
and others as smaller segments that are nested in the overall circular shape of 
the canvas and/or within other protractors. Importantly, no one segment in this 
center portion of Firuzabad is ‘on top’ of all the others. Instead, each segment 
weaves under and over other segments.

Similarly, in Khurasan Gate (Variation) I, no one segment, or protractor, 
in the entire painting lies completely on top of all the others, even though 
each distinctly colored protractor segment has exposed, visible regions that 
are sufficient to allow the viewer to understand the whole shape of the pro-
tractor. As a result, these structures are perceived as overlapping segments in 

Figure  46.  Two paintings by Frank Stella: (Upper row) Firuzabad (1970). (Lower row) 
Khurasan Gate (Variation) I (1969). See text for details.
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different depth planes. Importantly, amodal boundary completion and surface 
filling-in of distinct segment colors help us divide the painting into separate, 
interlocking protractor forms that are tightly linked in a larger structure. In 
particular, amodal boundary completion allows perceptual completion of 
protractor boundaries that lay behind other forms, while consistent segment 
colors within amodally-completed protractor surfaces allows disconnected 
segments to emerge as unified protractor forms. These boundary and surface 
completion processes enable attentional shrouds to spread across a whole 
protractor form, whether or not the entire form is consciously visible. Once 
an attentional shroud can form on a given protractor, a surface–shroud reso-
nance regulates eye movements to this particular protractor (see Fig. 17), 
and guides these movements in and out of different depth planes because no 
one protractor lies on top of all the others. The ability of shrouds to form on 
the entire surface of figures, even when portions of the figure are occluded, 
combined with the interwoven nature of surface depths within the paintings 
shown in Fig. 46 contribute to the ‘engaging kineticism’ and simultaneous 
stability and instability within Stella’s Protractor series paintings.

An attentional shroud that adheres to the surface of one figure inevitably 
collapses as a result of inhibition of return, which can be due either to inhibi-
tion of recently visited fixation positions, or to activity-dependent habituation 
of the surface–shroud resonance itself (Chang et al., 2014; Fazl et al., 2009). 
When a shroud collapses, spatial attention is disengaged from that object 
surface, thereby freeing it to become engaged by a new surface of interest (cf. 
Posner, 1980). By directing attentional flow through different depth planes 
and across different segmentations, Frank Stella achieves a sense of visual 
movement in paintings that are based on static interleaved patterns.

4.13.  “All Boundaries Are Invisible” and Painting Directly in Color: Monet, 
Matisse, Hawthorne, and Hensche

Monet directly painted the visible colors in a scene as he viewed it, rather than 
constructing a scene by drawing its boundaries and then filling them in. Sup-
port for this idea lies within Monet’s advice: “When you go out to paint, try to 
forget what objects you have before you, a tree, a house, a field, or whatever. 
Merely think, here is a little square of blue, here an oblong of pink … paint it 
just as it looks to you, the exact color and shape, until it gives your own naïve 
impression of the scene before you” (Perry, 1927, p. 120). This approach to 
painting has been vigorously pursued by many painters.

For example, Matisse wrote about “the external conflict between drawing 
and color…Instead of drawing an outline and filling in the color…I am draw-
ing directly in color” (Matisse, 1947/1992). Matisse realized instinctively that, 
if he painted directly with appropriately shaped color patches, these patches 

Downloaded from Brill.com04/06/2021 01:46:22AM
via free access



	 Art & Perception 5 (2017) 1–95	 81

would induce the formation of amodal boundaries within the brain of the 
viewer. These boundaries, in turn, would capture the inducing colors to form 
the surface representations of color and form that a viewer would use to un-
derstand the painting (Fig. 47).

How does “drawing directly in color” change how a painting looks? If in-
stead of “drawing directly in color”, Matisse did “draw an outline” around 
his surfaces, and did so in a dark color, then these outlines could darken 
the surface colors of the entire scene via the process of color assimilation. 
Color assimilation occurs due to mechanisms whereby boundaries control 
the filling-in of surface color. Grossberg and Todorovic (1988) and Kelly 
and Grossberg (2000) provide explanations and simulations of situations in 
which assimilation can occur, as well as of situations where brightness con-
stancy, contrast, contrast constancy and many other visual phenomena can 
occur. Matisse’s method of “drawing directly in color” enabled him to create 
bright, glowing surface colors, without encountering the darkening and other 
distorting effects of visibly drawn outlines. Both Matisse and Monet hereby 
achieved their aesthetic goals by exploiting an intuitive understanding of the 
fact that ‘all boundaries are invisible’.

Many other artists have also struggled with how to represent object surfaces 
without drawing explicit outlines, lines, or curves around them, including plein 
air painters of the Cape Cod school of art. Charles Hawthorne (1938/1960), 
who founded this school of painting, wrote: “Beauty in art is the delicious 
notes of color one against the other…all we have to do is to get the color notes 
in their proper relation” (p. 18). “…put down spots of color…the outline and 
size of each spot of color against every other spot of color it touches, is the 
only kind of drawing you need bother about…Let color make form—do not 
make form and color it. Forget about drawing…” (pp. 25, 26).

Figure 47.  When Matisse or other artists ‘paint in color’ without using explicitly drawn edges 
that could darken the painting’s perceived colors, these color patches generate amodal boundary 
webs that capture the colors and trigger surface filling-in to create representations of surface 
color and form that can be interpreted as parts of a scene by viewers. (Reprinted with permission 
from Grossberg, 2008).
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Henry Hensche, Hawthorne’s most famous student and a respected painter 
and teacher in his own right (Hensche, 1988), further developed these con-
cepts and also noted Monet’s key role in pioneering them: “When Monet came 
along…he revolutionized the ‘art of seeing.’ …it was the method of express-
ing light in color, and not value, to allow the key of nature to show clearly…
The landscape helped Monet determine how color expressing the light key 
was the first ingredient in a painting, not drawing” (Robichaux, 1997, p. 27). 
“The untrained eye is fooled to think he sees forms by the model edges, not 
with color…Fool the eye into seeing form without edges” (p. 31). “Every form 
change must be a color change” (p. 33).

These and many other artists hereby developed their theories of painting to 
accommodate their intuitive understanding of the aesthetic implications of the 
fact that ‘all boundaries are invisible’.

4.14.  Back to Monet: Gist, and Global-To-Local Spatial Attention

Monet’s painting process reflects how humans may initially perceive global 
information about a scene, such as its gist, before focusing attention upon its 
finer details. As discussed in Sect. 2.4, ARTSCENE models how gist may be 
computed first as a large-scale texture category. Indeed, rapid and accurate 
classification of natural scenes can be achieved using gist alone. Shifting at-
tention via attentional shrouds to classify finer scenic textures helps to refine 
scene classification hypotheses.

The principle that scene gist is the first available information in a scene is 
mirrored by Monet’s aesthetic goal to preserve the first glance, or first impres-
sion, of a scene. Descriptions of Monet’s painting process show that he started 
with distributed patches of local contrast and slowly added to this contrast 
until long-range cooperation between his brushstrokes could more easily and 
unambiguously occur. Lilla Cabot Perry describes a canvas that Monet had 
painted only once: “it was covered with strokes about an inch apart and a quar-
ter of an inch thick, out to the very edge of the canvas” (Perry, 1927, p. 120).  
Perry also noted: “[Monet] held that the first real look at the motif was likely to 
be the truest and most unprejudiced one, and said that the first painting should 
cover as much of the canvas as possible, no matter how roughly, so as to de-
termine at the outset the tonality of the whole” (p. 120). Perry also describes 
one that was painted twice: “the strokes were nearer together and the subject 
began to emerge more clearly” (p. 120). Monet hereby instinctively carried 
out the kind of global-to-local process that humans use to understand scenes, 
gradually building detail with more and more brushstrokes, but never explic-
itly drawing fine scenic structures.

For example, in the paintings of the Rouen cathedral shown in Figs 30 and 31,  
the viewer can infer that there are sculptural elements on the facade of the 
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cathedral, but the fine structure of these elements is not explicitly present in 
the paintings. Similarly, in the small patches of Monet’s paintings within the 
white squares shown in Fig. 48, one cannot tell from the patches alone that 
they all contain trees. However, in the context of each complete scene, it is 
easier to discern that these patches contain leaves on trees within the land-
scapes. By leaving out fine, scenic details in his paintings, Monet encourages 
viewers to experience the more global properties of a scene using larger-scale 
attentional shrouds. This reflects the information acquired during the ‘first 
real look’ at a scene and Monet’s desire to preserve the freshness of this first 
impression.

4.15.  Graffiti Artists and Mooney Faces

When a painting is not rendered on a smooth surface such as a canvas, addi-
tional constraints may influence an artist’s technique. This occurs, for example, 
in the work of graffiti artists, such as Banksy (2005), whose paintings are often 

Figure 48.  Three paintings by Monet in which the existence of trees and their leaves (surrounded 
by white squares) is contextually disambiguated, but not defined completely by delineating their 
local features. (Upper left) Grainstacks in the Morning, Snow Effect (1891) and detail. (Bottom 
left) Mount Kolsaas, Rose Reflection (1895) and detail. (Right) Morning on the Seine, near 
Giverny (1896) and detail. See text for details.
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made on walls. As Rubin (2015, p. 1) has noted: “analysis of a large corpus of 
work by the graffiti artist Banksy suggests that the type and condition of the 
background wall significantly affected his artistic choices. To minimize on-site 
production time, Banksy renders his famous subjects (e.g., the rat) by apply-
ing single-color paint over pre-fabricated stencils. When the wall is smooth, 
Banksy leaves the regions previously covered by the stencil unpainted, relying 
on observers’ perception to segregate figural regions from the (identically col-
ored) background. But when the wall is patterned with large-scale luminance 
edges—e.g., due to bricks—Banksy takes the extra time to fill in unpainted 
figural regions with another color.”

An example of a rat wall painting by Banksy is shown in Fig. 49 (left, up-
per row). Rubin (2015, p. 2) goes on to discuss these paintings as examples of 
a “surface completion” process “whereby a whole surface is perceived when 
only fragments of its bounding contour are present in the image. The best 
known examples of surface completion are those of flat (2D) shapes bounded 
by illusory contours, such as Kanizsa’s figures…” Rubin (2015) illustrates 
such surface completion processes in response to “two-tone images obtained 
by binarizing the luminance levels of pictures of real-world objects or scenes,” 
as illustrated by ‘Mooney faces’ (Mooney, 1957) which depict heads and faces 
in black and white where only salient shadows or highlights are shown, as they 
would appear in strongly lighted photographs (Fig. 49, second panel, upper 
row). These stimuli have been used to study the development of ‘closure’ in 
schoolchildren; namely “the perception of an object or event which is not com-
pletely or immediately represented” (Mooney, 1957, p. 219). Rubin (2015) 
identifies closure with the process of surface completion. Rubin (2015) also 
discusses how surface completion may work by modifying Mooney faces with 
a lattice much like the bricks on a wall (Fig. 49, right, upper row) and by dis-
cussing how such backgrounds may influence the formation of Kanizsa square 
percepts (Fig. 49, lower row).

Despite the heuristic appeal of an analysis in terms of ‘surface completion’, 
it does not explain how the brain responds to these images. Rather, one needs 
to invoke how the computationally complementary processes of boundary 
completion and surface filling-in (Fig. 10) individually work and interact. 
Consider, for example, the Mooney face image in Fig. 49 (second panel, upper 
row). To facilitate recognition of this face, an illusory contour forms between 
the chin of the face at the picture’s bottom right and the cheek of the face at 
the picture’s middle right. This illusory contour thus proceeds obliquely up-
wards and to the right from the chin to the cheek. Once formed, the illusory 
contour helps us to recognize the face by organizing the surface filling-in 
process, notably to separate the white of the face from the white of the back-
ground, just as it does when we recognize the Dalmatian in Snow (Fig. 3).
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How does the brickwork pattern in Fig. 49 (upper row, right panel) interfere 
with this percept? This interference is due to the way in which at least two 
neural mechanisms react to the bricks:

The first mechanism activates the property of spatial impenetrability that was 
described in Sect. 3.4. In the present example, horizontally-oriented hypercom-
plex cells that are activated by the brick horizontal edges inhibit the (almost)-
vertically-oriented bipole cells that would otherwise create the illusory contour 
between the chin and the cheek of the face (Fig. 5b). Because this illusory con-
tour cannot form, it cannot separate the face from its background during the sur-
face filling-in of white in the right half of the percept. In particular, this problem 
is triggered by the boundary system, not the surface system, as the analysis of 
Rubin (2015) might lead one to believe. Surface filling-in (‘surface comple-
tion’) is the result, not the cause, of this property.

Figure  49.  (Left, upper row) Photo of a graffiti painting by Banksy. (Middle, upper row) 
Face #13 from Mooney (1957). (Right, upper row) Mooney face #13 with brick pattern added 
(Reprinted with permission from Rubin, 2015). (Lower row) Background squares either support 
(right) or interfere with (left) the formation of a Kanizsa square. (Adapted from Ramachandran 
et al., 1994).
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The second mechanism causes the amodal completion of the horizontal 
boundaries of the bricks ‘behind’ the black shapes in the image, in the same 
way that the vertical boundaries in response to the image in Fig. 41 are com-
pleted behind the horizontal rectangle there. All the white parts of the face are 
therefore relegated to the background of the percept, and are thereby prevented 
from acting as part of the facial figure. This process is again triggered by 
the boundary system, with consequences for the course of subsequent surface 
filling-in.

A similar analysis can be immediately applied to the two Kanizsa square 
images in Fig. 49 (lower row). In response to the image shown in the left 
panel, spatial impenetrability causes the horizontal boundaries of the back-
ground squares to interfere with vertical boundary completion between the 
vertically-oriented collinear pacman edges by vertically-oriented bipole cells. 
Likewise, the vertical boundaries of the background squares interfere with 
horizontal boundary completion between the collinear horizontally-oriented 
pacman edges by vertically-oriented bipole cells. In response to the image 
shown in the right panel, in contrast, the vertical boundaries of the background 
squares are collinear with the vertical pacman inducers, and the horizontal 
boundaries of the background squares are collinear with the horizontal pac-
man inducers, thereby supporting formation of the Kanizsa square boundaries 
by bipole grouping. Finer aspects of these percepts, such as why the Kanizsa 
squares in Fig. 49 (lower row, right) and Fig. 4 (upper row) appear to be in 
front of four partially occluded circular disks, can be understood by reading 
how FACADE theory explains many figure–ground percepts of this type as 
a result of feedback interactions between the complementary boundary and 
surface cortical streams (Fig. 9) (e.g., Grossberg, 1997, 2014).

5.  Concluding Remarks

This article illustrates how different artists have intuitively understood and 
exploited different combinations of brain processes to achieve their aesthet-
ic goals. The article reviews how neural models have clarified how these 
processes work, and used this understanding to shed light on the aesthetic 
effects that are achieved by specific paintings and painterly methods of Jo 
Baer, Banksy, Ross Bleckner, Gene Davis, Charles Hawthorne, Henry Hen-
sche, Henri Matisse, Claude Monet, Jules Olitski, and Frank Stella. These 
processes range from discounting the illuminant and lightness anchoring, to 
boundary and texture grouping and classification, through filling-in of surface 
brightness and color, to the allocation of spatial attention and eye movement 
control. The article also clarifies the role of surface–shroud resonances in 
supporting conscious visual percepts, including percepts of paintings, and 
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how such resonances control where viewers attend paintings, and how the 
attention shifts and eye movements that are regulated during such resonances 
can be used to better understand and appreciate paintings. In this way, the 
article clarifies how humans consciously see paintings, while also shedding 
light on how paintings illuminate how humans see.
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