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ASSESSING INDIVIDUAL RISK ATTITUDES USING FIELD DATA FROM LOTTERY GAMES

Connel Fullenkamp, Rafael Tenorio, and Robert Battalio*

Abstract—We use information from the television game show with the
highest guaranteed average payoff in the United States, Hoosier Million-
aire, to analyze risktaking in a high-stakes experiment. We characterize
gambling decisions under alternative assumptions about contestant behav-
ior and preferences, and derive testable restrictions on individual risk
attitudes based on this characterization. We then use an extensive sample
of gambling decisions to estimate distributions of risk-aversion parameters
consistent with the theoretical restrictions and revealed preferences. We
find that although most contestants display risk-averse preferences, the
extent of the risk aversion implied by our estimates varies substantially
with the stakes involved in the different decisions.

I. Introduction

A series of recent studies (Rabin, 2000a, 2000b; Rabin
and Thaler, 2001) have pointed out the inadequacy of

expected-utility theory to provide proper characterization of
risk aversion when monetary stakes are small. The basic

contention of this criticism is that the concavity of the utility
function would have to be so pronounced to explain small-
stake risk aversion that this same utility function would
imply absurd levels of risk aversion for large stakes. Rabin
(2000b) concludes that “Expected-utility theory seems to be
a useful and adequate model of risk aversion for many
purposes, such as understanding large-stakes insur-
ance . . . ,” but “ is manifestly not close to the right expla-
nation of risk attitudes over modest stakes . . . .”

A number of studies have attempted to characterize indi-
vidual risk aversion under large stakes using expected-
utility theory. Experiments by Binswanger (1981) and
Kachelmeier and Shehata (1992) face subjects with deci-
sions involving small nominal stakes that are large relative
to the subjects’ wealth. Their findings are mixed: whereas
Binswanger’s subjects exhibit more risk-averse behavior as
stakes are increased, Kachelmeier and Shehata conclude
that “ the effects of monetary payoffs are real, albeit subtle,
and are in need of further study.” Unfortunately, the inherent
limitations of rewards in experimental studies make it dif-
ficult to get more robust conclusions about risktaking in
large-stakes settings.

A second group of papers analyzes risktaking behavior
using information from natural experiments involving large
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stakes. Gertner (1993) uses betting decisions from the bonus
round of the television game show Card Sharks, and con-
cludes that individuals exhibit a small degree of risk aver-
sion. Metrick (1995) and Hersch and McDougall (1997)
analyze field data from wagering decisions on the television
game shows Final Jeopardy! and Illinois Instant Riches,
respectively, and find that contestants display behavior that
is statistically indistinguishable from risk neutrality. In con-
trast, Beetsma and Schotman (2001) conclude that contes-
tants in the Dutch television show LINGO exhibit substan-
tial risk aversion.

In this paper we use information from the television show
Hoosier Millionaire to gain additional insight into the be-
havior of individuals in high-stakes situations. Although this
show has undergone a number of regime changes, the
current regime is representative of the typical decision a
contestant faces: she may either (a) take a sure $100,000, or
(b) play a game in which she gets $150,000, $200,000,
1,000,000, or $0, each with equal probability. If she draws
$150,000 or $200,000, she may stop playing and keep the
prize, or continue drawing from the remaining alternatives
until she either decides to stop, or draws $0 or $1,000,000.
Prizes are not cumulative.

We believe, for various reasons, that the structure of the
decision problems in Hoosier Millionaire provides us with
a very appealing natural experiment to study individual
decisions under risk. First, unlike previous game studies, the
realization of the risky prospect is the outcome of a very
simple probability process, where no subjectivity or skills
are involved.1 Second, the stakes are larger than those in
previous studies, thus allowing a more proper characteriza-
tion of risk aversion using expected-utility theory. Finally,
our data comprise a time series of games involving several
regime changes, which allows us to study the sensitivity of
individual behavior across various gambles.

Our approach to analyzing risk aversion differs signifi-
cantly from previous game-based studies. Exogenous wa-
gers and lack of variation in the gambles prevent us from
estimating risk-aversion parameters using regression tech-
niques. Instead, we use the sample properties of the deci-
sions in the different regimes of Hoosier Millionaire to
estimate the parameters of the distribution of risk-aversion
coefficients in the contestant population. In addition, unlike
previous studies, we explicitly allow for various degrees of
contestant rationality in our estimation.

Our results show that most individuals behave in a way
consistent with risk aversion, and as noted in recent studies,
the implied degree of risk aversion varies largely with the
stakes of the decision. In fact, our estimates imply substan-
tial risk aversion for gambles comparable to those in Hoo-
sier Millionaire, while also implying near-risk-neutrality for

smaller gambles of similar structure. We also show that the
effect of different behavioral traits on decisions and risk
aversion is only evident under large stakes.

II. A Brief History of Hoosier Millionaire

The Hoosier Lottery’s weekly television show, Hoosier
Millionaire, first aired on October 28, 1989. Since its inception,
each show has involved six contestants chosen randomly from
a pool of entries submitted by people playing a scratch-off
ticket game. All contestants participate in the first of two
phases played on each show. In phase I, all six contestants play
a series of purely random draw games. The contestant who
amasses the most cash wins and proceeds to phase II; the
remaining five contestants leave the show. All six contestants
keep the cash and prizes accumulated in phase I.

Four regimes have governed phase II of Hoosier Million-
aire. In regime 1, the phase I winner has the option of
choosing one of four numbers randomly associated with the
dollar amounts $50,000, $100,000, and $1,000,000, and a
consolation prize of $25,000. If the contestant draws $1
million, she wins that amount, paid out in 10 equal annual
payments, and the game is over. If the contestant draws
$50,000 or $100,000, she can keep that amount or give it up
and make another choice among the remaining alternatives.
She continues until she chooses to stop, wins the $1 million,
or draws the consolation prize.

In October of 1990, the two intermediate amounts offered
in the gamble changed from $50,000 and $100,000 to
$100,000 and $200,000. All other features remained the
same. We call this regime 2.

In February of 1992, more changes were made to phase II.
First, the lowest amount attainable in the initial drawing
changed from $100,000 to $150,000. Second, the consolation
prize went down from $25,000 to 1,000 scratch-off lottery
tickets with a purchase price of $1 each. Finally, lottery
officials changed the payment of the $1 million prize to twenty
annual payments of $50,000. We call this regime 3.

Rules currently governing phase II of Hoosier Millionaire
were instituted in February of 1994. According to Pat Traub,
the lottery’s acting deputy director, these changes offer
“ . . . the highest guaranteed prize of any game show in the
nation . . .” and were made to “ . . . enhance the show’s
entertainment value.” Two revisions were made. First, a
contestant is now automatically endowed with a guaranteed
$100,000 prize. She may then decide to keep that amount
and walk away from the show, or give it up and choose one
of the four numbers just as in regime 3. The other change
involved extending the period of time over which the
$1,000,000 prize is paid out from twenty to twenty-five
years.2 We call this regime 4.

1 Both Card Sharks and Illinois Instant Riches involve nontrivial prob-
ability calculations, and Final Jeopardy and LINGO involve subjective
assessments of one’s (or other players’ ) ability to solve a puzzle or answer
a question.

2 This change, not widely publicized by the Lottery Commission, be-
came a heated point of contention in the 1994 Indiana state elections.
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III. Analytical Issues

In analytical terms, the problem a Hoosier Millionaire
contestant faces is one of sequential decisions with no
recall. This means that the outcome of the first decision may
give the contestant the option to continue playing, but once
a continuation decision is made at any stage, the status quo
is no longer available. In a problem like this, the optimal
decisions follow from using a dynamic programming (or
backward induction) technique. This means starting at the
final decision node, assessing the values of continuing and
stopping at that stage, and then factoring in these values
when making decisions at the previous stage(s). This pro-
cedure is equivalent to finding the subgame-perfect equilib-
rium in a game against nature.

In analyzing the optimal strategy for each regime, we
consider the following behavioral hypotheses:

Full Rationality (FR). A contestant performs backward
induction at each decision node, and discounts the
$1,000,000 prize according to the annuity system.3

Bounded Rationality 1 (BR1). Same as FR, but no dis-
counting is applied to the $1,000,000 prize.

Bounded Rationality 2 (BR2). Contestants do not per-
form backward induction at every decision node, that is,
they do not take into account the value of the option to
continue playing the game, and evaluate each lottery as a
simple rather than a sequentially compounded lottery. An-
nuities are discounted.

Bounded Rationality 3 (BR3). Same as BR2, but annu-
ities are not discounted.

Our bounded-rationality scenarios are motivated by bi-
ases observed in decision settings comparable to our prob-
lem. Empirical and experimental evidence suggests that low
or even negative discounting is common in decisions in-
volving evaluation of income streams over time (BR1,
BR3). Loewenstein and Prelec (1991), Loewenstein and
Thaler (1989), and Gigliotti and Sopher (1997) note that
most subjects prefer a more constant and spread-out stream
of income over a strictly decreasing pattern of payments.4,5

There is also extensive evidence that individuals fail to
perform backward induction in sequential decision envi-
ronments (BR2, BR3). Carbone and Hey (1998) report a
series of decision-making experiments where individuals
do not apply Bellman’s principle of optimality. Similarly,
Camerer et al. (1993) show that subjects do not reason
backward in simple alternating-offers bargaining experi-
ments. Instead, most subjects base their decision on
current-round payoffs.6

Figures 1 and 2 show the game trees associated with
regimes 3 and 4 of Hoosier Millionaire. We subsequently
analyze optimal decisions under each of the behavioral
hypotheses outlined above.

A. Risk Neutrality

If decisions depend solely on expected values at each
decision node, simple calculations show that:

1. Boundedly rational contestants who do not discount
annuities (BR1 and BR3) always choose the gamble
over the sure prospect. Here, the $1,000,000 prize
makes the gambles’ expected values very large across
the board, even when contestants do not backward-
induct.

2. If contestants discount annuities (FR and BR2),
gambling may become unattractive as discounting
increases. Table 1 shows the discount rates that
make a contestant indifferent between gambling
and keeping the sure prospect at the various deci-
sion nodes. As shown, for sufficiently low discount
rates (r � 10.014%), it is optimal to gamble in any
regime at any decision node for both the FR and
BR2 contestant types. As discounting increases,
some of the gambles’ expected values fall below the
sure prospects. In regimes 1 and 2, discount rates
must be very high (above 22%) to discourage indi-
viduals from gambling. This is because the $1
million annuity payments are only spread across 10
years and the consolation prize is substantial
($25,000). In regimes 3 and 4, where annuities are
paid over 20–25 years and the consolation prize is
only $1,000, lower discount rates may induce indi-
viduals to take on various gambles.3 All earnings are taxable. Given the amounts at stake, as long as

marginal tax rates are constant over the annuity payments’ horizon,
decisions should be tax-neutral. We also assume a constant inflation rate
over the annuity horizon. Thus our discount rates may be interpreted as
real discount rates.

4 A further possibility is that contestants are unaware of the annuity
system, or that their decision frames are affected by the fact that $1 million
winners are presented with a large symbolic check for that amount.

5 A variety of other decision problems involving time-delayed payoffs,
but not streams of payoffs, actually show that individuals may overdis-
count future payoffs. However, financial companies openly advertise their
readiness to convert lottery annuity payments into lump-sum payoffs at
discount rates in the 8%–10% range. Thus, overdiscounting appears
unlikely in our problem.

6 The authors conducted an experiment to gain insight into this issue.
The Hoosier Millionaire regime 4 decision problem was given as a final
exam question in two different courses: first-year MBA Microeconomics
and senior-level Risk Management and Insurance. Whereas the MBA
students had been exposed to the concept of backward induction, seniors
were mostly unfamiliar with it. Our results show that 8 (8.9%) of 90 MBA
students and 7 (11.7%) of 60 seniors used backward induction to solve this
problem.
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B. Risk Aversion7

To make our results comparable with those of previous
studies, we assume that Hoosier Millionaire contestants
display one of the following two types of preferences:

Constant Absolute Risk Aversion (CARA). These prefer-
ences, which imply increasing relative risk aversion, are
often assumed in studies of individual decision-making.
Their generic utility representation is

U�W� � �e�aW, (1)

where W is the individual’s wealth, a is the coefficient of
absolute risk aversion, and aW is the coefficient of relative
risk aversion. This formulation is convenient because it
allows one to calculate absolute risk-aversion coefficients
without any wealth information.

Constant Relative Risk Aversion (CRRA). These prefer-
ences, which imply decreasing absolute risk aversion, are

commonly used in macro and asset-pricing studies. Their
generic utility representation is

U�W� �
W1�b

1 � b
, (2)

where W is the individual’s wealth, b is the coefficient of
relative risk aversion, and b/W is the coefficient of absolute
risk aversion. Since this formulation implies that risk aver-
sion depends on wealth, we must know something about
that variable to make meaningful inferences. Given lack of
comprehensive wealth information, we make alternative

7 It is well known that expected-utility theory fails to account for some
empirical regularities in decision-making under uncertainty. The most impor-
tant two violations relate to the decision-makers’ (a) asymmetric evaluations
of gains and losses, and (b) use of decision weights instead of probabilities.
The decisions we analyze are such that (a) is absent because there are no
losses, and the influence of (b) should be minimal due to the simple
probability structure of the gambles. In addition, the recent papers by Rabin
(2000a, 2000b), and Rabin and Thaler (2001) conclude that risk-aversion
results based on expected-utility theory are most accurate when they pertain
to decisions involving large stakes, such as those in our games. Thus, we feel
comfortable staying within the expected-utility framework.

FIGURE 1.—REGIME 3

(1) N stands for nature; ① and ② represent relevant subgames.
(2) All payments are lump sum except for $1,000,000, which is paid as a 20-year annuity due.

FIGURE 2.—REGIME 4

(1) N stands for nature; ① , ② , and ③ represent relevant subgames.
(2) All payments are lump sum except for $1,000,000, which is paid as a 25-year annuity.

TABLE 1.—DISCOUNT RATES THAT MAKE A RISK-NEUTRAL CONTESTANT

INDIFFERENT BETWEEN TAKING AND NOT TAKING THE GAMBLE

Regime

Rate (%)

Fully Rational
Contestants in

Subgame 1

Boundedly
Rational-2

Contestants in
Subgame 1

Fully Rational
Contestants in

Subgame 2

Fully Rational
Contestants in

Subgame 3

1.1 	10.0 	10.0 1.33268 N.a.
1.2 1.33268 0.79588 	10.0 N.a.

2.1 1.33268 	10.00 0.33699 N.a.
2.2 0.33699 0.22315 1.33268 N.a.

3.1 0.19388 0.24749 0.12897 N.a.
3.2 0.12897 0.10722 0.19388 N.a.

4.0 0.25039 4.44444 N.a. N.a.
4.1 N.a. N.a. 0.14892 0.10014
4.2 N.a. N.a. 0.10014 0.14892

Each regime is indexed by the value of the contestant’s first draw. A .1 (.2) extension denotes an initial
draw equal to the higher (lower) of the two intermediate dollar prizes. Fully rational contestants perform
backward induction at each decision node of the tree, whereas boundedly-rational-2 contestants do not
perform backward induction (that is, they ignore the option value of continuing to play the game). Both
fully rational and boundedly-rational-2 contestants fully discount annuity payments. N.a. � nonappli-
cable.
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assumptions about the reference wealth level that individu-
als use to make decisions. We first use a restrictive defini-
tion of wealth, W0, encompassing only the winnings accu-
mulated in Hoosier Millionaire. This partial asset
integration in decision-making is to some extent consistent
with Kahneman and Tversky’s (1979) prospect theory. As a
test of robustness we will also use a broader wealth defini-
tion (W1), which includes the median household income of
the individual’s census tract in 1990.

Table 2 shows the values for the CARA and CRRA (W0)
parameters that make contestants indifferent between gam-
bling and keeping the sure prospect on every initial sub-
game in every regime of Hoosier Millionaire. That is, for
any risk-aversion parameter larger than a given entry in this
table, the contestant will prefer the sure prospect to the
gamble.

As expected, as discounting increases, the value of the
$1,000,000 annuity payments becomes small relative to that
of the lump-sum payoffs. Thus, at some discount rate the
expected value of a gamble becomes smaller than the sure
prospect, and the contestant would have to be a risk lover to
gamble (see the appropriate entries in table 2 when r �
20% and r � 30%). Also, for a given discount rate, the
risk-aversion coefficient that dissuades a contestant from
gambling decreases with the amount of the sure prospect,
regardless of the degree of contestant rationality. This fol-
lows from certainty equivalence.

IV. Data

We obtained the Hoosier Millionaire data from the Hoo-
sier Lottery office in Indianapolis, and from press releases in
the South Bend Tribune. With a few exceptions, our data set
contains the winnings and census tract characteristics of all
the participants in both phases of Hoosier Millionaire since
its inception.

Table 3 presents a summary of the contestants’ endoge-
nous initial gambling decisions.8 We also report mean phase
I winnings and 1990 census tract median income figures for
our sample. As seen in table 3, although 58% of the
individuals in our sample take the initial gamble, this
fraction varies across regimes. In fact, the rough compara-
tive statics of decisions across regimes indicate that contes-
tants respond correctly to changes in the award structure.
For instance, in regime 1 the sizable consolation prize
($25,000) substantially reduces the downside of gambling.
As a result, all of the contestants in this regime choose to
gamble. This contrasts with regime 3, where the small
consolation prize ($1,000) makes the downside of gambling

8 We concentrate on the initial gambling decisions in view of the very
limited number of individuals choosing to gamble more than once. In
regimes 1–3 contestants face a compulsory (exogenous) initial gambling
decision. Thus we consider only on the (endogenous) decisions after that
compulsory stage. In contrast, all initial gambling decisions in regime 4
are endogenous.

TABLE 2.—RISK-AVERSION PARAMETERS THAT YIELD EQUAL EXPECTED UTILITIES FROM TAKING AND NOT TAKING THE GAMBLE

Panel A: Constant Absolute Risk Aversion (CARA) Utility Function

Regime

FR BR1 BR2 BR3

r � 10% r � 20% r � 30% r � 0% r � 10% r � 20% r � 30% r � 0%

1.1 2.7726 2.7726 2.7725 2.7726 4.2303 4.2303 4.2303 4.2303
1.2 0.9209 0.9069 0.8760 0.9240 2.7726 2.7726 2.7725 2.7726

2.1 0.9209 0.9069 0.8760 0.9240 1.3432 1.3410 1.3335 1.3435
2.2 0.3349 0.2357 0.0760 0.3825 0.01849 0.0434 �0.1757 0.2606

3.1 0.3410 0.1903 �3.00E�9 0.4583 0.4542 �1.70E�9 �0.2495 0.5367
3.2 0.1288 �0.0559 �4.4638 0.3301 0.0341 �4.80E�9 �7.0109 0.2791

4.0 0.6173 0.2802 �0.3554 0.6992 1.1359 6.00E�12 �9.10E�17 1.1494

Panel B: Constant Relative Risk Aversion (CRRA) Utility Function

Regime Initial Wealth

FR BR1 BR2 BR3

r � 10% r � 20% r � 30% r � 0% r � 10% r � 20% r � 30% r � 0%

1.1 $19,000 2.5061 2.4849 2.4598 2.5221 3.2015 3.1962 3.1891 3.2049
1.2 $19,272 1.4353 1.3327 1.0002 1.5233 1.1114 0.9703 0.8170 1.2345

2.1 $20,200 1.4407 1.3380 1.2251 1.5287 1.7622 1.7050 1.6443 1.8117
2.2 $21,222 0.7693 0.4945 0.1495 0.9849 0.4705 0.1004 �0.3814 0.7534

3.1 $21,139 0.5533 �0.0458 �1.1179 0.9292 0.6872 0.2519 �0.3146 0.9993
3.2 $19,685 0.2399 �0.9646 ��9 0.7752 0.0683 �1.6003 ��15 0.7025

4.0 $20,586 0.7817 0.3042 �0.3584 1.1125 1.1835 0.9957 0.8269 1.3540

Each regime is indexed by the value of the contestant’s first draw. A .1 (.2) extension denotes an initial draw equal to the higher (lower) of the two intermediate dollar prizes. Fully rational (FR) contestants perform
backward induction at each node of the tree, and discount annuity payments. Each contestant may use a different discount rate. We use discount rates of 10%, 20%, and 30%. Thus, FR, r � 10%, refers to a fully
rational contestant who discounts future cash flows using a 10% rate. Boundedly-rational-1 (BR1) contestants are the same as the FR contestants with the exception that they use a discount rate of 0 (i.e., they do
not discount future payments). Though boundedly rational-2 (BR2) contestants discount future cash flows, they act myopically in that they ignore the option value of continuing to play the game. Boundedly-rational-3
(BR3) contestants ignore the option value of continuing to play the game, and they use a discount rate of 0. The CARA utility function is specified as follows: U(W) � �e�aW, where W is the individual’s initial
wealth and a is the risk-aversion parameter. The CRRA utility function is specified as follows: U(W) � W1�b/(1 � b), where W is the individual’s initial wealth and b is the risk-aversion parameter. Initial wealth
refers to the median amount of winnings in phase 1 of the Hoosier Millionaire.
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rather onerous, thus inducing 40 of 45 contestants to keep
the sure prospect.

The fourth column of Table 3 shows phase 1 winnings for
each contestant in our data set. As seen, there is not much
variation in these winnings. We obtained the addresses of all
phase 2 Hoosier Millionaire contestants, and found match-
ing data from their 1990 census tracts. Table 3 also shows
the average median family and per capita income for our
sample. Although both of these income measures are below
state averages, they are not significantly different from
them.9 However, there is no systematic difference between
the incomes of contestants that took the gambles and con-
testants that chose the certain prospects.10

V. Estimation

A. Methodology

Previous studies such as those of Gertner (1993), Metrick
(1995), and Hersch and McDougall (1997) estimated the

coefficient of absolute risk aversion using a nonlinear probit
approach. Unlike those studies, where individuals face gam-
bles involving different stakes, each contestant within a
regime of Hoosier Millionaire faces a gamble with identical
stakes. Thus the probit technique is inappropriate, because a
key source of variation—that between the sizes of the
gambles—is absent.

Instead, we use a probabilistic approach and estimate the
distribution of the risk-aversion parameter. We assume that
contestants are endowed with risk-aversion parameters that
are independent draws from a normal population distribu-
tion.11 If a contestant’s realization of the risk-aversion pa-
rameter is less than the value that yields indifference (equal-
ity of expected utilities from gambling and not gambling),
she chooses the gamble. The probability that the contes-
tant’s risk-aversion parameter lies below the indifference
value is given by the value of the cumulative normal
distribution evaluated at the indifference value.

As we know, the normal distribution is determined by its
mean and standard deviation. To estimate these parameters,
we use the indifference values in table 2 and the binomial
probabilities implied by the empirical frequencies in table 3.
We infer the mean and standard deviation as follows: Each
subgame in the history of Hoosier Millionaire is associated
with a CARA or CRRA indifference parameter, which we
denote 
, and an observed frequency of taking the gamble,
denoted p. We choose pairs of subgames, and solve for the
(unique) values of the mean � and standard deviation � that
satisfy the following system:

�
�



1

�2��2��1/ 2e����x�2/ 2�2
dx � p1, (3a)

�
�



2

�2��2��1/ 2e����x�2/ 2�2
dx � p2. (3b)

We then used Monte Carlo simulations to place confidence
intervals around the estimated mean and standard deviation.
For each Monte Carlo trial, we generated two data sets
consisting of indicator random variables, and used the
implied p’s from these pseudo data to solve for � and �. The
data-generating process for each set of indicator variables
was a binomial distribution with parameter (probability of
success on each binomial trial) equal to the observed p from
the respective subgame. The number of observations in each
set of pseudo data was set equal to the number of actual
observations of the respective subgame. We repeated this
experiment 1,000 times for each regime pair and behavioral

9 Hersch and McDougall (1997) note that the median income of Illinois
lottery players is nearly identical to the statewide figure. Although no
figures are presented to back this claim, its accuracy is subject to the same
problem regarding the coarseness of variables within census tracts.

10 We also collected other census tract data for our contestant sample,
like schooling, household size, and age. We do not show this information,
due to its coarseness and insignificant interregime variation.

11 Although we choose a normal distribution for our analysis, the results
are qualitatively similar if we use a one-parameter symmetric distribution,
such as the logistic distribution. We do not know ex ante if risk-aversion
parameters are symmetrically distributed among individuals, but we are
unaware of hard evidence showing otherwise.

TABLE 3.—DESCRIPTIVE STATISTICS

Regime
Take

Gamble?
Sample

Size
Phase 1

Winnings
Median
Income

Per Capita
Income

1.1 No 0 N.a. N.a. N.a.
Yes 5 $19,000 $26,101 $11,323
Total 5 $19,000 $26,101 $11,323

1.2 No 0 N.a. N.a. N.a.
Yes 11 $19,727 $20,831 $11,149
Total 11 $19,727 $20,831 $11,149

2.1 No 2 $16,500 Missing obs. Missing obs.
Yes 13 $20,769 $27,300 $11,991
Total 15 $20,200 $27,850 $12,374

2.2 No 14 $21,143 $29,702 $13,436
Yes 4 $21,500 $28,500 $12,937
Total 18 $21,222 $29,419 $13,319

3.1 No 16 $21,281 $27,790 $13,087
Yes 2 $20,000 Missing obs. Missing obs.
Total 18 $21,139 $27,647 $12,986

3.2 No 24 $19,688 $27,114 $11,872
Yes 3 $19,667 Missing obs. Missing obs.
Total 27 $19,685 $27,770 $12,032

4.0 No 59 $20,829 $28,063 $12,636
Yes 129 $20,474 $27,448 $12,655
Total 188 $20,586 $27,645 $12,649

Total 282 $20,493 $27,525 $12,563
Indiana $28,797 $13,149

Each regime is indexed by the value of the contestant’s first draw. A .1 (.2) extension denotes an initial
draw equal to the higher (lower) of the two intermediate dollar prizes. Phase 1 refers to the preliminary
phase of Hoosier Millionaire, during which contestants randomly draw cash prizes. The contestant
amassing the most cash in phase 1 moves on to phase 2, where she is confronted with the gambles
analyzed in this paper. Income figures are from the 1990 Census. Median and per capita incomes are not
available for all contestants, due to lack of demographic information. This affects seven contestants in
regime 4, two in regime 2, and two in regime 1. “Missing obs.” denotes a cell in which demographic
information is missing for at least one contestant. N.a. � nonapplicable.
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assumption, ranked the estimated means and standard devi-
ations, and identified 90% confidence intervals.

Although we performed this experiment using several pairs
of subgames, we focus on the pairing of regimes 4 and 3.2.12

Table 4 reports estimated means and variances of the CARA
and CRRA coefficients for each behavioral assumption, along
with the Monte Carlo-generated 90% confidence intervals.

B. Results

A feature of our results is their robustness across utility
specifications. The parameter estimates for the CARA and
CRRA (W0) functions yield similar distributions and exhibit
comparable patterns. The following discussion makes use of
this similarity by grouping the results from both specifica-
tions whenever possible.

First, our results consistently support risk aversion. Esti-
mated mean risk-aversion coefficients are always positive,
and the confidence intervals around these means never
include zero. Mean risk-aversion parameter estimates under
CARA range from 4.8E�6 to 9.7E�6, and those under
CRRA range from 0.64 to 1.43. Moreover, the minimum
means implied by the Monte Carlo simulations are always
positive. This evidence supports the hypothesis that on
average, the individuals on our sample are risk-averse.
However, the estimated standard deviations of the risk-
aversion parameters indicate that some individuals may
display risk-neutral or risk-loving preferences. This is par-
ticularly the case for CRRA utility, where a significant
fraction of estimated risk-aversion parameters are nonposi-
tive. A two-standard-deviation interval around the mean
risk-aversion parameter generally includes only positive
values for the CARA utility function but encompasses zero
and negative values for the CRRA one.

Our second main result is that different behavioral as-
sumptions affect the estimates of mean risk aversion. For

12 Strictly speaking, the distribution parameters are overidentified, as
there are several regime pairs that could be used to estimate them.
However, the choice of regime pairs does not introduce major qualitative
variations in the estimates. The similar results we obtained in the logistic
case, which is not subject to the pairing problem, reinforce this point.

TABLE 4.—ESTIMATES OF RISK-AVERSION COEFFICIENTS

Utility-Function Specification

Coefficient at Rationality Assumption

FR r � 10% BR1 r � 0% BR2 r � 10% BR3 r � 0%

CARA Mean 4.8221 5.9715 8.3127 9.0882
(90% c.i.) (4.2107, 5.3983) (5.5370, 6.4775) (7.0160, 9.6262) (8.2018, 10.3005)
Std. dev. 0.1702 0.1479 0.2556 0.2271
(90% c.i.) (0.1428, 0.2017) (0.1224, 0.1754) (0.2159, 0.3029) (0.2159, 0.3029)

CRRA Mean 0.6319 1.0193 0.8752 1.1738
W0 � $20,000 (90% c.i.) (0.5750, 0.6970) (0.9746, 1.0585) (0.7389, 1.0288) (1.0986, 1.2589)

Std. dev. 0.5667 0.4471 0.8130 0.6214
(90% c.i.) (0.4771, 0.6676) (0.3751, 0.5274) (0.6774, 0.9517) (0.5232, 0.7268)

CRRA Mean 0.8078 1.2430 1.0598 1.3911
W1 � $48,000 Std. dev. 0.6504 0.5061 0.8951 0.6755

Estimates of risk-aversion coefficients are obtained by using maximum likelihood and observations from regimes 4.0 and 3.2 to estimate the system of equations described in equations (3a)–(3b) of the text. Each
regime is indexed by the value of the contestant’s first draw. A .2 extension denotes an initial draw equal to the lower of the two intermediate dollar prizes. Fully rational (FR) contestants perform backward induction
at each node of the tree, and discount annuity payments. Each contestant may use a different discount rate. Thus, FR, r � 10%, refers to a fully rational contestant who discounts future cash flows using a 10%
rate. Boundedly-rational-1 (BR1) contestants are the same as the FR contestants with the exception that they use a discount rate of 0 (that is, they do not discount future payments). Although boundedly-rational-2
(BR2) contestants discount future cash flows, they ignore the option value of continuing to play the game. Boundedly-rational-3 (BR3) contestants ignore the option value of continuing to play the game, and they
use a discount rate of 0. The CARA utility function is U(W) � �e�aW, where W is the individual’s initial wealth and a is the risk-aversion parameter. The CRRA utility function is U(W) � W1�b/(1 � b), where
W is the individual’s initial wealth and b is the risk aversion parameter. Two estimations are done for the CRRA utility function. The first uses an initial wealth (W0) of $20,000, and the second uses an initial wealth
(W1) of $48,000. Standard deviation is abbreviated Std. dev., and confidence interval is abbreviated c.i.

TABLE 5.—CERTAINTY EQUIVALENTS FOR VARIOUS GAMBLES IMPLIED BY MEAN ESTIMATES OF RISK-AVERSION COEFFICIENTS

Utility-Function
Specification

Rationality
Assumption

Certainty Equivalents for a 50-50 Gamble with Payoffs of 0 and X

X � $1,000 X � $10,000 X � $100,000 X � $1,000,000

CARA FR (r � 10%) $499.19 $4,918.72 $42,009.92 $106,349.69
BR1 (r � 0%) $499.12 $4,911.67 $41,343.34 $97,951.80
BR2 (r � 10%) $498.84 $4,883.98 $38,788.49 $74,644.68
BR3 (r � 0%) $498.79 $4,879.16 $38,355.07 $71,667.27

CRRA FR (r � 10%) $493.74 $4,481.46 $28,467.81 $115,650.35
W0 � $20,000 BR1 (r � 0%) $492.38 $4,369.92 $24,366.97 $69,882.17

BR2 (r � 10%) $492.31 $4,364.10 $24,165.69 $68,108.35
BR3 (r � 0%) $491.26 $4,278.34 $21,353.71 $47,382.34

Estimates of risk-aversion coefficients are obtained by using maximum likelihood and observations from regimes 4.0 and 3.2 to estimate the system of equations described in equations (3a)–(3b) of the text. Each
regime is indexed by the value of the contestant’s first draw. A .2 extension denotes an initial draw equal to the lower of the two intermediate dollar prizes. Fully rational (FR) contestants perform backward induction
at each node of the tree and discount annuity payments. Each contestant may use a different discount rate. FR (r � 10%) refers to a fully rational contestant who discounts future cash flows using a 10% rate.
Boundedly-rational-1 (BR1) contestants are the same as the FR contestants with the exception that they use a discount rate of 0 (that is, they do not discount future payments). Although boundedly-rational-2 (BR2)
contestants discount future cash flows, they ignore the option value of continuing to play the game. Boundedly-rational-3 (BR3) contestants ignore the option value of continuing to play the game, and they use a
discount rate of 0. The CARA utility function is U(W) � �e�aW, where W is the individual’s initial wealth and a is the risk-aversion parameter. The CRRA utility function is U(W) � W1�b/(1 � b), where W
is the individual’s initial wealth and b is the risk-aversion parameter.
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fixed discounting, confidence intervals for these means
under full rationality (FR) and lack of backward induction
(BR2 and BR3) are mutually exclusive. In addition, when
comparing no discounting and 10% discounting, holding
behavior fixed, confidence intervals are mutually exclusive
in three of four cases. We discuss the direction and signif-
icance of these differences in the next section.

As a test of robustness of our CRRA results, we estimated
the distribution parameters using a more inclusive definition
of wealth (W1). In this specification, in addition to phase I
winnings, the initial wealth also included the average me-
dian income for the contestant’s census tract in 1990. As we
see in table 4, the higher initial wealth uniformly increases
the means and standard deviations of the CRRA parameter
distributions. However, most of these increases are very
small (between 0.1 and 0.3) and, as we show in the next
section, do not affect the basic interpretation of the results.
The similarity between the two sets of CRRA estimates is
due to the fact that that both wealth definitions are a small
fraction of the stakes of the gambles in Hoosier Millionaire.13

VI. Discussion and Conclusions

The results from the previous section uniformly indicate
that most individuals display some degree of risk aversion.
To gain insight into the economic significance of these
results, we first compare them with those obtained in related
work. Our estimated means of the CARA parameter distri-
butions are lower than the estimated CARA parameters of
other game-show studies. Gertner (1993), using two alter-
native methods, estimates statistically significant lower
bounds on this parameter of 0.000310 or 0.0000711. Met-
rick (1995) and Hersch and McDougall (1997) report esti-
mates ranging from 0.0000265 to 0.000066, but these esti-
mates are not statistically different from zero, leading to the
conclusion of risk neutrality. In contrast, our largest esti-
mated mean CARA parameter is 0.0000097, and the largest
upper bound on a confidence interval is 0.000012, both of
which are nearly an order of magnitude smaller than those
reported elsewhere.

Our CRRA parameter estimates are also generally lower
than those reported elsewhere. Friend and Blume (1975),
using data from individual portfolio holdings, find estimates
of this parameter ranging from 1 to 2, while Chou, Engle,
and Kane (1992), in an asset-pricing context, estimate it to
be around 3. Beetsma and Schotman (2001), using game
data from LINGO, estimate it to be around 7. In our case the
mean CRRA parameters range from 0.64 to 1.76, once again
below most estimates from other studies.

To gain some intuition into the meaning of our results and
how they compare with those of other studies, we calculate
certainty equivalents implied by our mean estimates for a
variety of gambles (see table 5). For instance, for a gamble
offering a 50-50 chance of winning nothing and $1,000, the
certainty equivalent ranges from $461.40 (Gertner, 1993) to
$496.73 (Hersch and McDougall, 1997), with most esti-
mates implying a certainty equivalent above $490. In our
experiments, certainty equivalents implied by point esti-
mates of the mean of the parameter distribution range from
$491.26 to $499.40. Thus for gambles of this magnitude,
not only are our results similar to those in other studies, but
they imply behavior close to risk neutrality. Moreover, the
tightness of the range of these certainty equivalents indi-
cates that the differences among risk aversion parameters
across behavioral assumptions may not have much eco-
nomic significance when stakes like these are involved. In
fact, as seen in table 5, near-risk-neutrality across all be-
haviors obtains even as stakes rise to several thousand
dollars. This point, also emphasized on table 1 of Rabin and
Thaler (2001), suggests that gambles of this size unavoid-
ably lead to parameter estimates that imply near-
risk-neutrality within the expected utility paradigm. Thus,
given that most previous studies based their estimates on
gambles with maximum stakes around $20,000, it is not
surprising at all that the results point towards risk neutrality
or mild risk aversion.14

However, we estimated our risk-aversion parameters from
decisions involving unusually high stakes. In fact, stakes in
Hoosier Millionaire are much higher (20 times or more in most
cases) than those in any of the games analyzed in other studies.
Thus, we must base our inferences on stakes of this magnitude.
For instance, for a 50-50 gamble between winning nothing and
$1 million, the certainty equivalents that our mean estimates
imply range from $57,308 to $255,422, indicating substantial
risk aversion. Moreover, there is wide variation of certainty
equivalents, depending on rationality assumptions. More pre-
cisely, fully rational contestants display uniformly higher cer-
tainty equivalents than all boundedly rational contestants, and
contestants who do not backward-induct and fail to discount
their payoffs display the lowest certainty equivalents. These
facts suggest that the willingness to take on large gambles is
inversely related to the extent of rationality of the contes-
tant. Because boundedly rational contestants fail to take
account of for the option value of continuing to make
decisions, their perceived expected utility of gambling is
below that of a fully rational contestant. Table 5 also reports
the CEs associated with two intermediate gambles, which
show how risk aversion starts to surface more dramatically
as the stakes grow larger.13 The income statistics are from the 1990 census (1989 figures),

whereas the gambling figures are from 1992–1998. Although post-1989
contestant census tract figures are not available, the income variation
within this period is not significant enough to meaningfully affect our
CRRA estimates or its interpretation. For instance, median household
income in Indiana was $31,776 in 1995, indicating only a modest nominal
increase of 10.35% relative to 1989.

14 The high risk-aversion parameters estimated by Beetsma and Schot-
man (2001) are an exception. Given the relatively small average stakes of
their gambles (around $1500), it is possible that the subjective elements
involved in their decisions are influencing their estimates.
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What can we learn from these results? First, one should
be very careful in drawing general conclusions about pref-
erences from context-specific estimates. In our case, when
taken in the context of previous studies, our estimates point
towards very mild risk aversion. However, once we account
for the actual context of our estimation, the results indicate
substantial risk aversion. Thus, the recent claims in Rabin
(2000a, 2000b) and Rabin and Thaler (2001) about the
limited applicability of expected-utility theory when stakes
are small should be taken very seriously. Second, not only
does the size of the stakes affect risk-aversion inferences,
but it is also very important in helping us distinguish across
behaviors in decision-making problems. As we showed,
estimates based on small stakes may yield decision rules
that are economically indistinguishable for fully rational
and boundedly rational decision-makers. Only at high
stakes are these behavioral differences clearly observable.

Finally, a common criticism of field-study data pertains to
the selection of participating subjects. It is possible that indi-
viduals participating in these games are in some sense different
from the rest of the population. The evidence presented here
and also in Hersch and McDougall (1997) suggests that this is
not the case with regard to observable characteristics. How-
ever, our contestant sample is more likely to be selected from
individuals who are heavy lottery ticket buyers. Thus our
results can be interpreted as providing a quasi lower bound on
the mean risk-aversion parameter for the population at large.
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THE SMALL-SAMPLE BIAS OF THE GINI COEFFICIENT: RESULTS AND IMPLICATIONS
FOR EMPIRICAL RESEARCH

George Deltas*

Abstract—The Gini coefficient is a downward-biased measure of inequal-
ity in small populations when income is generated by one of three
common distributions. The paper discusses the sources of bias and argues
that this property is far more general. This has implications for (i) the
comparison of inequality among subsamples, some of which may be
small, and (ii) the use of the Gini in measuring firm size inequality in
markets with a small number of firms. The small-sample bias has often led
to misperceptions about trends in industry concentration. A small-sample

adjustment results in a reduced bias, which can no longer be signed. This
remaining bias rises with the dispersion and falls with increasing skewness
of the distribution. Finally, an empirical example illustrates the importance
of using the adjusted Gini. In this example it is shown that, controlling for
market characteristics, larger shipping cartels include a set of firms that is
stochastically identical (in terms of relative size) to those of smaller
shipping cartels.

I. Introduction

THIS paper shows that the Gini coefficient statistic
exhibits a significant small-sample bias. The Gini co-

efficient of a large population estimated from a small sam-
ple will be substantially smaller than the Gini of the entire
population. Similarly, the Gini of a small population will be
smaller than the Gini of a larger population generated by the
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