id author title date pages extension mime words sentences flesch summary cache txt cord-287349-1zcq7kzx Chen, James Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex 2020-07-28 .txt text/plain 2959 215 53 title: Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. The analogous structural 234 arrangement leads us to propose that the SARS-CoV-2 RdRp may backtrack, generating a single-235 stranded RNA segment at the 3'-end that would extrude out the RdRp secondary channel 236 Table S1 ; Video S1). This aspect of helicase function could provide the NTP-296 dependent motor activity necessary to backtrack the RdRp. In cellular organisms, DdRp 297 backtracking plays important roles in many processes, including the control of pausing during 298 transcription elongation, termination, DNA repair, and fidelity (Nudler, 2012) . Structural Basis for RNA Replication by the SARS-CoV-2 Polymerase ./cache/cord-287349-1zcq7kzx.txt ./txt/cord-287349-1zcq7kzx.txt