
242

MARC PROGRAM RESEARCH AND DEVELOPMENT:
A PROGRESS REPORT

Henriette D. AVRAM, Alan S. CROSBY, Jerry G. PENNINGTON,
John C. RATHER, Lucia J. RATHER, and Arlene WHITMER:
Library of Congress, Washington, D. C.

A description of some of the research and development activities at the
Library of Congress to expand the capabilities of the MARC System.
Gives details of the MARC processing format used by the Library and
then describes programming work in three areas: 1) automatic tagging
of data elements by format recognition programs; 2) file analysis by a
statistical program called GENESIS; and 8) information retrieval using
the MARC Retriever.

The MARC System was designed as a generalized data management sys­
tem that provides flexibility in converting bibliographic descriptions of
all forms of material to machine readable form and ease in processing
them. The foundation of the system is the MARC II format (hereinafter
simply called MARC), which reached its present form after many months
of planning, consultation, and testing. Implementation of the system itself
has required development of a battery of programs to perform the input,
storage, retrieval, and output functions necessary to create the data base ,
for the MARC Distribution Service.

These programs are essentially like those of the MARC interim system
described in the report of the MARC pilot project (1). Briefly, they per­
form the following tasks:

MARC Research and Development/ AVRAM 243

1) A pre-edit program converts records prepared on an MT /ST to a mag­
netic tape file of EBCDIC encoded record segments.

2) A format edit program converts the pre-edited tape file to a modified
form of the MARC processing format.

3) A content edit program generates records in the final processing for­
mat. At this stage, mnemonic tags are converted to numeric form, sub­
field codes may be supplied, implicit fixed fields are set, etc.

4) IBM SORT program arranges validated content-edit output records
by LC card number. This program is also used later in the processing
cycle.

5) A generalized file maintenance program (Update 1) allows addition,
deletion, replacement, or modification of data at the record, field, or
subfield levels before the record is posted to the master file. A slightly
different version (Update 2) is used to update the master file.

6) A print index program generates a list of control numbers for a given
file. The list may also include status, date of entry, or date of last
transaction for each record.

7) A general purpose print program produces a hardcopy to be used to
proofread the machine data against the original input worksheet. Since
the program is table controlled, it can be modified easily to yield a
great variety of other formats and it can be extended routinely to
handle other data bases in the MARC processing format.

8) Two additional programs select new records from the MARC master
file and convert them from the processing format to the communica­
tions format on both seven- and nine-track tapes for general distribu­
tion.

As the basic programs became operational, it was possible to investigate
other aspects of the MARC System that would benefit from elaboration
and refinement. Reports of some of this activity have found their way
into print, notably a description of the MARC Sort Program and prelimi­
nary findings on format recognition (2, 3), but much of the Library·s re­
search and development effort in programming is not well known. The
purpose of this article is to give a progress report on work in three sig­
nificant areas : 1) automatic tagging of data elements by format recogni­
tion programs; 2) file analysis by a statistical program called GENESIS;
and 3) information retrieval using the MARC Retriever.

In the following descriptions, the reader should bear in mind that all
of the programs are written to accommodate records in the MARC proc­
essing format. A full description of the format is given to point up differ­
ences between it and the communications format. All of the programs
are written in assembly language for the IBM S360/ 40 functioning under
the disk operating system (DOS) . The machine file is stored on magnetic
tape and the system is operated in the batch mode.

At present, the programs described here are not available for general
distribution, but it is expected that documentation for some of them may

244 Journal of Library Automation Vol. 2/4 December, 1969

be filed with the IBM Program Information Department in the near fu­
ture. Meanwhile, the Library of Congress regrets that it will be unable
to supply more detailed information. It is hoped that the information in
this article will answer most of the questions that might be asked.

MARC PROCESSING FORMAT
The MARC data base at the Library of Congress is stored on a nine­

channel magnetic tape at a density of 800 bpi. The file contains records
in the undefined format; each record is recorded in the MARC processing
format (sometimes called the internal format). Data in the processing
format are recorded in binary, packed decimal, or EBCDIC notation de­
pending on the characteristics of the data and the processing required.
The maximum length of a MARC processing record is 2,048 bytes. The
magnetic tape labels follow the proposed standard developed by Sub­
committee X3.2 of the United States of America Standards Institute.

A MARC record in the processing format is composed of six parts:
record leader (12 bytes), communications field (12 bytes), record control
field (14 bytes), fixed fields (54 bytes), record directory (variable in
length, with each directory entry containing 12 bytes) and variable data
fields (variable length). All records are terminated by an end-of-record
(EOR) character.

Record Leader

0 1 2 4 5 6 7

Record
l ength

Element
number

1

2

Date

YY : MM :nn Status Not Record
used type

I

Number Character
Name of position

characters in record

Record length 2 0-1

Date 3 2-4

8 9 11

Bibliographic Not
level used

Definition

Total number of bytes in the logi­
cal record including the number
of bytes in the record length
itself. It is given in binary nota­
tion.

Date of last transaction (i.e., the
date the last action was taken
upon the whole record or some
part of the record). The date
is recorded in the form of

MARC Research and Development/ A VRAM 245

3

4

5

6

7

Status 1

Not used 1

Record type 1

Bibliographic 1
levels

Not used 3

Communications Field

12 n 14 15 16

Record Directory Record
directory entry source
location COlUlt

17

YYMMDD, with each digit be­
ing represented by a four-bit
binary-coded decimal digit
packed two to a byte.

5 A code in binary notation to
indicate a new, deleted, changed,
or replaced record.

6 Contains binary zeros.

7 An EBCDIC character to iden­
tify the type of record that fol­
lows (e.g., printed language
material) .

8 An EBCDIC character used in
conjunction with the record type
character to describe the com­
ponents of the · bibliographic
record (e.g., monograph).

9-11 Contains binary zeros.

18 19 20 2~

Record In- In- Not
destination process process u sed

type status

Element
number

Number Character
N arne of position Definition

characters in record

1 Record directory 2
location

2 Directory entry 2
count

3 Record source 1

12-13 The binary address of the record
directory relative to the first byte
in the record (address zero).

14-15 The number of directory entries
in the record, in binary notation.
There is one directory entry for
every variable field in the record.

16 An EBCDIC character to show
the cataloging source of the
record.

246 Journal of Library Automation Vol. 2/4 December, 1969

4 Record 1 17 An EBCDIC character to show
destination the data bank to which the rec-

ord is to be routed.

5 In-process 1 18 A binary code to indicate the
type action to be performed on the

data base. The in-process type
may signify that a new record
is to be merged into the existing
file; a record currently in the file
is to be replaced, deleted, modi-
fied in some form; or that it is
verified as being free of all error.

6 In-process 1 19 A binary code to show whether
status the data content of the record

has been verified.

7 Not used 4 20-23 Contains binary zeros.

Record Control Field

24
I ! I

I

'i 'i

I I
Libr~ry of Con~ess
cata~og card nymber

1
Supplement

1
number

Not
used

Segment
number

Element
number

1

Number Character
Name of position Definition

characters in record

Library of 12
Congress

catalog card
number

24-35 On December 1, 1968, the Li­
brary of Congress initiated a
new card numbering system.
Numbers assigned prior to this
date are in the "old, system;
those assigned after that date are
in the "new, system(4). The Li­
brary of Congress catalog card
number is always represented by
12 bytes in EBCDIC notation
but the data elements depend
upon the system.

MARC Research and Development/ AVRAM 247

Old numbering
system

Prefix 3 24-26 An alphabetic prefix is left justi-
fied with blank fill; if no prefix
is present, the three bytes are
blanks.

Year 2 27-28

Number 6 29-34

Supplement 1 35 A single byte in binary notation
number to identify supplements with the

same LC card number as the
original work.

New numbering
system

Not used 3 24-26 Contains three blanks.

Initial 1 27 Initial digit of the number.
digit

Check digit 1 28 "Modulus 11, check digit.

Number 6 29-34

Supplement 1 35 See above.
number

2 Not used 1 36 Contains binary zeros.

3 Segment 1 37 Used to sequentially number the
number physical records contained in

one logical record. The number
is in binary notation.

Fixed Fields

I
~

J { 911

The fixed field area is always 54 bytes in length. Fixed fields that do
not contain data are set to binary zeros . . Data in the fixed fields may be
recorded in binary or EBCDIC notation, but the notation remains con­
stant for any given field.

248 Journal of Library Automation Vol. 2/4 December, 1969

Record Directory

92 94 95 96 98 99 100 101 102 103

Tag Site Not Action Data Relative
number used code length address

Element Number Character
number Name of position

characters in record
Definition

1 Tag 3 92-94 An EBCDIC number that iden-
tifies a variable field. The tags
in the directory are in ascending
order.

2 Site number 1 95 A binary number used to distin-
guish variable fields that have
identical tags.

3 Not used 3 96-98 Contains binary zeros.

4 Action code 1 99 A binary code used in file main-
tenance to specify the field level
action to be performed on a rec-
ord (i.e., added, deleted, cor-
rected, or modified).

5 Data length 2 100-101 Length (in binary notation) of
the variable data field indicated
by a given entry.

6 Relative 2 102-103 The binary address of the first
address byte of the variable data field

relative to the first byte of the
record (address zero).

7 Directory end 1 n Since the number of entries in
of field the directory varies, the charac-
sentinel ter position of the end-of-field

terminator (EOF) also varies.

MARC Research and Development/ AVRAM 249

Variable Data Fields

Indicator(s) Delimiter Sub field Delimiter Data <
$ Terminator

code code(s)

Element Number Character
number Name of position

1

2

3

4

5

6

characters in record

Indicator Variable

Delimiter 1

Subfield Variable
code

Delimiter 1

Data

Terminator
code

Variable

1

n

n

n

n

n

n

~

Definition

A variable data field may be pre­
ceded by a variable number of
EBCDIC characters which pro­
vide descriptive information
about the associated field.

A one-byte binary code used to
separate the indicator (s) from
the subfield code(s). When
there are no indicators for a var­
iable field, the first character
will be a delimiter.

Variable fields are made up of
one or more data elements (5).
Each data element is preceded
by a delimiter; a lower-case al­
phabetic character is associated
with each delimiter to identify
the data element. These alpha
characters are grouped. All vari­
able fields will have at least one
subfield code.

Each data element in a variable
field is preceded by a delimiter.

All variable fields except the last
in the record end with an end­
of-field te1minator (EOF); the
last variable field ends with an
end-of-record terminator (EOR).

250 Journal of Library Automation Vol. 2/4 December, 1969

FORMAT RECOGNITION
The preparation of bibliographic data in machine readable form involves

the labeling of each data element so that it can be identified by the ma­
chine. The labels (called content designators) used in the MARC format
are tags, indicators, and subfield codes; they are supplied by the MARC
editors before the data are inscribed on a magnetic tape typewriter. In
the current MARC System, this tape is then run through a computer pro­
gram and a proofsheet is printed. In a proofing process, the editor com­
pares the original edited data against the proofsheet, checking for errors
in editing and keyboarding. Errors are marked and corrections are re­
inscribed. A new proofsheet is produced by the computer and again
checked for errors. When a record has been declared error-free by an
editor, it receives a final check by a high-level editor called a verifier.
Verified records are then removed from the work tape and stored on the
master tape.

The editing process in which the tags, indicators, sub:field codes, and
:fixed :field information are assigned is a detailed and somewhat tedious
process. It seems obvious that a method that would shift some of this
editing to the machine would in the long run be of great advantage. This
is especially true in any consideration of retrospective conversion of the
4.1 million Library of Congress catalog records. For this reason, the Li­
brary is now developing a technique called "format recognition." This
technique will allow the computer to process unedited bibliographic data
by examining the data string for certain keywords, significant punctuation,
and other clues to determine the proper tags and other machine labels.
It should be noted that this concept is not unique to the Library of Con­
gress. Somewhat similar techniques are being developed at the Univer­
sity of California Institute of Library Research (6) and by the Bodleian
Library at Oxford. A technique using typographic cues has been de­
scribed by Jolliffe (7) .

The format recognition technique is not entirely new at the Library of
Congress. The need was recognized during the development of the MARC
II format, but pressure to implement the MARC Distribution Service pre­
vented more than minimal development of format recognition procedures.
In the current MARC System a few of the fields are identified by ma­
chine. For example, the machine scans the collation statement for key­
words and sets the appropriate codes in the illustration fixed field. In gen­
eral, however, machine identification has been limited to those places
where the algorithm produces a correct result 100 percent of the time.

The new format recognition concept assumes that, after the unedited
record has been machine processed, a proofsheet will be examined by a
MARC editor for errors in the same way as is done in the current MARC
System. Since each machine processed record will be subject to human
review, it will be possible to include algorithms in the format recognition
program that do not produce correct tagging all of the time.

MARC Research and Development/ AVRAM 251

The format recognition algorithms are exceedingly complex, but a few
examples will be given to indicate the nature of the logic. In all the ex­
amples, it is assumed that the record is typed from an untagged manu­
script card (the work record used as a basis for the Library of Congress
catalog card) on an input device such as a paper tape or a magnetic
tape typewriter. The data will be typed from left to right on the card
and from top to bottom. The data are input as fields, which are detectable
by a program because each field ends with a double carriage return. Each
field comprises a logical portion of a manuscript card; thus the call num­
ber would be input as a single field, as would the main entry, title para­
graph, collation, each note, each added entry, etc. It is important to note
that the title paragraph includes everything through the imprint.

Identification of Variable Fields
Call Number.

This field is present in almost every case and it is the first field input.
The call number usually consists of 1-3 capital letters followed by 1-4 num­
bers, followed by a period, a capital letter, and more numbers. There are
several easily identifiable variations such as a date before the period or
a brief string of numbers without capital letters following the period.

The delimiter separating the class number from the book number is
inserted according to the following five-step algorithm:
1) If the call number is LAW, do not delimit.
2) If the call number consists simply of letters followed by numbers

(possibly including a period), do not delimit. Example: HF5415.13
If this type of number is followed by a date, it is delimited before
the blank preceding the date. Example: HA12f 1967

3) H the call number begins with 'KF' followed by numbers, followed
by a period, then:
a) If there are one or two numbers before the period, do not delimit.

Example: KF26.L354 1966a
b) If there are three or more numbers before the period, delimit be­

fore the last period in the call number.
Example: KFN5225f.Z9F3

4) If the call number begins with 'CS71' do not delimit unless it contains
a date. In this case, it is delimited before the blank preceding the date.
Example: CS7l.S889f 1968

5) In all other cases, delimit before the last capital letter except when
the last capital letter is immediately preceded by a period. In this
latter case, delimit before this preceding period.
Examples: PS3553.E73fW6 E595.F6fK4 1968

PZ10.3.U36fSp TX652.5f.G63 1968

Name Main Entry.
The collation statement is the first field after the call number that can

252 Journal of Library Automation Vol. 2/4 December, 1969

be easily identified by analyzing its contents. The field immediately pre­
ceding the collation statement must be the title paragraph. If there is
only one field between the call number and the collation, the work is
entered under title (tagged as 245) and there is no name main entry.
If there are two or three fields, the first field after the call number is a
name main entry (tagged in the 100 block). When three fields occur
between the call number and collation, the second field is a uniform title
(tagged as 240).

Further analysis into the type of name main entry and the subfield
code depends on such clues as location of open dates (1921-) , date
ranges covering 20 years or more (1921-1967), identification of phrases
used only as personal name relators (ed., tr., comp.), etc. The above clues
strongly indicate a personal name. Identification of an ordinal number
preceded by punctuation and a blank followed by punctuation is strongly
indicative of a conference heading.

In the course of processing, delimiters and the appropriate subfield
codes are inserted. Subfield code "d" is used with dates in personal names;
subfield code "e" with relators.

Example: MEPSfde Smith, John,f1902-1967,fed.

Analysis for Fixed Fields

Publisher is Main Entry Indicator.

This indicator is set when the publisher is omitted from the imprint
because it appears as the main entry. The program will set this indicator
whenever the main entry is a corporate or conference name and there
is no publisher in the imprint statement. This test will fail in the case
where there is more than one publisher, one of which is the main entry,
but occurrences of this are fairly rare (less than 0.2 percent).
Biography Indicator.

Four different codes are used with this indicator as follows: A = indi­
vidual autobiography; B = individual biography; C = collected biography
or autobiography; and D = partial collected biography. The "N' code is set
when 1) "autobiographical", "autobiography", "memoirs", or "diaries" occurs
in the title statement or notes, or 2) the surname portion of a personal
name main entry occurs in the short title or the remainder of the title
subfields. The "B" code is set when 1) "biography" occurs in the title state­
ment, 2) the surname portion of a personal name subject entry occurs
in the short title or the remainder of the title subfields, or 3) the Dewey
number contains a "B" or a 920. The "C" code is set when 1) "biographies"
occurs in the title statement or 2) a subject entry contains the subdivision
'oiography." There appears to be no way to identify a "D" code situation.
Despite this fact, the biography indicator can be set correctly about 83
percent of the time.

MARC Research and Development/ AVRAM 253

Implementation Schedule
Work on the format recognition project was begun early in 1969. The

first two phases were feasibility studies based on English-language records
with a certain amount of pretagging assumed. Since the results of these
studies were quite encouraging, a full-scale project was begun in July 1969.
This project is divided into five tasks. Task 1 consisted of a new examina­
tion of the data fields to see if the technique would work without any
pretagging. New algorithms were designed and desk-checked against a
sample of records. It now seems likely that format recognition programs
might produce correctly tagged records 70 percent of the time under these
conditions. It is possible that one or two fixed fields may have to be sup­
plied in a pre-editing process.

Tasks 2 through 5 remain to be done. Task 2 will provide overall format
recognition design including 1) development of definitive keyword lists,
2) typing specifications, 3) determination of the order of processing of
fields within a record, and 4) description of the overall processing of a
record. When the design is completed, a number of records will go through
a manual simulation process to determine the general efficiency of the
system design.

Task 3 will investigate the extension of format recognition design to
foreign-language titles in roman alphabets. Task 4 will provide the design
for a format recognition program based on the results of Tasks 2 and 3
with detailed flowcharts at the coding level. The actual coding, check­
out, and documentation will be performed as Task 5. According to cur­
rent plans, the first four tasks are scheduled for completion early in 1970
and the programming will be finished later in the year.

Outlook
It is apparent that a great deal of intellectual work must be done to

develop format recognition algorithms even for English-language records
and still greater ingenuity will be required to apply these techniques to
foreign-language records. Nevertheless, on the basis of encouraging results
of early studies, there is evidence that the human effort in converting
bibliographic records to machine readable form can be materially reduced.
Since reduction of human effort would in tum reduce costs, the success
of these studies will have an important bearing on the rate at which cur­
rent conversion activities can be expanded as well as on the economic
feasibility of converting large files of retrospective cataloging data.

GENESIS
Early in the planning and implementation of automation at the Library

of Congress it became apparent that many tasks require information about
the frequency of data elements. For example, it was helpful to know
about the frequency of individual data elements, their length in charac­
ters, and the occurrence of marks of punctuation, diacritics, and specified

254 Journal of Library Automation Vol. 2/4 December, 1969

character strings in particular data elements. In the past, most of the
counting has been done manually. Once a sizable amount of data was
available in machine readable form, it was worthwhile to have much of
this counting done by computer. Therefore, the Generalized Statistical
Program (GENESIS) was done as a general purpose program to make
such counts on all forms of material in the MARC Processing Format on
magnetic tape files.

Any of a variety of counts can be chosen at the time of program execu­
tion. There are three types of specifications required for a particular run
of the program: selection criteria; statistical function specifications; and
output specifications.

Selection Criteria

Record selection criteria are specified by statements about the various
data fields that must be present in the records to be processed. Field se­
lection criteria specify the data elements that will actually be analyzed.
Processing by these techniques operates logically in two distinct stages:
1) the record is selected from the input file; i.e., the program must deter­
mine if a particular record is to be included in the analysis; and 2) if the
record is eligible, the specified function is performed on selected data
fields. It should be noted that records may be selected for negative as
well as positive reasons. The absence of a particular field may determine
the eligibility of a record and statistical processing can be performed on
other fields in the record. Record selection is optional; if no criteria are
specified, all records on the input file will be considered for processing.

Since both record selection and field selection reference the same ele­
ments, specifications are input in the same way. Selection of populations
can be designated by tagging structure (numeric tags, indicators, subfield
codes or any combination of these three), specified character strings, and
specified characters in the bibliographic data. The following queries are
typical of those that can be processed by GENESIS. How many records
with an indicator set to show that the volume contains biographic infor­
mation also have an indicator set to show that the subject is the main
entry? How many records with a field tagged to show that the main entry
is the name of a meeting or conference actually have the words "meeting"
or "conference" in the data itself? Table 1 shows the operators that can
be used with record and field select statements.

Statistical Function Specification
The desired statistical function is specified via a function statement.

Four functions have been implemented to date. They involve counts of
occurrences of specified fields, unique data within specified fields given a
range of data values, data within a specified range, and particular data
characters. In addition to counting the frequency of the specified ele­
ment, GENESIS calculates its percentage in the total population.

MARC Research and Development/ A VRAM 255

Table 1. Operators of GENESIS

Operator

EQUALS

NOT EQUAL

GREATER THAN OR
EQUAL TO

LESS THAN OR
EQUAL TO

AND

OR

Example of usage

Count all occurrences where data repre­
sented by tag 530 EQUALS "Bound with"

Count all occurrences where the publication
language code is NOT EQUAL to "eng"

Count all occurrences and output records
that are GREATER THAN OR EQUAL TO
1,000 characters

Count all occurrences of records entered on
the MARC data base before June 1, 1968
(LESS THAN OR EQUAL TO 680601)

Count all occurrences where the publication
equals "s" AND the publication date is
greater than or equal to 1960

Count all occurrences of personal name main
entry (tag 100) a relator (subfield code "e")
that equals "ed." OR "comp."

The first function counts occurrences per record of specified field selec­
tion criteria. This answers queries concerning the presence of given con­
ditions within the selected records; for example, a frequency distribution
of personal name added entries (tag 700). This type of count results in
a distribution table of the number of records with 0 occurrences, 1 occur­
rence, 2 occurrences, and so forth.

The second function, which counts occurrences of unique data values
within a specified range, answers queries when the user does not know
the unique values occurring in a given field, but can state an upper and
lower value. For example, the specific occurrences of publishing dates
between 1900 and 1960 might be requested. The output in response to
this type of query consists of each unique value, lying within the range
specified, with its frequency count. In addition, separate counts are given
for values less than the lower bound and of values greater than the upper
bound.

The function is performed by maintaining in computer memory an or­
dered list of unique values encountered, together with their respective
counts. As selected fields are processed, each new value is compared
against the entries in the list. If the new value already appears in the
list, its corresponding count is incremented. Otherwise, the new value is
inserted in the list in its proper place and the remainder of the list is
pushed down by one entry. The amount of core storage used during a

256 Journal of Library Automation Vol. 2/ 4 December, 1969

particular run is directly related to the number of unique occurrences
appearing within the specified range. Since the length of each entry is
determined by the length of the bounds specified, the number of entries
which can be held in free storage can vary from run to run. Thus it is
possible that the number of unique entries may fill memory before a run
has been completed. When this happens, the value of the last entry in
the list will be discarded and its count added to the "greater than upper
bound" count. In this way, while the user may not obtain every unique
value in the specified range, he will obtain all unique values from the
lower bound which can be contained in memory. He is then in a position
to make subsequent runs using, as a beginning lower bound value, the
highest unique value obtained from the preceding run.

The third function processes queries concerning counts within specified
ranges. When this function is used, unique values are not displayed. In­
stead, the occurrences are counted by specified ranges of values. More
than one range can be processed during a single run. On output, the pro­
gram provides a cumulative count of values encountered within each range
as well as the counts of those less than and those greater than the ranges.

Function four counts occurrences of particular data characters. An indi­
vidual character may be specified explicitly or implicitly as a member
of a group of characters. This allows the counting of occurrences of various
alphabetic characters within specified fields. The current list of character
classes that can be counted are: alpha characters, upper-case letters, lower­
case letters, numbers, punctuation, diacritics, blanks, full (all characters
included in above classes), nonstandard special characters, and any par­
ticular character using hex notation. It should be noted that there are
various ways of specifying particular characters. For example, an "A"
might be designated causing totals to accumulate for all alphabetics; or,
a "U" and an "L" might be specified causing separate totals to be accumu­
lated for upper- and 1ower-case characters. In addition to the total counts
for each class, individual counts of characters occurring within any class
can be obtained for display along with the total count.

Output Specifications

Formatted statistical information is output to the line printer. Option­
ally, the selected records can be output on magnetic tape for later proc­
essing.

Limitations
For the purpose of defining a query, more than one field may be speci­

fied for record and field selection, using as many statements as necessary.
At present, however, the statistical processing for a particular run is per­
formed on all of the run-criteria collectively. For example, separate runs
of the program are required to obtain each frequency distribution.

It is important to note that GENESIS is essentially a means of making

MARC Research and Development/ AVRAM 257

counts. The statistical analysis of data is a complex task that requires so­
phisticated techniques. GENESIS does not have the capability to analyze
data in terms of standard deviation, correlation, etc. but the output does
constitute raw data for those kinds of analyses. Although the four func­
tions of GENESIS implemented to date do not, in themselves, provide
a complete statistical analysis, they greatly lessen the burden of counting;
and techniques for designating data elements to be counted suffice to
describe extremely complex patterns. Continued use of the program will
no doubt provide guidelines for expansion of its functions.

Use of the Program

GENESIS has already provided analyses that are helpful in the design
of automated procedures at the Library of Congress, as is indicated by
the following instances. A frequency distribution of characters was made
to aid in specifying a print train. An analysis of certain data characteristics
has determined some of the specifications for the format recognition pro­
gram described in an earlier section. GENESIS is providing many of the
basic counts for a thorough analysis of the material currently being con­
verted for the MARC Distribution Service to determine frequency pat­
terns of data elements. The findings should be valuable for determining
questions about storage capacity, file organization, and retrieval strategy.
Although GENESIS is a new program in the MARC System, there is little
doubt that it is a powerful tool that will have many uses.

MARC RETRIEVER

Since the MARC Distribution Service has been given the highest pri­
ority during the past two years, the emphasis in the implementation of
the MARC System has been on input, file maintenance, and output with
only minimum work performed in the retrieval area. It was recognized,
moreover, that as long as MARC is tape oriented, any retrieval system
put into effect at the Library of Congress would be essentially a research
tool that should be implemented as inexpensively as possible. It did seem
worthwhile, however, to build retrieval capability into the MARC System
to enable the LC staff to query the growing MARC data base. Query
capability would answer basic questions about the characteristics of the
data that arise during the design phases of automation efforts. In addition,
it seemed desirable to use the data base in an operational mode to pro­
vide some needed experience in file usage to assist in the file organization
design of a large bibliographic data base.

The specifications of the system desired were: 1) the ability to process
the MARC processing format without modification; 2) the ability to query
every data element in the MARC record, alone or in combination (fixed
fields, variable fields, the directory, subfield codes, indicators); 3) the
ability to count the number of times a particular element was queried,
to accumulate this count, print it or make it available in punched card

258 Journal of Library Automation Vol. 2/4 December, 1969

form for subsequent processing; and 4) the ability to format and output
the results of a query on magnetic tape or printer hardcopy. To satisfy
these requirements it was decided to adapt an operational generalized
information system to the specifications of the Library of Congress. The
system chosen was AEGIS, designed and implemented by Programmatics,
Inc. The modification is known as the MARC Retriever.

General Description
The MARC Retriever comprises four parts: a control program, a parser,

a retrieval program, and a utility program. Queries are input in the form
of punched cards, stacked in the core of the IBM S /360, and operated
on as though all queries were in fact one query. Thus a MARC record
will be searched for the conditions described by all queries, not by han­
dling each query individually and rewinding the input tape before the
next query is processed.

The control program is the executive module of the system. It loads
the parser and reads the first query statement. The parser is then activated
to process the query statement. On return from the parser, the control
program either outputs a diagnostic message for an erroneous query or
assigns an identification number to a valid query. After the last query
statement has been parsed, the control program loads the retrieval pro­
gram and the MARC input tape is opened. As each record on the MARC
tape is processed, the control program checks for a valid input query. If
the query is valid, the control program branches to the retrieval program.
On return from the retrieval program, the control program writes the
record on an output tape if the record meets the specifications of the
query. After the last MARC record has been read from the input tape,
the control program branches to the retrieval program for final processing
of any requested statistical function (HITS, RATIO, SUM, AVG) that
might be a part of the query. The output tapes are closed and the job
is ended.

The parser examines each query to insure that it conforms to the rules
for query construction. If the query is not valid, an error message is re­
turned to the control program giving an indication as to the nature of
the error. Valid query statements are parsed and converted to query
strings in Polish notation, which permits mathematical expressions without
parentheses. The absence of embedded parentheses allows simpler com­
piler interpretation, translations, and execution of results.

The retrieval program processes the query strings by comparing them
with the MARC record data elements and the results of the comparison
are placed in a true/false stack table. If the comparison result is true,
output is generated for further processing. If the result is false, no action ·
takes place. If query expressions are linked together with "OR" or "AND''
connectors, the results in the true/false stack table are ORed and ANDed
together resulting in a single true or false condition.

MARC Research and Development/ AVRAM 259

The utility program counts every data element (fixed field, tag, indi­
cator, sub field code, data in a variable field) that is used in a query
statement. The elements in the search argument are counted separately
from those in the output specifications. After each run of the MARC Re­
triever, the counts can be printed or punched for immediate use, or they
can be accumulated over a longer period and processed on demand.

Query Language

General.

Query statements for the MARC Retriever must be constructed accord­
ing to a precisely defined set of rules, called the syntax of the language.
The language permits the formation of queries that can address any por­
tion of the MARC record (fixed fields, record directory, variable fields
and associated indicators and subfields). Queries are constructed by com­
bining a number of elements: MARC Retriever terms, operators, fixed
field names, and strings of characters (hereafter called constants). The
following sections describe the rules for constructing a query and the
query elements with examples of their use.

Query Formation.

A query is made up of two basic parts or modes: the if mode which
specifies the criteria for selecting a record; and the list mode which speci­
fies which data elements in the record that satisfy the search criteria are
to be selected for printing or further processing. In general, the rules that
apply to constructing if-mode expressions apply to constructing list-mode
expressions except that the elements in the list mode must be separated
by a comma. A generalized query has the following form:

IF if-mode expression LIST list-mode expression;
Where:

IF
if-mode expression
LIST
list-mode expression

Signals the beginning of the if mode.
Specifies the search argument.
Signals the beginning of the list mode.
Specifies the MARC record data element(s)
that are to be listed when the search argu-
ment specified in the if-mode expression is
satisfied.

The format of the query card is flexible. Columns 1 through 72 contain
the query which may be continued on subsequent cards. No continuation
indicator is required. Columns 73 through 80 may be used to identify the
query if desired. The punctuation rules are relatively simple. One or more
blanks must be used to separate the elements of a query and a query
must be terminated by a semicolon.

260 Journal of Libmry Automation Vol. 2/4 December, 1969

Queries that involve fixed fields take the following form:
IF fixed-field-name!= constant LIST fixed-field-name2

Where:
fixed-field-namel

constant
fixed-field-name2

The name of fixed field.
Any operator appropriate for this query.
The search argument
The fixed field to be output if a match occurs.

To query or specify the output of a variable field, the following general
expression is used.

IF SCAN (tag= nnn) = constant LIST SCAN (tag= nnn);

Where:
SCAN

tag

nnn

constant

Indicates that a variable field is to be ref­
erenced.
Indicates that the tag of a variable field is
to follow.
The only valid operator.
Specifies the tag of the variable field that is
to be searched or output.
Specifies the character string of data that
is the search argument.

The MARC Retriever processes each query in the following manner.
Each record in the data base is read from tape into core and the data
elements in the MARC Record specified in the if-mode expression are
compared against the constant(s) in the if-mode expression. If there is
a match, the data element(s) specified in the list-mode expression are
output.

Key Terms.
The terms used in a query statement fall into two classes. The first

group instructs the program to perform specified functions: SCAN, HITS,
AVG, RATIO, SUM. The second group relates to elements of the record
structure. The most important key terms in this class are: INDIC (indi­
cator), NTC (subfield code), RECORD (the entire bibliographic record),
and TAG (variable field tag). These terms are used to define a constant;
e.g., TAG= 100.

Operators.

Operators are characters that have a specific meaning in the query lan­
guage. They fall into two classes. The first contains relational operators,
such as equal to and greater than, indicating that a numeric relationship
must exist between the data element in the MARC record and the search
argument. The second class comprises the logical operators "and" and

MARC Research and Development/ AVRAM 261

"or". The operators of the MARC Retriever are shown in Table 2. In the
definitions, C is the query constant and D is the contents of a MARC
record data element.

Table 2. Operators of the MARC Retriever

Operator

Constan~s.

>
;:::
<
~

1=
&

I

Meaning
C equals D
C is greater than D
C is greater than or equal to D
C is less than D
C is less than or equal to D
C is not equal to D
"and" (both conditions must be true)
"or" (at least one condition must be true)

A constant is either a string of characters representing data itself (e.g.,
Poe, Edgar Allan) or a specific variable field tag, indicator(s), and sub­
field code(s). Constants may take the following form:

CC Where CC is an alphabetic or numeric character or the pound
sign"#". When this form is used, the MARC Retriever will con­
vert all lower-case alphabetic characters in the data element
of the MARC record being searched to upper-case before a com­
parison is made with search argument. This conversion feature
permits the use of a standard keypunch that has no lower-case
capability for preparation of queries.

'CC' Where CC can be any one of the 256 characters represented
by the hexadecimal numbers 00 to FF. This form allows non­
alphabetic or nonnumeric characters not represented on the
standard keyboard to be part of the search argument. When
this form is used, the MARC Retriever will also convert all lower­
case alphabetic characters in the data elements in the MARC
record being searched to upper-case before a comparison is
made.

@CC@ Where CC can be any one of the 256 characters represented
by the hexadecimal numbers 00 to FF. When this form is used,
characters in the data element of the MARC record being
searched will be left intact and the search argument must contain
identical characters before a match can occur.

The pound sign indicates that the character in the position it
occupies in the constant is not to take part in the comparison.
For example, if the constant were #ANK, TANK, RANK, BANK
would be considered matches. More than one pound sign can
be used in a constant and in any position.

262 Journal of Library Automation Vol. 2/ 4 December, 1969

Specimen Queries.

The following examples illustrate simple query statements involving
fixed and variable fields.

IF MCPDATE1 = 1967 LIST MCRCNUMB;
The entire MARC data base would be searched a record at a time for
records that contained 1967 in the first publication date field (MCP­
DATE1). The LC card number (MCRCNUMB) of the records that satis­
fied the search argument would be output.

IF SCAN(TAG= 100) = DESTOUCHES LIST SCAN(TAG=245);
The personal name main entry field (tag 100) of each MARC record
would be searched for the surname Destouches. If the record meets this
search argument, the title statement (tag 245) would be output.

In addition to specifying that a variable field is to be searched, the SCAN
function also indicates that all characters of the variable field are to be
compared and a match will result at any point in the variable field where
the search argument matches the variable field contents. For example, if
the if-mode expression is SCAN(TAG = 100) =SMITH a match would
occur on the following examples of personal name main entries (tag 100) :
SMITH, JOHN; SMITHFIELD, JEROME; JONES-SMITH, ANTHONY.

It is possible to include the indicators associated with a variable field
in the search by augmenting the constant of the SCAN function as follows:

IF SCAN(TAG = 100&INDIC = 10) = DESTOUCHES
LIST SCAN(TAG = 245);

Where:
INDIC

1

0

Specifies that indicators are to be included.
Specifies that the first indicator must be set to 1 (the name in
the personal name main entry [tag 100] is a single surname,
Specifies that the second indicator must be set to zero (main
entry is not the subject).

The personal name main entry field (tag 100) of each record would
be searched and a hit would occur if the indicators associated with the
field were 1 and 0 and the contents of the field contained the characters
"Destouches." If the record met these search criteria, the title statement
(tag 245) would be output. It is also possible to restrict the search to the
contents of one or more subfields of a variable field.

For example:
IF SCAN(TAG = lOO&INDIC = 10&NTC = A) =DESTOUCHES

LIST SCAN(TAG=245);
Where:

NTC
A

Indicates that a subfield code follows.
Specifies that only the contents of subfield A are to be included
in the search. Note that in this form the actual subfield code
"a" is converted to "A" by the program (see section on Con­
stants) .

MARC Research and Development/ AVRAM 263

Special Rules.

So far the discussion has concerned rules of the query language that
apply to either the if mode or the list mode. This section and the remain­
ing sections will discuss those rules and functions that are unique to either
the if mode or the list mode.

In the if mode, fixed and variable field expressions can be ANDed or
ORed together using the logical operators & and j. For example:

IF MCPDATE1 = 1967&SCAN(TAG = 100) = DESTOUCHES
LIST SCAN(TAG = 245);

This query would search for records with a publication date field
(MCPDATE1) containing 1967 and a personal name main entry field
(tag 100) containing Des touches. If both search criteria are met, the title
statement field (tag 245) would be printed.

In the list mode more than one fixed or variable field can be listed by
a query as long as the fixed field names or scan expressions are separated
by commas. For example:

IF SCAN(TAG = 100) = DESTOUCHES
LIST SCAN(TAG = 245) , MCRCNUMB;

The list mode offers two options, LIST and LISTM, which result in dif­
ferent actions. LIST indicates that the data elements in the expressions
are to be printed, and LISTM indicates that the data elements in the
expression are to be written on magnetic tape in the MARC processing
format.

It is often desirable to list a complete record either in the MARC proc­
essing format using LISTM or in printed form using LIST. In either case,
the listing of a complete record is activated by the MARC Retriever key
term RECORD. For example:

IF SCAN (TAG= 100) = DESTOUCHES LIST RECORD;
The complete record would be written on magnetic tape in the MARC
processing format instead of being printed out if LISTM were substituted
for LIST in the above query.

Four functions can be specified by the LIST mode. HITS signals the
MARC Retriever to count and print the number of records that meet the
search criteria. For example:

IF SCAN(TAG=650) = AUTOMATION LIST HITS;
RATIO signals the MARC Retriever to count both the number of records
that meet the search criteria and the number of records in the data base
and print both counts.

The remaining two LIST functions permit the summing of the contents
of fixed fields containing binary numbers. SUM causes the contents of all
specified fields in the records meeting the search criteria to be summed
and printed. For example:

IF MCRCNUMB = ·~~~68 # #####' LIST SUM (MCRLGTH);
The data base would be searched for records with LC card number field

264 Journal of Library Automation Vol. 2/4 December, 1969

(MCRCNUMB) containing three blanks and 68 in positions one through
five. The remaining positions would not take part in the query process
and could have any value. If a record satisfied this search argument, the
contents of the record length field (MCRLGTH) would be added to a
counter. When the complete data base had been searched, the count
would be printed. AVG performs the same function as SUM and also
accumulates and prints a count of the number of records meeting the
search criteria.

Use of the Program

The MARC Retriever has been operational at the Library of Congress
since May 1969 and selected staff members representing a cross-section of
LC activities have been trained in the rules of query construction. The
applications of the program to the MARC master file include: identifica­
tion of records with unusual characteristics for the format recognition
study; selection of titles for special reference collections; and verification
of the consistency of the MARC editorial process. As the file grows, it is
expected that the MARC Retriever will be useful in compiling various
kinds of bibliographic listings, such as translations into English, topical
bibliographies, etc., as well as in making complex subject searches.

The MARC Retriever is not limited to use with the MARC master file;
it can query any data base that contains records in the MARC processing
format. Thus, the Legislative Reference Service is able to query its own
data base of bibliographic citations to produce various outputs of use to
its staff and members of Congress.

Because the MARC Retriever is designed to conduct searches from
magnetic tape, it will eventually become too costly in terms of machine
processing time to operate. It is difficult to predict when the system will
be outgrown, however, because its life span will be determined by the
growth of the file and the complexity of the queries. Meanwhile, the
MARC Retriever should provide the means for testing the flexibility of
the MARC format for machine searching of a bibliographic file.

REFERENCES
1. U.S. Library of Congress. Information Systems Office: The MARC

Pilot Project. (Washington, D.C.: 1968), pp. 40-51.
2. Rather, John C.; Pennington, Jerry G.: "The MARC Sort Program,"

Journal of Library Automation, 2 (September 1969), 125-138.
3. RECON Working Task Force. Conversion of Retrospective Catalog

Records to Machine-Readable Form. (Washington, D.C.: Library of
Congress, 1969).

4. U.S. Library of Congress. Information Systems Office: Subscribers
Guide to the MARC Distribution Service, 3d ed. (Washington, D.C.:
1969), pp. 31-3lb.

5. Ibid., p. 40.

MARC Research and Development/ AVRAM 265

6. Cunningham, Jay L.; Schieber, William D.; Shoffner, Ralph M.: A
Study of the Organization and Search of Bibliographic Holdings Rec­
ords in On-Line Computer Systems: Phase I. (Berkeley, Calif.: Insti­
tute of Library Research, University of California, 1969), pp. 85-94.

7. Jollilie, John: "The Tactics of Converting a Catalogue to Machine­
Readable Form," Journal of Documentation, 24 (September 1968),
149-158.

