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ABSTRACT
The task-based approach has emerged as a viable way to effectively use modern
heterogeneous computing nodes. It allows the development of parallel applications
with an abstraction of the hardware by delegating task distribution and load
balancing to a dynamic scheduler. In this organization, the scheduler is the most
critical component that solves the DAG scheduling problem in order to select the
right processing unit for the computation of each task. In this work, we extend our
Heteroprio scheduler that was originally created to execute the fast multipole method
on multi-GPUs nodes. We improve Heteroprio by taking into account data locality
during task distribution. The main principle is to use different task-lists for the different
memory nodes and to investigate how locality affinity between the tasks and the
different memory nodes can be evaluated without looking at the tasks’ dependencies.
We evaluate the benefit of our method on two linear algebra applications and a stencil
code. We show that simple heuristics can provide significant performance
improvement and cut by more than half the total memory transfer of an execution.

Subjects Distributed and Parallel Computing
Keywords Scheduling, Task-based, Starpu, HPC, Data locality

INTRODUCTION
High-performance computing (HPC) is crucial to make advances and discoveries in
numerous domains. However, while supercomputers are becoming more powerful, their
complexity and heterogeneity also increase; in 2018, a quarter of the most powerful
supercomputers in the world are equipped with accelerators (see https://www.top500.org/),
and the majority of them (including the top two on the list) uses GPUs in addition
to traditional multi-core CPUs. The efficient use of these machines and their programmability
are ongoing research topics. The objectives are to allow the development of efficient
computational kernels for the different processing units and to create the mechanisms to
balance the workload and copy/distribute the data between the CPUs and the devices.
Furthermore, this complexity forces some of the scientific computing developers to alternate
computation on CPUs or GPUs, but never use both at the same time. This naive parallelization
scheme usually provides a speedup compared to a CPU-only execution, but it ends in
wastage of computational resources and utilization of extra barrier synchronizations.

Meanwhile, the HPC community has proposed several strategies to parallelize applications
on heterogeneous computing nodes with the aim of using all available resources. Among the
existing methods, the task-based approach has gained popularity: mainly because it
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makes it possible to create parallel codes with an abstraction of the hardware by delegating
the task distribution and load balancing to dynamic schedulers. In this method, the
workload is split into inter-dependent computational elements and is managed by a
runtime system (RS). There are several RS reported in the literature (Danalis et al., 2014;
Kale & Krishnan, 1993; Perez, Badia & Labarta, 2008; Gautier et al., 2013; Bauer et al.,
2012; Tillenius, 2015), and each of them has its own specificity and interface. We refer to a
comparative study (Thoman et al., 2018) for a detailed description where the different
aspects and features of RS are categorized. Task-based method is a viable solution to use
modern heterogeneous computing nodes and mix computation between CPU and devices.
Furthermore, the potential of this approach has already been proven on numerous
computational methods. In the task-based method, the scheduler is in charge of the most
important decisions, as it has to decide the order of computation of the ready tasks
(the tasks that have their dependencies satisfied) as well as where those tasks should be
computed. In the present study, we implemented our scheduler inside a RSs called StarPU
(Augonnet et al., 2011), which supports heterogeneous architectures and allows
customizing the scheduler in an elegant manner.

In our previous work, we created the Heteroprio scheduler to execute the fast
multipole method (FMM) using StarPU on computing nodes equipped with multiple
GPUs (Agullo et al., 2016b). Heteroprio was first implemented inside ScalFMM (Bramas,
2016), and it was later included in StarPU. It is publicly available and usable by any
StarPU-based code. In fact, Heteroprio was later used in linear algebra applications
where it demonstrated its robustness and potential, see QrMUMPS (Agullo et al., 2015)
and SpLDLT (Lopez & Duff, 2018). Moreover, it was also the subject of theoretical
studies (Beaumont et al., 2016; Beaumont, Eyraud-Dubois & Kumar, 2017, 2018; Agullo
et al., 2016a), which revealed its advantages and gave a positive theoretical insight on
the performance. However, the original Heteroprio scheduler does not take into account
data locality. The distribution of the tasks—the choice of the processing unit that
will compute a given task—is done without considering the distribution of the data.
Therefore, depending on the applications and the test cases, Heteroprio can not only lead
to huge data movement between CPUs and GPUs but also between GPUs, which
dramatically penalizes the execution. The current work proposed different mechanisms
to consider data locality in order to reduce the data transfers and the makespan.

The contributions of this paper are as follows:

� We summarize the main ideas of the Heteroprio scheduler and explain how it can be
implemented in a simple and efficient manner;

� We propose new mechanisms to include data locality in the Heteroprio scheduler’s
decision model;

� We define different formulas to express the locality affinity for a given task relative to the
different memory nodes. Those formulas are based on general information regarding
the hardware or the data accesses;

� We evaluate our approach on two linear algebra applications, QrMumps and SpLDLT,
and a stencil application, and analyze the effect of the different parameters.
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The rest of the paper is organized as follows. In the section “Background,” we introduce
the task-based parallelization and the original Heteroprio scheduler. Then, in the
section “Introducing Laheteroprio,” we detail our new methods to use data locality and the
different mechanisms of our locality-aware Heteroprio (LAHeteroprio) scheduler.
Finally, we evaluate our approach in the section “Performance Study” by plugging in the
LAHeteroprio inside StarPU to execute two different linear algebra applications using
up to four GPUs.

BACKGROUND
Task-based parallelization
The task-based approach divides an application into interdependent sections, called tasks,
and provides the dependencies between them. These dependencies allow valid parallel
executions, that is, with a correct execution order of the tasks and without race conditions.
This description can be viewed as a graph where the nodes represent the tasks and the
edges represent the dependencies. If the edges represent a relation of precedence between
the tasks, the resulting graph is a direct acyclic graph of tasks. However, this is not the case
when an inter-tasks dependency relation is used, such as a mechanism to express that
an operation is commutative (Agullo et al., 2017). In the paper, we consider graphs of the
form G = (V, E) with a set of nodesV and a set of edges E. Considering t1,t2 ∈ V, there exists
a relation (t1,t2) ∈ E—also written t1 ! t2—if the task t2 can be executed only after the
task t1 is over.

A task t is a computational element that is executable on one or (potentially) several
different types of hardware. When t is created, it incorporates different interchangeable
kernels where each of them targets a different architecture. For example, consider a
matrix-matrix multiplication task in linear algebra: it could be either a call to cuBLAS and
executed on a GPU, or a call to Intel MKL and executed on a CPU, but both kernels return
a result that is considered equivalent. Task t accesses data either in read, read-write or
write and in the rest of the paper we consider equivalent the read-write and the
write accesses. We denote t.data to be the set of data elements that t will access during its
execution. From this information, that is, G = (V, E) and the portability of the tasks,
the scheduler must decide the order of computation and where to execute the tasks.

Task scheduling and related work
Scheduling can be done statically or dynamically, and in both cases, finding an optimal
distribution of the tasks is usually NP complete since the solution must find the best
computing order and the best processing unit for each task (Peter Brucker, 2009).

The static approaches have a view on the complete set of tasks before the beginning of
the execution (Baptiste, Pape & Nuijten, 2001), and thus can use expensive mechanisms to
analyze the relationship between the tasks. Advanced strategies are also used, such as
duplicating tasks to replace communications with computation (He et al., 2019). It is worth
mentioning that these strategies can have significant overhead compared to their benefit
and the execution time of the tasks, which make them unusable in real applications.
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Static scheduling requires performance models, so it can predict the duration of the tasks
on the different architectures and the duration of the communications. Even, if it is
possible to build such systems, they require costly calibration/evaluation stages and their
resulting prediction models are not always accurate, especially in the case of irregular
applications. Moreover, these approaches cannot adapt their executions to the
unpredictable noise generated by the OS or the hardware.

This is why most task-based applications use RSs that are powered with dynamic
scheduling strategies (Akbudak et al., 2018; Sukkari et al., 2018; Moustafa et al., 2018;
Carpaye, Roman & Brenner, 2018; Agullo et al., 2016b). In this case, the scheduler focuses
only on the ready tasks and decides during the execution on how to distribute them. It has
been demonstrated that these strategies are able to deliver high performance with
reduced overhead. The scheduler becomes a critical layer of the RS, at the boundary
between the dependencies manager and the workers, see Fig. 1. We follow the StarPU’s
terminology and consider that a scheduler has an entry point where the ready tasks are
pushed, and it provides a request method where workers pop the tasks to execute.
In StarPU, both pop/push methods are directly called by the workers that either release the
dependencies or ask for a task. Consequently, assigning a task to a given worker means to
return this task when the worker calls the pop method.

As an intuitive example, consider a priority-based scheduler designed to manage
priorities with one task-list per priority. The push method can simply store a newly ready
task t in the right list list[t.priority].push_back(t). Meanwhile, the pop method can iterate
over the lists and when it finds one non-empty list, it pops a task from it. Furthermore,
in the case of heterogeneous computing, a pop must return a task compatible with the
worker that performs the request.

Managing data locality was already a challenge before the use of heterogeneous
computing because of NUMA hardware and a simple scheduling strategy has been
proposed to improve data locality on the NUMA nodes (Al-Omairy et al., 2015). Past work
has introduced distance-aware work-stealing scheduling heuristics within the OmpSs
runtime, targeting dense linear algebra applications on homogeneous x86 hardware. While

Figure 1 Schematic view of task-based runtime system organization. A program can be described
using the sequential task flow (STF) model and converted into tasks/dependencies by the RS. When
dependencies are released, the newly ready tasks are pushed into the scheduler. When a worker is idle, it
calls the pop function of the scheduler to request a task to execute.

Full-size DOI: 10.7717/peerj-cs.190/fig-1
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the method provides a significant speedup, it does not take into account the different data
accesses (read or write) or look at the cache levels to find data replication.

The importance of data locality to move forward with exascale computing has been
emphasized (Unat et al., 2017) with a focus on task-based RSs. The authors shown that
data movement is now the primary source of energy consumption in HPC.

In era of heterogeneous computing, the community has provided various strategies to
schedule graphs of tasks on this kind of architecture, and one of the most famous
is the heterogeneous earliest finish time (HEFT) scheduler (Topcuoglu, Hariri & Wu,
2002). In HEFT, tasks are prioritized based on a heuristic that takes into account a
prediction of the duration of the tasks and the data transfers between tasks. Different
models exist, but on a heterogeneous computing node, the duration of a task can be the
average duration of the task on the different types of processing unit. More advanced
ranking models had been defined (Shetti, Fahmy & Bretschneider, 2013). However, this
scheduler has two limitations that we would like to alleviate. First, it uses a prediction
system, which may need an important tuning stage and may be inaccurate, as we
previously argued. Second, even if ranking a set of tasks can be amortized and beneficial,
re-ranking the tasks to consider new information concerning the ongoing execution
can add a dramatic overhead. This is why we have proposed an alternative scheduler.

Heteroprio
Multi-priorities
Within Heteroprio, we assign one priority per processing unit type to each task, such that a
task has several priorities. Each worker pops the task that has the highest priority for
the hardware type it uses, which are CPU or GPU in the present study. With this
mechanism, each type of processing unit has its own priority space. This allows to continue
using priorities to manage the critical path, and also to promote the consumption of tasks
by the more appropriate workers: workers do first what they are good at.

The tasks are stored inside buckets, where each bucket corresponds to a priority set.
Then each worker uses an indirect access array to know the order in which it should access
the buckets. Moreover, all the tasks inside a bucket must be compatible with all the
processing units that may access it (at least). This allows an efficient implementation. As a
result, we have a constant complexity for the push and complexity of O(B) for the pop,
where B is the number of buckets. The number of buckets B corresponds to the number
of priority groups, which is equal to the number of different operation types in most cases.
A schematic view of the scheduler is provided in Fig. 2.

For illustration, let us consider an application with four different types of task TA, TB, TC

and TC′ (here TC and TC′ can be the same operation but with data of small or large
granularity, respectively). Tasks of types TA, TC and TC′ provide a kernel for CPU and GPU
and thus are executable on both, but tasks of type TB are only compatible with CPUs.
Consequently, we know that GPU workers do not access the bucket where TB tasks are
stored. Then, we consider that the priorities on CPU are PCPU(TA) = 0, PCPU(TB) = 1,
PCPU(TC) = 2 and PCPU(TC′) = 3; on GPU the priorities are PGPU(TA) = 1, PGPU(TC) = 0 and
PGPU(TC′) = 0. We highlight that TC and TC′ have the same priority for GPU workers.
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From this configuration, we end with four buckets: B0 = {TA}, B1 = {TB}, B2 = {TC} and
B3 = {TC′}. Finally, the indirect access arrays are ACPU = {0,1,2,3} and AGPU = {3,2,0} with
AGPU = {2,3,0} being valid as well.

Speedup factors
The speedup factors are used to manage the critical moments when a low number of ready
tasks are available. The idea is to forbid some workers to get a task from a set of buckets
when their corresponding hardware type is not the fastest to compute the buckets’ tasks.
To do so, the type of processing unit that is the fastest in average to execute the bucket’s tasks,
is provided for each bucket. Additionally, we input a number that indicates by how much
this processing unit type is faster compared to the other types of processing units. These
numbers are used to define a limit under which the slow workers cannot pick a task.

As an illustration, let us consider two types of processing units: CPU and GPU. Let Si be
the speedup factor for bucket i and let GPU be the fastest type to compute the task stored
in i. A CPU worker can take a task from bucket i if there are more than NGPU � Si
available tasks in it, where NGPU is the number of GPU workers. For example, if there are
three GPU workers and that a GPU is two times faster in average than a CPU to perform a
given operation, then a CPU worker takes a task only if there are six or more tasks
available. Otherwise, it considers the bucket empty and continues to the next ones to find a
task to compute. This means that for the example given in the section “Multi-Priorities,”
we have two arrays of four items for the different operations, one to tell which
processing units is the fastest, and a second one to provide the speedup. The description of
the example tells us that the GPU cannot compute TA, so CPU are the fastest by default,
and that TC and TC′ are the same operation but with different granularities, such that
the speedup for the GPU will be higher for TC′ than TC. As a results, the arrays could be
Best = {CPU, GPU, GPU, GPU} and Speedup = {1, 1.1, 1.4, 3}.

This system is used for each bucket individually and not globally. Therefore, if the number
of buckets is large, this can lead to overflowing some workers and artificially keeping others
idle. However, we found that in practice it provides beneficial results especially at the
end of simulations.

Figure 2 Heteroprio schematic view. Tasks are pushed inside the buckets. Each worker iterates on the
buckets based on the priorities for the hardware it uses. Full-size DOI: 10.7717/peerj-cs.190/fig-2
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INTRODUCING LAHETEROPRIO
2D Task-list grid by splitting the buckets per memory nodes
Our first step in managing data locality is to subdivide each bucket into M different task-
lists and set up one list for each of the M memory nodes. For example, if the machine
is composed of two GPUs and one CPU, we have three task-lists per bucket by considering
NUMA memory nodes as a single one, without loss of generality. We obtain a 2D grid of
task-lists G where the different buckets are in the first dimension and the memory
nodes are in the second dimension, as illustrated in Fig. 3. We store in the list G(b,m) all
the tasks of the bucket index b that we consider local to the memory node m. In this
context, local means that an execution on a processing unit connected tom should have the
lowest memory transfer cost. The list G(b,m) can also contain tasks that processing units
connected to m cannot compute. This can happen when m is a GPU and the tasks
of bucket index b do not provide a GPU function. Nevertheless, when workers steal tasks
from G(b,m), we know that they have the highest affinity for the memory node m
even if it is impossible to compute these tasks on a attached processing unit. From this
description, we must provide a mechanism to find out the best memory node for every
newly ready task, to push the tasks in the right list, and also decide how the workers should
iterate on G and select a task.

Extending the example from the sections “Multi-Priorities” and “Speedup Factors,” the
number of tasks list in each bucket is hardware specific because it corresponds to the
number of memory nodes.

Task insertion in the grid with locality evaluation (push)
In the original Heteroprio, there is no choice where a given task has to be stored, as it must
be in the list of its corresponding bucket, that is, in scheduler.list[task.bucket].push_back
(task). On the other hand, in LAHeteroprio we have to decide in which list of the
selected bucket we should put the task; we have to find the best m in scheduler.list[task.
bucket][m].push_back(task). Therefore, we propose different formulas to estimate the
locality of a task regarding the memory nodes and the distribution of the data it uses.

4 
bu

ck
et

s

Figure 3 LAHeteroprio schematic view of a grid composed of four buckets and three memory nodes.
The decision that the scheduler has to do is to put the tasks in the more appropriate lists and to decide
how the workers iterate on the grid. Full-size DOI: 10.7717/peerj-cs.190/fig-3
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The specificity of this approach is to determine the most suitable memory node without
looking at the algorithm itself. We only look at each task individually without following the
links it has with some other tasks and without making a prediction of how the pieces
of data are going to move.

Last recently used
In this strategy, we consider that the memory node related to the worker that pushes
the task has the best locality; a newly ready task t released by worker w is pushed
into G(t.bucket_id, w.memory_node). Indeed, t and the last task executed by w have at least
one data dependency in common, and this data is already on the memory node if it has not
been evicted. The main advantage of this technique is its simplicity and low overhead.
However, it is obviously far from accurate. For example, it does not evaluate the amount of
data that is already available on the memory node compared to the total amount of data
that t will use.

Moving cost estimation seems natural to consider that the best memory node is the
one that will allow moving the data in the shortest time. StarPU provides the function
starpu_task_expected _data_transfer_time_for that predicts this transfer duration by
looking where the pieces of data are and the possible transfer paths between the memory
nodes. From this prediction, we obtain a moving cost and we refer to it as MC_StarPU.

Data locality affinity formulas
StarPU’s prediction has two potential drawbacks: The first is that it treats all data
dependencies similarly without making a distinction if the dependencies are read or write,
and the second is that the memory transfer predictions are difficult to achieve since
they are based on models that can be inaccurate and influenced by the on-going execution.
Therefore, we propose different formulas to estimate the locality of a task and we obtain
either a locality score for each memory node (the higher the better), or a moving cost
(the lower the better). This information is used to decide where to put the newly ready
tasks in the grid.

In our next formulas, we use the following notations

Dt;m ¼ t:data \m:data; (1)

Dt;:m ¼ t:data \ :m:data; (2)

DREAD
t;m ¼ t:data \m:data \ READ; (3)

DWRITE
t;m ¼ t:data \m:data \WRITE; (4)

READ \WRITE ¼ [: (5)

Here, Dt,m is the set of data used by task t and that exist on memory node m, whereas
Dt,¬m represents the set of data used by t that is not onm. DREAD

t,m and DWRITE
t,m are the sets of

data used by t that exist on m and that are accessed in read mode and write mode,
respectively.
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We define the sum of all the pieces of data hosted (LS_SDH) with the score given by

LS SDHðm; tÞ ¼
X

d2Dt;m
d:size: (6)

The core idea of LS_SDH is to consider that the memory node that already hosts the
largest amount of data (in volume) needed by t is the one where t has to be executed.

If all the tasks use different/independent pieces of data and each of them is used once,
then we except that both MC_StarPU and LS_SDH(m,t) return meaningful scores.
However, there are other aspects to consider. For example, if there is a piece of data
duplicated on every node it should be ignored. Moreover, we can also consider that a piece
of data used in read is less critical than the ones used in write for multiple reasons. A piece
of data used in read might be used by several tasks (in read) at the same
time, and thus the transfer cost only impacts the first task to be executed on the memory
node. In addition, a piece of data in write is expected to be used in read later on, which
means that moving a piece of data that will be accessed in write on a memory node,
partially guarantees that this data will be re-used soon. Finally, writing on a set of data
invalidates all copies on other memory nodes. Thus, we define three different formulas
based on these principles, where we attribute more weight to the write accesses to reduce
the importance of the read accesses.

The LS_SDH2 is the score given by summing the amount of data already on a node,
but the difference with LS_SDH is that each data in write is counted in a quadratic manner

LS SDH2ðm; tÞ ¼
X

d2DREAD
t;m

d:size

0
@

1
Aþ

X
d2DWRITE

t;m

d:size2

0
@

1
A: (7)

Alternatively, we propose the LS_SDHB score where we sum the amount of data on a
node but we balance the data in write with a coefficient h. Moreover, we consider that for
the same amount of data on two memory nodes, the one that has more pieces of data
should be prioritized. In other words, transferring the same amount of data but with more
items is considered more expensive. The formula is given by

LS SDHBðm; tÞ ¼
X

d2DREAD
t;m

d:size

0
@

1
Aþ u� �ðDWRITE

t;m Þ �
X

d2DWRITE
t;m

d:size

0
@

1
A: (8)

We set h = 1,000 for the rest of the study as it provides an important load to the data in
write without canceling the cost of huge transfer for data in read.

Finally, we propose the LC_SMWB cost formula

LC SMWBðm; tÞ ¼
X

d2DREAD
t;:m

d:size

0
@

1
A

þ
X

d2DWRITE
t;:m

d:size� 2� �ðt:data \WRITEÞ
�ðt:dataÞ

0
@

1
A:

(9)
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In LC_SMWB, we sum the amount of data that is going to be moved, but we use an extra
coefficient for the data in write. This coefficient takes the value 1 if all the data used by t are
in write, but it gets closer to 2 as the number of data dependencies in read gets larger
than the number of data dependencies in write.

Examples of memory node selection
Table 1 illustrates how the formulas behave and which memory nodes are selected for
different configurations. This example shows that the formulas can select different
memory nodes depending both on the number of data dependencies in read/write and
their sizes.

Automatic DLAF selection
We propose several data locality affinity formulas (DLAF) but only one of them is used to
find out the best memory node when a newly ready task is pushed into the scheduler.
We describe here our mechanism to automatically select a DLAF during the execution by
comparing their best memory node difference (BMD) values. A BMD value indicates
the robustness of a DLAF by counting how many times it returns a different node id when
a task is pushed or popped. More precisely, every time a task t is pushed, we call a DLAF to
know which of the memory nodes is selected to execute the task, and we store this
information inside the scheduler. Then, every time a task is popped, we call again the same
DLAF to know which of the memory node seems the more appropriate to execute the task,
and we compare this value with the one obtained at push time, as illustrated by Fig. 4.
If both values are different, we increase the BMD counter. A low BMD value means that
the DLAF is robust to the changes in the memory during the push/pop elapsed time.
We consider that this robustness is a good metric to automatically select a DLAF, and thus
we continually compared the BMD counters of all DLAF, and use the one that has the
lowest value to select the list where to push the tasks.

Iterating order on the lists of the grid (pop)
In this section, we describe how the workers iterate over the task-lists of G.

Table 1 Examples of memory node selection by the proposed DLAF for different tasks and data configurations.

Tasks(Data/access mode/size, : : : ) MN0
hosts

MN1
hosts

MN2
hosts

LS_DH
winner

LS_SDH2

winner
LS_SDHB
winner

LC_SMWB
winner

T(A/R/1, B/W/1) A A B MN{0,1,2} MN{0,1,2} MN2 MN2

T(A/R/1, B/W/1) A A B B MN1 MN1 MN1 MN1

T(A/W/1, B/W/1, C/W/2) A B C A C MN2 MN2 MN2 MN2

T(A/W/1, B/W/1, C/W/1) A B A B A C MN{0,1,2} MN{0,1,2} MN{0,1,2} MN{0,1,2}

T(A/R/2, B/R/1, C/W/2, D/W/2) A B A C C D MN2 MN2 MN2 MN2

T(A/W/10, B/W/11, C/W/18, D/W/11) A D C B D MN2 MN1 MN2 MN2

T(A/W/10, B/W/11, C/W/22, D/W/11) A D C B D MN{1,2} MN1 MN2 MN{1,2}

Note:
The memory nodes are labeled MN and in the case the scores assign the best values to more than one memory nodes, all of them are written inside brackets.
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Distance between memory nodes
First, we build a distance matrix between the memory nodes. We defined the data transfer
speed between memory nodes as an inverse of the distance; the distance is given by StarPU
and it is the time that takes to move a piece of data from one memory node to another

distancetransferði; jÞ ¼ normalizeðstarpu transfer predictðj; i; 10243ÞÞ: (10)

However, it is important to remember that our scheduler is based on priorities and thus
we also use a second metric to look at the difference in terms of priorities between the
workers of different memory nodes. More precisely, we define a priority distance between
workers of different memory nodes by

distancepriorityði; jÞ ¼ 1�
PB

k¼1 jPði; kÞ � Pðj; kÞj
ðmaxðNPi;NPjÞ þ 1Þ � ðmaxðNPi;NPjÞ þ 2Þ=2 : (11)

The numerator of the fraction provides a difference factor between i and j, whereas the
denominator part ensures that the values stays between 0 and 1. The value 0 is obtained
when two workers used the same priority indexes. They access the same buckets in
the same order. In Table 2, we provide examples of the priority distance for two array
indexes.

Finally, we use both distance coefficients to find a balance between priorities and
memory transfer capacities, and we obtain the final measure with

distanceði; jÞ ¼ distancepriorityði; jÞ � a
� �þ distancetransferði; jÞ � ð1� aÞð Þ: (12)

From Eq. (12), two memory nodes are close if they are well-connected and if their
priorities (how their workers iterate on the buckets) are different.

Prioritizing locality/priorities in the access orders
Using the distance matrix between the memory nodes, two straightforward access orders
can be considered. In the first one, we consider that data locality is more critical than the

4 
bu

ck
et

s

Figure 4 View of the best memory node difference (BMD), which is computed by counting the
number of difference returned by the DLAF between the moment when a task is pushed or
popped. Full-size DOI: 10.7717/peerj-cs.190/fig-4
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priority of the tasks; In this case, a worker iterates on all the lists related to its memory node
following the priority order, and only if it cannot find a ready task it looks at the lists of the
second closest memory node. The workers iterate over G(b,m) with an outer loop of
indexes m and an inner loop of index b (column-by-column). In a second case, we chose
priority over data locality; In this case, a worker iterates with an outer loop of indexes b and
an inner loop of index m (row-by-row). One drawback of the locality-oriented access
is that it pushes the priorities in the background, which means that a local task of low
priority should always be done before a less local task of higher priority. On the other hand,
the priority oriented access breaks the locality benefit because a worker looks at all the
memory nodes’ task-lists one priority after the other. Hence, both approaches are balanced
using subgroups in this study.

Memory node subgroups
We propose that each memory node sees the others as two separate groups. The idea is to
maximize the exchanges with the first group of size S, and use the second group only to
steal tasks to avoid being idle. To do so, we use a locality coefficient l that correspond
to the number of consecutive buckets that are queried before going to the next memory
node. The iterations on the grid G are done so that the worker looks at the l first buckets of
its memory node, then at the l first buckets of its S closest memory nodes. This is done
until all buckets of the worker’s memory node and the S subgroups have been scanned.
Then, in a second stage, the other memory nodes, from S + 1 toM, are scanned bucket after
bucket. Both S and l parameters can be different for each memory nodes.

An example of this access order strategy can be seen in Table 3. With the settings given in
the example, we use l = 2 for the CPUworkers, see Table 3B. Consequently, the CPUworkers
look at two buckets of the CPU memory node lists, before looking at the GPU lists.

PERFORMANCE STUDY
Configuration
The following software configuration was used: GNU compiler 6.2, CUDA Tookit 9.0, Intel
MKL 2019 and StarPU1. We set the environment variables STARPU_CUDA_PIPELINE=4,
STARPU_PREFETCH=1 and STARPU_DISABLE_PINNING=0. From Eq. (12), we
defined a = 0.5, and as a result the closest memory node to any GPU was always the CPU.
StarPU supports multi-streaming capability of modern GPUs by running multiple CPU threads
to compute on the same GPU. This is controlled by STARPU_NWORKER_PER_CUDA

Table 2 Priority distance examples between buckets/priorities indexes of i and j.

Priorities for i Priorities for j distancepriority (i,j)

1 2 2 1 0 1-0.4
1 2 0 1 1-0.2
1 2 0 1 2 1-0
3 1 2 0 1 2 3 1-0.26
3 1 2 0 1 3 2 1-0.26
3 1 2 0 3 2 1 1-0.13

1 We created our scheduler on the master
branch of the official repository https://
scm.gforge.inria.fr/anonscm/git/starpu/
starpu.git at commit id 22e8e132e0e6
c09c9a5d4539d46b3d59503749e7
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and we used different values depending on the hardware and the application that was run.
The set values were application specific. The automatic DLAF selection, described in the
section “Automatic DLAF Selection,” was based on LS_SDH, LS_SDH2, LS_SDHB and
LC_SMWB, but excluded LaRU and MC_StarPU.

Hardware
We used two different configurations and we refer to each of them using their
corresponding GPU model.

� P100 Is composed of 2 � Dodeca-core Haswell Intel Xeon E5-2683 v4 2,10 GHz, and
2 � P100 GPU (DP 4.7 TeraFLOPS).

� K40 Is composed of 2 � Dodeca-core Haswell Intel Xeon E5-2680 v3 2,50 GHz and
4 � K40 GPU (DP 1.43 TeraFLOPS).

Applications
We studied three applications to assess our method. Two of them were linear algebra
applications that already used StarPU and Heteroprio. Hence, no further development was

Table 3 Access list examples for a configuration with one CPU and two GPUs (three memory nodes
in total).

(A) Distance matrix from Eq. (12).

CPU GPU-0 GPU-1

CPU 0 0.5 1

GPU-0 0.5 0 1

GPU-1 0.5 1 0

(B) Access order for CPU workers.

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

3 G(3,*) 7 11 10

2 G(2,*) 6 9 8

1 G(1,*) 1 5 4

0 G(0,*) 0 3 2

(C) Access order for GPU-0 workers.

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

G(1,*) 5 4 8

G(2,*) 3 1 7

G(3,*) 2 0 6

(D) Access order for GPU-1 workers.

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

G(1,*) 5 8 4

G(2,*) 3 7 1

G(3,*) 2 6 0

Note:
We use four buckets, but the tasks of bucket zero are only active on CPU. The priorities—the order of access to the
buckets—is reversed for the GPU workers. S, the size of closed memory node subgroup, is set to two for the CPU and to
one for the GPUs. Finally, the locality factor l is two for both.
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needed inside them since the interfaces of Heteroprio and LAHeteroprio are similar. The
third one was a stencil application that we modified to be able to use Heteroprio/
LAHeteroprio.

� QrMumps This application uses four different types of tasks and three of them can be
run on the GPUs. We used STARPU_NWORKER_PER_CUDA=16 on P100, and
STARPU_NWORKER_PER_CUDA=7 on K40. The test case was the factorization of
the TF18 matrix2.

� SpLDLT This application uses four different types of tasks and only one of them can run
on the GPUs. Consequently, to select a task for a GPU, there is no choice in terms of
bucket/priority but only in terms of memory node. We used STARPU_NWORKER_PER_
CUDA=18 on P100, and STARPU_NWORKER_PER_CUDA=11 on K40. The test case
was the Cholesky factorization of a 20,000 � 20,000 matrix.

� StarPU-Stencil This application is a stencil simulation of the game life, which is
available as an example in the StarPU repository. It uses only one type of tasks that can
run on CPU or GPU. Consequently, to select a task for any of the processing unit, there
is no choice in terms of bucket/priority but only in terms of memory node. We used
STARPU_NWORKER_PER_CUDA=3 on P100 and K40. The test case was a grid of
dimension 1,0243 executed for 32 iterations.

Metrics
In our tests, we evaluated two different speedups. The first was the speedup-from-average
(SFA), which represents the average execution times of Heteroprio based for six executions,
divided by the average execution times of a target for six executions. The second was
the speedup-from-minimum (SFM), which represents the lowest execution time of
Heteroprio divided by the lowest execution time of a target, therefore, both were obtained
from a single execution. The SFA provides information of the average performance
that can be expected whereas the SFM provides information about the variability and
gives us an idea of what could be achieved if the executions were always perfect.

Evaluation of the locality coefficient for all DLAF
We first evaluated the effect of the locality coefficient l, described in the section “Memory
node subgroups,” on the execution time and summarized the results in Fig. 5. Then, we
looked at the speedup of LAHeteroprio against Heteroprio for different l settings with
three different comparisons. In the first one, we used all the average execution times
obtained using LAHeteroprio without dissociating the different DLAF; in the second one
we computed the speedup using only the best DLAF (with the lowest average), and in
the third one we compared the unique best execution over all of both Heteroprio and
LAHeteroprio.

Focusing on QrMumps, it can be seen in Figs. 5A and 5B that the best performance was
obtained when we prioritized the locality for the GPU with lGPU = 3. The locality
coefficient for the CPU seems less critical and the speedup is more or less the same for all
lCPU values. When the number of GPUs increases, the influence of l decreases, and we

2 The matrix had been taken from the
SuiteSparse Matrix Collection at
https://sparse.tamu.edu/
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(a) QrMumps/K40 (b) QrMumps/P100

(c) SpLDLT/K40 (d) SpLDLT/P100

(e) StarPU-Stencil/K40 (f) StarPU-Stencil/P100

Figure 5 Speedup results of LAHeteroprio against Heteroprio for QrMumps (A, B), SpLDLT (C, D)
and StarPU-Stencil (E, F) on K40 or P100 configurations. The x-axis is used of the different l pairs of
the form (lCPU, lGPU). The gray bars (▪) represent SFA for all DLAF and gives an idea of the speedup of
LAHeteroprio, here each configuration is executed six times. The light gray bars (▪) represent the SFM of
the DLAF with the best speedup in average. The lines (- � -) represent the SFM using the best execution
times among all DLAF, that is the speedup when we compare the best single execution using Heteroprio
and LAHeteroprio. Full-size DOI: 10.7717/peerj-cs.190/fig-5
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had similar executions with two P100 GPUs or four K40 GPUs for all l values. However,
the speedup against Heteroprio was still significant, which means that splitting the
buckets into several lists is beneficial as soon as the workers pick first in the list that
corresponds to their memory node for their highest priority bucket. Also, it seems that the
way they iterate on the grid does not have any effect.

The results for SpLDLT are provided in Figs. 5C and 5D. Here, the impact of l seems to
be limited, but it is worth remembering that the GPU can only compute one type
of task. On the other hand, the speedup obtained using all DLAF was unstable and
significantly lower compared to the speedups obtained when we used only the best DLAF.
This suggests that there are significant differences in performance among the different
DLAF and also that some of them are certainly not efficient. The results that we provide
in the next section corroborates this hypothesis.

The results for StarPU-Stencil are provided in Figs. 5E and 5F. There is no choice in the
value l because there is only one type of task. The speedup obtained using all
DLAF was unstable and significantly lower compared to the speedups obtained when
we used only the best DLAF, which again suggests that the different DLAF provide
heterogeneous efficiency.

Execution details
Using the performance results of section “Evaluation of the Locality Coefficient for all
DLAF,” we used a l = (1,3) for QrMumps, and a l = (3,1) for SpLDLT. We evaluated the
performance of the different DLAF described in the section “Task Insertion in the Grid
with Locality Evaluation (push),” looking for the speedup against Heteroprio, the amount
of memory transfer, and the BMD, see Figs. 6–8.

Speedup
We provide the speedup obtained with our method against Heteroprio in Figs. 6A and 6B
for QrMumps, Figs. 7A and 7B for SpLDLT, and Figs. 8A and 8B for StarPU-Stencil. For all
configurations, the LaRU and MC_StarPU formulas did not significantly improve the
execution, furthermore, they were slower than Heteroprio in some cases. For LaRU, this
means that having one piece of data already on the memory node and neglecting the others
is not efficient. Meanwhile, for MC_StarPU, it means that putting a task on the
memory node for which it is the cheapest in terms of data transfer is not the best choice.
This is not surprising, since this kind of decision would make sense if we have only one
task to compute. However, we clearly see that in the present study, when we had to
deal with a graph of tasks, where the data were used concurrently and could be re-used by
other tasks, this was not accurate. Nevertheless, this result could also have been affected
from inaccurate predictions made by StarPU.

Comparing the different DLAF, it can be seen that both LS_SDH2 and LS_SDHB
significantly improved the three applications. LC_SMWB was competitive for QrMumps
and StarPU-Stencil but not for SpLDLT, and LS_SDH was competitive for StarPU-Stencil
but not for QrMumps and it had poor performance for SpLDLT. The main difference
between LS_SDH2/LS_SDHB and LC_SMWB/LS_SDH is that the second ones are not
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(a) QrMumps/K40 - Speedup (b) QrMumps/P100 - Speedup

(c) QrMumps/K40 - Memory transfer (d) QrMumps/P100 - Memory
transfer

(e) QrMumps/K40 - BMD (f) QrMumps/P100 - BMD

Figure 6 Execution details for QrMumps on K40 or P100 configurations for a locality coefficient l =
(3, 3). The speedup (A, B) includes SFA (▪) and SFM (- � -). The memory transfers (C, D) and BMD
(E, F) are average values. Full-size DOI: 10.7717/peerj-cs.190/fig-6

Bramas (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.190 17/24

http://dx.doi.org/10.7717/peerj-cs.190/fig-6
http://dx.doi.org/10.7717/peerj-cs.190
https://peerj.com/computer-science/


(a) SpLDLT/K40 - Speedup (b) SpLDLT/P100 - Speedup

(c) SpLDLT/K40 - Memory transfer (d) SpLDLT/P100 - Memory
transfer

(e) SpLDLT/K40 - BMD (f) SpLDLT/P100 - BMD

Figure 7 Execution details for SpLDLT on K40 or P100 configurations for a locality coefficient l =
(2, 1). The speedup (A, B) includes SFA (▪) and SFM (- � -). The memory transfers (C, D) and BMD
(E, F) are average values. Full-size DOI: 10.7717/peerj-cs.190/fig-7
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(a) StarPU-Stencil/K40 - Speedup (b) StarPU-Stencil/P100 -
Speedup

(c) StarPU-Stencil/K40 - Memory transfer (d) StarPU-Stencil/P100 - Mem-
ory transfer

(e) StarPU-Stencil/K40 - BMD (f) StarPU-Stencil/P100 - BMD

Figure 8 Execution details for StarPU-Stencil on K40 or P100 configurations for a locality coefficient
l = (2, 1). The speedup (A, B) includes SFA (▪) and SFM (- � -). The memory transfers (C, D) and BMD
(E, F) are average values. Full-size DOI: 10.7717/peerj-cs.190/fig-8
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giving an important load to the pieces of data used inwrite, and LS_SDH does not evenmake
a distinction between read and write. It seems that taking into account write is important
for QrMumps and SpLDLT but not for StarPU-stencil. On the two linear algebra
applications, the tasks transform the blocks of the matrix, and many of the blocks are written
several times before being read multiple times. On the contrary in StarPU-stencil, each block
is written once per iteration and read only to compute the close neighbors.

While the results from the different DLAF are diverse, our automatic formula selection,
described in the section “Automatic DLAF selection,” was efficient and always close to
the best execution. Consequently, there is no need to try the different DLAF as the
automatic selection is reliable.

Transfer
The total amount of memory transfer obtained with our method and Heteroprio are
provided in Figs. 6C and 6D for QrMumps, Figs. 7C and 7D for SpLDLT, and Figs. 8C and
8D for StarPU-Stencil.

For QrMumps, all approaches used in this study reduced the total memory transfer.
However, a decrease of the memory transfer does not necessary mean having better
performance. For example, for the K40 configuration, and with either one or two GPUs,
MC_StarPU drastically reduced the amount of data transfer compared to Heteroprio,
see Fig. 6C, but it had a negative speedup, see Fig. 6A. It means that, even if in all
LAHeteroprio-based executions the workers iterated similarly onG, the placement of the tasks
on the grid can be quite efficient in terms of transfer, but it penalized the whole execution.

In the case of SpLDLT, the memory transfer did not decrease compared to
Heteroprio when MC_StarPU, LaRU, or LS_SDH were used. This further supports our
idea that the data in write should count more than the data in read. Moreover, LC_SMWB
balances the data in write but only with a factor 2 at most; even if it reduced the
memory transfer compared to Heteroprio, the reduction was not as large compared with
LS_SDH2/LS_SDHB. Finally, when we used SpLDLT the amount of memory transfer
and the execution time were reduced.

Looking at the results of StarPU-Stencil, the memory transfer reduction was not as
strong as for QrMumps. In addition, there is a correlation between the transfer reduction
and the resulting speedup, such that the lowest amount of transfer were obtained with
LS_SDH, LS_SMWB and LS_SDHB for most of the configurations.

Again, the automatic mode is efficient and even when one of the DLAF is not
competitive, for instance LC_SMWB in the case of QrMumps/SpLDLT or LC_SDH2 for
StarPU-Stencil, the automatic system is robust enough to make correct decisions and
remains competitive.

BMD
We provide the BMD values for the different DLAF in Figs. 6E and 6F for QrMumps,
Figs. 7E and 7F for SpLDLT, and Figs. 8E and 8F for StarPU-Stencil.

For QrMumps, the BMD values were low for all formulas except LS_SDH and LaRU.
These measures proof that LS_SDH is sensitive to the data changes that happen in the
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time that takes a pushed task to be popped. Furthermore, this is due to its formula as it
considers the data in read or write to be the same. On the other hand, MC_StarPU was
stable with a small BMD value. However, this is surprising, because the high value for
LS_SDH illustrates the volatility of the data, and thusMC_StarPU should also be sensitive
to the changes that happened between push/pop.

For SpLDLT and StarPU-Stencil, we observed a clear relation between the BMD values
and the speedup. The formulas that did not provide a speedup are the ones with the highest
BMD values. This validates the construction of our automatic method that uses the
DLAF with the lowest BDM.

In the three applications, the LaRU has a special meaning when looking at the BMD
value. When a task is pushed, LaRU returns the id of the memory node of the worker
that push the task and similarly, when a task is popped, LaRU returns the id of the
memory node of the worker that pop the task. Therefore, the LaRU’s BDM value is the
percentage of tasks that are pushed and popped by worker related to different memory
nodes. Therefore, we see that in QrMumps up to 30% of the tasks were stolen but
this number grow up to 50% for StarPU-Stencil and 80% for SpLDLT.

Summary of the evaluation
The speedup obtained with LAHeteroprio was really significant. In most cases, there was a
proportional relation between memory transfer and execution time, which means that
reducing memory transfer caused a reduction in the time needed to execute the task.
The BMDmetric is valuable to evaluate the robustness of DLAF and it can be used to predict
its performance. Moreover, our automatic DLAF selection based on BMD was highly
competitive with a speedup close to the best-achieved executions. Finally, LAHeteroprio
reduced the amount of memory transfer with any number of GPUs for the three applications.

CONCLUSION
We have improved our Heteroprio scheduler with a new mechanism that considers data
locality. The new system divides the task buckets into as many lists as there are memory
nodes. We have created different formulas to evaluate the locality of a task regarding
a memory node, and we found that formulas that omit many parameters (as the use of the
StarPU prediction functions) provide a low performance; this is probably due to the
neglect of the type of accesses of the tasks on the data. Nevertheless, we have shown that
locality evaluation is more sensitive to write accesses and this has been validated with
the results of the BMD metric. Concerning the pop strategy, it is necessary to set
the locality coefficient to the largest value for the GPUs, to ensure that workers focus
on locality before priorities. It is possible to use our new scheduler, without introducing
additional information or modification, using our automatic DLAF selection system,
which is close to the best executions in most cases. Finally, our new scheduler improves the
performance of QrMumps, SpLDLT and StarPU-Stencil by 30%, 80% and 30%,
respectively. It also reduces the data transfer more than 50%.

In terms of perspective, the scheduler could still be improved on different aspects.
It could be beneficial to change the distance between the memory nodes at runtime,
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which means changing the victims of the work stealing and even having workers of the
same memory node that steal the tasks on other memory nodes. In addition, the original
priorities of the scheduler are set per architecture, and the new locality heuristic is set per
memory node, but a finer approach could be interesting even if it has a challenging tuning
and setup. For example, we could have one worker per GPU that uses a different access
order over the buckets with the objective of avoiding some transfers. Finally, we would like
to study LAHeteroprio on other kinds of applications with more diverse types of tasks, and
on different type of hardware configurations.
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