
AN ALGORITHM FOR VARIABLE-LENGTH
PROPER-NAME COMPRESSION

257

James L. DOLBY: R & D Consultants Company, Los Altos, California

Viable on-line search systems require reasonable capabilities to automa­
tically detect (and hopefully correct) variations between request format
and stored format. An important requirement is the solution of the prob­
lem of matching proper names, not only because both input specificatiof.I,S
and storage specifications are subject to error, but also because various
transliteration schemes exist and can provide variant proper name forms in
the same data base. This paper reviews several proper name matching
schemes and provides an updated version of these schemes which tests out
nicely on the proper name equivalence classes of a suburban telephone
book. An appendix lists the corpus of names used for algorithm test.

A viable on-line search system cannot reasonably assume that each user
will invariably provide the proper input information without error. Human
beings not only make errors, but also expect their correspondents, be they
human or mechanical, to be able to cope with these errors, at least at some
reasonable error-rate level. Many of the difficulties in implementing com­
puter systems in many areas of human activity stem from failure to rec­
ognize, and plan for, routine acceptance of errors in the systems. Indeed,
computing did not become the widespread activity it is now until the so­
called higher-level languages came into being. Although it is customary
to think of higher-level languages as being "more English-like," the height
of their level is better measured by the brevity with which various jobs
can be expressed (for brevity tends to reduce errors) and the degree of
sophistication of their automatic error detection and correction procedures.

The processing of catalog information for the purposes of exposing and
retrieving information presents at least two major areas for research in
automatic error detection and correction. At the first stage, the data bank
must be created, updated and maintained. Methods for dealing with input
errors at this level have been derived by a number of groups and it seems
reasonable to assert that something in the order of 60% of the input errors
can be detected automatically (1,2,3). With the possibility of human proof-

258 Journal of Library Automation Vol. 3/4 December, 1970

reading and error detection through actual use, it is reasonable to expect
a mature data base to have a very low over-all error rate.

At the second stage, however, when a user approaches the data base
through a terminal or other on-line device, the errors will be of a recurring
nature. Each user will generate his own error set and, though experience
will tend to minimize the error rate for a particular user, there will be
an essentially irreducible minimum error rate even for an experienced
user. If the system is to attract users other than professional interrogators,
it must respond intelligently at this minimal error level.

This paper explores certain problems associated with making "noisy
matches" in catalog searches. Because preliminary information indicates
that the most likely source of input errors is in the keyboarding of proper
names, the main emphasis of the paper is on the problem of algorithmically
compressing proper names in such a way as to identify similar names (and
likely misspellings) without over-identifying the list of possible authors.

EXISTING NAME-COMPRESSION ALGORITHMS
The problem of providing equivalence classes of proper names is hardly

new. Library catalogs, telephone directories and other major data bases
have made use of "see-also"-type references for many years. Some years
ago Remington-Rand derived an alphanumeric name compression algor­
ithm, SOUNDEX, that could be applied either by hand or by machine
for such purposes (4). Perhaps the most widely used on-line retrieval
system presently in existence, the airline reservation system (such as
SABRE), makes use of such an algorithm (5). The closely related problem
of compressing English words (either to establish noisy matches, to elimi­
nate misspelled words, or simply to achieve data bank compression) has
also received some attention (6, 7, 8). Implementation of such algorithms
has been described (9, 10, 11, 12, 13).

Although English word structure differs from proper-name structure in
some important respects (e.g., the existence of suffixes), three of the
algorithms are constructed by giving varying degrees of attention to the
following five areas of word structure:

1) The character in word initial position;
2) The character set: (A, E, I, 0, U, Y, H, W);
3) Doubled characters (e.g., tt);
4) Transformation of consonants (i.e., all alphabetic characters other

than those in 2 above) into equivalence classes;
5) Truncation of the residual character string.
The word-initial character receives varying attention. SOUNDEX places

the initial consonant in the initial position of the compressed form and
then transforms all other consonants into equivalence classes with numeric
titles. SABRE maintains the word-initial character even if it is a vowel.
In the Armour Research Foundation scheme (ARF), the word-initial
character is also retained as is.

Algorithm for Name CompressionjDOLBY 259

Both SOUNDEX and SABRE eliminate all characters in the set 2)
above. The ARF scheme retains all characters in shorter words and deletes
vowels only, to reduce the compressed form to four characters, deleting
the "U" after "Q," the second vowel in a vowel string, and then all re­
maining vowels.

All three systems delete the second letter of a double-letter string.
SABRE goes a step further and deletes the second letter of a double­
letter string occurring after the vowels have been deleted. Thus, the
second "R" of "BEARER" would be deleted.

SOUNDEX maps the eighteen consonants into six equivalence classes:
1) B, F, P, V
2) C, G, J, K, Q, S, X, Z
3) D, T
4) L
5) M, N
6) R

SABRE and ARF do not perform any transformations on these eighteen
consonants.

Finally, all three systems truncate the remaining string of characters
to four characters. For shorter forms, padding in the form of zeros
(SOUNDEX), blanks (SABRE), or hyphens (ARF) is added so that all
codes are precisely four characters long.

Variable-length coding schemes have been considered but generally
rejected for implementation on major systems because of the attendant
difficulties of programming and the fact that code compression is en­
hanced by fixed-length codes where no interword space is necessary.
Although fixed-length schemes of length greater than four have been
considered, no definitive data appears to be available as to the enhanced
ability of compressed codes to discriminate by introduction of more
characters. The SABRE system does add a fifth character but makes use
of the person's first initial for added discrimination.

Tukey (14) has constructed a personal author code for his citation
indexing and permuted title studies on an extensive corpus of the statistical
literature. In this situation the author code is a semi-mnemonic code in a
tag form to assist the user in identification rather than to be used as a
basic entry point. However, Tukey does note that in his corpus a three­
character code of the surname, plus two initials, is superior to a five­
character surname code for purposes of unique identification.

MEASURING ALGORITHMIC PERFORMANCE

One of the main problems in constructing linguistic algorithms is to
decide on appropriate measures of performance and to obtain data bases
for implementing such measures. In this case it is clear that certain
improvements in existing algorithms can be made- particularly by using
more sophisticated b·ansformation rules for the consonants - and that

260 Journal of Librat·y Automation Vol. 3/4 December, 1970

the problems of implementing such changes are not so great in today's
context as they were when the systems noted above were originally derived.
Improvements in processing speeds and programming languages, how­
ever, do not remove the need for keeping "linguistic frills" to a minimum.

Ideally, it would be desirable to have a list of common errors in key­
boarding names as a test basis for any proposed algorithms. Unfortunately,
no such list of sufficient size appears to be available. Lacking this, one can
speculate that certain formal properties of the predictability of language
might be useful in deriving an algorithm. At the English word level, some
effort has been made to exploit measures of entropy as developed by
Shannon in this direction (6, 7). However, there is good reason to question
whether entropy, at least when measured in the usual way, is strongly
correlated with actually occurring errors (15).

As an alternative, one can study existing lists of personal-name equiva­
lence classes to derive such algorithms and then test the algorithm against
such classes, measuring both the degree of over-identification and the de­
gree of under-identification. Clearly, such tests will carry more weight if
they are conducted under economic forcing conditions where weaknesses
in the test set will lead to real and measurable expense to the organization
publishing the list. The SABRE system operates under strong economic
forcing conditions in the sense that airline passengers frequently have a
number of competitive alternatives available to them and lost reservations
can cause sufficient inconvenience for them to consider these alternatives.
However, the main application of the SABRE system is to rather small
groups of persons (at least when compared to the number of personal
authors in a typical library catalog), so that errors of over-identification
are essentially trivial in cost to the airlines.

A readily available source of "see-also"-type equivalence classes of
proper names is given in the telephone directory system. Here, the eco­
nomic forcing system is not so strong as in the airline situation, but it is
measurable in that failure to provide an adequate list will lead to increased
user dependence on the Information Operator, with consequent increased
cost to the telephone company. As a test of the feasibility of using such a
set of equivalence classes, the 451 classes found in the Palo Alto-Los Altos
(California) telephone directory were copied out by hand and used in
deriving and testing the algorithm given in the next section and the
SOUNDEX algorithm.

There remains the question of deciding what is to constitute proper
agreement between any algorithm and the set of equivalence classes chosen
as a data base. At the grossest level it seems reasonable to argue that over­
identification is less serious than under-identification. False drops only tend
to clog the line. Lost reference points, on the other hand, lead to lost in­
formation. Investigation of other applications of linguistic algorithms, such
as algorithms to hyphenate words, identify semantically similar words
through cutting off of suffixes, and so forth, indicates that it is usually

Algorithm for Name CompressionjDOLBY 261

possible to reduce crucial error (in this case under-identification) to some­
thing under 5%, while preserving something in the order of 80% of the
original distinctions (or efficiency) of the system. Efforts to improve
materially on the "five-and-eighty" rule generally lead to solutions involv­
ing larger context and/or extensive exception dictionaries. In this study
efforts are directed at achieving a "five-and-eighty" solution.

A VARIABLE-LENGTH NAME-COMPRESSION SCHEME
In light of the fact that no definitive information is available on the

problems of truncating errors in name-compression algorithms, it is con­
venient to break the problem into two pieces. First is derivation of a
variable-length algorithm of the required accuracy and efficiency and
then determination of the errors induced by truncation.

A studying of the set of equivalence classes given in the Palo Alto-Los
Altos telephone directory made fairly clear that with minor modifications
of the basic five steps used in the other algorithms noted above, it would
not be too difficult to provide a reasonably accurate match without requir­
ing too much over-identification. The main modifications made consisted
of maintaining the position of the first vowel and using local context to
make transformations on the consonants. The algorithm is given below.
(The rules given must be applied in the order given both with respect to
the rules themselves and to the order of the lists within the rules, as the
precedence relations are important to the performance of the algorithm.)

A Spelling Equivalent Abbreviation Algorithm For Personal Names

1) Transform: "MeG" to "Mk", "Mag" to "Mk", "Mac" to "Mk", "Me" to
"Mk".

2) Working from the right, recursively delete the second letter from
th f II . I tt · "dt" "ld" " d" " t" " " " d" " t" " '' e o owmg e er parrs: , , n , n , rc , r , r , sc ,
"sk", "st''.

3) T f ,, , t "k ,, ((, t 1.(, " ., t " ., " , t " ,~ ,, rans orm: x o s , ce o se , c1 o s1 , cy o sy , con-
sonant-ch" to "consonant-sh"; all other occurrences of "c" to "k", "z"
to "s", "wr" to "r", "dg" to "g", "qu" to "k'', "t" to "d", "ph" to
"f' (after the first letter).

4) Delete all consonants other than "1", "n", and Y' which precede the
letter "k" (after the first letter).

5) Delete one letter from any doubled consonant.
6) Transform "pf#" to "p#", "#pf" to "#f", "vowel-gh#" to "vowel-£#",

"consonant-gh" to "consonant-g#", and delete all other occurrences
of "gh". ("#"is the word-beginning and word-ending marker.)

7) Replace the first vowel in the name by the symbol "•".
8) Delete all remaining vowels.
9) Delete all occurrences of "w" or "h" after the first letter in the word.

The vowels are taken to be (A, E, I, 0, U, Y). The remaining literal
characters are treated as consonants.

262 Journal of Library Automation Vol. 3/4 December, 1970

The algorithm splits 22 (4.9%) of the 451 equivalence classes given by
the phone directory. On the other hand, the algorithm provides 349 dis­
tinct classes (not counting those classes that were broken off in error) or
77.4% of the 451 classes in the telephone directory data base. Thus has
been achieved a reasonable approximation to the "five-and-eighty" per­
formance found in other linguistic problem areas.

To give a proper appreciation of the nature of these underidentification
errors, they are discussed below individually.

1) The name Bryer is put in the same equivalence class with a variety
of spellings of the name Bear. The algorithm fails to make this
identification.

2) Blagburn is not equated to Blackburn.
3) The name Davison is equated to Davidson in its various forms.

The algorithm fails to make this identification and this appears
to be one of a modest class of difficulties that occur prior to the
-son, -sen names.

4) The class of names Dickinson, Dickerson, Dickison, and Dickenson
are all equated by the directory but kept separate, except for the
two forms of Dickinson, by the algorithm.

5) The name Holm is not equated with the name Home.
6) The name Holmes is not equated with the name Homes.
7) The algorithm fails to equate Jaeger with two forms of Yaeger.
8) The algorithm fails to equate Lamb with Lamn.
9) The algorithm incorrectly assumes that the final "gh" of Leigh

should be treated as an "f." Treating final "gh" either as a null
sound or an "f' leads to about the same number of errors in either
direction.

10) The algorithm fails on the pairing of Leicester and Lester. The
difficulty is an intervening vowel.

11) The algorithm fails to equate the various forms of Lindsay with
the forms of Lindsley.

12) The algorithm fails to equate the various forms of McLaughlin
with McLachlan.

13) The algorithm fails to equate McCullogh with McCullah. This is
again the final "gh" problem.

14) The algorithm fails to equate McCue with McHugh (again the
final "gh" problem) .

15) The algorithm fails to equate Moretton with Morton. This is an
intervening vowel problem.

16) The algorithm fails to equate Rauch with Roush.
17) The algorithm fails to equate Robinson with Robison (another -son

type problem).
18) The algorithm incorrectly assumes that the interior "ph" of Shep­

herd is an "£."
19) The algorithm fails to equate Speer with Speier.

Algorithm for Name CompressionjDOLBY 263

20) The algorithm fails to equate Stevens with Stephens.
21) The algorithm fails to equate Stevenson with Stephenson.
22) The algorithm fails to equate the various forms of the word Thomp­

son (an -son problem.)
In several of the errors noted above it may be questioned whether the

telephone directory is following its own procedures with complete rigor.
Setting these aside, the primary errors occur with the final "gh," the words
ending in "son," and the words with the extraneous interior vowels. Each
of these problems can be resolved to any desired degree of accuracy, but
only at the expense of noticeable ·increases in the degree of complexity
of the algorithm.

THE TRUNCATION PROBLEM
Simple truncation does not introduce errors of under-identification; it

can only lead to further over-identification. Examination of the results of
applying the algorithm to the telephone directory data base shows that
no new over-identification is introduced if the compressed codes are all
reduced to the leftmost seven characters. Further truncation leads to the
following results:
Code Length

7
6
5
4

Cumulative Over-Identification Losses

0
1
6

45
Thus there is a strong argument for maintaining at least five characters
in the compressed code.

However, there is no real need for restriction to simple truncation.
Following the procedures used in the ARF system, further truncation can
be obtained by selectively removing some of the remaining characters.
The natural candidate for such removal is the vowel marker. If the vowel
marker is removed from all the five character codes, only six more over­
identification errors are introduced. Removal of the vowel markers from
all of the codes would have introduced 17 more errors of over-identification.
The utility of the vowel marker is in the short codes. This in turn suggests
that introduction of a second vowel marker in the very short codes may
have some utility, and this is indeed the case. If the conception of vowel
marker is generalized as marking the position of a vowel-string (i.e., a
string of consecutive vowels), where for these purposes a vowel is any
of the characters (A, E, I, 0, U, Y, H, W), and these markers are main­
tained as "padding" in the very short words, 18 errors of over-identification
are eliminated at the cost of two new errors of under-identification. In this
way the following modification to the variable length algorithm is derived:

1) Mark the position of each of the first two vowel strings with an
"o ," if there is more than one vowel.

264 Journal of Library Automation Vol. 3/4 December, 1970

2) Truncate to six characters.
3) If the six-character code has two vowel markers, remove the right­

hand vowel marker. Otherwise, truncate the sixth character.
4) If the resulting five-character code has a vowel marker, remove it.

Otherwise remove the fifth character.
5) For all codes having less than four characters in the variable-length

fonn, pad to four characters by adding blanks to the right.
Measured against the telephone directory data base, this fixed-length
compression code provides 361 distinct classes (not counting improper
class splits as separate classes) or 80% of the 451 given classes. Twenty­
four (5.3 %) of the classes are improperly split. By way of comparison,
the SOUND EX system improperly splits 135 classes (30%) and provides
only 287 distinct classes (not counting improperly split classes), or 63.8%
of the telephone directory data base.

ACKNOWLEDGMENTS
This research was carried out for the Institute of Library Research,

University of California, under the sponsorship of the Office of Education,
Research Grant No. OEG-1-7-071083-5068.

The author would like to thank Ralph M. Shoffner and Kelley L. Cart­
wright for suggesting the problem and for a number of useful comments
on existing systems. Allan J. Humphrey was kind enough to program the
variable-length version of the algorithm for test purposes.

APPENDIX: CORPUS OF NAMES USED FOR ALGORITHM TEST
A list of personal-name equivalence classes from the Palo Alto-Los Altos

Telephone Directory is arranged according to the variable-length compres­
sion code (with the vowel marked "•" treated as an "A" for ordering).

Names whose compressed codes do not match the one given in the first
column (and hence represent weaknesses in the algorithm and/ or the
directory groupings) are given in italics.

A small number of directory entries that do not bear on the immediate
problem have been deleted from the list: Bell's see also Bells; Co-op
see also Co-operative; St. see also Saint; etc.
0 BL Abel, Abele, Abell, Able
0 BRMS Abrahams, Abrams
0 BRMSN Abrahamson, Abramson
•D Eddy, Eddie
0 DMNS Edmonds, Edmunds
0 DMNSN Edmondson, Edmundson
0 DMS Adams, Addems
0 GN Eagen, Egan, Eggen
0 GR Jaeger, Yaeger, Yeager
°KN Aiken, Aikin, Aitken
°KNS Adkins, Akins

°KR
OKR
·Ks
0 LBRD
·Ln
0 LN
0 LSN
0 LVR
•Ms
0 NGL
0 NL
0 NRS
0 NRSN
•Ns
0 RKSN
0 RL
0 RN
•RNs
•Rs
0 RVN
0 RVNG
0 SBRN
B•n
B•ns
B°KMN
B0 L
B0 L
B0 L
B0 L
B.L
B 0 LN
B·M
B 0 MN
B•N
B0 ND
B·R

B0 R
B•R
B•R
B0 RBR
B•Rc
B 0 RGR
B 0 RK
B 0 RN

Algorithm for Name CompressionjDOLBY 265

Acker, Aker
Eckard, Eckardt, Eckart, Eckert, Eckhardt
Oakes, Oaks, Ochs
Albright, Allbright
Elliot, Elliott
Allan, Allen, Allyn
Ohlsen, Olesen, Olsen, Olson, Olsson
Oliveira, Olivera, Olivero
Ames, Eames
Engel, Engle, Ingle
O'Neal, O'Neil, O'Neill
Andrews, Andrus
Andersen, Anderson, Andreasen
Ennis, Enos
Enrichsen, Erickson, Ericson, Ericsson, Eriksen
Earley, Early
Erwin, Irwin
Aarons, Ahrends, Ahrens, Arens, Arentz, Arons
Ayers, Ayres
Ervin, Ervine, Irvin, Irvine
Erving, Irving
Osborn, Osborne, Osbourne, Osburn
Beatie, Beattie, Beatty, Beaty, Beedie
Betts, Betz
Bachman, Bachmann, Backman
Bailey, Baillie, Bailly, Baily, Bayley
Beal, Beale, Beall, Biehl
Belew, Ballou, Bellew
Buhl, Buell
Belle, Bell
Bolton, Boulton
Baum, Bohm, Bohme
Bauman, Bowman
Bain, Bane, Bayne
Bennet, Bennett
Baer, Bahr, Baier, Bair, Bare, Bear, Beare, Behr, Beier,

Bier, Bryer
Barry, Beare, Beery, Berry
Bauer, Baur, Bower
Bird, Burd, Byrd
Barbour, Barber
Berg, Bergh, Burge
Berger, Burger
Boerke, Birk, Bourke, Burk, Burke
Burn, Byrne

266 Journal of Library Automation Vol. 3/4 December, 1970

B0 RNR
B0 RNS
B 0 RNSN
B0 RS
BL°KBRN
BL 0 M
BR0 D
BR0 N
BR0 N
D 0 DS
D°F
D 0 GN
D°K
n•KNSN
n•KsN
n•L
n•L
n•L
D 0 MN
n•N
n•N
n•N

n•N
n•N
D0 NL
D.R
n•R
D 0 RM
D 0 VDSN
n•vs
DR0 SL
F•
F°FR
F 0 GN
F0 L
F0 L
F 0 LKNR
F 0 LPS
F 0 NGN
F 0 NL
F0 RL
F 0 RR
F 0 RR
F 0 RS

Bernard, Bernhard, Bernhardt, Bernhart
Berns, Bims, Burns, Byrns, Byrnes
Bernstein, Bornstein
Bertsch, Birch, Burch
Blackburn, Blagburn
Blom, Bloom, Bluhm, Blum, Blume
Brode, Brodie, Brody
Braun, Brown, Browne
Brand, Brandt, Brant
Diezt, Ditz
Duffie, Duffy
Dougan, Dugan, Duggan
Dickey, Dicke
Dickenson, Dickerson, Dickinson, Dickison
Dickson, Dixon, Dixson
Dailey, Daily, Daley, Daly
Dahl, Dahle, Dall, Doll
Deahl, Deal, Diehl
Diamond, Dimond, Dymond
Dean, Deane, Deen
Denney, Denny
Donahoo, Donahue, Donoho, Donohoe, Donohoo,

Donohue, Dunnahoo
Downey, Downie
Dunn, Dunne
Donley, Donnelley, Donnelly
Daugherty, Doherty, Dougherty
Dyar, Dyer
Derham, Durham
Davidsen, Davidson, Davison
Davies, Davis
Driscoll, Driskell
Fay, Fahay, Fahey
Fifer, Pfeffer, Pfeiffer
Fagan, Feigan, Fegan
Feil; Pfeil
Feld, Feldt, Felt
Faulkner, Falconer
Philips, Phillips
Finnegan, Finnigan
Finlay, Finley
Farrell, Ferrell
Ferrara, Ferreira, Ferriera
Foerster, Forester, Forrester, Forster
Forrest, Forest

F 0 RS
F 0 RS
F 0 SR
FL0 N
FL0 NGN
FR0

FR0 DMN
FR0 DRKSN
FR°K
FR0 NS
FR0 NS
FR0 S
FR0 SR
G0 D
G0 DS
G°F
G0 L
G0 LMR
G0 LR
G0 MS
G0 NR
G 0 NSLS
G0 NSLVS
G0 RD
c•Rn
G 0 RN
G0 RNR
c•RR
G 0 S
GR0

GR.FD
GR0 N
GR•s
H•n
H°F
H°FMN
H0 G
H 0 GN
H°K
H°KSN
H 0 L
H•L
H•L
H0 L
H 0 LD

Algorithm for Name CompressionjDOLBY 267

Faris, Farriss, Ferris, Ferriss
First, Fuerst, Furst
Fischer, Fisher
Flinn, Flynn
Flanagan, Flanigan, Flannigan
Frei, Frey, Fry, Frye
Freedman, Friedman
Frederickson, Frederiksen, Fredickson, Fredriksson
Franck, Frank
France, Frantz, Franz
Frances, Francis
Freeze, Freese, Fries
Fraser, Frasier, Frazer, Frazier
Good, Goode
Getz, Goetz, Goetze
Goff, Gough
Gold, Goold, Gould
Gilmer, Gilmore, Gilmour
Gallagher, Gallaher, Galleher
Gomes, Gomez
Guenther, Gunther
Gonzales, Gonzalez
Consalves, Gonzalves
Garratt, Garrett
Garrity, Geraghty, Geraty, Gerrity
Gorden, Gordohn, Gordon
Gardiner, Gardner, Gartner
Garrard, Gerard, Gerrard, Girard
Gauss, Goss
Gray, Grey
Griffeth, Griffith
Green, Greene
Gros, Grose, Gross
Hyde, Heidt
Hoff, Hough, Huff
Hoffman, Hoffmann, Hofman, Hofmann, Huffman
Hoag, Hoge, Hogue
Hagan, Hagen
Hauch, Hauck, Hauk, Hauke
Hutcheson, Hutchison
Holley, Holly
Holl, Hall
Halley, Haley
Haile, Hale
Holiday, Halliday, Holladay, Holliday

I

268 Journal of Libra1·y Automation Vol. 3/4 December, 1970

H 0 LG
H 0 LM
H 0 LMS
H 0 LN
H0 M
H 0 MR
H 0 N
H 0 N
H0 NN
H 0 NRKS
H 0 NRKSN
H0 NS
H0 NS
I-JONSN
H 0 R
H 0 R
H 0 R
H 0 R
H 0 RMN
H 0 RMN
H 0 RMN
H0 RN
H 0 RN
H 0 RN
H 0 RNGDN
H 0 S
H 0 S
H 0 S
H 0 SN
H0 VR
r
tFR
rFRS
tKB
rKBsN
rKs
rL
rMs
rMSN
rNsN

rs
Ko
K°F
K°FMN

Helwig, Hellwig
Holm, Home
Holmes, Homes
Highland, Hyland
Ham, Hamm
Hammar, Hammer
Hanna, Hannah
Hahn, Hahne, Harm, Haun
Hanan, Hannan, Hannon
Hendricks, Hendrix, Henriques
Hendrickson, Henriksen, Henrikson
Heintz, Heinz, Heinze, Hindes, Hinds, Hines, Hinze
Haines, Haynes
Henson, Hansen, Hanson, Hanssen, Hansson, Hanszen
Herd, Heard, Hird, Hurd
Hart, Hardt, Harte, Heart
Hare, Hair
Hardey, Hardie, Hardy
Hartman, Hardmen, Hardman, Hartmann
Herman, Hermann, Herrmann
Harman, Harmon
Heron, Herrin, Herron
Hardin, Harden
Hom, Horne
Herrington, Harrington
Haas, Haase, Hasse
Howes, House, Howse
Hays, Hayes
Houston, Huston
Hoover, Hover
Jew, Jue
Jeffery, Jeffrey
Jefferies, Jefferis, Jefferys, Jeffreys
Jacobi, Jacoby
Jacobsen, Jacobson, Jackobsen
Jacques, Jacks, Jaques
Jewell, Juhl
Jaimes, James
Jameson, Jamieson, Jamison
Jahnsen, Jansen, Jansohn, Janssen, Jansson,

Janzen, Jensen, Jenson
Joice, Joyce
Kay, Kaye
Coffee, Coffey
Coffman, Kauffman, Kaufman, Kaufmann

K°K
K0 L
K0 L
K0 LMN
K0 LR
K0 MBRLN
K 0 MBS
K0 MP
K0 MPS
K0 N
K0 N
K0 N
K0 N
K0 N
K0 N
K0 N
K 0 NL
K 0 NR
K0 NS
K0 P
K0 PL
K0 R
K0 R
K0 R
K0 R
K0 R
K 0 RD
K0 RLN
K 0 RN
K0 RSNR
K0 S
K0 S
K0 S
K0 SL
K0 SLR
K0 SR
KL 0 N
KL.,RK
KL 0 SN
KR0

KR0 GR
KR.,MR
KR0 N
KR 0 S
KR 0 S

Algor·ithm. for Name CompressionfDOLBY 269

Cook, Cooke, Koch, Koche
Cole, Kohl, Koll
Kelley, Kelly
Coleman, Cohnan
Koehler, Koeller, Kohler, Koller
Chamberlain, Chamberlin
Combs, Coombes, Coombs
Camp, Kampe, Kampf
Campos, Campus
Cahn, Conn, Kahn
Cahen, Cain, Caine, Cane, Kain, Kane
Chin, Chinn
Chaney, Cheney
Coen, Cohan, Cohen, Cohn, Cone, Koehn, Kahn
Coon, Kuhn, Kuhne
Kenney, Kenny, Kinney
Conley, Conly, Connelly, Connolly
Conner, Connor
Coons, Koontz, Kuhns, Kuns, Kuntz, Kunz
Coop, Co-op, Coope, Coupe, Koop
Chapel, Chapell, Chappel, Chappell, Chappelle, Chapple
Carrie, Carey, Cary
Corey, Cory
Carr, Kar, Karr
Kurtz, Kurz
Kehr, Ker, Kerr
Cartwright, Cortright
Carleton, Carlton
Carney, Cerney, Kearney
Kirschner, Kirchner
Chace, Chase
Cass, Kass
Kees, Keyes, Keys
Cassel, Cassell, Castle
Kesler, Kessler, Kestler
Kaiser, Kayser, Keizer, Keyser, Kieser, Kiser, Kizer
Cline, Klein, Kleine, Kline
Clark, Clarke
Claussen, Clausen, Clawson, Closson
Crow, Crowe
Krieger, Kroeger, Krueger, Kruger
Creamer, Cramer, Kraemer, Kl·amer, Kremer
Craine, Crane
Christie, Christy, Kristee
Crouss, Kraus, Krausch, Krause, Krouse

270 Journal of Library Automation Vol. 3/4 December, 1970

KR0 S
KR0 S
KR0 SNSN
Lo
Lo
L 0 D
L 0 DL
L 0 DRMN
L°K
L°KS
L 0 LN
L 0 LR
L 0 MB
L 0 MN
L 0 MN
L0 N
L0 N
L0 N
L0 N
L 0 NG
L 0 NN
L 0 NS
L0 R
L 0 RNS
L 0 RNS
L 0 RSN
L 0 S
L 0 S
L 0 SR
L0 V
L 0 VD
L0 VL
L 0 VN
M 0 D
M 0 DN
M0 DS
M 0 DSN
M°KL
M°KM
M°KS
M°KS
M 0 LN
M 0 LN
M 0 LR
M 0 LR

Cross, Krost
Crews, Cruz, Kruse
Christensen, Christiansen, Christianson
Loe, Loewe, Low, Lowe
Lea, Lee, Leigh
Lloyd, Loyd
Litle, Littell, Little, Lytle
Ledterman, Letterman
Leach, Leech, Leitch
Lucas, Lukas
Laughlin, Loughlin
Lawler, Lawlor
Lamb, Lamm
Lemen, Lemmon, Lemon
Layman, Lehman, Lehmann
Lind, Lynd, Lynde
Lion, Lyon
Lin, Linn, Lynn, Lynne
Lain, Laine, Laing, Lane, Layne
Lang, Lange
London, Lundin
Lindsay, Lindsey, Lindsley, Linsley
Lawry, Lowery, Lowrey, Lowry
Lawrence, Lowrance
Laurence, Lawrance, Lawrence, Lorence, Lorenz
Larsen, Larson
Lewis, Louis, Luis, Luiz
Lacey, Lacy
Leicester, Lester
Levey, Levi, Levy
Leavett, Leavitt, Levit
Lavell, Lavelle, Leavelle, Loveall, Lovell
Lavin, Levin, Levine
Mead, Meade
M oretton, Morton
Mathews, Matthews
Madison, Madsen, Matson, Matteson, Mattison, Mattson
Michael, Michel
Meacham, Mechem
Marques, Marquez, Marquis, Marquiss
Marcks, Marks, Marx
Maloney, Moloney, Molony
Mullan, Mullen, Mullin
Mallery, Mallory
Moeller, Moller, Mueller, Muller

M0 LR
M 0 LS
M0 N
M0 NR
M0 NR
M0 NSN
M0 R
M0 R
M0 R
M0 R
M0 R
M0 RF
M0 RL
M 0 RN
M 0 RS
M0 RS
MK0

MK0

MK0

MK 0

MK0 L
MK0 LF
MK0 LM
MK 0 N
MK0 NR
MK0 NS
MK0 NS
MK0 R
MK0 R
MKD0 NL
MKF 0 RLN
MKF 0 RSN
MKL0 D
MKL0 KLN

MKL0 LN
MKL 0 N
MKL•N
MKL0 S
MKM 0 LN
MKN°L
MKR•o
N°KL
N°KLS
N°KLS

Algorithm for Name CompressionjDOLBY 271

Millar, Miller
Miles, Myles
Mahan, Mann
Miner, Minor
Monroe, Munro
Monson, Munson
Murray, Murrey
Maher, Maier, Mayer
Mohr, Moor, Moore
Meyers, Myers
Meier, Meyer, Mieir, Myhre
Murphey, Murphy
Merrell, Merrill
Marten, Martin, Martine, Martyn
Meyers, Myers
Maurice, Morris, Morse
McCoy, McCaughey
Magee, McGee, McGehee, McGhie
Mackey, MacKay, Mackie, McKay
McCue, McHugh
Magill, McGill
McCollough, McCullah, McCullough
McCallum, McCollum, McColm
McKenney, McKinney
Macintyre, McEntire, Mcintire, Mcintyre
MacKenzie, McKenzie
Maginnis, McGinnis, McGuinness, Mcinnes, Mcinnis
Maguire, McGuire
McCarthy, McCarty
MacDonald, McDonald, McDonnell
MacFarland, MacFarlane, McFarland, McFarlane
MacPherson, McPherson
MacLeod, McCloud, McLeod
MacLachlan, Maclachlin, McLachlan, McLaughlin,

McLoughlin
McClellan, McClelland, McLellan
McClain, McClaine, McLain, McLane
MacLean, McClean, McLean
McCloskey, McClosky, McCluskey
MacMillan, McMillan, McMillin
MacNeal, McNeal, McNeil, McNeill
Magrath, McGrath
Nichol, Nicholl, Nickel, Nickle, Nicol, Nicoll
Nicholls, Nichols, Nickels, Nickles, Nicols
Nicholas, Nicolas

272 Journal of Library Automation Vol. 3/4 December, 1970

N°KLSN
N°KSN
N°L
N°LSN

N°MN
N°RS
N°SBD
p•n
P 0 DRSN
p•c
P0 LK
P0 LSN
p•N
p•R
p•R
P0 RK
P 0 RKS
p•Rs
r•Rs
p•Rs
P0 RSN
PR°KR
PR0 NS
PR0 R
R•
R•
R 0 BNSN
R•n
R•n
R 0 D
R0 DR
R•ns
R 0 GN
R•GR
R°K
R°K
R°KR
n•L
R0 MNGTN
R0 MR
n•Ms
n•N
R0 NR
R•s

Nicholsen, Nicholson, Nicolaisen, Nicolson
Nickson, Nixon
Neal, Neale, Neall, Neel, Neil, Neill
Neilsen, Neilson, Nelsen, Nelson, Nielsen, Nielson,

Nilson, Nilssen, Nilsson
Neumann, Newman
Norris, Nourse
Nesbit, Nesbitt, Nisbet
Pettee, Petty
Peterson, Pederson, Pedersen, Petersen, Petterson
Page, Paige
Polak, Pollack, Pollak, Pollock
Polson, Paulsen, Paulson, Poulsen, Poulsson
Paine, Payn, Payne
Parry, Perry
Parr, Paar
Park, Parke
Parks, Parkes
Pierce, Pearce, Peirce, Piers
Parish, Parrish
Paris, Parris
Pierson, Pearson, Pehrson, Peirson
Prichard, Pritchard
Prince, Prinz
Prior, Pryor
Roe, Rowe
Rae, Ray, Raye, Rea, Rey, Wray
Robinson, Robison
Rothe, Roth
Rudd, Rood, Rude
Reed, Read, Reade, Reid
Rider, Ryder
Rhoades, Rhoads, Rhodes
Regan, Ragon, Reagan
Rodgers, Rogers
Richey, Ritchey, Ritchie
Reich, Reiche
Reichardt, Richert, Rickard
Reilley, Reilly, Reilli, Riley
Remington, Rimington
Reamer, Reimer, Riemer, Rimmer
Ramsay, Ramsey
Rhein, Rhine, Ryan
Reinhard, Reinhardt, Reinhart, Rhinehart, Rinehart
Reas, Reece, Rees, Reese, Reis, Reiss, Ries

R0 S
R0 S
R0 S
R•vs
s•BR
S°FL
s•FN
S°FNS
S°FNSN
S°FR

S°FR
s•cL
S0 GLR
s•K
s•Ks
s•L
s•L
s•LR
s•Ls
s•Lv
s•LvR
S 0 MKR

S 0 MN
S0 MN
s•MRS
s·Ms
s•N
S0 N
S 0 NR
S0 NRS
S0 PR
s·R
s·R
s·R
S0 R
S0 R
s•RL
S0 RLNG
s•RMN
S0 RN
s•RR
sos
SM 0 D

Algorithm for Name CompressionjDOLBY 273

Rauch, Rausch, Roach, Roche, Roush
Rush, Rusch
Russ, Rus
Reaves, Reeves
Seibert, Siebert
Schofield, Scofield
Stefan, Steffan, Steffen, Stephan, Stephen
Steffens, Stephens, Stevens
Steffensen, Steffenson, Stephenson, Stevenson
Schaefer, Schaeffer, Schafer, Schaffer, Schafer,

Shaffer, Sheaffer
Stauffer, Stouffer
Siegal, Sigal
Sigler, Ziegler
Schuck, Shuck
Sachs, Sacks, Saks, Sax, Saxe
Seeley, Seely, Seley
Schell, Shell
Schuler, Schuller
Schultz, Schultze, Schulz, Schulze, Shults, Shultz
Silva, Sylva
Silveira, Silvera, Silveria
Schomaker, Schumacher, Schumaker, Shoemaker,

Shumaker
Simon, Symon
Seaman, Seemann, Semon
Somers, Sommars, Sommers, Summers
Simms, Sims
Stein, Stine
Sweeney, Sweeny, Sweney
Senter, Center
Sanders, Saunders
Shepard, Shephard, Shepheard, Shepherd, Sheppard
Stahr, Star, Starr
Stewart, Stuart
Storey, Story
Saier, Sayre
Schwartz, Schwarz, Schwarze, Swartz
Schirle, Shirley
Sterling, Stirling
Scheuermann, Schurman, Sherman
Stearn, Stem
Scherer, Shearer, Sharer, Sherer, Sheerer
Sousa, Souza
Smith, Smyth, Smythe

274 Journal of Library Automation Vol. 3/4 December, 1970

SM 0 D
SN°DR
SN°L
SP 0 LNG
SP0 R
SP0 R
SR0 DR
SR0 DR
T0 D
T 0 MSN
T0 RL
TR0 S
v·L
v·L
v·R
w•o
W 0 DKR
w·nL
w·nMN
W 0 DR
W 0 DRS
W 0 GNR

W 0 L
W 0 L
W 0 L
W 0 LBR
W 0 LF
W 0 LKNS
W 0 LKS
W 0 LN
W 0 LR
W 0 LRS
W 0 LS
W 0 LS
W 0 LS
W 0 LSN
W 0 N
W 0 R
W 0 R
W 0 RL
W0 RNR
W 0 S
w·sMN

Schmid, Schmidt, Schmit, Schmitt, Smit
Schneider, Schnieder, Snaider, Snider, Snyder
Schnell, Snell
Spalding, Spaulding
Spear, Speer, Speirer
Spears, Speers
Schroder, Schroeder, Schroeter
Schrader, Shrader
Tait, Tate
Thomason, Thompson, Thomsen, Thomson, Tomson
Terrel, Terrell, Terrill
Tracey, Tracy
Vail, Vaile, Vale
Valley, Valle
Vieira, Vierra
White, Wight
Whitacre, Whitaker, Whiteaker, Whittaker
Whiteley, Whitley
Whitman, Wittman
Woodard, Woodward
Waters, Watters
Wagener, Waggener, Wagoner, Wagner, Wegner,

Waggoner
Willey, Willi
Wiley, Wylie
Wahl, Wall
Wilber, Wilbur
Wolf, Wolfe, Wolff, Woolf, Woulfe, Wulf, Wulff
Wilkens, Wilkins
Wilkes, Wilks
Whalen, Whelan
Walter, Walther, Wolter
Walters, Walthers, Wolters
Wallace, Wallis
Welch, Welsh
Welles, Wells
Willson, Wilson
Winn, Wynn, Wynne
Worth, Wirth
Ware, Wear, Weir, Wier
Wehrle, Wehrlie, Werle, Worley
Warner, Werner
Weis, Weiss, Wiese, Wise, Wyss
Weismann, Weissman, Weseman, Wiseman,

Wismonn, Wissman

Algorithm for Name CompressionjDOLBY 275

REFERENCES

1. Cox, N.S.M.; Dolby, J. L.: "Structured Linguistic Data and the
Automatic Detection of Errors." In Advances in Computer Type­
setting (London: Institute of Printing, 1966), pp. 122-125.

2. Cox, N.S.M.; Dews, J. D.; Dolby, J. L.,: The Computer and the
Library (Hamden, Conn.: Archon Press, 1967).

3. Dolby, J. L.; Forsyth, V. J.; Resnikoff, H. L.: Computerized Library
Catalogs: Their Growth, Cost and Utility (Cambridge, Massachu­
setts: The M.I.T. Press, 1969).

4. Becker, Joseph; Hayes, Robert M.: Information Storage and Re­
trieval (New York: Wiley, 1963), p. 143.

5. Davidson, Leon: "Retrieval of Misspelled Names in Airlines Pas­
senger Record System," Communications of the ACM, 5 (1962),
169-171.

6. Blair, C. R.: "A Program for Correcting Spelling Errors," Informa­
tion & Control, 3 (1960), 60-67.

7. Schwartz, E. S.: An Adaptive Information Transmission System
Employing Minimum Redundancy Word Codes (Armour Research
Foundation Report, April 1962). (AD 274-135).

8. Bourne, C. P.; Ford, D.: "A Study of Methods for Systematically
Abbreviating English Words and Names," Journal of the ACM,
8 (1961), 538-552.

9. Kessler, M. M., "The "On-Line" Technical Information System at
M.I.T.", in 1967 IEEE International Convention Record. (New York:
Institute of Electrical and Electronic Engineers, 1967), pp. 40-43.

10. Kilgour, F. G.: "Retrieval of Single Entries from a Computerized
Library Catalog File," American Society for Information Science,
Proceedings, 5 (1968), 133-136.

11. Nugent, W. R.: "Compression Word Coding Techniques for In­
formation Retrieval," Journal of Library Automation, 1 (December
1968), 250-260.

12. Rothrock, H. I.: Computer-Assisted Directory Search; A Dissertation
in Electrical Engineering. (Philadelphia: University of Pennsylvania,
1968).

13. Ruecking, F. H.: "Bibliographic Retrieval from Bibliographic In­
put; The Hypothesis and construction of a Test," Journal of Library
Automation, 1 (December 1968), 227-238.

14. Tukey, J. W.: A Tagging System for Journal Articles and Other
Citable Items: A Status Report (Princeton, N.J.: Statistical Tech­
niques Research Group, Princeton University, 1963).

15. Resnikoff, H. L.; Dolby, J. L.: A Proposal to Construct a Linguistic
and Statistical Programming System, (Los Altos, Cal.: R & D Con­
sultants Company, 1967).

