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ABSTRACT
In this paperwe introduce SNF, a framework that synthesizes (S) network function (NF)
service chains by eliminating redundant I/O and repeated elements, while consolidating
stateful cross layer packet operations across the chain. SNF uses graph composition and
set theory to determine traffic classes handled by a service chain composed of multiple
elements. It then synthesizes each traffic class using a minimal set of new elements that
apply single-read-single-write and early-discard operations. Our SNF prototype takes a
baseline state of the art network functions virtualization (NFV) framework to the level
of performance required for practical NFV service deployments. Software-based SNF
realizes long (up to 10 NFs) and stateful service chains that achieve line-rate 40 Gbps
throughput (up to 8.5x greater than the baseline NFV framework). Hardware-assisted
SNF, using a commodity OpenFlow switch, shows that our approach scales at 40 Gbps
for Internet Service Provider-level NFV deployments.

Subjects Computer Networks and Communications
Keywords NFV, Service chains, Synthesis, Single-read-single-write, Line-rate, 40 Gbps

INTRODUCTION
Middleboxes hold a prominent position in today’s networks as they substantially enrich
the dataplane’s functionality (Sherry et al., 2012; Gember-Jacobson et al., 2014). However,
to manage traditional middleboxes requires costly capital and operational expenditures;
hence, network operators are adopting network functions virtualization (NFV) (European
Telecommunications Standards Institute, 2012).

Among the first challenges in NFV was to scale software-based packet processing by
exploiting the characteristics of modern hardware architectures. To do so, several works
leveraged parallelism first across multiple servers and then across multiple cores, sockets,
memory controllers, and graphical processing units (GPUs) (Han et al., 2010; Kim et al.,
2015b) within a single server (Dobrescu et al., 2009; Dobrescu et al., 2010).

Attaining hardware-based forwarding performance was difficult to achieve, even with
highly-scalable software-based packet processing frameworks. The main reason was the
poor I/O performance of these frameworks. Thus, the focus of both industry and academia
shifted to customizing operating systems (OSs) to achieve high-speed network I/O. For
example, by using batch packet processing (Kim et al., 2012), static memory pre-allocation,
and zero copy data transfers (Rizzo, 2012; DPDK, 2016).
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1We provide a detailed comparison of our
work with both E2 and OpenBox in the
‘Related Work’ section.

Modern applications require combinations of network functions (NFs), also known
as service chains, to satisfy their services’ quality requirements (Quinn & Nadeau, 2015).
With all the above advancements in place, NFV instances achieved line-rate forwarding at
tens of millions of packets per second (Mpps); however, performance issues remain when
several NFs are chained together. State of the art frameworks such as ClickOS (Martins
et al., 2014) and NetVM (Hwang, Ramakrishnan & Wood, 2014) have reported substantial
throughput degradation when realizing chains of interconnected, monolithic NFs.

The first consolidation attempts targeted application layer (e.g., deep packet inspection)
(Bremler-Barr et al., 2014) and session layer (e.g., HTTP) (Sekar et al., 2012) consolidation.
However, a lot of redundancy still resides lower in the network stack. Anderson et al. (2012)
describe how xOMB allows them to build programmable and extensible open middleboxes
specialized for request/response based communication. In addition, Slick (Anwer et al.,
2015) introduced a programming language to deploy network-wide service chains, driven
by a controller. Slick avoids redundant operations and shares common elements; however,
its decentralized consolidation still realizes a chain of NFs as distributed processes. Most
recently, E2 (Palkar et al., 2015) showed how to schedule NFs across a cluster of machines
for high throughput. Also, OpenBox (Bremler-Barr, Harchol & Hay, 2016) introduced an
algorithm that merges processing graphs from different NFs into a single processing graph.
Contemporaneously with E2 and OpenBox, our work implements the mechanisms fully
specified in (Enguehard, 2016) and represents the next logical step in high-performance
NFV research.1

In the case of network-wide deployments, chains suffer from the latency imposed
by interconnecting different machines, processes, and switches, along with potential
virtualization overheads. In the case of single-server deployments, where the NFs are
pinned to a specific (set of) core(s), throughput is bounded by the increasing number
of context switches as the length of the chain increases. Based on our measurements,
context switches cause a domino effect on cache utilization because of continuous data
invalidations and the number of CPU cycles spent forwarding packets along the chain. This
leads to increased end-to-end packet latency and considerable variation in latency (jitter).

In this paper, we describe the design and implementation of the Synthesized Network
Functions (SNF), our approach for dramatically increasing the performance of NFV
service chains. The idea in SNF is simple: create spatial correlation to execute service
chains as possible to the speed of the CPU cores operating on the fastest, i.e., L1, cache of
modern multi-core machines. SNF leverages the ever-continuing increases in numbers of
cores of modern multi-core processor architectures and the recent advances in user-space
networking.

SNF automatically derives traffic classes of packets that are traversing a provider-specified
service chain of NFs. Packets in a traffic class are all processed the same way. Additionally,
SNF handles stateful NFs. Using its understanding of each of the per-traffic class chains,
SNF then synthesizes equivalent, high-performance NFs for each of the traffic classes. In a
straightforward SNF deployment, one CPU core processes one traffic class. In practice,
SNF allocates multiple CPU cores to execute different sets of traffic classes in isolation (see
the ‘SNF Overview’ section).
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SNF’s optimization process performs the following tasks: (i) consolidates all the read
operations of a traffic class into one element, (ii) early-discards those traffic classes that lead
to packet drops, and (iii) associates each traffic class with a write-once element. Moreover,
SNF shares elements among NFs to avoid unnecessary overhead, and compresses the
number and length of the chain’s traffic classes. Finally, SNF scales with an increasing
number of NFs and traffic classes.

This architecture shifts the challenge to packet classification, as one component of
SNF has to classify an incoming packet into one of the pre-determined traffic classes,
and pass it to the synthesized function. We extended popular, open-source software
to improve the performance of software-only packet classification. In addition, we
employed an OpenFlow (McKeown et al., 2008) switch as a packet classifier to demonstrate
the performance possible by a sufficiently powerful programmable network interface
(commonly abbreviated as NIC). The benefits of SNF for network operators are multifold:
(i) SNF dramatically increases the throughput of long NF chains, while achieving low
latency, and (ii) it does so while preserving the functionality of the original service chains.

We implemented the SNF design principles into an appropriately modified version of
the Click (Kohler et al., 2000) framework. To demonstrate SNF’s performance, we compare
it against the fastest Click variant to date, called FastClick (Barbette, Soldani & Mathy,
2015). To show SNF’s generality we tested its performance in three uses cases: (i) a chain
of software routers, (ii) nested network address and port translators (NAPTs) (Liu et al.,
2014), and (iii) access control lists (ACLs) using actual NF configurations taken from
Internet Service Providers (ISPs) (Taylor & Turner, 2007).

Our evaluation shows that software-based SNF achieves 40 Gbps, even with small
Ethernet frames, across long (up to 10 NFs), stateful chains. In particular, it achieves up
to 8.5x more throughput and 10x lower latency with 2–3.5x lower latency variance than
the original NF chains implemented with FastClick, when running on the same hardware.
Offloading traffic classification to a commodity OpenFlow switch allows SNF to realize re-
alistic ISP-level chains at 40 Gbps (for most of the frame sizes), while bounding the median
chain latency to below 100 µs (measured from separate sending and receiving machines).

In the rest of this paper, we provide an overview of SNF in the ‘SNF Overview’
section. We introduce our synthesis approach in the ‘SNF Architecture’ section and a
motivating example in the ‘A Motivating Use Case’ section. Implementation details
and performance evaluation are presented in the ‘Implementation’ section and in the
‘Performance Evaluation’ section, respectively. We discuss verification aspects in the
‘Verification’ section. The ‘Limitations’ section discusses the limitations of this work and
the ‘Related Work’ section positions our work with respect to the state of the art. Finally,
the ‘Conclusion’ section concludes this paper.

SNF OVERVIEW
The idea of synthesizing network service components consorts with a powerful property:
data correlation in network traffic. In a network system, this property is mapped to spatial
locality with respect to the receiver’s caches. SNF aggregates parts of the flow space into
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Core 1

Multi-threaded SNF Classifier with 
chain-level traffic class units (TCUs)

SNF Rewriter-Core 3

SNF Rewriter-Core 4

SNF Rewriter-Core 5

SNF Rewriter-Core k

Traffic
Domain 

1

Symmetric Receive-Side Scaling

Bi-directional Flow
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2
...

Dedicated cores per NIC for I/O

Core 2

SNF Synthesizer with stateful per core rewriters

Figure 1 An overview of SNF running on amachine with k CPU cores and 2 NICs.Dedicated CPU
cores per NIC deliver bi-directional flows to packet processing CPU cores via Symmetric RSS. Processing
cores concurrently classify traffic and access individual, stateful SNF rewriters to modify the traffic.

traffic class units (TCUs) (the detailed definition is given in the ‘Abstract service chain
representation’ section), which are thenmapped to sets of (re)write operations. By carefully
setting the CPU affinity of each TCU, this aggregation enforces a high degree of correlation
in the traffic (seen as logical units of data) resulting in high cache hit rates.

Our overarching goal is to design a system that efficiently utilizes per core and across
cores cache hierarchies. With this in mind, we design SNF based on Fig. 1. In the example
shown in this figure, we assume that a network operator wants to deploy a service chain
between network domains 1 and 2. For simplicity we also assume that there is one NIC
per domain. A set of dedicated cores (i.e., Core 1 and 2 for the NICs facing domains 1
and 2, respectively) attempts to read and write frames at line-rate. Once a set of frames is
received, say by core 1, it is transferred to the available processing cores (i.e., Cores 3 to k).
Frame transfers can occur at high speed via a shared cache, which has substantial capacity
in modern hardware architectures.

Once a processing core acquires a frame, it executes SNF as shown in Fig. 1. First the core
classifies the frame (green rectangles in Fig. 1) in one of the chain’s TCUs and then applies
the required synthesized modifications (blue rounded-rectangle in Fig. 1) that correspond
to this TCUs out of the chain. Both classification and modification processes are highly
parallelized as different cores can simultaneously process frames that belong to different
TCUs. We detail both processes in the ‘Synthesis steps’ section.

The key point of Fig. 1 is that a core’s pipeline shares nothing with any other pipeline.
We employed the symmetric Receive Side Scaling (RSS) (Intel, 2016) scheme by Woo &
Park (2012) to hash input traffic in a way that a flows’ bi-directional packets are always
served by the same SNF rewriter, hence the same processor. This scheme allows a core to
process a TCU at the maximum processing speed of the machine.

Main objectives
The primary goal of SNF is to eliminate redundancy along the chain. The sources of
redundancy in current NF chains and the solutions that our approach offers are:
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(A) Multiple network I/O interactions between the chain and the backend dataplane occur
because each NF is an individual process. We solve this by placing NF chains in a
single logical entity. Once a packet enters this entity, it does not exit until all the chain
operations are applied.

(B) Late packet drops appear in NF chain implementations when packets unnecessarily
pass through several elements before getting dropped. SNF discards these packets as
early as possible.

(C) Multiple read operations on the same field occur because each NF contains its own
decision elements. A typical example is an Internet protocol (IP) lookup in a chain
of routers. While SNF is parsing the initial chain, it collects the read operations and
constructs traffic classes encoded as paths of elements in a directed acyclic graph
(DAG). Then, SNF synthesizes these elements into a single classifier to realize both
routing and filtering.

(D) Multiple write operations on the same field overwrite previous values. For example,
the IP checksum is modified twice when a decrement time to live (TTL) operation
follows a destination IP address modification. SNF associates a set of (stateful) write
operations with a traffic class, hence it can modify each field of a traffic class all at once.
Next, we describe in detail how SNF automatically synthesizes the equivalent of a

service chain.

SNF ARCHITECTURE
Taking into account the main objectives listed above, this section presents the design of
SNF. The ‘Abstract service chain representation’ section defines the synthesis abstraction,
the ‘Synthesis steps’ section presents the formal synthesis steps, and the ‘Managing stateful
functions’ section describes how stateful functions are realized.

Abstract service chain representation
The crux of SNF’s design is an abstract service chain representation.We begin by describing
a mathematical model to represent packet units in the ‘Packet unit representation’ section.
Next, we model an NF’s behavior in an abstract way in ‘Network function representation’
section. Finally, we define our target service-level network function in ‘The synthesized
network function’ section.

Packet unit representation
Inspired by the approach of Kazemian, Varghese & McKeown (2012), we represent each
packet as a vector in a multi-dimensional space. However, we follow a protocol-aware
approach by dividing a packet according to the unsigned integer value of the different
header fields. Thus, if p is an IPv4/TCP packet, we represent it as:

p= (pip_version,pip_ihl,...,ptcp_sport,ptcp_dport,...).
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From now on, we call P the space of all possible packets. For a given header field f of length
l bits, we define a field filter Ff as a union of disjoint intervals (0,2l−1):

Ff =
⋃

si⊂(0,2l−1)

si where

{
∀i, si is an interval
∀i 6= j, si∩ sj =∅.

This allows grouping packets into a data structure that we call a packet filter, defined as a
logical expression of the form:

φ={(p1,...,pn)∈ P|(p1 ∈ F1)∧ ...∧ (pn ∈ Fn)}

where (F1,...,Fn) are field filters. The space of all possible packet filters is 8. Then:

u :

{
φ 7→ (F1,...,Fn)
8 7→ {(F1,...,Fn)|∀i,Fi}(F1,...,Fn)

is a bijection and we can assimilate φ to (F1,...,Fn).
If φ1 and φ2 are two packet filters defined by their field filters (F1,1,...,F1,n) and

(F2,1,...,F2,n), then φ1∩φ2 is also a packet filter and is defined as (F1,1∩F2,1,...,F1,n∩F2,n).

Network function representation
Network functions typically apply read and write operations to traffic. While our packet
unit representation allows us to compose complex read operations across the entire header
space, we still need the means to modify traffic. For this, we define an operation as a
function ω : P 7→8 that associates a set of possible outputs to a packet. We add the
additional constraint that for any given operation ω, there is ω1,...,ωn ∈NN such as:

∀p= (p1,...,pn)∈ P,ω(p)= (ω1(p1),...,ωn(pn)).

Note that we use sets of possible values (instead of fixed values) to model cases where the
actual value is chosen at run-time (e.g., source port in an S-NAT). Therefore, SNF supports
both deterministic and conditional operations.

If we define � as the space of all possible operations, we can express a processing unit
PU as a conditional function that maps packet filters to operations:

PU : p 7→


ω1(p) if p∈φ1
...

ωm(p) if p∈φm

where (ω1,...,ωm)∈�m are operations and (φ1,...,φm)∈8m are mutually distinct packet
filters.

An NF is simply a DAG of PUs. For instance, SNF can express a simplified router’s NF
as follows:

NFROUTER : PU {Lookup}→ PU {DecIPTTL}→ PU {IPChecksum}→ PU {MAC}

with 4 PUs: an IP lookup PU is followed by decrement IP TTL, IP checksum update, and
source and destination MAC address modification PUs.
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The Synthesized network function
In the previous section we laid the foundation to construct NFs as graphs of PUs. Now, at
the service level where multiple NFs can be chained, we define a TCU as a set of packets,
represented by disjoint unions of packet filters, that are processed in the same fashion (i.e.,
undergo the same set of synthesized operations). This definition allows us to construct the
service chain’s SynthesizedNF function as a DAG of PUs, or equivalently, as a map of TCUs
that associates operations to their packet filters:

SynthesizedNF :8 7→�

Formally, the complexity of the SynthesizedNF is upper-bounded by the function O(n ·m),
where n is the number of TCUs and m is the number of packet filters (or conditions) per
TCU. Each TCU turns a textual packet filter specification (such as ‘‘proto tcp && dst net
10.0/16 && src port 80’’) into a binary decision tree traversed by each packet. Therefore,
in the worst case, an input packet might traverse a skewed binary tree of the last TCU,
yielding the above complexity bound. The average case occurs in a relatively balanced tree
(O(logm)), in which case the average complexity of the SynthesizedNF is bounded by the
function O(n · logm).

Synthesis steps
Leveraging the abstractions introduced in the ‘Abstract service chain representation’ section
we detail the steps that translate a set of NFs into an equivalent SNF. The SNF architecture
is comprised of three modules (shown in Fig. 2). We describe each module in the following
sections.

Service chain configurator
The top left box in Fig. 2 is the Service Chain Configurator; the interface that a network
operator uses to specify a service chain to be synthesized by SNF. Two inputs are required:
a set of service components (i.e., NFs), along with their topology. SNF abstracts packet
processing by using graph theory. That said, a chain is described as a DAG of interconnected
NFs (i.e., chain-level DAG), where each NF is a DAG of abstract packet processing elements
(i.e., NF DAG). The NF DAG is implementation-agnostic, similar to the approaches of
Bremler-Barr, Harchol & Hay (2016), Anwer et al. (2015) and Kohler et al. (2000). The
network operator enters these inputs in a configuration file using the following notation:

Vertices (NFs): Each service component (i.e., an NF) of a chain is a vertex in the
chain-level DAG for which, the Service Chain Configurator expects a name and an NF
DAG specification (see Fig. 2). Each NF can have any number of input and output ports
as specified by its DAG. An NF with one input and one output interface is denoted as:
[interface0]NF1[interface1].

Edges (NF inter-connections): The connections between NFs are the edges of the
chain-level DAG. We interconnect two NFs as follows: NF1[interface1]→ [interface0]NF2.

No loops: Since the chain-level DAG is acyclic by construction, SNF must prevent loops
(e.g., two interfaces of the same NF cannot be connected to each other).

Entry points: In addition to the internal connections within a chain (i.e., connections
between NFs), the Service Chain Configurator also requires the entry points of the chain.
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Figure 2 The SNF framework. The network operator inputs a service chain and its topology (top left
part). SNF parses the chained NFs, decomposes their read and write parts, and composes a Synthesized-
DAG (top right part). While traversing the Synthesized-DAG, SNF builds the TCUs of the chain, asso-
ciates them with write/discard operations, leading to a synthesized chain-level NF.

These points are the interfaces of the chain with the outside world and indicate the existence
of traffic sources. An interface that is neither internal nor an entry point can only be an
end-point; these interfaces are discovered by the Service Chain Parser as described below.

Service chain parser
The Service Chain Configurator outputs a chain-level DAG that describes the chain to the
Service Chain Parser. As shown in the top right box of Fig. 2, the parser iterates through all
of the input NFDAGs (i.e., one per NF); while parsing each NFDAG, the parser marks each
element according to its type. We categorize NF elements in four types: I/O, parsing, read,
and write elements. As an example NF, consider a router that consists of interconnected
elements, such as ReadFrame, StripEthernetHeader, IPLoookUp, and DecrementIPTTL.
ReadFrame is an I/O element, StripEthernetHeader is a parsing element (moves a frame’s
pointer), IPLoookUp is a read element, while DecrementIPTTL is a write element.

The parser stitches together all the NF DAGs based on the topology graph and builds
a Synthesized-DAG (see Fig. 2) that represents the entire chain. This process begins from
an entry point and searches recursively until an output element is found. If the output
element leads to another NF, the parser keeps a jump pointer and cross checks that the
encountered interfaces match the interfaces declared in the Service Chain Configurator.
After collecting this information, the parser omits the I/O elements because one of SNF’s
objectives is to eliminate inter-NF I/O interactions. The process continues until an output
element that is not in the topology is found; such an element can only be an end-point.
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Along the path to an output element the parser separates the read from the write elements
and transforms NF elements into PUs, according to the ‘Network function representation’
section. Next, the parser considers the next entry point until all are exhausted.

The final output of the Service Chain Parser is a large Synthesized-DAG of PUs that
models the behavior of the entire input service chain.

Service chain synthesizer
After building the Synthesized-DAG, our next target is to create the SynthesizedNF
introduced in ‘The Synthesized network function’ section. To do so, we need to derive the
SNF’s TCUs. To build a TCU we execute the following steps: from each entry port of the
Synthesized-DAG, we start from the identity TCU tcu0 ∈8×� defined as: tcu0= (P,idP),
where idP is the identity function of P , i.e., ∀x ∈ P,idP(x)= x . Conceptually, tcu0 represents
an empty packet filter and no operations, which is equivalent to a transparent NF. Then, we
search the Synthesized-DAG, while updating our TCU as we encounter conditional (read)
or modification (write) elements. Algorithms 1 and 2 build the TCUs using an adapted
depth-first search (DFS) of the Synthesized-DAG.

Now let us consider a TCU t , defined by its packet filter φ and its operation ω, that
traverses a PU U using the adapted DFS. The traverse function in Algorithm 1 creates
a new TCU for each possible pair of (ωi,φi). In particular, it creates a new packet filter
φ′ returned by the intersect function (line 3). This function is described in Algorithm
2 and considers previous write operations while updating a packet filter. For each field
filter φi of a packet filter, the function checks whether the value has been modified by the
corresponding ωi operation (condition in line 8) and whether the written value is in the
intersecting field filter φ0i (line 10). It then updates the TCU by intersecting it with the new
filter, if the value has not been modified (action in line 8). After the intersect function
returns in Algorithm 1, traverse creates a new operation by composing ω and ωi (line 4).

The recursive algorithm terminates in two cases: (i) when the packet filter of the current
TCU is the empty set, in which case the function does not return anything, (ii) when the
PU U does not have any successors, in which case it returns the current TCUs. In the latter
case, the returned TCUs comprise the final SynthesizedNF function.

Algorithm 1 Building the SNF TCUs
1: function traverse(t = (φ,ω),U ={(φi,ωi)i≤m})
2: for i∈ (1,m) do0
3: φ′← intersect(t ,φi)
4: ω′←ωi ◦ω

5: t ′= (φ′,ω′)
6: traverse(t ′,U .successors[i])
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Algorithm 2 Intersecting a TCU with a filter

1: function intersect(t = (φ,ω),φ0)
2: φ′← P
3: (ω1,...,ωn)←ω.Coordinates
4: (φ1,...,φn)←φ.Coordinates
5: (φ01,...,φ

0
n)←φ0.Coordinates

6: (φ′1,...,φ
′
n)←φ′.Coordinates

7: for i∈ (1,n) do
8: if ωi= idN then φ′i←φi∩φ

0
i

9: else
10: if ωi(φi)⊂φ0i then φ

′

i←φi

11: elseφ′i←∅
12: return φ′

Managing stateful functions
A difficulty when synthesizing NF chains is managing successive stateful functions. It is
crucial to ensure that the states are properly located in a synthesized NF and that every
packet is matched against the correct state table. At the same time, SNF should hold the
promise that NFV service chains must be realized without redundancy, hence single-read
and single-write operations must be applied per packet.

To highlight the challenges of maintaining the state in a chain of NFs, consider the
example topology shown in Fig. 3. In this example, a large network operator has run out of
private IPv4 addresses in the 10.0/8 prefix and has been forced to share the same network
prefix between two distinct zones (i.e., zones 1 and 2), using a chain of NAPTs. This is not
unlikely to happen, as an 8-bit network prefix contains less than 17 million addresses and
recent surveys have predicted that 50 billion devices will be connected to the Internet by
2020 (Evans, 2011).

Consolidating this chain of NFs into a single SNF instance poses a problem. That is,
traffic originating from zones 1 and 2 shares the same source IP address and port range, but
to ensure that all the traffic is translated properly, the corresponding synthesized chains
must share their NAPT table. However, since traffic also shares the same destination prefix
(i.e., towards the same Internet gateway), a host from the outside world cannot possibly
distinguish the zone where the traffic originates from.

Obviously, the question that SNF has to address in general, and particularly in this
example is: ‘‘How can we synthesize a chain of NFs, ensuring that (i) traffic mappings are
unique and (ii) no redundant operations will be applied?’’ To solve this conundrum, the
SNF design respects the following properties:

Property 1 We enforce the uniqueness of flowmappings by ensuring that all egress traffic
that shares the same last stateful (re)write operation also shares the same
state table.
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Figure 4 State management in SNF.

Property 2 The state table of SNF must be origin-aware. To redirect ingress traffic
towards the correct interface, while respecting the single-read principle of
SNF, the SNF state table must collocate flow information and the origin
interface for each flow.

To generalize the state management problem, Fig. 4 shows how SNF handles stateful
configurations with three egress interfaces. We apply ‘‘Property 1’’ by having exactly one
stateful (re)write element (denoted as Stateful RW) per egress interface.We apply ‘‘Property
2’’ by having one input port in each of these (re)write elements, associated with an ingress
interface. Therefore, a state table in SNF not only contains flow-related information, but
also links a flow entry with its origin interface.

A MOTIVATING USE CASE
To understand how SNF works and what benefits it can offer, we quantify the processing
and I/O redundancies in an example use case of an NF chain and then compare it to its
synthesized counterpart. We use Click to specify the NF DAGs of this example, but SNF is
applicable to other frameworks. The example chain consists of a NAPT, a layer 4 firewall
(FW), and a layer 3 load balancer (LB) that process transmission control protocol (TCP)
and user datagram protocol (UDP) traffic as shown in Fig. 5.

The TCP traffic is NAPT’ed in the first NF and then leaves the chain, while UDP is
filtered at the FW (the second NF) and the UDP datagrams with destination port 1234 are
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Figure 5 The internal components of an example NAPT - L4 FW - L3 LB chain.

load balanced across two servers by the last NF. For simplicity, we discuss only the traffic
going in the direction from the NAPT to the LB.

The rectangular operations in Fig. 5 are interface-dependent, e.g., an ‘‘Encapsulate
Ethernet’’ operation encapsulates the IP packets in Ethernet frames before passing them to
the next NF where a ‘‘Strip Ethernet Header’’ operation turns them back into IP packets.
Such operations occur 3 times because there are 3 NFs, instead of only once (because the
processing operates at the IP layer). Ideally, strip should be applied before, and Ethernet
encapsulation after all of the IP processing operations. Similarly, the ‘‘IP Fragmentation’’
should only be applied before the final Ethernet encapsulation.

The remaining operations (illustrated as rounded rectangles) of the three processing
stages are those that (i)make decisions based upon the contents of specific packet fields (read
operations with a solid round outline, e.g., ‘‘Classify IP Traffic’’ and ‘‘Filter IP Traffic’’) or
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Figure 6 The synthesized chain equivalent to Fig. 5. The SNF contributions are shown in floating text.

(ii) modify the packet header (rewrite operations with a blue dashed outline e.g., ‘‘Rewrite
Flow’’ and ‘‘Decrement IP TTL’’). We found redundancy in both types of operations. In
the read operations, one IP classifier is sufficient to accommodate the three traffic classes of
this example and perform the routing. Thus, all the round-outlined operations with solid
lines (green) can be replaced by a single ‘‘Classify IP Traffic’’ operation.

Large savings are also possible with the rewrite operations. For example, the initial chain
calculates the TTL field 3 times and IP checksum 5 times, whereas only one computation
for these fields suffices in the synthesized chain. Based on our measurements on an Intel
Xeon E5 processor the checksum calculations cost 10–40 CPU cycles/packet. By integrating
the ‘‘Decrement IP TTL’’ into the ‘‘Rewrite Flow’’ operation and enforcing the checksum
calculation only once, saves 237 CPU cycles/packet.

Figure 6 depicts a synthesized version of the NF chain shown in Fig. 5. Following the
SNF paradigm presented in the ‘SNF Architecture’ section, the synthesized chain forms a
graph with twomain parts. The left-most part (rounded rectangles with solid outline in Fig.
6) encodes all the read operations by composing paths that begin from a specific interface
and traverse the three traffic classes of this chain, until a packet is output or dropped. Each
path keeps a union of filters that represents the header space that matches the respective
traffic class. In this example, the filter for e.g., the allowed UDP packets is the union of the
protocol and destination port numbers. Such a filter is part of a classifier whose output
port is linked with a set of write operations (dashed vertices in Fig. 6) associated with this
traffic class (right-most part of the graph). As shown in Fig. 6, with SNF a packet passes
through all the read operations once (guaranteeing a single-read) and either the packet is
discarded early or each header field is written once (ensuring a single-write) before exiting
the chain.

Synthesizing the counterpart of this example implies several code modifications to avoid
the redundancy caused by the design of each NF. To apply a per flow, per-field single-write
operation we ensure that the ‘‘Rewrite Flow’’ will only calculate the checksums once IP
addresses, ports, and the IP TTL fields are written. Therefore, in this example we saved four
unnecessary operations (3 ‘‘Decrement IP TTL’’ and 1 ‘‘Rewrite Flow’’) and four checksum
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calculations (3 IP and 1 IP/UDP). Moreover, integrating all decisions (i.e., routing and
filtering) in one classifier caused the classifier to be slightly heavier, but saved another two
redundant function calls to ‘‘Destination IP LookUp’’ and ‘‘Filter IP Traffic’’ respectively.

The final form of the synthesized chain requires only 5 processing operations to
transfer the UDP datagrams along the entire chain. The initial chain implements the same
functionality using 18 processing operations and two additional pairs of I/O operations.
Based onourmeasurements the total processing cost of the initial chain is 2206 cycles/packet,
while the synthesized chain requires 3× less (roughly 720) cycles/packet. If we account
for the extra I/O cost per hop for the initial chain the difference becomes even greater.
In production service chains, where packets arrive at high rates, this overhead can play
a major role in limiting the throughput of the chain and the imposed latency; therefore,
the advantages of synthesizing more complex service chains than this simple use case are
expected to be even greater.

IMPLEMENTATION
As we stated earlier, SNF’s basic assumption is that each input service component (i.e.,
NF) is expressed as a graph (i.e., the NF DAG), composed of individual packet processing
elements. This allows SNF to parse the NF DAG and infer the internal operations of each
NF, producing a synthesized equivalent. Among the several candidate platforms that allow
such a representation, we developed our prototype atop Click because it is the most widely
used NFV platform in the academia. Many earlier efforts built upon it to improve its
performance and scalability, hence we believe that this choice will maximize SNF’s impact
as it allows direct comparison with state of the art Click variants such as RouteBricks
(Dobrescu et al., 2009), PacketShader (Han et al., 2010), Double-Click (Kim et al., 2012),
SNAP (Sun & Ricci, 2013), ClickOS (Martins et al., 2014), and FastClick (Barbette, Soldani
& Mathy, 2015).

We adopt FastClick as the basis of SNF as it uses DPDK, a state of the art user-space
I/O framework that exploits modern hardware amenities (including multiple CPU cores)
and NIC features (including multiple queues and offloading mechanisms). Along with
batch processing, non-uniformmemory access support, and fine grained CPU core affinity
techniques, FastClick can realize a single router achieving line-rate throughput at 40 Gbps.
SNF aims for similar performance for an entire service chain.

FastClick extensions
We implemented SNF in C++11. The modules depicted in Fig. 2 are 14,376 lines of
code. The integration with FastClick required another 1,500 lines of code (modifications
and extensions). Although FastClick improves a router’s throughput and latency, it lacks
features required for broaderNFV applications; therefore, wemade the following extensions
to target a service-oriented platform:
Extension 1: Stateful elements that deal with flow processing such as IP/UDP/TCPRewriter
were not originally equipped with FastClick’s accelerations such as computational batching
or cache prefetching. Moreover, these elements were not designed to be thread-safe, hence
they could cause race conditions when accessed bymultiple CPU cores at the same time.We
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2This extension is not a direct part
of FastClick, since the compressed
classification rules are computed by SNF
beforehand; then, SNF uses these rules
as arguments when calling FastClick’s
Classifier or IPClassifer elements.

designed thread-safe data structures for these elements, while also applying the necessary
modifications to equip them with the FastClick accelerations.
Extension 2: We tailored several packet modification FastClick elements to comply
with the synthesis principles, as we found that their implementation was not aligned
with our single-write approach. For instance, we improved the IP/UDP/TCP checksum
calculations by calling the respective functions only once all the header field modifications
are applied. Moreover, we extended the IP/UDP/TCPRewriter elements with additional
input arguments. These arguments extend the elements’ packet modification capabilities
(e.g., decrement IP TTL field to avoid unnecessary element calls) and guarantee that a
packet entering these elements undergo a single-write operation per header field.
Extension 3: We developed a new element, called IPSynthesizer, in the heart of our
execution model shown in Fig. 1. This element implements per-core stateful flow tables
that can be safely accessed in parallel allowing multiple TCUs to be processed at the same
time. To avoid inter-core communication, thus keeping the per-core cache(s) hot, we
extended the RSS mechanism of DPDK (see Fig. 1) using a symmetric approach proposed
by Woo & Park (2012).
Extension 4: To make software-based classification more scalable, we implemented
the lazy subtraction algorithm introduced in Header Space Analysis (HSA) (Kazemian,
Varghese & McKeown, 2012). With this extension, SNF aggregates common IP prefixes in
a filter and applies the longest one while building a TCU, thus producing shorter traffic
class expressions.2

Our prototype supports a large variety of packet processing libraries, fully covering
both native FastClick and hypervisor-based ClickOS deployments. Our prototype also
takes advantage of FastClick’s computation batching with a processing core moving a
group of packets between the classifier and the synthesizer with a single function call. New
packet processing elements can be incorporated with minor effort. We made the FastClick
extensions available at Katsikas (2016).

PERFORMANCE EVALUATION
Recent efforts, such as ClickOS (Martins et al., 2014) and NetVM (Hwang, Ramakrishnan
& Wood, 2014), are unable to maintain constant high throughput and low latency for
chains of more than 3 NFs when processing packets at high speed. This problem hinders
large-scale hypervisor-based NFV deployments that could reduce network operators’
expenses and provide more flexible network management and services (Cisco, 2014; SDX
Central, 2015).

We envision SNF to be the key component of future NFV deployments, thus we evaluate
the synthesis process using real service chains to exercise its true potential. In this section,
we demonstrate SNF’s ability to address three types of service chains:

Chain 1: Scale a long series of routers at the cost of a single router.
Chain 2: Nest multiple NAPT middleboxes.
Chain 3: Implement high performance ACLs of increasing cardinality at the borders

of ISP networks.

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 15/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.98


We use the experimental setup described in the ‘Testbed’ section to measure the
performance of the above three types of chains and answer the following questions: Can we
synthesize (stateful) chains without sacrificing throughput as we increase the chain length
(see the ‘A chain of routers at the cost of one’ section and the ‘Stateful service chaining’
section)? What is the effect of different packet sizes on a system’s throughput (see the
‘Stateful service chaining’ section)? What are the current limits of purely software-based
packet processing (see the ‘Real service chain deployments’ section) and how can we
overcome them (see the ‘Hardware-accelerated SNF’ section)?

Testbed
We conducted our experiments on six identical machines each with a dual socket 16-core
Intel R© Xeon R© CPU E5-2667 v3 clocked at 3.20 GHz. The cache sizes are: 2 × 32 KB L1,
256 KB L2, and 20 MB L3. Hyper-threading is disabled and the OS is the Ubuntu 14.04.1
distribution with Linux kernel v.3.13. Each machine has two dual-port 10 GbE Intel 82599
ES NICs.

Unless stated otherwise, we use two machines to generate and sink bi-directional traffic
usingMoonGen (Emmerich et al., 2015), a DPDK-based traffic generator. MoonGen allows
us to saturate 10 Gbps NICs on a single machine using a set of cores, while receiving the
same amount of traffic on another set of cores. To gain insight into the performance of the
service chains, we measure the throughput and end-to-end latency to traverse the chains,
at the endpoints. We use FastClick as a baseline and compare FastClick against SNF (which
extends FastClick). We create service chains that run natively in a single process using
RSS and multiple CPU cores, as this is the fastest FastClick configuration. We follow two
different setups for our software-based and hardware-assisted deployments as follows:
Software-based SNF: In the ‘A chain of routers at the cost of one,’ ‘Stateful service
chaining,’ and ‘Real service chain deployments’ sections we stress different purely software-
based NFV service chains that run in one machine following the execution model of Fig. 1.
This machine has 4 10 GbE NICs connected to the two traffic source/sink machines (two
NICs on each machine), hence the total capacity of the NFV machine is 40 Gbps. The goal
of this testbed is to show how much NFV processing FastClick and SNF can fit into a single
machine and what processing limits this machine has.
Hardware-assisted SNF: For the complex NFV service chains, presented in the ‘Real
service chain deployments’ section, we deployed a testbed (see the ‘Hardware-accelerated
SNF’ section) where we offload the traffic classification to a NoviFlow 1132 OpenFlow
switch with firmware version 300.1.0. The switch is connected to two 10 GbE NICs via each
of the two senders/receivers, and with one link to each of the four processing servers in our
SNF cluster. This testbed has a total of 40 Gbps capacity (same as the software-based setup
above), but the processing is distributed to more machines in order to show how our SNF
system scales.

A chain of routers at the cost of one
This first use case targets a direct comparison with the state of the art. Specifically, we chain
a popular implementation of a software-based router that, after several years of successful
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Figure 7 Throughput (Gbps) of chained routers and NAPTs using (i) FastClick and (ii) SNF versus
the numbers of chained NFs (60-byte frames are injected at 40 Gbps). Bigger batch sizes achieve higher
throughput.

research contributions (Dobrescu et al., 2009;Han et al., 2010; Kim et al., 2012; Sun & Ricci,
2013;Martins et al., 2014; Barbette, Soldani & Mathy, 2015), achieves scalable performance
at tens of Gbps.

As we show in this section, a naive chaining of individual, fast NFs does not achieve
high performance. To quantify this we linearly connect 1–10 FastClick routers, where
each router has four 10 Gbps ports (hence such a chain has a 40 Gbps link capacity). The
down-pointing (green) triangular points in Fig. 7 show the throughput achieved by these
chains versus the increasing length of the chains, when we inject 60-bytes frames, excluding
the cyclic redundant check (CRC). The maximum throughput for this frame size is 31.5
Gbps and this is the limit of our NICs, as reported earlier (Barbette, Soldani & Mathy,
2015).

In our experiment, FastClick can operate at the maximum throughput only for a chain
of 1 or 2 routers. As denoted by the equation’s fit to the graph, after this point there is a
quadratic throughput degradation, that results in a chain of 10 routers achieving less that
10 Gbps of throughput.

SNF automatically synthesizes this simple chain (shown with red squares) to achieve the
maximum possible throughput of this hardware, despite the increasing length of the chain.
The fitted equation confirms that SNF operates at the speed of the NICs.

Stateful service chaining
The problem of Service Function Chaining has been recently investigated by Quinn &
Nadeau (2015) and several relevant use cases (Liu et al., 2014) have been proposed. In
some of these use cases, traffic needs to support distinct address families while traversing
different networks. For instance, within an ISP, IPv4/IPv6 traffic might either be directed to
a NAT64 (Bagnulo, Matthews & Van Beijnum, 2011) or a Carrier Grade NAT (Perreault et
al., 2013). Inmore extreme cases, this trafficmight originate from different access networks,
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Figure 8 Throughput of 10 routers and NAPTs chained using (i) FastClick and (ii) SNF versus the
frame size in bytes (without CRC). The different frames are injected at 40 Gbps.

such as fixed broadband, mobile, datacenters, or cloud customer premises, thus causing
the nested NAT problem (Penno, Wing & Boucadair, 2013).

The goal of this use case is to test SNF in such a stateful context using a chain of 1–10
NAPTs. Each NAPT maintains a state table that stores the original and translated source
and destination IP addresses and ports of each flow, associated with the input interface
where a flowwas originated. The rhomboid points of Fig. 7 show that the chains of FastClick
NAPTs suffer a steeper (according to the fitted equation) quadratic degradation than the
FastClick routers. Although we extended FastClick to support thread-safe, parallelized
NAPT operations across multiple cores, it is still unable to drive the NAPT chain at
line-rate, despite using 8 CPU cores and 128-packet batches.

SNF requires a certain batch size to realize the synthesized NAPT chains at the speed
of hardware as shown by the black circles of Fig. 7. The curve with the up-pointing (blue)
triangles indicates that a batch size of 32 packets leads to a slight throughput degradation
after the 6th NAPT in the chain. State lookup and management operations executed for
every packet cause this degradation. Depending on the performance targets, a network
operator might tolerate an increased latency to achieve the higher throughput offered by
an increased batch size.

Next, we explore the effect of different frame sizes on the chains of routers and NAPTs.
We run the longest chain (i.e., 10 NFs) for frame sizes in the range of [60, 1,500] bytes.
Figure 8 shows that SNF follows theNICs’ performance and achieves line-rate forwarding at
40 Gbps for frames greater than 128 bytes. FastClick only achieves up line-rate performance
for frame sizes greater than 800–1,000 bytes.
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Figure 9 An ISP’s service chain that serves inbound and outbound Internet traffic as well as intra-ISP
traffic using three NFs.

Real service chain deployments
Another common use case for an ISP is to deploy a service chain of a FW, a router, and a
NAPT as depicted in Fig. 9. The FW of such a chain may contain thousands of rules in its
ACL causing serious performance issues for software-based NF implementations.

In this section we measure the performance of SNF using actual FW configurations
of increasing cardinality and complexity, while exploring the limits of software-based
packet processing on our hardware. We utilize a set of three actual ACLs (Taylor & Turner,
2007), taken from several ISPs, to deploy the service chain of Fig. 9. The FW implements
one ACL with 251, 713, or 8,550 entries. The second NF is a standards-compliant IP
router that redirects packets either towards the ISP’s domain (intra-ISP traffic with prefix
204.152.0.0/16) or to the Internet. For the latter traffic, the third NF interconnects the ISP
with the Internet by performing source and destination NAPT.

We use the above ACLs to generate traces of 64-byte frames that systematically exercise
all of their entries. The generated packets emulate intra-ISP, inbound and outbound
Internet traffic (see Fig. 9). Figure 10 presents the performance of the 3 chains versus
the different frames sizes (64, 128, 256, and 1,500 bytes). We implemented the chains in
FastClick and a purely software-based SNF using the full capacity of our processor’s socket
(i.e., 8 cores in one machine), symmetric RSS, and a batch size of 128 packets.

Figure 10A shows that the small ACL (251 rules), executed as a single FastClick instance,
achieves satisfactory throughput, equal to its synthesized counterpart. This indicates that
a small ISP or a chain deployment in small subnets (e.g., using links with capacity equal
or less than 10 Gbps) may not fully benefit from SNF. As depicted in Fig. 10B, the latency
is also bounded below 100 µs. This time is dominated by the fact that our traffic flows
as follows: traffic originating from one machine enters an SNF server and, after being
processed, sent back to the origin server. We believe that the observed latency values are
realistic for such a topology.

However, for the ACLs with 713 and 8,550 rules the combination of all possible traffic
classes among the FW, router, and NAPT boxes causes the classification tree of the chain
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Figure 10 System’s performance versus 4 frame sizes (64, 128, 256, and 1,500 bytes) of three different
ISP-level chains with 251, 713, and 8,550 rules in their ACLs. FastClick and SNF implement these chains
in software using 8 CPU cores (in a single machine with four NICs), symmetric RSS, and batch size of 128
packets. Input rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

to explode in size, hence synthesis is a powerful yet necessary solution. This causes three
problems for FastClick: (i) the throughput when executing the last two ACLs (713, and
8,550 rules) is reduced by almost 1.5×–10× respectively (on average), (ii) the median
latency of the largest ACL is at least an order of magnitude greater than the median
latencies of the smaller ACLs (see Fig. 10B), and consequently (iii) the 99th percentile of
the latency increases (up to almost 4 ms).

In contrast, SNF effectively synthesizes the large ACLs (i.e., 713 and 8,550 rules)
maintaining high throughput despite their increasing complexity. In the case of 713 rules,
the synthesis is so effective that leads to better throughput than the 251-rule case. Regarding
latency, SNF demonstrates 1.1–10× lower median latency (bounded below 500 µs) and
2–3.5× lower latency variance (slightly above 1 ms in some cases). The throughput gain of
SNF is up to 8.5× greater than the FastClick chains.

Hardware-accelerated SNF
The results presented in the previous section show that software-based SNF cannot handle
packet processing at a high enough rate when the NFs are complex. We analyzed the
root cause and concluded that the packet classifier (that dispatches incoming packets
to synthesized NFs) is the bottleneck. To overcome this problem, we run additional
experiments, inwhichwe offload packet classification to a hardwareOpenFlow switch (since
commodity NICs do not offer sufficient programmability). By doing so, we showcase SNF’s
ability to scale to high data rates with realistic NFs. In addition, we hint at the performance
that is potentially achievable by offloading packet classification to a programmable interface.

Throughput measurements
This extended version of SNF includes a script that converts the classification rules
computed by the original SNF to OpenFlow 1.3 rules. The translation is not straightforward
because the switch rules are less expressive than the rules accepted by the NFs. Specifically,
rules that match on TCP and UDP port ranges are problematic. While OpenFlow allows
only matches on concrete values of ports, naive unrolling of ranges intomultiple OpenFlow
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Figure 11 Hardware-assisted SNF’s performance versus 4 frame sizes (64, 128, 256, and 1,500 bytes) of
three different ISP-level chains with 251, 713, and 8,550 rules in their ACLs. SNF’ s classification is of-
floaded to an OpenFlow switch, while stateful processing occurs in 4 servers connected to the switch. In-
put rates are 40 Gbps for the throughput test and 5 Gbps for the latency test.

matches leads to an unacceptable number of rules. Instead, we solve the problemby utilizing
a pipeline of flow tables available in the switch. The first two tables match only on the
source and destination ports respectively, assign them to ranges, and write metadata that
defines the range. Further tables include the real ACL rules and also match on the metadata
previously added to a packet. Moreover, since the rules in the NFs are explored in a
top-to-bottom order, we emulate the same behavior by assigning decreasing priorities to
the OpenFlow rules.

We use the same sets of ACLs as before, and evaluate throughput and latency in
the hardware-accelerated SNF. We first measure the throughput that SNF can achieve
leveraging OpenFlow classification. We design an experiment where two machines use a
total of four 10 Gbps links to send traffic. The packets are crafted so that they uniformly
exercise all visible classification rules (some rules from the original data set are fully covered
by other rules). We use the same frame sizes as in the ‘Real service chain deployments’
section. The switch classifies the packets and forwards them across four SNF servers that are
using 10 Gbps links to connect to the switch. The servers work in two modes: (i) forward
only, where they do not implement any NFs and simply forward packets (the first bar
in each pair in Fig. 11(A), and (ii) synthesized mode, where they implement the real NF
chain (the second bar in each pair in Fig. 11(A). Additionally, for comparison, we created
an experiment where the switch installs only four basic classification rules (to do simple
forwarding) to measure the performance of the NFs themselves (the last pair of bars in
Fig. 11(A).

We observe that throughput depends mostly on the frame size. The system can operate
at almost 20 Gbps for small frames (i.e., 64 bytes), and it reaches the full line-rate for
256-byte frames. Interestingly, the rule set size does not affect the throughput.

In the real data sets, the second bar in each pair is almost as high as the first one, which
shows that the software part of SNF does not limit the performance. Finally, with simple
forwarding rules in the switch (the first pair of bars in Fig. 11(A) the overall throughput
is high even for small frames, which confirms that packet processing at the switch is the

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 21/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.98


bottleneck of the whole system. To further prove this point, we run an experiment with
only 2 ports sending traffic at an aggregate speed of 20 Gbps. In this case, SNF processes
packets at the line-rate except for the smallest frames, where it achieves 15 Gbps.

Latency measurements
A middlebox chain should induce low, bounded packet processing delays. In this set of
experiments, we send traffic at a lower rate and measure latency. The setup is the same
as in the previous scenario. Thus, the latency we show includes the time for frames to
be: (i) transmitted out of the network interface of the traffic generating machines, (ii)
received, processed, and forwarded by the OpenFlow switch, (iii) received, processed, and
forwarded by the SNF machines, and (iv) received by the destination server (the same
machine as the sender).

Figure 11B shows the latency depending on the frame size and the synthesized function
(results for the input rate of 20 Gbps are very similar). Our results show that the median
latencies are low and stable across all frame sizes and chains. There are several main
observations here. First, the 75th percentiles (marked by the top horizontal line of the
boxplots) are close to the median latencies and we find this result to be encouraging.
Second, large frames (i.e., 1,500 bytes) face two times greater median latency than the
smaller ones regardless of the rule configuration. Third, there are outliers that are an
order of magnitude less/greater than the medians (e.g., 10 µs at the 1st and 100 µs at
99th percentiles for 64-byte frames and 80 µs at the 1st and 800 µs at 99th percentiles for
MTU-sized frames). Part of this latency variance is due to the batch I/O and processing
techniques of the FastClick framework; as shown in Fig. 11, these techniques offer high
throughput, but have a well-studied effect on the latency variance.

VERIFICATION
In this section we discuss tools that could potentially be utilized to systematically verify the
correctness of the synthesis proposed by SNF.

Recent efforts have employed model checking (Canini et al., 2012; Kim et al., 2015a)
techniques to explore the (voluminous) state space of modern networked systems in an
attempt to find state inconsistencies due to etc. bugs or misconfigurations. Symbolic
execution has also been utilized either alone (Kuzniar et al., 2012; Dobrescu & Argyraki,
2014) or combined with model checking (Canini et al., 2012), to systematically identify
representative input events (i.e., packets) that can adequately exercise code paths without
requiring exhaustive exploration of the input space (hence bounding the verification time).

Specifically, Software Dataplane Verification (Dobrescu & Argyraki, 2014) might be
suitable for verifying NFV service chains. Dobrescu and Argyraki proposed a scalable
approach to verifying complex NFV pipelines, by verifying each internal element of the
pipeline in isolation; then by composing the results the authors proved certain properties
about the entire pipeline. One could use this tool to systematically verify a complex part
of SNF, which is the traffic classification. However, this tool might not be able to provide
sound proofs regarding all the stateful modifications of SNF, since the authors verified
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only two simple stateful cases (i.e., a NAT and a traffic monitor) and did not generalize
their ideas for a broader list of NFV flow modification elements.

SOFT (Kuzniar et al., 2012) could also be employed to test the interoperability between
a chain realized with and without SNF. In other words, SOFT could inject a broad
set of inputs to test whether the SynthesizedNF defined in the ‘Abstract service chain
representation’ section outputs packets that are identical with the packets delivered by
the original set of NFs. Similarly, HSA (Kazemian, Varghese & McKeown, 2012) could be
used to verify loop-freedom, slice isolation, and reachability properties of SNF service
chains. Unfortunately, HSA statically operates on a snapshot of the network configuration,
hence is unable to track dynamic state modifications caused by continuous events. SOFT
is a special-purpose verification engine for software-defined networking (SDN) agent
implementations. Therefore, both works would require significant additional effort to
verify stateful NFV pipelines.

Finally, translating an SNF processing graph into a finite state machine understandable
by Kinetic (Kim et al., 2015a) would potentially allow Kinetic to use its model checker to
verify certain properties for the entire pipeline. However, Kinetic does not systematically
verify the actual code that runs in the network, but rather builds and verifies a model of this
code. Therefore, it is unclear (i) whether a Kinetic model can sufficiently cover complex
service chains such as the ISP-level chains presented in the ‘Real service chain deployments’
section and (ii) whether Kinetic’s located packet equivalence classes (LPECs) can handle
the complex TCUs of SNF without causing state space explosion.

To summarize, although the works above have provided remarkable advancements in
software verification, a substantial amount of additional research is required to provide
strong guarantees about the correctness of SNF. For this reason, in this paper we focus our
attention on delivering high speed pipelines for complex and stateful NFV service chains
and leave the verification of SNF as a future work.

LIMITATIONS
We do not attempt to provide a solution that can synthesize arbitrary software components,
but rather target a broad but finite set of middlebox-specific NFs that operate on the entire
space of a packet’s header. SNF makes two assumptions:
(1) An NFV provider must specify an NF as an ensemble of abstract packet processing

elements (i.e., the NF DAG defined in the ‘Service chain configuration’ section). We
believe that this is a reasonable assumption, followed also by other state of the art
approaches, such as Click, Slick, and OpenBox. However, if a middlebox provider does
not want to share this information, under non-disclosure or via a licensing agreement,
then SNF can synthesize the middleboxes before and after this provider’s middlebox.
This is possible by omitting the processing graph of this middlebox from the inputs
given to the Service Chain Configurator (see the ‘Service chain configuration’ section).

(2) No further decision (i.e., read) utilizes an already rewritten field, therefore, an LB that
splits traffic based on source port after a source NAPT, might not be synthesizable. In
such a case, SNF can exclude the LB from the synthesis.
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Moreover, our tool does not support network-wide placement of the chain’s
components, but we envision SNF being integrated in controllers, such as E2 or Slick.

RELATED WORK
Over the last decade, there has been considerable evolution of software-based packet
processing architectures that realize wireline throughputs, while providing flexible and cost
effective in-cloud network processing.

Monolithic middlebox implementations. Until recently, most NFV approaches have
treated NFs as monolithic entities placed at arbitrary locations in the network. In
this context, even with the assistance of state of the art OSs, such as the Click-based
ClickOS (Martins et al., 2014) together with fast network I/O (Rizzo, 2012; DPDK, 2016)
and processing (Kim et al., 2012; Kim et al., 2015b; Barbette, Soldani & Mathy, 2015)
mechanisms, chaining more than 2 NFs leads to serious performance degradation as
stated by the authors of both ClickOS and NetVM (Hwang, Ramakrishnan & Wood, 2014).
The main reason, as shown in our experiments, for this poor performance is the I/O
overhead due to forwarding packets along physically remote and virtualized NFs. More
recently, OpenNetVM (Zhang et al., 2016) showed that VM-based NFV deployments do
not scale with increasing number of chained instances, hence opted for NFs running in
lightweight Docker containers (Docker, San Francisco, CA, USA) interconnected with
shared memory segments.

Consolidation at the machine level. Concentrating network processing into a single
machine is a logical way to overcome the limitations stated above. CoMb (Sekar et al., 2012)
consolidates middlebox-oriented flow processing into one machine, mainly at the session
layer. Similarly, OpenNF (Gember-Jacobson et al., 2014) provides a programming interface
to migrate NFs, which can in turn be collocated in a physical server. DPIaaS (Bremler-Barr
et al., 2014) reuses the costly deep packet inspection (DPI) logic across multiple instances.
RouteBricks (Dobrescu et al., 2009) exploits parallelism to scale software routers across
multiple servers and cores within a single server, while PacketShader (Han et al., 2010)
and NBA (Kim et al., 2015b) take advantage of cheap and powerful auxiliary hardware
components (such as GPUs) to provide fast packet processing. All of these works only
partially exploit the benefits of sharing common middlebox functionality, thus they are far
from supporting optimized service chains.

Consolidation at the individual function level is the next level of composition of
scalable and efficient NF deployments. In this context, Open Middleboxes (xOMB) by
Anderson et al. (2012) proposes an incrementally scalable network processing pipeline
based on triggers that pass the flow control from one element to another in a pipeline. The
xOMB architecture allows great flexibility in sharing parts of the pipeline; however, it only
targets request-oriented protocols and services, unlike our generic framework.

Slick (Anwer et al., 2015) operates on the same level of packet processing as SNF to
compose distributed, network-wide service chains driven by a controller. Slick provides its
own programming language to achieve this composition and unlike our work, it addresses
placement requirements. Slick is very efficient when deploying service chains that are not
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necessarily collocated. However, we argue that in many cases all the NFs of a service chain
need to be deployed in one machine to effectively dispatch processing across cores in the
same socket. Slick does not allow all of the NF elements to be physically placed into a single
process. Our work goes beyond Slick by trading the flexibility of placing NF elements on
demand for extensive consolidation of the chain processing. Our synthesized SNF realizes
such chains with zero redundancy of individual packet operations.

Very recently, Bremler-Barr, Harchol & Hay (2016) applied the SDN control and
dataplane separation paradigm to OpenBox; a framework for network-wide deployment
and management of NFs. OpenBox applications input different NF specifications to the
OpenBox controller via a north-bound application programming interface. The controller
communicates the NF specifications to the OpenBox Instances (OBIs) that constitute the
actual dataplane, ensuring smart NF placement and scaling. An interesting feature of the
OpenBox controller is its ability to merge different processing graphs, from different NFs,
into a single and shorter processing graph, similar to our SNF. The authors of OpenBox
made a similar observation with us regarding the need to classify the traffic of a service
chain only once, and then apply a set of operations that originate from the different NFs
of the chain.

However, OpenBox does not highly optimize the result chain-level processing graph for
two reasons:
(i) The OpenBox merge algorithm can only merge homogeneous packet modification

elements (i.e., elements with the same type). For example, two ‘‘Decrement IP TTL’’
elements, that each decrements the TTL field by one, can be merged into a single
element that directly decrements the TTL field by two. Imagine, however, the case
where OpenBox has to merge the NFs of Fig. 5. In this example, OpenBox cannot
merge the ‘‘Rewrite Flow’’ element (that modifies the source and destination IP
addresses as well as the source port of UDP packets) with the 3 ‘‘Decrement IP TTL’’
elements, since these elements do not belong to the same type. This means that the
final OpenBox graph will have 2 distinct packet modification elements (i.e., 1 ‘‘Rewrite
Flow’’ and 1 ‘‘Decrement IP TTL’’) and each element has to compute the IP and UDP
checksums separately. Therefore, OpenBox does not completely eliminate redundant
operations. In contrast, SNF effectively synthesized the operations of all these elements
into a single element (see Fig. 6) that computes the IP and UDP checksums only once.
Consequently, SNF produces both a shorter processing graph and a synthesized chain
with no redundancy, hence achieving lower latency.

(ii) Although OpenBox can merge the classification elements of a chain into a single
classifier, the authors have not addressed how they handle the increased complexity
of the final classifier. Our preliminary experiments showed that in complex use
cases, such as the ISP-level traffic classification presented in the ‘Real service chain
deployments’ section, the complexity of the chain-level classifier dramatically increases
with increasing number of ACL rules. Therefore, SNF implements the lazy subtraction
technique proposed by Kazemian, Varghese & McKeown (2012). The benefits of this
technique are stated in the ‘FastClick extensions’ section.
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Finally, the authors of OpenBox did not stress the limits of the OpenBox framework in
their performance evaluation. An input packet rate of 1–2 Gbps cannot adequately stress
the memory utilization of the OBIs. Moreover, there is limited discussion related to how
OpenBox exploits the multi-core capacities of modern NFV infrastructures. In contrast, in
the ‘A chain of routers at the cost of one,’ ‘Stateful service chaining’ and ‘Real service chain
deployments’ sections we demonstrated how SNF realizes complex, purely software-based
service chains at 40 Gbps line-rate. This is possible by exploiting multiple CPU cores and
by fitting most of the data of an entire service chain into those cores’ L1 caches.

Scheduling NFs for high throughput. Recently, the E2 NFV framework (Palkar et al.,
2015) demonstrated a scalable way of deploying NFV services. E2 mainly tackles placement,
elastic scaling, and service composition by introducing pipelets. A pipelet defines a traffic
class and a corresponding DAG of NFs that should process this traffic class. SNF’s TCUs are
somewhat similar to E2’s pipelets, but SNF aims to make them more efficient. Concretely,
an SNF TCU is not processed by a DAG of NFs, but rather by a highly optimized piece of
code (produced by the synthesizer) that directly applies a set of operations to this specific
traffic class.

Impact. E2 can use SNF to fit more service chains into one machine, hence postpone its
elastic scaling. Existing approaches can transparently use our extensions to provide services
such as (i) lightweight Xen VMs that run synthesized ClickOS instances using the netmap
network I/O, (ii) parallelized service chains using the multi-server, multi-core RouteBricks
architecture, and (iii) synthesized chains that are load balanced across heterogeneous
hardware components (i.e., CPU and GPU) using NBA.

CONCLUSION
We have addressed the problem of synthesizing chains of NFs with SNF. SNF requires
minimal I/O interactions with the NFV platform and applies single-read-single-write
operations on the packets, while early-discarding irrelevant traffic classes. SNF maintains
state across NFs. To realize the above properties, we parse the chained NFs and build
a classification graph whose leaves represent unique traffic class units. In each leaf we
perform a set of packet header modifications to generate an equivalent configuration that
implements the same functionality as the initial chain using a minimal set of elements.

SNF synthesizes stateful chains that appear in production ISP-level networks realizing
high throughput and low latency, while outperforming state of the art works.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research leading to these results has been co-funded by the European Union (EU)
in the context of (i) the European Research Council under EU’s Seventh Framework
Programme (FP7/2007-2013) / ERC grant agreement 259110 and (ii) the BEhavioural
BAsed forwarding (BEBA) project with grant agreement number 644122. There was no

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 26/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.98


additional external funding received for this study. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Georgios P. Katsikas conceived and designed the experiments, performed the
experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote
the paper, prepared figures and/or tables, performed the computation work, reviewed
drafts of the paper.
• Marcel Enguehard conceived and designed the experiments, performed the computation
work, reviewed drafts of the paper.
• Maciej Kuźniar conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, wrote the paper,
prepared figures and/or tables, performed the computation work, reviewed drafts
of the paper.
• Gerald Q. Maguire Jr and Dejan Kostić wrote the paper, reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

Github: https://github.com/gkatsikas/fastclick/tree/snf.

REFERENCES
Anderson JW, Braud R, Kapoor R, Porter G, Vahdat A. 2012. xOMB: extensible open

middleboxes with commodity servers. In: Proceedings of the eighth ACM/IEEE
symposium on architectures for networking and communications systems, ANCS ’12.
New York, NY, USA: ACM, 49–60.

Anwer B, Benson T, Feamster N, Levin D. 2015. Programming slick network functions.
In: Proceedings of the 1st ACM SIGCOMM symposium on software defined networking
research, SOSR ’15. New York, NY, USA: ACM, 14:1–14:13.

BagnuloM,Matthews P, Van Beijnum I. 2011. Stateful NAT64: network address and
protocol translation from IPv6 clients to IPv4 servers. Request for Comments (RFC)
6146 (Proposed Standard). The Internet Engineering Task Force, Fremont. Available
at https://www.rfc-editor.org/ rfc/ rfc6146.txt .

Barbette T, Soldani C, Mathy L. 2015. Fast userspace packet processing. In: Proceedings
of the eleventh ACM/IEEE symposium on architectures for networking and communica-
tions systems, ANCS ’15. Piscataway: IEEE Computer Society, 5–16.

Bremler-Barr A, Harchol Y, Hay D. 2016. OpenBox: a software-defined framework for
developing, deploying, and managing network functions. In: Proceedings of the 2016
conference on ACM SIGCOMM 2016 conference, SIGCOMM ’16. New York: ACM,
511–524.

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 27/30

https://peerj.com
https://github.com/gkatsikas/fastclick/tree/snf
https://www.rfc-editor.org/rfc/rfc6146.txt
http://dx.doi.org/10.7717/peerj-cs.98


Bremler-Barr A, Harchol Y, Hay D, Koral Y. 2014. Deep packet inspection as a service.
In: Proceedings of the 10th ACM international on conference on emerging networking
experiments and technologies, CoNEXT ’14. New York: ACM, 271–282.

Canini M, Venzano D, Perešíni P, Kostić D, Rexford J. 2012. A NICE way to test
openflow applications. In: Proceedings of the 9th USENIX conference on networked
systems design and implementation, NSDI ’12. Berkeley: USENIX Association, 10.

Cisco. 2014. Scaling NFV—the performance challenge. Available at http:// blogs.cisco.com/
enterprise/ scaling-nfv-the-performance-challenge.

DobrescuM, Argyraki K. 2014. Software dataplane verification. In: Proceedings of the
11th USENIX conference on networked systems design and implementation, NSDI ’14.
Berkeley: USENIX Association, 101–114.

DobrescuM, Argyraki K, Iannaccone G, ManeshM, Ratnasamy S. 2010. Controlling
parallelism in a multicore software router. In: Proceedings of the workshop on
programmable routers for extensible services of tomorrow, SOSP ’09. New York: ACM,
2:1–2:6.

DobrescuM, Egi N, Argyraki K, Chun B-G, Fall K, Iannaccone G, Knies A, ManeshM,
Ratnasamy S. 2009. RouteBricks: exploiting parallelism to scale software routers. In:
Proceedings of the ACM SIGOPS 22nd symposium on operating systems principles. New
York: ACM, 15–28.

DPDK. 2016. Data plane development kit (DPDK). Available at http://dpdk.org.
Emmerich P, Gallenmüller S, Raumer D,Wohlfart F, Carle G. 2015.MoonGen: a

scriptable high-speed packet generator. In: Proceedings of the 2015 ACM conference
on internet measurement conference, IMC ’15. New York: ACM, 275–287.

EnguehardM. 2016.Hyper-NF: synthesizing chains of virtualized network functions.
Masters thesis, KTH School of Information and Communication Technology (ICT)
Available at http:// kth.diva-portal.org/ smash/ get/diva2:893670/FULLTEXT01.

European Telecommunications Standards Institute. 2012. NFV whitepaper. Available at
https:// portal.etsi.org/NFV/NFV_White_Paper.pdf.

Evans D. 2011. The internet of things: how the next evolution of the internet is changing
everything. Cisco Internet Business Solutions Group (IBSG), 1–11. Available at https:
//www.cisco.com/c/dam/en_us/about/ac79/docs/ innov/ IoT_IBSG_0411FINAL.pdf .

Gember-Jacobson A, Viswanathan R, Prakash C, Grandl R, Khalid J, Das S, Akella A.
2014. OpenNF: enabling innovation in network function control. In: Proceedings of
the 2014 ACM conference on SIGCOMM, SIGCOMM ’ 14. New York: ACM, 163–174.

Han S, Jang K, Park K, Moon S. 2010. PacketShader: a GPU-accelerated software router.
ACM SIGCOMM Computer Communication Review 40(4):195–206
DOI 10.1145/1851275.1851207.

Hwang J, Ramakrishnan KK,Wood T. 2014. NetVM: high performance and flexible
networking using virtualization on commodity platforms. In: Proceedings of the
11th USENIX conference on networked systems design and implementation, NSDI ’14.
Berkeley: USENIX Association, 445–458.

Intel. 2016. Receiver-Side Scaling (RSS). Available at http://www.intel.com/ content/dam/
support/us/ en/documents/network/ sb/318483001us2.pdf.

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 28/30

https://peerj.com
http://blogs.cisco.com/enterprise/scaling-nfv-the-performance-challenge
http://blogs.cisco.com/enterprise/scaling-nfv-the-performance-challenge
http://dpdk.org
http://kth.diva-portal.org/smash/get/diva2:893670/FULLTEXT01
https://portal.etsi.org/NFV/NFV_White_Paper.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
https://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FINAL.pdf
http://dx.doi.org/10.1145/1851275.1851207
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://www.intel.com/content/dam/support/us/en/documents/network/sb/318483001us2.pdf
http://dx.doi.org/10.7717/peerj-cs.98


Katsikas GP. 2016. SNF extensions of FastClick’s stateful flow processing elements.
Available at https:// github.com/gkatsikas/ fastclick/ tree/ snf.

Kazemian P, Varghese G, McKeown N. 2012.Header space analysis: static checking for
networks. In: Proceedings of the 9th USENIX conference on networked systems design
and implementation. Berkeley: USENIX Association, 9–9.

KimH, Reich J, Gupta A, ShahbazM, Feamster N, Clark R. 2015a. Kinetic: verifiable dy-
namic network control. In: Proceedings of the 12th USENIX conference on networked
systems design and implementation, NSDI ’15. Berkeley: USENIX association, 59–72.

Kim J, Huh S, Jang K, Park K, Moon S. 2012. The power of batching in the click modular
router. In: Proceedings of the Asia–Pacific workshop on systems, APSYS ’12. New York:
ACM, 14:1–14:6.

Kim J, Jang K, Lee K, Ma S, Shim J, Moon S. 2015b. NBA (Network Balancing Act): a
high-performance packet processing framework for heterogeneous processors. In:
Proceedings of the tenth European conference on computer systems, EuroSys ’15. New
York: ACM, 22:1–22:14.

Kohler E, Morris R, Chen B, Jannotti J, KaashoekMF. 2000. The click modular router.
ACM Transactions on Computer Systems 18(3):263–297 DOI 10.1145/354871.354874.

Kuzniar M, Peresini P, Canini M, Venzano D, Kostić D. 2012. A SOFT way for openflow
switch interoperability testing. In: Proceedings of the 8th international conference on
emerging networking experiments and technologies, CoNEXT ’12. New York: ACM,
265–276.

LiuW, Li H, Huang O, Boucadair M, Leymann N, Fu Q, Sun Q, Pham C, Huang C, Zhu
J, He P. 2014. Service function chaining (SFC) general use cases. Internet-draft draft-
liu-sfc-use-cases-08. IETF Secretariat. Available at https:// tools.ietf.org/html/draft-
liu-sfc-use-case-08.

Martins J, AhmedM, Raiciu C, Olteanu V, HondaM, Bifulco R, Huici F. 2014. ClickOS
and the art of network function virtualization. In: Proceedings of the 11th USENIX
conference on networked systems design and implementation, NSDI ’14. Berkeley:
USENIX Association, 459–473.

McKeown N, Anderson T, Balakrishnan H, Parulkar G, Peterson L, Rexford J, Shenker
S, Turner J. 2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 38(2):69–74
DOI 10.1145/1355734.1355746.

Palkar S, Lan C, Han S, Jang K, Panda A, Ratnasamy S, Rizzo L, Shenker S. 2015. E2: a
framework for NFV applications. In: Proceedings of the 25th symposium on operating
systems principles, SOSP ’15. New York: ACM, 121–136.

Penno R,Wing D, Boucadair M. 2013. PCP support for nested NAT environments.
Internet-draft draft-penno-pcp-nested-nat-03. IETF Secretariat. Available at https:
// tools.ietf.org/html/draft-penno-pcp-nested-nat-03.

Perreault S, Yamagata I, Miyakawa S, Nakagawa A, Ashida H. 2013. Common re-
quirements for carrier-grade NATs (CGNs). RFC 6888 (Best Current Practice). The
Internet Engineering Task Force, Fremont. Available at https://www.rfc-editor.org/
rfc/ rfc6888.txt .

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 29/30

https://peerj.com
https://github.com/gkatsikas/fastclick/tree/snf
http://dx.doi.org/10.1145/354871.354874
https://tools.ietf.org/html/draft-liu-sfc-use-case-08
https://tools.ietf.org/html/draft-liu-sfc-use-case-08
http://dx.doi.org/10.1145/1355734.1355746
https://tools.ietf.org/html/draft-penno-pcp-nested-nat-03
https://tools.ietf.org/html/draft-penno-pcp-nested-nat-03
https://www.rfc-editor.org/rfc/rfc6888.txt
https://www.rfc-editor.org/rfc/rfc6888.txt
http://dx.doi.org/10.7717/peerj-cs.98


Quinn P, Nadeau T. 2015. Problem statement for service function chaining. RFC 7498
(Informational). The Internet Engineering Task Force, Fremont. Available at https:
//www.rfc-editor.org/ rfc/ rfc7498.txt .

Rizzo L. 2012. Netmap: a novel framework for fast packet I/O. In: Proceedings of the
2012 USENIX conference on annual technical conference, USENIX ATC ’12. Berkeley:
USENIX Association, 9–9.

SDX Central. 2015. Performance—still fueling the NFV discussion. Available at https:
//www.sdxcentral.com/articles/ contributed/ vnf-performance-fueling-nfv-discussion-
kelly-leblanc/2015/05.

Sekar V, Egi N, Ratnasamy S, Reiter MK, Shi G. 2012. Design and implementation of a
consolidated middlebox architecture. In: Proceedings of the 9th USENIX conference
on networked systems design and implementation, NSDI ’12. Berkeley: USENIX
Association, 24–24.

Sherry J, Hasan S, Scott C, Krishnamurthy A, Ratnasamy S, Sekar V. 2012.Making
middleboxes someone else’s problem: network processing as a cloud service. In:
Proceedings of the ACM SIGCOMM 2012 conference on applications, technologies,
architectures, and protocols for computer communication, SIGCOMM ’12. New York:
ACM, 13–24.

SunW, Ricci R. 2013. Fast and flexible: parallel packet processing with GPUs and click.
In: Proceedings of the ninth ACM/IEEE symposium on architectures for networking
and communications systems, ANCS ’13. Piscataway: IEEE Press, 25–36Available at
http://dl.acm.org/ citation.cfm?id=2537857.2537861.

Taylor DE, Turner JS. 2007. ClassBench: a packet classification benchmark. IEEE/ACM
Transactions on Networking 15(3):499–511 DOI 10.1109/TNET.2007.893156.

Woo S, Park K. 2012. Scalable TCP session monitoring with symmetric receive-side
scaling. KAIST Technical Report. KAIST, Daejeon, 1–7.

ZhangW, Liu G, ZhangW, Shah N, Lopreiato P, Todeschi G, Ramakrishnan K,Wood
T. 2016. OpenNetVM: a platform for high performance network service chains. In:
Proceedings of the 2016 ACM SIGCOMM workshop on hot topics in middleboxes and
network function virtualization. New York: ACM.

Katsikas et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.98 30/30

https://peerj.com
https://www.rfc-editor.org/rfc/rfc7498.txt
https://www.rfc-editor.org/rfc/rfc7498.txt
https://www.sdxcentral.com/articles/contributed/vnf-performance-fueling-nfv-discussion-kelly-leblanc/2015/05
https://www.sdxcentral.com/articles/contributed/vnf-performance-fueling-nfv-discussion-kelly-leblanc/2015/05
https://www.sdxcentral.com/articles/contributed/vnf-performance-fueling-nfv-discussion-kelly-leblanc/2015/05
http://dl.acm.org/citation.cfm?id=2537857.2537861
http://dx.doi.org/10.1109/TNET.2007.893156
http://dx.doi.org/10.7717/peerj-cs.98

