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The important thing in science is not so much to ob-
tain new facts as to discover new ways of thinking
about them.

—William Lawrence Bragg

For more than 50 years, chronic immunological processes
have been considered central to type 1 diabetes patho-
genesis. Studies in pancreata from patients with type 1
diabetes have revealed the presence of insulitis, identified
histologically as immune cell infiltrates around and
within the islets. Finding the insulitis lesion in a por-
tion of patients with recent-onset type 1 diabetes indicates
heterogeneity of the pathogenic process, while the un-
even occurrence of the lesion within diabetic pancreata
supports the view that the process of islet damage
does not take place in all the islets concomitantly. The
intermittent pattern of insulitis and the differential
recruitment of islets into the pathological process despite
the continuous presence of b-cell autoreactive immune
cells in circulation suggest the islet pathological process
may not be solely dependent on the presence of these
cells. Changes in islet tissue-specific structural character-
istics and in the local microenvironment may take place in
the course of islet inflammation, which predisposes for
islet invasion by the immune cells. Local tissue extracel-
lular matrix (ECM) constituents are active participants in
the regulation of in situ inflammatory processes during
which the functional and structural properties of the local
tissue components and of the immune cells themselves
are continuously modulated. Recent studies in human di-
abetic pancreata have indicated the presence of greatly
altered hyaluronan (HA), a major ECM component, in
the diabetic islets, which is associated with the extent of
invasive insulitis and b-cell loss. These novel observations
led to the hypothesis that HA guides immune cell migra-
tion into the islets and regulates the immune cell pheno-
type and that alterations in islet HA contribute to the

increased vulnerability of the b-cells to inflammatory in-
sult. This Perspective reviews the evidence supporting a
key role for this ECM component in type 1 diabetes
pathogenesis.

COMPOSITION AND PROPERTIES OF THE ECM

Most cells are surrounded by a . network of outer
defenses and scaffoldings . . Such structures are not
part of the cells but are built from precursor material
that are secreted by the cells and that subsequently
join together into a variety of combinations of almost
every possible shape or consistency . they provide
every sort of visible form that life creates on our
planet. Without them there would be nothing but an
amorphous covering of oozy slime made of a myriad of
naked cells crawling over each other. (1)

With these words, Christian de Duve defines the
extracellular substance, termed the ECM, and the essen-
tial function of the ECM structures as the physical
support to the living matter. ECM functions extend
beyond simply supporting and buttressing the tissue
parenchymal cells and provide biochemical and biome-
chanical cues to the cells crucial for tissue development,
function, and homeostasis. The extracellular matter exerts
an active role in the regulation of a variety of cellular
activities such as cell adhesion, migration, proliferation,
and differentiation.

While there is considerable variety in the composition
of different tissue ECM, fundamentally, the ECM compo-
nents form two morphologically distinct types of matri-
ces, the basement membrane (BM) and the interstitial
matrix (IM), which occur as adjacent structures in vivo
(Table 1) (2). The ECM forms a reciprocal relationship
with the cells in contact with it, which significantly influ-
ences cellular behavior (3,4) and it is critical for tissue
development and maintenance of mature tissue homeo-
stasis as illustrated by the consequences of genetic abnor-
malities in the ECM proteins. Genetic deletion of HAS2,
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the major HA synthesizing enzyme, or the absence of dif-
ferent types of laminin or of both chains of the collagen
IV isoform causes embryonic lethality due to defective
cardiac and neural morphogenesis or defects in BM sta-
bility (5–7). Deletion of the genes encoding the enzymes
involved in the synthesis or undersulfation of heparan
sulfate (HS) cause cell growth arrest early in embryonic
development (8,9).

ECM IN INFLAMMATION

An increased rate of ECM remodeling is observed
under pathological conditions such as fibrotic diseases
and cancer and is particularly high during inflammation
(10). The tissue ECM could be envisioned as the “ground”
for the passage of the immune cells from the blood into
the injured tissue. Migrating immune and damaged pa-
renchymal cells at the site of inflammation release inflam-
matory mediators that affect the expression of different
ECM molecules and enzymes that break down ECM. As a
result, ECM components are either generated in excess
and deposited, fragmented, or lost. These modifications
in the amount and composition of ECM result in a remod-
eled matrix endowed with the capacity to amplify immune
cell recruitment in a feed-forward manner and to affect
the behavior of these cells.

Accumulation of ECM results from altered enzymatic
activity and is a major histopathological feature of inflam-
matory conditions such as autoimmune diseases, granulo-
matous diseases, and fibrosis. Deposition of collagen and
fibronectin in tissues takes place in inflammatory bowel
disease, asthma, scleroderma, lupus nephritis, and glomer-
ulonephritis (11–14). Significant increases in HA and pro-
teoglycans have been observed in rheumatoid arthritis,

inflammatory bowel disease, chronic inflammatory vascu-
lar disease, lupus nephritis, Graves ophtalmopathy, and
type 1 diabetes (15–20). The marked accumulation of
the ECM in human tissues in different diseases and in
corresponding experimental animal models (21–24) pre-
cedes or coincides with an influx of inflammatory cells,
suggesting that the altered ECM influences the trafficking
and recruitment of leukocytes into the site of inflammation.

Infiltrating leukocytes and the resident cells in the in-
flamed tissues release proteolytic and degrading enzymes
that cause degradation of intact ECM molecules into frag-
ments. The ECM fragments are bioactive and may serve as
chemoattractants for leukocytes to the site of inflamma-
tion. Collagen, fibronectin, HA, HS, and elastin fragments
are chemotactic for neutrophils, monocytes, and lympho-
cytes; augment phagocytic functions of macrophages; and
modulate gene expression of mononuclear cells (22,25–27).
Instillation of elastin fragments or intratracheally adminis-
tered collagen I peptides recruit monocytes and neutrophils
in the rat lung in vivo, while HA fragments generated by
overexpression of hyaluronidase 1 activated migration of
skin dendritic cells toward regional lymph nodes (28–30).

Other data indicate that besides promoting immune
cell migration, the ECM has the capacity to regulate im-
mune cell activation, gene expression, proliferation, sur-
vival, and differentiation (31–33).

Given the engagement of the ECM in chronic inflam-
matory responses, it is likely that the ECM is involved in
islet inflammation, a chronic process that is associated with
altered local tissue integrity and loss of insulin-producing
b-cells, brought about by infiltrating immune cells (34).

IMMUNE CELL MIGRATION INTO THE INFLAMED
ISLET IN TYPE 1 DIABETES

Entry of immune cells from blood through the blood-islet
endocrine cell barrier of microvasculature and the ECM
into the islets is a key step in the development of insulitis.
Immune cell trafficking (35,36) is a three-step process in
which the selectin-dependent initial adhesion of leuko-
cytes to vascular endothelium (step 1) is a prerequisite
for their subsequent chemokine- and integrin-regulated
firm adhesion (step 2). Finally, utilizing protease-dependent
or -independent mechanisms, leukocytes migrate through
the endothelial wall and the BM into the underlying
tissue (step 3; transmigration) where they receive addi-
tional signaling cues that guide them to specific tissue
environments.

L-selectin, chemokines, and integrins have been impli-
cated in the development of diabetes in NOD mice.
Blockade of L-selectin by early administration of anti–
L-selectin monoclonal antibody impaired the development
of adoptively transferred diabetes (37), yet other studies
(38) indicate that L-selectin may not be required for leu-
kocyte migration in insulitis.

Chemokines involved in the firm adhesion step of leu-
kocyte transmigration have been associated with progres-
sion to type 1 diabetes. Serum levels of chemokine CXCL10

Table 1—The major components of the ECM

IM

Nonproteoglycan polysaccharides, HA

Proteoglycans
HS
Chondroitin sulfate
Keratan sulfate
Other (versican, aggrecan, neurocan, brevican,
biglycan, decorin, lumican)

Collagen
Fibrillar (type I, II, III, V, XI)
Short chain (type VIII, X)
FACIT (type IX, XII, XIV, XVI, XIX-XXII)
Other (type VI, VII, XIII, XVII, XXIII-XXIX)

Elastin

Fibronectin

BM

Collagen type IV, XV, XVIII

Laminin

HS proteoglycans

Nidogen/entactin

FACIT, fibril-associated collagens with interrupted helices.
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were elevated in patients recently diagnosed with type 1
diabetes (39,40). CXCL10 was present in human diabetic
islets, while its receptor CXCR3 was expressed in insulitic
cells (41,42). Development of spontaneous insulitis in
RIP-CXCL10 transgenic mice and prevention of diabetes
in mice by antibody blockade of CXCL10 or genetic de-
letion of CXCR3 indicated that the CXCL10–CXCR3 axis
could be important in type 1 diabetes (43,44). However, a
recent study challenged this view (45). CXCR3 was also
expressed by autoreactive preproinsulin-specific CD8+ cell
clones derived from patients with type 1 diabetes (46).
When such islet-reactive CXCR3+ T cell clones isolated
from patients prior to or at clinical onset of type 1 diabe-
tes were transferred into hyperglycemic NOD-SCID mice,
the CXCR3+ clonal cells were observed around blood vessels
in the exocrine pancreas but not in the inflamed islets, in-
dicating that CXCR3 interactions per se are not sufficient
to guide the entry of T cells into the inflamed islets (47).
CCL19 and CCL21, which interact with CCR7 to direct the
migration of T cells into lymphoid tissues, were also highly
expressed in insulitis areas, and conversely CCR7-deficient
NOD mice did not develop diabetes (48,49).

Lymphocyte integrins LFA-1, VLA-4, and LPAM-1 and
the cell surface receptors they interact with to enable firm
adhesion of leukocytes on the vascular endothelium may
regulate immune cell migration in the initial phase of insulitis.
Treatment of neonatal NOD mice with a combination of
antibodies against a4, b2, and b7 integrin subunits and their
ligands VCAM-1, MadCAM-1, and ICAM-1 led to retention of
CD4+ and CD8+ T cells and macrophages at the islet periphery
(50,51). This treatment was less effective when administered
to young adult NOD mice and ineffective following the adop-
tive transfer of diabetogenic cells (52,53). It is possible that
integrin-mediated immune cell adhesion is important during
the early phase of insulitis and that the inflammatory islet
microenvironment may give rise to new cell–cell and cell–
matrix interactions that facilitate integrin-independent cell
trafficking.

Additional chemokines, chemokine receptors, integrins,
and cytokines, such as CCL2, CCL3, CCL5, CXCL12, CCR2,
CXCR4, IFN-g, and integrin aLb2, have been considered as
modulators of the interactions of diabetogenic T cells with
islet vascular endothelium (43,54–56), but whether these
molecules are essential to these interactions is not known.

The sequence of the events and the precise mechanisms
of islet immune cell infiltration in human insulitis are still
unknown. In the process of extravasation, leukocyte cross
talk with the tissue ECM present on the surface of endo-
thelial cells and in the extracellular environment suggests
that interactions between leukocytes and the ECM are
important in the regulation of immune cell trafficking.

CONTRIBUTION OF ISLET ECM TO INSULITIS

The Components of the Islet ECM
In normal human islets, IM (Table 2) locates along and in
intimate association with the islet microvessels separat-
ing them from the endocrine cells. Differently from IM

collagen and fibronectin that lie along the islet capillary
pathway, IM HA occurs in a discontinuous pattern around
the periphery of human islets and appears sparsely dis-
tributed within the islets (20). Quantitative analysis
indicated that HA is similarly distributed within the
“peri-islet” and “intra-islet” sites and that the distribution
and relative amounts of HA in normal human islets did not
change significantly with age (20). HA-binding molecules
versican and intera-inhibitor (IaI), two molecules that serve
to cross-link HA and help stabilize the HA complexes, are
present in normal human islet and locate in the HA-rich
areas (20). The islet BM displays a peculiar structure com-
posed of two layers, the vascular endothelial BM surround-
ing the microvessels, and a second distinct peri-islet BM
which penetrates into the islet along the microvessels and
forms an endocrine BM lying outside the vascular endothe-
lial BM (57). HS and the proteoglycans syndecan-1 and
syndecan-4 have been detected in rodent b-cells but not
in the other islet hormone-producing cells (58,59). The
HA-binding molecule tumor necrosis factor-stimulated
gene 6 (TSG-6), the heavy chains of IaI, and the proteo-
glycan bikunin also locate intracellularly in the human
and mouse pancreatic endocrine cells (20,60).

Islet ECM in Type 1 Diabetes
Studies in tissue specimens from patients with type 1 di-
abetes show that the b-cell mass is reduced at the time the
disease becomes clinically overt and that the loss of residual
b-cells continues over time, which is consistent with a
chronic inflammatory process, probably driven by islet-
associated macrophages and lymphocytes (34,61). Medi-
ators of inflammation released locally by infiltrating
macrophages, endothelial, and ductal cells have been shown
to be detrimental to b-cell function and survival (62). It is
not clear how these immune cells find their way from the
blood through the islet vascular wall into the islet interior.

Earlier studies in NOD mice showed that dispersed
immune cells, mainly dendritic cells (DC), histiocytic-like
macrophages, and macrophages with scavenging potential,

Table 2—The ECM components identified in human islets

IM

HA

HA-binding proteins versican, IaI

HS

Collagen type I, III, V, VI

Fibronectin

BM

Collagen type IV

Laminin isoforms 411/421, 511/521

Perlecan

Islet endocrine cells

HA-binding protein TSG-6

HS
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were present at birth and persisted in the peri-islet,
periductular, and perivascular areas during the first
month of life in NOD mice (63,64). Concomitantly, fibro-
nectin levels were increased in the pancreas from new-
born NOD mice, and a strong fibronectin immunostaining
was observed in the interlobular septa, at the islet periph-
ery, and at the islet-ductal pole, concurrent with increased
laminin labeling in the BMs of the vascular and ductal
structures and of exocrine acini (65). The increase in
the pancreatic fibronectin and laminin was associated
with altered islet morphology, as indicated by larger rela-
tive islet areas and larger islets that were also of irregular
shape. Further macrophage and DC accumulations were
observed at the islet-ductal pole in young adult NOD
mice, which preceded the later lymphocyte accumulation
in these areas. The increased number of macrophages in
the fibronectin-positive peri-islet regions was likely a
result of their defective migratory capacity due to inade-
quate a4b1 fibronectin receptor expression (66,67),
which could cause these cells to be entrapped in the islets.
Since increased peri-islet fibronectin and accumulation
of macrophages were concurrent in the neonatal NOD
mice, it is unclear whether macrophages were halted by
the already altered fibronectin or whether the arrested mac-
rophages themselves were the source of accumulated fibro-
nectin. Accumulation of abnormal DC and macrophages in
fibronectin-containing peri-islet areas and in association
with altered islet morphology early in life, during the period
of rodent endocrine pancreas remodeling (65,68,69), sug-
gested that functionally impaired macrophages and DC
and altered islet ECM impact islet morphology and may be
involved in the generation and/or progression of the auto-
immune response in NOD mice (70).

Recent systematic studies in human diabetic pancreata
have implicated other specific ECM components in the
regulation of leukocyte trafficking (20,71,72). These stud-
ies suggest that ECM components impact b-cell function
and survival, and thus contribute to b-cell damage in di-
abetes (58,72). Immunohistochemistry for laminin, perlecan,
and collagen showed that these components of the peri-
islet BM were lost at sites of leukocyte infiltration in is-
lets in NOD mice and in pancreata from type 1 diabetes
donors (71,73). Time-course analysis of pancreatic islets
during development of insulitis in NOD mice revealed
an increase with age in the proportion of islets showing
disruption of the BM along with an increasing number
of islets infiltrated by immune cells (71). Association of
invasive insulitis with degradation of the peri-islet BM
indicates that removal of the BM physical barrier takes
place during leukocyte entry into the islets. In addition,
expression of the proteolytic enzymes cathepsin C, H, S
and W was upregulated in inflamed islets versus healthy
islets of NOD mice, indicating a possible direct involve-
ment of cathepsins in peri-islet ECM degradation.

These studies indicate that the peri-islet BM serves as a
physical barrier to insulitic leukocytes accumulated at islet
periphery. Yet the mechanisms that control immune cell

adhesion and accumulation at the islet border, what
modifications take place in the islet microenvironment
that would confer migratory properties to leukocytes,
and whether and how islet ECM contributes to the
directed migration and phenotype of the immune cells
within the islet are unknown.

THE ROLE OF HA IN TYPE 1 DIABETES
PATHOGENESIS

HA, a Regulator of Immune Responses
HA is a linear, high–molecular-weight glycosaminoglycan
consisting of repeating disaccharides of 4-D-glucuronic
acid and 3-N-acetyl-D-glucosamine ubiquitously present
in the ECM of vertebrate tissues. HA participates in the
regulation of cellular responses elicited by the microenvi-
ronment (74,75). Occurrence of HA in variable molecular
sizes and configurations leads to a diversity of interac-
tions of HA with various ECM molecules. These modify
the structure and the properties of HA and promote the
formation of multimolecular assemblies with distinct
structural organization endowed with different physiolog-
ical and biological functions (76).

HA synthesis, sizing, and removal are highly regulated
to maintain its physiological concentration in tissues,
which is essential to ECM stability and tissue homeostasis
(74). Importantly, HA has been increasingly implicated in
the regulation of immune responses (26,74,77,78). Intact
HA in its high–molecular-weight form (HMW-HA) is in-
trinsically anti-inflammatory (26,79). The large HA poly-
mers function as tissue integrity signals and serve to
suppress the inflammatory response. HMW-HA present
in the pericellular matrix protects tissue-resident cells
from lymphocyte-mediated cell killing, prevents immune
cell recognition, promotes the maintenance and enhances
the activity of regulatory T cells, and inhibits angiogenesis
(31,79). In contrast, altered HA generated during in-
flammation is proinflammatory. HA-rich ECM formed
in response to inflammatory stimuli controls vascular
permeability, edema, angiogenesis, leukocyte extravasa-
tion, and leukocyte phenotype (26,78,80,81).

Increased accumulation of HA in tissues occurs during
cellular stress responses or viral infection and in a variety
of inflammatory diseases (23,82,83). Following tissue
injury, intact HMW-HA (.1,000 kDa) breaks down into
fragments of low–molecular-weight HA (LMW-HA) through
enzymatic degradation by endogenous or microbial hyal-
uronidases and nonenzymatic processes such as mechanical
forces and oxidative stress (26,77,84). The LMW-HA frag-
ments have proinflammatory effects, and their persistence
leads to unremitting inflammation. Exogenously added
LMW-HA and HA oligomers (,30 kDa) have been shown
to activate macrophages and to increase chemokines, cyto-
kines, growth factors, proteases, and nitric oxide (85–88).
HA oligomers induced the phenotypic maturation of hu-
man monocyte-derived dendritic cells and promoted endo-
thelial cell proliferation (89). LMW-HA facilitates the
differentiation of several types of mesenchymal cells that
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are activated following injury and influence macrophage
polarity toward an M1 proinflammatory phenotype.

An active role of HA in inflammation can be demon-
strated by studies in animal models of inflammatory
diseases such as chemically induced colitis, experimental
autoimmune encephalomyelitis, and type 1 diabetes, in
which large HA deposits are present in the intestine, brain,
or pancreatic islets, respectively. Reducing HA accumu-
lation attenuated the inflammatory infiltrates in these
tissues and delayed the development or the onset of the
disease. Disruption of the HA synthase 3 gene led to minor
leukocyte infiltrate in the dextran sulfate sodium–induced
experimental colitis model (90). Injection of hyaluronidase
transiently ameliorated the symptoms and delayed the onset
of experimental autoimmune encephalomyelitis due to deg-
radation of HA and impaired CD4+ T-cell extravasation,
while administration of an inhibitor of HA synthesis to
DORmO mice prevented development of invasive insulitis
and hyperglycemia (21,24).

In inflamed tissues, HA interactions with leukocytes
are governed by a diverse group of HA-binding proteins
called hyaladherins, such as IaI, versican, and TSG-6 (76).
TSG-6 is a secreted glycoprotein that is expressed at sites
of inflammation and injury (91). IaI is a component of
the pericellular HA matrix of different cells that accumu-
lates in inflamed tissues along with HA (16,92). During
the inflammatory process, TSG-6 catalyzes the covalent
transfers of heavy chains (HCs) from IaI to HA leading
to the formation of a specific HC–HA complex that is
highly adhesive for leukocytes (80,93). Versican, another
proteoglycan that binds HA with high affinity, also con-
tributes to the formation of a cross-linked HA/versican-
rich complex with proinflammatory properties (94,95).
Thus, the hyaladherins cross-link HA into complexes
that interact with a variety of cell surface and secreted
proteins to regulate leukocyte recruitment into the site of
injury and inflammatory gene expression (23,80,93). HA
macromolecules on the cell surface can ligate tissue- or
cell-specific HA protein receptors such as CD44, RHAMM,
HARE, LYVE-1, laylin, and different members of the toll-
like receptor family. Through these interactions, HA can
trigger a network of signal transduction from the ECM to
the nucleus that affects the transcriptional activation of
genes involved in a variety of cellular processes during
inflammation including cell activation, proliferation, dif-
ferentiation, migration, and extravasation (77).

Briefly, the ability of HA to exert proinflammatory
properties is dependent upon its molecular size, availabil-
ity of specific HA-binding molecules and the structure of
the complexes they form with HA, and the organization
and composition of tissue-specific microenvironment.

HA and Hyaladherins in Human Islets and Lymphoid
Tissue in Type 1 Diabetes
We recently demonstrated that HA and hyaladherins
accumulated in areas of insulitis in human type 1 diabetes
pancreatic tissue (20) (Fig. 1A–G). HA deposits occurred

along the edge capillaries of diabetic islets, where leuko-
cytic infiltrates in insulitis are frequently observed, and
along the intraislet microvessels. The increase in islet HA
mass was more pronounced in tissues of younger donors
with type 1 diabetes and those collected within the first
year from diagnosis. HA morphological patterns in insu-
litis-free tissues from donors with long-standing diabetes
were comparable to those observed in normal islets. HA
also amassed within the clusters of leukocytes situated at
the islet periphery, adjacent to the endocrine cells. The
leukocytes were surrounded by HA, seemingly entrap-
ped in the HA-rich meshwork. The proportion of islets
with leukocytic infiltrates correlated with the islet HA
mass. Tissues were characterized by changes in the distri-
bution and quantity of hyaladherins, IaI, and versican,
which amassed in HA-rich regions in diabetic islets, while
TSG-6 was decreased. These observations strongly indicate
an association between HA deposits, pancreatic b-cell loss,
and insulitis. Concomitant occurrence of HA, versican, and
IaI with insulitic leukocytes suggests that HA and proteins
that associate with HA form a matrix that interacts with
myeloid and lymphoid cells.

We also observed HA changes in human secondary
lymphoid organs (20) (Fig. 1H–N) where substantial ac-
cumulations of HA and IaI were found within the follic-
ular germinal centers and T-cell areas, suggesting that HA
accumulation in these specific immune cell regions in-
duces T-cell phenotype changes by altering immune cell
interactions or their migratory and adhesive properties.
In addition, HA accumulation was not evident in other
regions of the pancreatic lymph nodes (PLN) and spleen,
such as PLN medulla or splenic red pulp, or in thymus.
Also, HA did not appear to accumulate in intestine tissue
or in the exocrine pancreas surrounding the islets in hu-
man type 1 diabetes. Further, circulating HA levels did
not increase in patients with type 1 diabetes with recent
disease onset. Altogether, these observations point to HA
accumulation specifically in the tissues directly involved in
type 1 diabetes pathogenesis. Such observations raise impor-
tant new questions regarding the functional significance of
these specific ECM components in the pathogenesis of hu-
man type 1 diabetes.

HA also impacts different events associated with im-
mune regulation in type 1 diabetes. In vitro studies showed
that a HA-rich matrix controls human T-cell motility (81).
Further, intact HMW-HA enhances the suppressor activity
and viability of human regulatory T cells and induces phe-
notypic maturation of the dendritic cells and their cytokine
production. The occurrence of HA in the immune synapse
suggests a crucial role for the molecule in antigen presenta-
tion (31,32). We found increased islet HA and HA deposi-
tion in insulitis areas in different autoimmune models of
type 1 diabetes, the NOD mouse (31), the BB rat (M.B.,
unpublished data), and the DORmO mouse (24). We have
also found that inhibiting the synthesis of HA using a chem-
ical inhibitor blocks the development of type 1 diabetes in
DORmO mice (24). Antibody blocking of the HA receptor
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CD44 conferred resistance to diabetes development, and
administration of hyaluronidase partially prevented adop-
tive transfer of diabetes (96). Human mesenchymal stem
cells secreting the HA-binding molecule TSG-6 delayed
onset of type 1 diabetes in NOD mice, in part by the
suppressive effects of TSG-6 on antigen presentation and
cytotoxic T-cell activation (97). Altogether, these studies in-
dicate multiple mechanisms by which HA and associated
proteins can regulate events associated with development
of type 1 diabetes.

HA can generate a number of HA complexes that interact
with cells through specific HA receptors. We showed that
both IaI and versican closely associate with HA in normal

human islets but only IaI occurs in the HA-rich regions
in normal lymphoid tissue (20). In these tissues, it
is possible that the HA-IaI-versican–rich and the
HA-IaI–rich complexes may constitute ECM substrates
with distinct properties, with the former repulsing im-
mune cells from the islet endothelium surface and the
latter facilitating homing and migration of immune
cells in lymphoid tissue. By using a limited number
of HA-binding molecules and HA receptors, HA may
thus generate assemblies with tissue-specific structural
and functional properties. In this way, although ubiqui-
tously found in all tissues, HA may behave as a tissue-
specific molecule.

Figure 1—HA accumulates in human pancreatic islets and insulitis areas and in PLN in type 1 diabetes. A–G: Pancreas tissue. Staining
for HA (green) and synaptophysin (SYN, red) of normal (A and D) and diabetic (B and E ) islets shows accumulation of HA around and
within the diabetic islet. Colabeling of HA (green) with the leukocyte common antigen CD45 (red) confirms the presence of HA in the site
of inflammatory infiltrate (C and F ). The islet is delineated with a white dashed line. Morphometric quantification of HA in pancreatic
islets is shown in G. Panels D, E, and F show higher magnification of the boxed areas in A, B, and C, respectively. H–N: PLN tissue.
Histochemistry for HA (brown) in normal (H–J ) and diabetic (K–M ) islets is shown. Higher magnification of B-cell–rich germinal centers
(GC) and T cell–rich interfollicular regions (IFR) present in H and K are shown in I and J and in L and M, respectively. Morphometric
quantification of HA in PLN is shown in N. Scale bars: 100 mm (H, I, K, and L), 50 mm (A–C, J, and M ), 25 mm (E and F ), and 10 mm (D).
Blue bars, normal tissues; red bars, diabetic tissues. T1D, type 1 diabetes. Panels A, C, D, F, G, K, L, and N are reproduced from
Bogdani et al. (20). *P < 0.001 vs. normal tissues.

2110 Hyaluronan in Human Type 1 Diabetes Diabetes Volume 65, August 2016



HYPOTHESIS: REGULATION OF INSULITIS
BY HA-RICH MATRIX

On the basis of our studies in human diabetes and in vitro
and in vivo studies by other investigators, we propose a
model for the role of HA in the regulation of insulitis (Fig. 2).
Our model implies that enhanced production of islet HA
and unceasing generation of bioactive HA fragments create
a constantly HA-rich islet microenvironment that contrib-
utes to islet inflammation and continuous injury to b-cells.

The model, shown schematically in Fig. 2, represents
the vicious cycle of HA changes contributing to initiation,
promotion, and maintenance of islet inflammation. In-
flammatory stimuli, such as inflammatory cytokines, viral
infections, or ER stress, enhance HA synthesis by islet en-
dothelial cells, leading to accumulation of HA in islet micro-
vessels. Available plasma-derived or islet cell–synthesized
hyaladherins cross-link HA to form an HA-hyaladherin–
rich matrix around islet endothelium that is adhesive for
leukocytes. Leukocytes arrested at the islet border release
hyaluronidase and a variety of degrading and proteolytic

enzymes that break down HA and other islet ECM constit-
uents and finally destroy the islet vascular barrier, enabling
leukocyte entry into the islet. The breakdown of HA results
in formation of bioactive HA fragments that convey pro-
migratory signals to leukocytes and enhance leukocyte activa-
tion and gene expression. Inflammatory stimuli generated
inside the islets further induce synthesis of HA by endothe-
lial cells and also by the recruited leukocytes themselves. The
newly formed HA will enter the cycle of degradation and
generation of new HA breakdown products, the persistence
of which leads to continual leukocyte recruitment into the
islet and their activation of gene expression, which contrib-
ute to ongoing islet inflammation. In addition, the HA-rich
matrix deposited between the endocrine cells and islet
capillaries constitutes a quantitatively and qualitatively al-
tered islet ECM that in itself may impact islet endocrine
cell function and viability possibly via altering biomechan-
ical properties of the islet microenvironment and/or intra-
cellular signaling pathways regulating b-cell function and
survival.

Figure 2—Proposed model for the role of islet HA in the regulation of insulitis and b-cell damage in type 1 diabetes. The model represents
the vicious cycle of HA changes contributing to initiation, promotion, and maintenance of islet inflammation. Initiation (blue and red boxes
and arrows): Inflammatory stimuli enhance HA synthesis by islet endothelial cells and generation of an HA-rich ECM that is adhesive for
leukocytes, causing the leukocyte arrest at the islet border. Promotion (green boxes and arrows): HA-degrading enzymes released by the
arrested leukocytes break down HA into bioactive HA fragments, which, by themselves and as structural components of islet HA com-
plexes, conduct leukocyte migration into the islets and enhance leukocyte activation and gene expression. Maintenance (purple arrows):
Leukocyte cell surface–associated or vicinal HA and fragmented HA provide structural and cell-signaling cues that maintain a vicious circle
of islet inflammation. In addition, alterations in structural complexes of HA and other islet ECM components lead to altered islet integrity
and impairment of b-cell function and viability.
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CONCLUSIONS

Our observations and those of others highlight novel
potential roles for different components of the ECM in the
regulation of insulitis in human type 1 diabetes. Collective
changes in the structural complexes of ECM components
are proposed to create a proinflammatory microenviron-
ment that regulates crucial steps in the pathogenic process
of type 1 diabetes such as immune cell adhesion and
migration, immune cell activation, and b-cell death. The
JDRF Network for Pancreatic Organ Donors with Diabe-
tes (nPOD) ECM working group composed of three re-
search teams (72) has initiated studies that will lead to
our better understanding of the collective changes in the
ECM that take place in human islets and lymphoid tissues
during development of type 1 diabetes. Understanding the
contribution of the ECM in type 1 diabetes could complete
the “unfinished harmony” of the pathogenic process of the
disease.

If you have built castles in the air, your work need not
be lost, that is where they should be. Now put the
foundations under them.

—Henry David Thoreau
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