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Abstract—In this paper, we proposed different comparable 

reconfigurable hardware implementations for the radix-8 fast 

two operands multiplier coprocessor using Karatsuba method 

and Booth recording method by employing carry save (CSA) 

and kogge stone adders (KSA) on Wallace tree organization. 

The proposed designs utilized                        

family with target chip device                 along 

with            simulation package. Also, the proposed 

designs were synthesized and benchmarked in terms of the 

maximum operational frequency, the total path delay, the total 

design area and the total thermal power dissipation. The 

experimental results revealed that the best multiplication 

architecture was belonging to Wallace Tree CSA based Radix-

8 Booth multiplier (    ) which recorded: critical path 

delay of          , maximum operational frequency of 

         , hardware design area (number of logic elements) 

of          , and total thermal power dissipation estimated 

as          . Consequently,     method can be 

efficiently employed to enhance the speed of computation for 

many multiplication based applications such embedded system 

designs for public key cryptography. 

Keywords-Cryptography; Computer Arithmetic; FPGA 

Design; Hardware Synthesis; Kogge-Stone Adder (KSA); Radix-

8 Booth Recording; Karatsuba Multiplier; Wallace Tree 

 

I. INTRODUCTION 

Recently, the vast promotion in the field of 
information and communication technology (ICT) such 
as grid and fog computing has increased the inclination 
of having secret data sharing over the existing non-
secure communication networks. This encouraged the 

researches to propose different solutions to ensure the 
safe access and store of private and sensitive data by 
employing different cryptographic algorithms 
especially the public key algorithms [1] which proved 
robust security resistance against most of the attacks 
and security halls. Public key cryptography is 
significantly based on the use of number theory and 
digital arithmetic algorithms.  

Indeed, wide range of public key cryptographic 
systems were developed and embedded using hardware 
modules due to its better performance and security. 
This increased the demand on the embedded and 
System-on Chip (    ) [2] technologies employing 
several computers aided (   ) tools along with the 
configurable hardware processing units such as field 
programmable gate array (     ) and application 
specific integrated circuits (     ). Therefore, 
considerable number of embedded coprocessors design 
were used to replace software based (i.e. programming 
based) solutions of different applications such as image 
processors, cryptographic processors, digital filters, 
low power application such as [3] and others. The 
major part of designing such processors significantly 
encompasses the use computer arithmetic techniques in 
the underlying layers of processing.  

Computer arithmetic [4] or digital arithmetic is the 
science that combines mathematics with computer 
engineering and deals with representing integers and 
real values in digital systems and efficient algorithms 
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for manipulating such numbers by means hardware 
circuitry and software routines. Arithmetic operations 
on pairs of numbers x and y include addition (   
     y), subtraction (       –   ), multiplication 
(         ), and division (         ). Subtraction 
and division can be viewed as operations that undo the 
effects of addition and multiplication, respectively. 
Multiplication operation is considered as a core 
operation that affect the performance of any embedded 
system. Therefore, the use of fast multiplier units will 
result in enhancements in the overall performance of 
the system. Recently, several solutions were proposed 
for multiplication algorithms while few of them were 
efficient [5]. 

A multiplication algorithm [6] is method to find the 
product of two numbers, i.e.       . Multiplication 
is an essential building block for several digital 
processors as it requires a considerable amount of 
processing time and hardware resources. Depending on 
the size of the numbers, different algorithms are in use. 
Elementary-school grade algorithm was multiplying 
each number digit by digit producing partial sum with 
complexity of      ). [5]For larger numbers, more 
efficient algorithms are needed. For example, let 
        integers to be multiplied with       equal to 
1k bits, thus                        multiplications. 
However, more efficient and practical multiplication 
algorithms will be discussed in the following 
subsections. 

In this paper, we report on several fast alternative 
designs for Radix-8 based multiplier unit including: 
Radix-8 CSA Based Booth Multiplier, CSA Based 
Radix-8 Booth, Wallace Tree Karatsuba Multiplier, 
CSA Based Radix-8 Booth, KSA Based Karatsuba 
Multiplier, CSA Based Radix-8 Booth, With 
Comparator Karatsuba Multiplier, Sequential 64-Bit 
CSA Based Radix-8 Booth Multiplier, 64-bit Wallace 
Tree CSA based Radix-8 Booth multiplier (WCBM). 
The remaining of this paper is organized as follows: 
Section 2m discusses the core components of efficient 
multiplier design. Section 3,provides the proposed 
design alternatives of Radix-8 based multiplier, Section 
4, presents the synthesizing results and analysis, and, 
finally, Section 5 concludes the paper. 

II. CORE DESIGN COMPONENTS-REVIEW 

Two operands-multiplication is a substantial 
arithmetic operation since it plays a major role in the 
design of many embedded and digital signal processors 
[7]. Therefore, the efficient design and implementation 
of a fast multiplier unit is on demand. In this paper, we 
propose a competitive reconfigurable multiplier design 

using scalable and efficient modules. Thus, the 
following subsections reviews the core design 
components for the proposed multiplier 
implementation unit. 

 
Figure 1. Carry save Adder: (a) Top View Design (b) Internal 

Architecture 

A. Carry save Adder (CSA) 

CSA [4] is a fast-redundant adder with constant 
carry path delay regardless of the number of operands’ 
bits. It produces the result as two-dimensional vectors: 
sum vector (or the partial sum) and carry vector (or 
partial carry). The advantage of CSA is that the speed 
is constant regardless the number of bits. However, its 
area increases linearly with the number of bits. The top 
view of the CSA unit along with its internal logic 
design architecture are provided in Fig.1 below. 

In this work, we have implemented the CSA adder 
using VHDL code for different bit sizes ranges from 8-
bits through 64-bits [8]. The synthesize results of total 
delay in (  ) and area in Logic Elements (LEs) were 
analyzed and reported in [8] and they are illustrated in 
Fig.2. These results were generated using 
                software [9], simulated for 
                          model [10] and they 
highly conform theoretical evaluation of CSA 
operation since the delay time is almost equal for all 
bits. However, the area is almost double for each 
number of bits. Also, the timing estimation of    
     CSA was generated via           Time 
Analyzer tool provided in the                package. 
Accordingly, the critical path delay is          which 
is data arrival time while the data delay is only 2.866 
ns which provide a frequency of        .Finally, to 
verify the performance of CSA, we have compared it 
with the well-known Carry LockAhead Adder (CLA) 
in terms of area and delay. CLA is a carry propagation 
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adder (CPA) with logarithmic relation between the 
carry propagation delay and the number of bits in 
operands.  

 

Figure 2. Delay-Area analysis of CSA vs CLA implementations (8–64 bit) 

The simulation results of both CSA and CLA is 
provided in Fig.2 shows that CSA is superior in both 
Area and speed. It has almost a constant time delay and 
relatively less area than CLA. Whereas CLA time 
delay increases as the number of bit increases but not 
much as the area size.  

B. Kogge-Stone Adder (KSA) 

KSA is a fast two operands parallel prefix adder 
(PPAs) [11] that executes addition on parallelized 
manner. PPAs are just like CLA but with an 
enhancement in the carry propagation stage (called the 
middle stage). There are five different variations of 
PPAs namely: Ladner-Fischer Adder (LFA), Brent-
Kung Adder (BKA), Kogge-Stone Adder (KSA), 
Hans-Carlson Adder (HCA), and Sklansky Adder 
(SkA). These adders differ by the tree structure design 
to optimize certain aspects such as, performance, 
power, area size, and fan in/out.  

To verify the performance of all PPAs, we have 
implemented them on FPGA and the experimental 
results [6] showed that KSA utilizes larger area size to 
achieve higher performance comparing among all other 
five PPAs. Thus, we decided to consider KSA as our 
basic carry propagation adder (CPA) to finalize the 
redundant results and to build up many other units that 
are in-need for conventional adder. In short, the 
simulation results of [6] showed that KSA leading the 
other adders as it has the smallest time delay with only 
4.504. This result is very useful and conforms the 
theatrical modeling of KSA which has the least number 
of logic levels. Like all PPAs, KSA functionality 
consists of three computational stages as illustrated in 
Fig.3, as follows: 

 Pre-processing stage: The computation of 
generate and propagate of each bit from A and B 
are done in this step. These signals are given by 
the logic equations:                 and       
           

 Carry generation network: PPA differentiates 
from each other by the connections of the 
network. It computes carries of each bit by using 
generate and propagate signals from previous 
block. In this block two blocks are defined group 
generation and propagation (GGP), in addition to 
group generation only (GGO), as shown in Fig.3. 
Logic blocks used for the calculation of generate 
and propagate bits can be describe by the 
following logic equations:                 and   
                       ), Where the 
generation group have only logic equation for 
carry generation:                       . 

 Post processing (Calculating the Sum):This is 
the last step and is common to all adders of this 
family (carry look ahead). It involves 
computation of sum bits. Sum bits are computed 
by the logic given in:             . The top 
view and the internal logic circuit is provided in 
the Fig.3.  

C. Fast Multi-Operands Addition 

Addition operation is not commonly used to add 
two operands only, instead, it is more involved with 
multiplication and inner product computations [12]. 
The use of regular two operands adders leads to 
intermediate results before getting the last answer 
which affect the performance or the time delay of a 
system. Therefore, Multi-operand adders are manly 
studied to reduce this problem. Wallace and Dadda 
trees [13] are considered as two variations of high-
performance multi-operands addition. Fig.4. shows the 
dot notation to represent the digit positions or 
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alignments (instead of using the value which is quite 
useful) for the use of Multi-operand addition in 
multiplication and inner-product computation. 

 

Figure 3. Kogge Stone Adder: (a) Top View Design of KSA (c) KSA 
Stages (c) Group generation and propagation  

In this work, we have adopted a CSA based 
Wallace tree since it confirmed better operands 
organization to improve the total addition delay [8]. 
We have implemented two CSA Wallace Trees: 10-
operands addition and 22-operands addition. The 
structure logic diagram of 10 operands is given in Fig.5. 
It’s clearly seen that the Wallace tree unit is designed 
behaviorally (FSM is generated). 

 

Figure 4. Dot notation of Multi-operand addition for multiplication and 

inner-product computation 

D. Karatsuba Multiplier 

To enhance the performance of multiplication for 
large operands (i.e. 1024-bit size), a re-organization 
process can be adopted for the multiplication operands 
to utilize the maximum possible parallelism to enhance 
the multiplication time. Karatsuba algorithm [14] is 
pipelined multiplication process used mainly to 
construct the high precision multipliers form multiple 
small precision multiplier blocks by exploiting the 
maximum available parallelism between the 
multiplication blocks. The basic idea of Karatsuba 
algorithm is illustrated in fig.6 and Karatsuba 
algorithm can be defined as follows:  

Let     be integers and   is the base (Radix_2) 
and     where n: the number of digits, then: 

1) Re-write         as follows:  
      

    and      
      

2) Calculate Product      as follows:  
     

          , where: 
         ,                          

   ,               ,          

A more efficient implementation of Karatsuba 
multiplication can be accomplished as:  

                                    
 

 
Figure 5. Multi-operand addition for 10 operands. 
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Figure 6. Aligning Partial Products. 

E. Magnitude Comparator 

The magnitude (or digital) comparator is a 
hardware electronic device that takes two numbers as 
input in binary form and determines whether one 
number is greater than, less than or equal to the other 
number. Like that in binary addition, the efficient 
comparator can be implemented using G (generate) and 
P (propagate) signal for comparison.  Basically, the 
comparator involves two 2-bits:     &     can be 
realized by: 

 1 1 1 1 0 0( ).( )BigB A B A B A B  
 (1) 

 1 1 0 0EQ ( ).( )A B A B  
 (2) 

For A<B, “BBig, EQ” is “1,0”. For A=B, “BBig, 
EQ” is “0,1”. Hence, for A>B, “BBig, EQ” is “0,0”. 
Where BBig is defined as output A less than B 
(A_LT_B).Comparing Eq. (1) and (2) with carry signal 
(3): 

 
( ). .out in inC AB A B C G P C    

 (3) 

Where A & B are binary inputs Cin is carry input, 
Cout is carry output, and G & P are generate & 
propagate signals, respectively. Now, after comparing 
equations (1) & (3), we got: 

 1 1 1G A B
, 1 1 1( )EQ A B 

,   0 0inC A B
 (4) 

Cin can be considered as G0. For this, encoding 
equation is given as: 

 [ ] [ ] [ ]i i iG A B
 (5) 

 [ ] [ ] [ ]( )i i iEQ A B 
 (6) 

Substituting the two values from equations (5) & (6) 
in (1) & (2) results in:  

 [2 j 1:2 j] [2 j 1] [2 j 1] [2 ].Big jB G EQ G   
 (7) 

 [2 j 1:2 ] [2 j 1] [2 j].jEQ EQ EQ 
 (8) 

 &  signals can be further combined to form group 
 &   signals. For instance, for 64-bit comparator, 
    &   can be computed as: 

 

6362

[63:0] 63

0 1

.Big k m

k m k

B G G EQ
  

 
   

 
 

 (9) 

 

63

[63:0]

0

m

m

EQ EQ



 (10) 

Fig 7. Shows the complete design of an 8-bit 
comparator as an example of this techniques where: i= 
0…7, j = 0…3.  

III. PROPOSED MULTIPLIER DESIGN ALTERNATIVES 

Fundamentally, multiplication operation (along 
with fast addition) is a significant unit in almost all 
cryptographic coprocessors. For instance, in the design 
of SSC Crypto-processor[15], the multiplication 
primarily used to compute the square parameter       
the public key (     and the modulus (   . Also, in 
the design of RSA Crypto-processor, the multiplier is 
used to compute the modulus (     and the Euler 
function                 [16]. One more 
example, is the need for fast multipliers at several 
computation stages of ECC cryptosystem [17]. Indeed, 
wide range of methods have been proposed to address 
the efficient design of fast two operands arithmetic 
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multiplier.  In this paper, we have spent an extensive 
time to design an efficient multiplier by trying several 
variations of different multiplier design specifications. 
The first design was the implementation of Radix-8 
Booth Encoding Multiplier. Then, we tried many 

variations to employ this multiplier with different 
design methods. In the next subsections, we provide 
six design alternatives of the proposed multiplier to 
come up with the most cost-effective multiplier design. 
We finally report on the final implemented design. 

 

 

Figure 7. The complete design of8- Bit Comparatorincluding Pre- Encoding circuit and Comp circuit 

 

A. Radix-8 CSA Based Booth Multiplier 

Unlike Binary radix booth encoder, Radix-8 booth 
encodes each group of three bits as shown in table 1. 
The encoding technique uses shift operation to produce 
2A and 4A while 3A is equal to 2A+A. The logic 
diagram of implementing CSA based Radix-8 booth 
multiplier is shown in Fig. 8. The use of CSA provides 
very powerful performance with limited area cost. The 
partial products for radix-2 is n (where n is the number 
of operand bits). However, for radix 8 the number of 
partial products is only n/3. 

 

 

 

 

 

 

 

 

TABLE I. RADIX-8 BOOTH ENCODING. 

Inputs (bits of M-bit multiplier) Partial Product 

                  PPRi 

0 0 0 0 0 

0 0 0 1 A 

0 0 1 0 A 

0 0 1 1 2A 

0 1 0 0 2A 

0 1 0 1 3A 

0 1 1 0 3A 

0 1 1 1 4A 

1 0 0 0 -4A 

1 0 0 1 -3A 

1 0 1 0 -3A 

1 0 1 1 -2A 

1 1 0 0 -2A 

1 1 0 1 -A 

1 1 1 0 -A 

1 1 1 1 0 

 

As can be seen from fig.8, the multiplier accepts 
two 32-bit operands ( and  ) and stores the operand ( ) 
in a shift register to select the group bits used in 
encoding whereas the operand ( ) processed with the 
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booth encoder. The output of encoding stage is added 
via the sequential CSA adder and the result is provided 
in a redundant representation (vector sum and vector 
carry).  

Radix-8 Booth 

Encoder

X

Shift Register

A

CSA_64bit

Partial SumPartial Carry

6464

64

32

3

32

 

Figure 8. Design of Radix-8 Booth 32-bit multiplier 

Reset

Mul_Gen

CSA
Store

Data

Output

Start

Enable

i<=11

i>11

 

Figure 9. State machine diagram for 32-bit Booth multiplier. 

Also, Fig.9 illustrates the FSM diagram of 32-bit 
booth multiplier. It starts with Reset_State, where all 
signals and variables are cleared (i.e. reset). Next state 
is Mul_Gen, where encoding is occurred. After that, 
the generated vector is added to the previous results of 
CSA state. Fourth, results are stored in Store_State and 
moves back to Mul_Gen state in loop until all the bits 
are selected and encoded. Finally, the output results are 
provided in Output state.Note that in Radix-8 encoding 

the number of generated partial product vectors are 
computed by dividing the number of bits over 3, since 
each three bits are selected and used for encoding. 

B. CSA Based Radix-8 Booth, Wallace Tree 
Karatsuba Multiplier 

In this method, we combine the benefits of the bit 
reduction of radix 8 booth along with the parallelism of 
CSA based Wallace tree as well as the pipelining 
process of Karatsuba multiplication. Thus, this design 
achieved minimum path delay and minimized area (i.e. 
the best performance). However, redundancy in this 
design produced one critical problem regarding the 
middle carry at the edges of blocks that affects the 
results. Fig.10 illustrates the flow diagram for this 
design. Here, we first designed a 64-bit Karatsuba 
Multiplier using a 32-bit CSA based radix-8 Booth for 
partial products calculation (as for our target design 
and since we are implementing 64-bit multiplier; m 
was chosen to be 32 bits (half size)). First, the entered 
two operands are divided into halves             . 
Next, they are fed into the Booth multiplier to compute 
the partial products as given in Karatsuba formula. 
Since the results are redundant and we have 5 partial 
products according to Karatsuba:  

                               .  

Thus, 10 partial products are generated. In the final 
stage, a CSA based Wallace tree was implemented to 
be used for adding the resulted partial products. Final 
result is represented redundantly as vector sum and 
vector carry. This design achieves minimum path delay 
with limited area. 

However, redundancy in this design produces one 
critical problem that affects the results. As a rule-of-
thumb, if we multiply two       numbers (i.e. p and 
q), the multiplication result will be increased to 
      . However, this is not the case when using 
redundant systems since the result is stored as two 
       vectors and adding the two vectors to we tend 
to obtain the conventional product might result in 
         . This additional bit brings up a new 
problem in the preliminary design. Now, this problem 
can be solved by discarding the last carry when 
converting back to conventional representation. 
However, in Karatsuba algorithm the numbers are split 
into 32-bit (original size is 64). The result must be 128-
bit, but in Karatsuba case will be 10 partial product 
vectors of 64-bit shifted in such a way that adding 
those vectors will result in 128-bit. Thus, discarding all 
the generated carry when converting back to 
conventional system leads to error since only the carry 
generated of adding the two vectors corresponding to 
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the same variable (or the same partial product in this 
case) needs to be discarded. Other generated carries 

must be considered. Fig.11. demonstrate this problem 
graphically.  

 

Generate Karatsuba 

operands 

32 bit Rad.8 Booth 

Multiplication

Four Levels CSA Tree

Input Two 64 Bit operands

Output 128 Bit Sum and Carry 

Vectors

6 operands 32 Bit

8 Vectors 64 Bit

 

Figure 10. Design of 64-bit CSA Based Radix-8 Booth, Wallace Tree Karatsuba multiplier. 

32-bit Booth

Radix-8

32-bit Booth

Radix-8

32-bit Booth

Radix-8

X=x1B+x2, 64-bit (32-bit each)

Y=y1B+y2, 64-bit (32-bit each)

x1 y1 x0 y0 (x1-x0) (y1-y0)

ps1 pc1 ps2 pc2 ps3 pc3

B2(ps1, pc1) B(ps1, pc1) B(ps2, pc2) 1(ps2, pc2)
B(ps3, pc3)

 

Figure 11. Graphical approaches to demonstrate the carry error (the mid-carry problem), here we have two cases:Case I- ps1+ pc1 = might result in carry, 
result = 65-bit (wrong). Carry must be discarded and Case II- ps1+ ps2 = might result in carry, result = 65-bit (correct). Carry must be considered. 

 

Eventually, the mid-carry problem was solved by 
either using 64-bit CSA Based Radix-8 Booth, KSA 
Based Karatsuba multiplier or using 64-bit CSA Based 
Radix-8 Booth, with comparator Karatsuba multiplier. 
However, both solutions have added more overhead to 
design cost; therefore, this solution has been excluded. 

Both solutions are discussed in the following 
subsections. 

 

1) CSA Based Radix-8 Booth, KSA Based 
Karatsuba Multiplier. 
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Since the carry to be eliminated is the generated one 
from booth multiplier, a first thought is to exchange the 
CSA adder with KSA adder to convert back the two 
vectors into one 64-bit number and discard any 
generated carry. All the 8 vectors are reduced into five 
64-bit vectors in parallel. This stage helps to eliminate 
the false carry without the need to do any further 
examination. KSA is a fast adder, thus this design 
maintains its high performance utilizing more logic 
elements. The logic diagram of the design is shown in 
Fig.12. 

 

2) CSA Based Radix-8 Booth, With Comparator 
Karatsuba Multiplier. 

Another noticeable design option can solve the mid-
carry problem is to use a 64-bit comparator to test if 
the two vectors will generate a carry if yes, then do the 
correction step before input the 10 vectors to CSA Tree. 
After Booth multiplication stage, connect the vector 
sum and vector carry that may produce carry error to 
the inputs of 64-Bit comparator unit, then perform 
correction if needed. Finally, all vectors added using 
CSA tree. The complete solution is depicted in fig.13.  

Generate Karatsuba 

operands 

32 bit Rad.8 Booth 

Multiplication

64 Bit KSA Adder

Input Two 64 Bit operands

Output 128 Bit Sum and Carry 

Vectors

Three Levels CSA Adder

6 operands 32 Bit

8 Vectors 64 Bit

5 Operands 64 Bit

 

Figure 12. Design of 64-bit: 64-bit CSA Based Radix-8 Booth, KSA Based 

Karatsuba multiplier. 

Generate Karatsuba 

operands 

32 bit Rad.8 Booth 

Multiplication

64 Bit Carry Generate 

and Kill

Input Two 64 Bit operands

64 Bit Comparator Correction circuit

Five Levels CSA Tree

Output 128 Bit Sum and Carry 

Vectors

6 operands 32 Bit10 Vectors 64 Bit

10 Vectors 64 Bit

10 Vectors 64 Bit

 

Figure 13. Karatsuba multiplication based on CSA and comparator. 

Note that the 64-bit comparator can be built with 8 
stages in total recording a total delay of 13 level gate 
delay and area of 317 gates (like the design of 8-bit 
comparator discussed in section.2.5). To predict 
whether the carry will be generated or not, then we 
need to generate 64-Bit G (generate) and K (kill) 
vectors. Thus, we have three cases which might happen 
as follows: 

 Case I: when               0. The carry is 
propagated. Here we need to define the first carry 
state before          . If the state is     , then 
the vector does not need any correction. But, if the 
state is a          state, then we need to subtract 
one from the highest bit (MSB) of any vector to 
prevent the carry to          . 

 Case II:when                     . Here we 
have a    state, so that no need to correction. 

 Case III:when                      .Here is 
a        state and a correction is needed. If this 
happed at highest bit (MSB), then it needs to 
subtract 2 ones. But if it after some          , 
then this is Case I. 

To define the first case, we have used a comparator 
to compare the two vectors         as the comparator 
results: 

      : Generate state happened first or it is the 
first state after propagation 

      : kill state happened first or it is the first 
state after propagation 
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        All states are propagating states, no need 
for correction because we do not have input carry 

3) Comparisons between Design II & Design III 
We investigated both proposed design alternatives 

of Karatsuba based multiplication theoretically in 
terms of critical path delay (using gate delay unit) and 
the area of the multiplier (how many gates used in the 
implementation).  The results are shown in table 2 
below. 

TABLE II. COMPARISON BETWEEN DESIGN II & DESIGN III. 

Design 

Solutions # 

Delay (gate 

delay) 

% 

Optimization 

Area (# 

of gates) 
% Optimization 

Solution I:  

using KSA 

Adder. 

23 +15% 6130  

Solution II: 

using 

Comparator unit. 

27  3712 +50% 

C. Sequential 64-Bit CSA Based Radix-8 Booth 
Multiplier 

This design is accomplished by expanding the 32-
bit booth to 64-bit. The two modules (i.e. 64-bit and 
32-bit Booth) differ only in the number of generated 
partial products. Since radix-8 is used, 22 partial 
products are generated in the new module instead of 11 
while other logic components remained the same. 
Fig.14 shows the logic diagram of new 64-bit 
implementation. This design was implemented and was 
simulated on Altera FPGA Kit recording a path delay 
of 10.701 ns for one loop and since the program runs 
22 times(i.e. 22 partial products), thus the total path 
delay is 235.422 nS. Also, this multiplier requires 3330 
logic elements (LEs).  

Radix-8 Booth 

Encoder

X

Shift Register

A

CSA_64bit

Partial SumPartial Curry

128128

128

64

3

64

 
Figure 14. Design of CSA based Radix-8 Booth 64-bit multiplier. 

IV. SYNTHESIZE RESULTS AND ANALYSIS 

To speed up the performance of sequential 64-Bit 
CSA Based Radix-8 Booth Multiplier, we parallelized 
the addition of partial products produced in the same 
level by using Wallace CSA tree instead of sequential 
CSA to exploit the maximum possible parallelism 
between the partial products to gain in speed and 
enhance the design performance.  That’s it, we end up 
with implementing a 64-bit Wallace Tree CSA based 
Radix-8 Booth multiplier (WCBM). The block 
diagram for the proposed design is shown in Fig.15. (a). 
The comparison with the other design alternatives 
showed that Wallace Tree CSA Based Radix-8 Booth 
Multiplier (WCBM) has decreased the total delay and 
increased the operational speed for the multiplication 
operation. Also, the design is modified to increase the 
frequency be dividing the program to three main states. 

The top view of our implemented WCBM unit is 
given in Fig.15. (b). It’s clearly seen that WCBM unit 
is triggered by CLK signal along with enable line. The 
generated number can be obtained from the output 
portliness “sum” which is 128 bits. Besides the unit 
encompasses three control input signals (enable, reset, 
clk) and two control output signals (Ack and Ready). 
Moreover, the finite state machine (FSM) diagram for 
the implemented WCBM is shown in Fig.15. (c). FSM 
consists of three main phases: Partial product 
generation (Initially, 22 partial products are generated 
by using radix-8 Booth encoding), Wallace tree phase 
(these partial products are added by using 7 levels 
Wallace Tree CSA based) and KSA phase (because the 
result is redundant, KSA is used in the last phase to 
convert it to conventional result). Finally, Fig.16. 
Illustrates a sample numerical example of the proposed 
WCBM that is generated from Quartus II simulation 
tool. 
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Figure 15.  (a) Design Architecture of WCBM (a) Top Level DiagramWCBM (C) FSM Diagram for WCBM. 

 

 

Figure 16. Sample run example of WCBM process of two 64-bit numbers 
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The proposed multiplier implementation has been 
synthesized using Altera Cyclone EP4CGX-22CF19C7 
FPGA kit to analyze several design factors such as 
design area, the total delay of the multiplication unit 
and the thermal power consumption of FPGA 
implementation. We have evaluated the performance of 
the 64-bit Wallace Tree CSA based Radix-8 Booth 
multiplier WCBM module for different data path sizes. 
Timing analysis of the critical clock cycle for the 
implemented WCBM is  

illustrated in Fig.17. It can be seen from the graph 
that the critical path delay is 14.103 ns in which 3.094 
ns for the clock delay and 11.009 ns for the data delay. 
This give a maximum frequency for the circuit of 
90.83 MHz.In addition, the area of the design has 
recorded a constant number of logic elements (i.e. 
14249 LEs) with the total thermal power dissipation 
estimated by using PowerPlay Power analyzer tool of 
Quartus II software of 217.56 mW. 

 

 

Figure 17. Waveform sample of the proposed WCBM data delay

V. CONCLUSIONS AND REMARKS 

Multiplication operation is a core operation that 
domineer the performance of several public 
cryptographic algorithms such as RSA and SSC. In this 
paper, we have thoroughly discussed several design 
alternatives of radix-8 based multiplier unit by 
employing the Karatsuba method and Booth recording 
method with carry save and Kogge stone adders on 
Wallace tree organization. The proposed designs were 
evaluated in terms of many aspects including: 
maximum frequency and critical path delay, design 
area, and the total FPGA power consumption. The 
proposed hardware cryptosystem design is conducted 
using Altera Cyclone FPGA design technology along 
with the help of CAD package of Altera such as 
Quartus II and Modelsim 10.1. To sum up, we have 
successfully implemented and synthesized the Wallace 
Tree CSA Based Radix-8 Booth Multiplier (WCBM) 
module via the target FPGA technology for 64-bits. 

The synthesizer results showed an attractive results in 
terms of several design factors that can improve the 
computation performance for many multiplication 
based applications. 
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