
1

CONNECTIONS
Issue 1 | Vol. 39Article | DOI: 10.21307/connections-2019-009

Hairball Buster: A Graph Triage Method for Viewing and
Comparing Graphs

Patrick Allen,* Mark Matties
and Elisha Peterson

Johns Hopkins University Applied
Physics Laboratory, Laurel, MD.

*E-mail: Patrick.allen@jhuapl.edu

Abstract
Hairball buster (HB) (also called node-neighbor centrality or NNC) is
an approach to graph analytic triage that uses simple calculations and
visualization to quickly understand and compare graphs. Rather than
displaying highly interconnected graphs as ‘hairballs’ that are difficult
to understand, HB provides a simple standard visual representation of
a graph and its metrics, combining a monotonically decreasing curve
of node metrics with indicators of each node’s neighbors’ metrics. The
HB visual is canonical, in the sense that it provides a standard output
for each node-link graph. It helps analysts quickly identify areas for
further investigation, and also allows for easy comparison between
graphs of different data sets. The calculations required for creating an
HB display is order M plus N log N, where N is the number of nodes
and M is the number of edges. This paper includes examples of the
HB approach applied to four real-world data sets. It also compares HB
to similar visual approaches such as degree histograms, adjacency
matrices, blockmodeling, and force-based layout techniques. HB
presents greater information density than other algorithms at lower
or equal calculation cost, efficiently presenting information in a single
display that is not available in any other single display.

Keywords
Graph analytic triage, Node-neighbor centrality, Standard canonical
form for graphs, Comparing graphs.

Purpose and overview

The purpose of this paper is to describe a new
method for analyzing relationships among nodes in
a graph using a canonical representation that also
enables comparison between different graphs. The
approach is called ‘node-neighbor centrality’ (NNC),
or more colloquially, ‘hairball buster’ (HB).

HB computes a centrality measure (such as node
degree) for a node and its neighbors, and presents
this computation in an efficient, standardized visual
form that scales to very large graphs. Using the visual
depiction of the measure, an analyst can quickly answer
questions such as whether the graph is (generally) from
a social network or a random graph. Additionally, the
depiction retains information about relationships, so an

analyst can also quickly determine whether high-degree
nodes are connected to each other directly or through
a mutually adjacent node, such as in a bipartite graph.

This paper presents examples of the HB approach
addressing five types of analytic questions using four
real-world data sets. HB is a canonical approach using
node degrees that allows for comparison of different
graphs, while extensions of HB include the display of
selected graph attributes such as link weights. The use
of alternative measures of centrality is also presented.
The approach is compared and contrasted with other
common graph algorithms. The paper concludes with
the limitations of the HB approach and future planned
features and applications.

The HB python code is available at https://github.
com/PatAllen496/Hairball-Buster.

© 2020 Authors. This work is licensed under the Creative Commons
Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).

2

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

The need

The most commonly used graph visualization
techniques include node-link visualizations that embed
a graph’s nodes and links in two-dimensional space,
and adjacency matrix visualizations that show the
entire space of possible connections in a large matrix.
Each of these techniques has a number of advantages
and disadvantages (Ghoniem et al., 2005).

A particularly challenging case is graphs that have
so many elements and interconnected features that
it becomes difficult to determine which nodes and
links are most ‘important.’ When using standard
graph visualization algorithms such as force-directed
(Kamada and Kawai, 1989; Fruchterman and
Reingold, 1991) or dimensional reduction, the usual
starting point is a depiction of all nodes and links.
For many kinds of graphs, especially those with high
connectivity, this results in a ‘hairball’ as shown in
Figure 1, which shows a link between every pair of
jazz musicians that have performed together (Gleiser
and Danon, 2003).

The purpose of graph visualization is to help an
analyst understand features of the graph or a particular
node, using visual queries (Freeman, 2000; Peterson,
2011; Ware, 2010). However, in this typical ‘hairball,’ it
is difficult to determine at a glance the nodes with the
highest degree, the distribution of nodes by degree,
and whether the highest degree nodes are directly
connected to each other. An analyst needs to apply a
range of other algorithms to further dissect the graph,
sometimes requiring multiple iterations, to determine
how the various nodes relate to each other.

In addition, there are a number of additional
challenges that arise when visualizing graphs that

change over time (Bender-deMoll and McFarland,
2006; Peterson, 2011). There is a tendency in
force-directed visualization for nodes and links to
reposition themselves, every time new nodes or
links are added or removed. This makes it difficult
not only to identify key nodes, but to track them
over time. A number of approaches have been
suggested, but they do not fully address the issue
and are computationally expensive (Bender-deMoll
and McFarland, 2006; Brandes and Corman, 2003;
Moody et al., 2005; Peterson, 2011; Zweig, 2016).

An alternative approach is the backbone layout,
which attempts to directly resolve difficulties in
visualizing particularly dense portions of a force-
directed layout (Lehmann and Kottler, 2007, Nocaj
et al., 2014, 2015). Figure 2 shows the same data set
using Visone’s Quadrilateral Simmelian backbone
layout. While the big hairball of Figure 1 has been
broken up into four clusters, one large hairball has
turned into several smaller hairballs. One still cannot
answer many questions of interest to a data analyst,
e.g. which nodes have the highest degree or how
nodes of high degree are connected to each other.

There is also an inherent performance cost when
generating force-directed graph displays, most of
which are at a minimum order N2, where N is the
number of nodes (Fruchterman and Reingold, 1991).

Because of the challenges in visualizing node-
link diagrams in these cases, alternatives, such as
an adjacency matrix visualization, are often proposed
(Sheny and Maz, 2007). Adjacency matrices also can
be a very effective way to visualize clusters, so they are
often used when studying communities, sometimes
referred to as clustering or blockmodeling (Wasserman
and Faust, 1994; White et al., 1976). In one study, the
authors found that the adjacency matrix is almost
always superior for a certain set of tasks to the node-
link diagram (Ghoniem et al., 2005). However, the
authors did not include any graphs with more than 100
nodes in their study, and this is the principle drawback
of adjacency matrix visualizations: they do not scale
well to graphs with thousands or millions of nodes.

HB approach

HB is a new way of looking at graph data that scales
effectively to large, dense graphs. The approach is
simple to calculate and plot, and provides an easy
way to identify by inspection the most connected
nodes and most important links in the graph.

Assume there is a graph with N nodes and M
links. The degree of each node is the number of links
connected to that node. (Throughout this paper, we
will use degree as our primary measure of centrality,

Figure 1: Sample ‘Hairball’ showing jazz
players that performed with each other.

3

CONNECTIONS

although HB representations of other centrality
measures are presented later.) There are six steps to
creating the HB plot as follows:

1. Calculate the centrality (degree) of each node
(which requires M calculations).

2. Sort the nodes by degree, assigning ranks
from 1 (the highest degree node) to N (which
requires N log N calculations).

3. Plot (in one color) the monotonically decreas-
ing curve of degree (vertical axis) vs. node rank
(horizontal axis). (There will be N points on this
curve, one for each node.) Call this ‘the curve’
and the nodes on it ‘curve nodes.’

4. Calculate the neighbors of each node and
place each neighbor on a list associated with
each ranked node. (The placement of the
neighbor on the list of neighbors for each node
is accomplished during the initial M calcula-
tions in Step 1.)

5. Store the degree of the neighbor with the
neighbor node. (This step uses an index for
each node so that the degree of the neighbor is
an indexed look-up.)

6. For each node, plot (in another color) the value
of each of its neighbor’s degrees on the verti-
cal line at the same horizontal position as that
node, so that each of its neighbors will be rep-
resented above or below that node’s position
on the curve. Call these the ‘neighbor nodes.’

Optional calculations, such as ensuring canonicalization
and parallelization, and display options for log–log,
semi–log, inverse, and same degree offsets, are pre-
sented in Section ‘optional steps of the HB algorithm.’

The computational efficiency of HB is on the order of
M + N Log N. In contrast, traditional graph displays that
look like the hairball shown in Figure 1 require order N2
(Fruchterman and Reingold, 1991). In addition, some
algorithms only sample the graph data set, while the
HB approach deals with the whole data set in one pass
(Squartini et al., 2015). See Section ‘HB measures of
performance’ for further details.

In addition to computational efficiency, HB uses
visual space more efficiently than an adjacency
matrix, making it suitable for graphs of any size. It
supports many of the same visual queries as an
adjacency matrix, with the additional advantage that it
can highlight not just a node’s neighbors or clusters,
but also how a node’s centrality measure relates to
those of its neighbors. In the remainder of this paper,
these advantages are described in more detail by
analyzing several real-world sample graphs.

First application: quickly identifying
key nodes and relationships
in a graph

This section uses the jazz data set to illustrate how
HB can answer common analytic questions about

Figure 2: Visone backbone layout of jazz player data set.

4

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

which nodes have the highest degree and how these
are connected to other types of nodes.

Figure 3 depicts the degree curve (Step 3, above).
Note that there are four very high-degree nodes in the
upper-left-hand corner. The rest of the nodes follow
a fairly linear path from upper left to lower right. (This
pattern is typical for social networks.)

Figure 4 displays the neighbors of the curve
nodes (Steps 4, 5, and 6 above). Each red dot
represents one or more links on a traditional graph
display. The dot’s vertical position indicates the node
at one end of the link and its horizontal position
indicates the node at the other end. For example,
the red dot at coordinate (2,100) is the link between

Figure 3: Sample HB curve for jazz players that performed with each other.

Figure 4: Neighbors plot for jazz players that performed with each other.

5

CONNECTIONS

the first and second nodes on the curve (first two
blue dots).

This curve is not quite the same as a histogram or
node-degree distribution, where one dot represents
many nodes of the same degree. As with node-
degree curves, the shape can be useful for comparing
different graphs. However, HB displays one dot for
each node, since the horizontal axis is the degree rank
of the node. This is an important distinction, because
HB retains connectivity information about individual
nodes that other techniques do not and can therefore
answer a much broader class of questions. It can
also address additional questions that an adjacency
matrix cannot, as will be summarized later.

Unlike the backbone layout display, the HB chart
clearly shows which nodes have highest degree, how
much higher their degree is than other nodes, whether
the highest degree nodes are directly or indirectly
connected to other high-degree nodes, and how high-
degree nodes tend to connect to low-degree nodes.
This is summarized in Figure 5.

For instance, using the HB visual for jazz players
in Figure 4, the top 8 nodes are all clearly connected
to each other (forming a fully connected subgraph),
since there is a red dot on the same row and column
as the three blue dots representing the eight highest
degree nodes on the curve. For example, the highest
degree node (rank 1, degree 100) is connected to
the second highest ranked node (rank 2, degree 96),
indicated by the red dots plotted at rank 1/degree 96
and rank 2/degree 100. This pattern continues with
the remainder of the top 8 nodes. This specific kind of
connectivity information cannot be determined from a
backbone or a histogram display.

Second, the highest degree jazz players rarely
performed with the lowest-degree jazz players, as
shown by the gaps in the far side of the upper right
quadrant, which increase in frequency and length as
the rank increases to the right. This means that the

number of lower-ranked musicians with whom the
most connected musician performed is small.

Third, there are few dots near the bottom of the
chart. This shows that jazz players who have performed
with many others have tended to perform with other
jazz players who have also performed with many others,
and not with those who have performed with few.

In general, the upper-left ‘quadrant’ or section
of Figure 5 shows which high-degree nodes are
mutually connected to other high-degree nodes. If
some of the highest degree nodes are not connected
with each other, this can indicate that there are
different clusters of nodes around some of the high-
degree nodes (an observation that can be made
without running a clustering algorithm). Conversely,
if the highest degree nodes are mostly directly
connected to each other, this provides a different
pattern around a core group to analyze further.

In the upper right and lower left quadrants, it is
easy to see which high-degree nodes connect with
lower-degree nodes and which do not. A high-degree
node with many connections to one-degree nodes
indicates a common star pattern on traditional graph
displays. However, if one finds the highest degree
nodes are connected to low-degree nodes rather
than each other, then one may have a bipartite graph
or other distinguishing feature.

The lower right quadrant shows which lower-
degree nodes connect with each other. If this area
is sparse or empty, then the lower-degree nodes are
only connecting with the higher-degree nodes. This
is indicative of a star-like shape for some of the high-
degree nodes.

The visual can also be used to find nodes that
are indirectly connected via an intermediate node. If
two nodes A and B have a common neighbor C, then
C will be depicted as a neighbor node on the same
horizontal line above or below each of A and B.

Figure 6 shows how the HB chart can appear
for a directed graph. In this example, we randomly
assigned a direction to the Jazz player data set,
where green indicates an ‘in’ link to the node in that
row, while red indicates an ‘out’ link. The Jazz player
data set consisted of undirected links, and this figure
just shows how directed graphs would appear if the
links were directed.

Second application: quickly
identifying core groups or
multiple groups

This section shows how HB can quickly determine
whether there is a single core group or multiple core
groups in a data set. This example uses Toaster

Figure 5: Questions addressed by
location of neighbor nodes.

6

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Figure 6: Sample directed neighbors plot for jazz player data set (Green = In, Red = Out).

(Toster dot ru), which is a Russian social media site
for software support and help from a community
of subject matter experts (SMEs). It is similar to the
popular StackOverflow site, but the Toaster data set
is smaller and provides a form of ground truth in terms
of user-provided tags for purposes of comparison.

The Toaster data have a set of threaded discussions
where a person posts a question, someone else
posts an answer (usually an SME), and then others
can comment on both the question and the answer.
The data set at the time of download had over 30,000
nodes, 3,865,650 edges, and over 14,000 discussions.
Initial work by others at APL examined how to find

Figure 7: Force-directed representation
of the Toaster data set.

sub-communities within the larger community
represented by the Toaster data set. See Figure 7 for
a traditional force-directed visualization of the Toaster
data set. This image definitely qualifies as a hairball!
As shown in Figure 8, the backbone layout did not
produce more informative results.

To apply the HB approach to this data set, we
first removed duplications and focused entirely on
whether any username in the data set communicated
with any other username in the data set. The
analytic question we are asking is ‘Who are the core
members, and are there any large communities with
unique core members?’

While the original data set had 30,000 nodes and
almost 4 million edges, the de-duped data set had
23,916 nodes and 75,050 edges. Figure 9 shows the
HB representation of the nearly 24,000 nodes.

Focusing on the highest-ranked nodes, the top 28
can be readily identified, while the remaining are difficult
to visually distinguish. Each of the top-ranked nodes
appears to connect to all the other high-ranked nodes,
and the first obvious visual gaps occur at around 1,000
nodes. This indicates that the top-ranked nodes are
either fully connected or very nearly fully connected.

While displaying the full data set provides the
information described above for the first 28 nodes,
it does not definitively indicate whether the highest
degree nodes are fully connected, or whether they
belong to separate clusters due to visual occlusion.

To address this limitation, it helps to view the
‘inverse’ of the neighbors – that is, to display the

7

CONNECTIONS

Figure 8: Backbone layout representation of the Toaster data set.

Figure 9: HB representation of the Toaster data set (directionality ignored).

missing links (the gaps), and to zoom in on the
top nodes. (Zooming in on the display adds no
additional computational penalty beyond rendering.)
When there are no dots in the inverse, the graph is
fully connected. Figure 10 shows this inverse display
zoomed in on the first 250 nodes. It appears that

the top 20 nodes are almost, but not quite, fully
connected.

Figure 11 zooms in further on just the top 20
nodes, again showing the ‘inverse’ neighbors. It is
clear that nodes 1 through 15 are fully connected and
that nodes 1 through 20 are almost fully connected.

8

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Figure 10: HB representation of the inverse of neighbor nodes (e.g. gaps).

Figure 11: HB inverse representation of just the top 100 ranked nodes with each other in Toaster
data set.

Note that zooming in on the inverse neighbors was
a simple way to gain a more definitive understanding
of the graph while incurring virtually no additional
computational cost.

In summary, using our triage approach based on
HB, we can quickly see that the top-ranked 15 SMEs
in the Toaster data set have all commented on, or

been commented on, by each other, and the top 20
nearly so. This means that there is likely to be just one
core group in the Toaster community all connected
with each other.

In contrast, it takes more than one algorithm and
manual steps to provide similar data. For example,
we ran a histogram on the Toaster data set, which

9

CONNECTIONS

While k-truss is not available in Gephi, it is useful
in identifying clusters in data sets. However, when
the top nodes are fully or nearly fully connected, the
k-truss algorithm will not provide additional useful
information about these nodes.

Third application: HB and
temporal graphs

A significant benefit of the HB chart approach is
that the canonical format allows multiple curves/
graphs to be compared at once. As an example,
we divided the Toaster data set into blocks of 3,500
connections representing approximate slices of the
data set over time (since the initial data set was in
roughly chronological order). We then compared the
HB depictions of the first 3,500 node connections
with the second and third blocks. Figures 13 to 15
show these three batches of nodes and links plotted
with the same axis scales for ease of comparison.

In Figure 13, there is one node above degree
180, which is a much higher degree than any of the
other nodes. The next highest node is around 110,
followed by a couple at 70 and then a fairly smooth
curve toward the lowest degrees. Figure 14 shows
that in this next time period, the 110-degree node is
the highest-ranked node and the 70-degree nodes
are still present, but there is also an interesting bump
in the curve around degree 20. Figure 15 also has a

Figure 12: Force Atlas 2 on top 20
nodes in Toaster data set.

identified the top 25 to 30 nodes as having the
highest degree. We then ran Gephi, ranking the
nodes by degree and manually copied the top 20
nodes to visualize using Force Atlas 2. Figure 12
shows the results using degree as the node label.
While the process took roughly 5 min, HB provided
the results in 1 sec for the initial display and then for
the inverse display. The Gephi example does show
highly connected nodes, but does not conclusively
show which are fully connected, and required greater
time and calculation cost than HB.

Figure 13: HB chart of first 3,500 connections in Toaster data set.

10

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Figure 15: HB chart of third 3,500 connections in Toaster data set.

Figure 14: HB chart of second 3,500 connections in Toaster data set.

maximum degree node at 110, but also one at 90, 80,
and 60. This third set of 3,500 connections also has
a ‘bump’ in the curve around degree 20 that is similar
to the bump in Figure 14.

In typical node-link visualizations, visualizing
changing graphs compounds many of the issues

associated with visualizing static graphs. In addition,
there are new forms of ‘visual noise’: nodes/edges
that are displayed or removed without warning, and
nodes/edges that move rapidly from one time period
to the next without warning (Peterson, 2011). Many
approaches have been suggested to address these

11

CONNECTIONS

issues, but they are computationally expensive and
only work well in limited cases (Bender-deMoll and
McFarland, 2006; Brandes and Corman, 2003;
Moody et al., 2005; Peterson, 2011; Zweig, 2016).
In contrast, the HB approach is computationally
inexpensive and high in information content.

HB does not address all of these issues, but allows
the analyst to focus on how the centrality of a specific
node changes over time, or how the distribution of
centrality changes over time. For example, does the
shape of the curve change over time? This is shown
in Figures 13 to 15 for the Toaster data set. Does the
rank of each node change over time? This can be
added in a later version of the HB code. See Section
‘future features and applications of HB’ for such an
approach.

Fourth application: identifying
anomalous features

This section describes how HB can be used to
quickly identify selected anomalous features in a data
set associated with the highest degree nodes, using
suspended Iranian Twitter™ accounts obtained from
https://about.twitter.com/en_us/values/elections-
integrity.html#data (Twitter™, 2018). This data set
for user-id replies with no retweets between nodes
included 228,626 nodes and 440,244 edges.
Figure 16 was calculated in about 40 sec on a single-
threaded laptop, and shows that one node dominated

with over 260,000 replies. The next two highest
nodes had around 90,000 replies and just under
30,000 replies, respectively. (Displaying over 200,000
nodes and 400,000 links would not be feasible in
an adjacency matrix. See Section ‘comparing HB
to other algorithms’ for comparisons to both the
adjacency matrix and blockmodeling.) Figure 16
shows how much larger the degree of highest node
is compared to all other nodes, as well as for the
second and third degree nodes.

More importantly, this figure shows an interesting
pattern in gaps in the reply pattern of these top
3 nodes, as well as the highest of the next lower-
degree-ranked nodes. For example, the highest
degree mode appears to connect with most of the
rest of the nodes except around nodes ranked at
160K, while the second highest degree node has
multiple gaps and the third highest degree node does
not appear to connect with about half the nodes.

Zooming in on the left-hand side, Figure 17 shows
the same data limited to the first 200 nodes. Note
that the three top-ranked nodes connected with each
other and many other nodes, but did not connect
with the next 40 highest-ranked nodes except in
one case. What is the reason for such an unusual
pattern? The authors do not know for sure, but it may
be that nodes 4 through 44 are bots run by a different
team than those running the first three nodes. (Of the
4th through 44th nodes, the 4th node communicated
with most of the other 43 nodes, but most of the
rest of the 43 nodes did not communicate with each

Figure 16: HB chart of suspended Iranian Twitter™ accounts, user-id replies, and no retweets.

12

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

other.) In any case, HB is an efficient way to quickly
identify areas of interest and further investigation
into anomalous data without having to slowly whittle
down a huge hairball display. This approach might
also be useful in helping identify other Twitter™ bots
in the future based on similar patterns.

Fifth application: quickly identify
nodes connected by highest-value
link weights

This section shows how HB can be used to identify
key relationships in graphs with link weights.
This example uses output data from a tool called
CodeDNA™, a patented malware analysis tool
developed at JHU/APL that provides a fast, reliable,
automated means for recognizing related malware
binaries and linking variants. It ‘supports crowd-
sourcing of information by providing a robust
malware identifier (fingerprint) that is deterministic
and repeatable for correlating reports, analyses, and
other information about attackers, yet cannot be
used to re-create the original malware’ (Maughan and
Carlsten, 2018). By generating DNA-like fingerprints
from input files, and computing similarity between
these fingerprints, CodeDNA™ can effectively
identify clusters of related malware in very large data
sets. Figure 18 shows some samples of clusters of
malware previously produced by CodeDNA™.

For purposes of this paper, we obtained a data set
based on Linux coreutils rather than real malware, and

Figure 17: HB chart of suspended Iranian Twitter™ accounts, user-id replies, no retweets, first
200 nodes showing gaps among the top 3 and the next 40 nodes.

processed the data through CodeDNA™ software.
Figure 19 shows the seven clusters produced by
CodeDNA™, where each cluster represents elements
of the code that have ‘similarity scores’ between 0.6
and 1.0. A similarity score is an output of CodeDNA™
that determines how similar one code binary is
to another code binary. In Figure 19, the red lines
represent a similarity score of 1.0, meaning the code
samples are nearly identical. The blue lines represent
the score of 0.6, meaning that roughly 60% of the
code is similar according to CodeDNA’s algorithms.
The remaining links between the nodes are shaded
between blue and red as the similarity score
increases.

Using 0.6 as the lowest similarity score that defines
a related cluster, Figure 19 shows that the outputs
divide into seven clusters. To challenge the HB
approach, we selected the cluster that had the most
nodes (27) and the most links (292). This is almost a
fully connected graph, which would have 378 links.

Figure 20 shows the first attempt at displaying
this cluster’s data in HB. The problem is that many
of the nodes have exactly the same rank, which
makes it difficult to discern how the nodes relate to
each other. It would also be useful to color code the
similarity scores of each edge to provide further detail
about how these nodes relate to each other.

The solution is to offset the nodes slightly on the
vertical in order to allow for each unique link between
nodes to be displayed. In Figure 21, nodes with the
same degree are increased or decreased by 0.1 so
that the monotonically decreasing curve is maintained,

13

CONNECTIONS

Figure 18: Sample chart of CodeDNA™ cluster outputs of malware binaries.

and is centered on the original degree value. (If there
are more than nine nodes with the same degree, use
a smaller offset to fit them in between the next whole
number degree rows.) We added a line to connect the
nodes to make it easier to see the curve.

In addition to the vertical offset, we further color-
coded the similarity values of each link or edge. The
following colors represent the different ranges of
similarity scores: orange = 0.6 to 07, red = 0.7 to 0.8,
green = 0.8 to 0.9, and purple = 0.9 to 1.0. Note that
nodes 9 through 15 have high similarity scores, and a
bit less similarity with nodes 7, 8, and 16, even though
they share the same degree. Nodes 9 through 15 are

Figure 19: Sample CodeDNA™ cluster outputs of Linux coreutils binaries.

also similar to the nodes with degree 23. Likewise,
nodes 20 through 24 are similar to each other and
to the nodes with degree 23. Figure 22 highlights
these areas of high similarity by placing purple boxes
around them.

HB algorithm is canonical

The applications above have illustrated how hairball
buster can be used to answer key analytic questions.
We now move on to a general discussion of the
benefits of the approach and how it compares to
similar existing techniques.

14

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Figure 20: Sample CodeDNA™ cluster output in standard hairball buster (blue = nodes, gray
dots = links).

Figure 21: Sample CodeDNA™ cluster output in HB with vertical offset.

HB is canonical in the sense that each graph
has a unique visual representation. This consistency
is a significant benefit, allowing different data sets,
or different time slices of the same data set as in
Section ‘third application: HB and temporal graphs,’
to be compared, regardless of size.

To ensure uniqueness, the ranking of nodes by
degree must be consistent, and this ordering must be
chosen at the outset. The simplest way to do this is
to assign a unique label to each node and sort them
alphanumerically, thus ensuring a canonical display. This
was done ‘behind the scenes’ in the above applications.

15

CONNECTIONS

Another approach is to rank nodes that are tied
by having the same degree by their connections to
neighbors with the highest rank. For example, all of
the one-degree nodes will be ‘tied’ with each other,
but a tie-breaker is the degree of the node to which
it is connected. If ties still exist after a first pass, then
nodes can be ranked by the neighbor’s neighbors.
Repeat as necessary. If there is still ambiguity
between any nodes, simply assign a label to the node
and republish the data set so all parties interested in
that data set may use the same labels.

HB measures of performance

Many traditional graph layout approaches are
computationally intensive because they position each
node based on distance relative to every other node
and on which nodes share (or are otherwise affected
by) links. This N2 computation means that significant
time is required to render a single ‘hairball’ graph
with several thousand nodes, and many additional
computationally intensive steps may be required
to break the hairball into something more readily
understandable.

In contrast, the HB algorithm has order N log
N. For small data sets such as the Jazz data set,
on a single-threaded laptop there is no noticeable
difference in the performance between the two.
For large data sets such as the Twitter™ data set
with over 200,000 nodes, however, the difference
between N2 and N Log N becomes very significant.
Table 1 shows experimental results. While the run

time is similar for HB and backbone for small data
sets, the larger the data set, the better HB performs
compared to backbone layout. For 500K nodes,
backbone could not complete in 20 min, whereas
HB completed in less than 30 sec. Moreover, HB
consistently completed for graphs of 1 million nodes
in around 45 sec, whereas the backbone algorithm
could not be tested because visone could not load
this volume of data.

The HB approach uses Python code to calculate
the curves and neighbors from networks defined
in standard graphml or csv form. It then creates
Cartesian plots for the actual visualization. The
approach could be probably executed much faster if
optimized and parallelized.

In HB, every node and neighbor’s location is well
defined, easily calculated, and does not change
significantly when a new set of nodes or links are
added. It does not answer every question, but
can identify features that help effectively target
what subsets of nodes to use as inputs to more
computationally intensive algorithms that do answer
deeper questions.

HB using other measures
of centrality

In addition to degree, HB can also display the rank
of the nodes by other centrality measures. These
expand the type of questions that can be answered
by analysts using HB.

Figure 22: Sample CodeDNA™ cluster output in HB with vertical offset and highlighting nodes
with highest similarity scores.

16

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

T
ab

le
 1

. P
er

fo
rm

an
ce

 c
al

cu
la

tio
ns

 c
o

m
p

ar
is

o
ns

 f
o

r
H

B
 v

s
b

ac
kb

o
ne

 la
yo

ut
.

D
at

a
se

ts
hb

 r
un

 t
im

e
(s

)
vi

so
ne

 r
un

 t
im

e
–

q
ua

d

S
im

 (s
)

vi
so

ne
 r

un
 t

im
e

–
tr

i
S

im
 (s

)

F
ile

na
m

e
F

ile
 s

iz
e

(B
)

N
o

. o
f

no
d

es
N

o
. o

f
ed

g
es

1
2

3
A

vg
1

2
3

A
vg

1
2

3
A

vg

ra
nd

om
-1

00
0-

no
de

s.
gr

ap
hm

l
34

1,
36

5
1,

00
0

5,
00

2
0.

25
0.

25
0.

25
0.

25
2.

0
1.

7
1.

6
1.

8
1.

5
1.

1
1.

3
1.

3

ra
nd

om
-1

00
00

-
no

de
s.

gr
ap

hm
l

3,
55

5,
91

5
10

,0
00

49
,8

26
0.

67
0.

69
0.

70
0.

69
7.

3
6.

9
6.

8
7.

0
7.

0
7.

1
6.

8
7.

0

ra
nd

om
-

10
00

00
-n

od
es

.
gr

ap
hm

l

37
,2

71
,2

24
10

0,
00

0
50

0,
06

1
10

.0
1

11
.7

4
6.

55
9.

43
13

9.
4

12
0.

1
11

8.
5

12
6.

0
12

9.
0

11
9.

7
11

9.
1

12
2.

6

ra
nd

om
-

25
00

00
-n

od
es

.
gr

ap
hm

l

95
,4

52
,8

41
25

0,
00

0
1,

25
0,

48
7

16
.8

4
15

.3
6

15
.2

4
15

.8
1

34
9.

3
35

7.
3

36
1.

3
35

6.
0

35
6.

8
35

2.
7

33
4.

5
34

8.
0

ra
nd

om
-

50
00

00
-n

od
es

.
gr

ap
hm

l

19
3,

26
3,

33
9

50
0,

00
0

2,
50

1,
34

6
26

.2
1

25
.7

1
24

.4
7

25
.4

6
>

1,
20

0

ra
nd

om
-

10
00

00
0-

no
de

s.
gr

ap
hm

l

38
8,

46
1,

04
3

1,
00

0,
00

0
4,

99
7,

08
9

44
.2

5
43

.7
5

45
.1

9
44

.4
0

V
is

on
e

co
ul

d
no

t l
oa

d
gr

ap
hm

l f
ile

. I
ns

uf
fic

ie
nt

 m
em

or
y

co
de

-d
na

.
gr

ap
hm

l
15

5,
22

2
28

29
2

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

ja
zz

-d
ire

ct
ed

.
gr

ap
hm

l
36

1,
79

6
19

8
4,

11
3

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

<
1

se
c

to
st

er
_C

A
_

E
dg

e.
gr

ap
hm

l
5,

34
9,

86
1

23
,9

16
75

,0
50

1.
02

0.
96

0.
96

0.
98

20
.6

19
.8

20
.1

20
.2

17
.1

18
.9

17
.8

17
.9

ira
n-

tw
ee

t-
re

pl
ie

s.
no

-r
et

w
ee

t.
by

-u
se

rid
.

gr
ap

hm
l

29
4,

15
3,

48
4

22
8,

62
6

44
0,

24
4

1.
26

1.
12

1.
13

1.
17

>
1,

20
0

17

CONNECTIONS

node relationships and graph characteristics, (ii)
representing large or directed networks or graphs
with weighted links, and (iii) the ability to represent
other centrality measures and representing graphs in
a standard format at low calculation cost. These are
used to compare HB with several other techniques:
a histogram of node centralities, a standard force-
directed layout, a backbone layout, a standard
adjacency matrix with nodes sorted by degree, and
an adjacency matrix where nodes have been ordered
based on clusters (i.e. blockmodeling).

The histogram does not provide information about
neighbors, connectivity, number of clusters, weighted
links, or directedness. Similarly, the adjacency matrix
cannot represent centrality measures other than
degree, has no visual cues for comparing one node’s
degree to its neighbors or finding clusters, is not
usable for very large data sets, and has no log–log
or semi–log representation. (This paper assumes
that the adjacency matrix has already been sorted by
degree in terms of both rows and columns in order to
compare well against HB.)

While blockmodeling can depict the number of
clusters in a graph, it cannot represent other centrality
measures, log–log or semi–log representation,
is not canonical, and requires a large number of
calculations. Moreover, even when successfully
representing clusters, blockmodeling works well only
when there are several communities highly connected
within blocks and having only sparse connections
between blocks. Blockmodeling requires at least N2
calculations, and most references cite N3 calculations
being required (White et al., 1976; Wasserman and
Faust, 1994; Girvan and Newman, 2002; Jackson,
2010; Gopalan et al., 2012).

While force-directed and backbone layout
visualizations can show some clustering, they cannot
provide the distribution of nodes by degree and the

We focused on the following measures. The clique
count of a node with N neighbors as the count of
the

N

2

 neighbor pairs that are connected. The clique

count (order 2) is the number of node pairs within
distance 2 of the node that are connected. The decay
centrality of a node i is the weighted sum decay
(i) = ∑ j≠iδ

l(i,j), where δ is a decay parameter and l(i,j)
is the minimum distance from i to j (or infinite if the
nodes are in different components). The betweenness
centrality of a node measures how likely the node is
to lie along the shortest paths between other nodes in
the graph. More details on these centrality measures
are available in the studies of Wasserman and Faust
(1994) and Jackson (2010).

Figure 23 shows the HB visual for each of these
measures for both the jazz data set and a randomly
generated graph. The resulting figures emphasize
how a node’s centrality measure is related to those of
its neighbors. Each chart illustrates major structural
differences between the jazz graph and a random
graph. For example, in the decay centrality figures,
the centrality of neighbors in the jazz data sets differs
significantly, whereas in the random graph case the
decay centrality of neighbors is very similar (note the
vertical axis shows values between 52 and 61 only).

These examples also show how HB can be applied
to floating point as well as integer-valued metrics.
(Note that some metric calculations, betweenness
centrality in particular, are computationally expensive
and may negate some of the performance advantages
of the HB approach.)

Comparing HB to other algorithms

This section describes how HB differs from other
commonly used graph analytic and visualization
algorithms. Table 2 lists 14 analytic questions and
features grouped into three sections: (i) understanding

Figure 23: Displaying different measures of centrality in HB.

Graph Degree
Distribution

Degree Centrality Clique Count Clique Count
(order 2)1

Decay Centrality
(decay parameter 0.5)

Betweenness
Centrality2

Jazz
N=198,
E=2742

Random
Edges
N=198,
E=2742

1. Order 2 means displaying the number of triangles in the subgraph formed from all nodes within two hops of the chosen node
2. Betweenness Centrality is expensive to compute, so this version of the plot lacks the benefit of fast computation

18

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

T
ab

le
 2

. C
o

m
p

ar
in

g
 H

B
 f

ea
tu

re
s

to
 o

th
er

 g
ra

p
h

an
al

yt
ic

 a
nd

 v
is

ua
liz

at
io

n
al

g
o

ri
th

m
s.

F
ea

tu
re

H
ai

rb
al

l
b

us
te

r

H
is

to
g

ra
m

/
no

d
e-

d
eg

re
e

d
is

p
la

y

F
o

rc
e-

d

ir
ec

te
d

V
is

o
ne

b

ac
kb

o
ne

A
d

ja
ce

nc
y

m
at

ri
x

B
lo

ck

m
o

d
el

in
g

U
nd

er
st

an
di

ng
 n

od
e

re
la

tio
ns

hi
ps

 a
nd

 g
ra

ph
 c

ha
ra

ct
er

is
tic

s

1.
 D

is
tr

ib
ut

io
n

of
 n

od
es

 b
y

de
gr

ee
Y

es
Y

es
N

o
N

o
N

of
N

of

2.
 Q

ui
ck

ly
 d

et
er

m
in

e
th

e
nu

m
be

r
of

 h
ig

h-
de

gr
ee

 n
od

es
Y

es
Y

es
N

o
N

o
Y

es
N

of

3.
 Q

ui
ck

ly
 id

en
tif

y
w

hi
ch

 a
re

 th
e

hi
gh

es
t d

eg
re

e
no

de
s

Y
es

Y
es

a
N

ob
N

o
Y

es
Y

es

4.
 D

et
er

m
in

e
if

th
e

hi
gh

es
t d

eg
re

e
no

de
s

ar
e

di
re

ct
ly

 c
on

ne
ct

ed
 to

ot

he
r

hi
gh

-d
eg

re
e

no
de

s
Y

es
N

o
Y

es
c

N
ob

Y
es

Y
es

5.
 D

et
er

m
in

e
w

he
th

er
 th

e
hi

gh
es

t d
eg

re
e

no
de

s
ar

e
co

nn
ec

te
d

to

ea
ch

 o
th

er
 in

di
re

ct
ly

 v
ia

 tw
o

ho
ps

Y
es

N
o

Y
es

Y
es

c
Y

es
Y

es

6.
 D

et
er

m
in

e
w

hi
ch

 lo
w

er
-d

eg
re

e
no

de
s

ar
e

di
re

ct
ly

 c
on

ne
ct

ed
 to

th

e
hi

gh
-d

eg
re

e
no

de
s

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

7.
 P

ro
vi

de
 v

is
ua

l c
ue

 o
f h

ow
 m

uc
h

di
ffe

re
nc

e
ex

is
ts

 b
et

w
ee

n
th

e
de

gr
ee

 o
f t

he
 n

od
es

, e
sp

ec
ia

lly
 h

ig
h-

de
gr

ee
 n

od
es

Y
es

Y
es

N
o

N
o

N
o

Y
es

8.
 D

et
er

m
in

e
if

th
er

e
is

 o
ne

 c
en

tr
al

 c
lu

st
er

 o
r

m
an

y
cl

us
te

rs
 th

at

co
nt

ai
n

th
e

hi
gh

es
t d

eg
re

e
no

de
s

Y
es

N
o

Y
es

Y
es

N
o

Y
es

R
ep

re
se

nt
in

g
la

rg
e

or
 d

ire
ct

ed
 n

et
w

or
ks

, o
r

w
ith

 w
ei

gh
te

d
lin

ks

9.
 P

ro
vi

de
 lo

g–
lo

g
or

 s
em

i–
lo

g
re

pr
es

en
ta

tio
n

fo
r v

er
y

la
rg

e
da

ta
 s

et
s

Y
es

Y
es

N
o

N
o

N
o

N
o

10
. C

an
 v

is
ua

liz
e

bo
th

 d
ire

ct
ed

 a
nd

 u
nd

ire
ct

ed
 g

ra
ph

s
Y

es
N

o
Y

es
e

Y
es

e
Y

es
Y

es

11
. D

et
er

m
in

e
w

hi
ch

 n
od

es
 c

on
ne

ct
 to

 th
e

hi
gh

es
t w

ei
gh

te
d

lin
ks

Y
es

N
o

Y
es

d
Y

es
Y

es
g

Y
es

g

O
th

er
 c

en
tr

al
ity

 m
ea

su
re

s,
 s

ta
nd

ar
d

fo
rm

at
, l

ow
 c

al
cu

la
tio

n
co

st

12
. D

is
tr

ib
ut

io
n

of
 n

od
es

 b
y

ot
he

r
ce

nt
ra

lit
y

m
ea

su
re

s
Y

es
Y

es
N

o
N

o
N

o
N

o

13
. P

ro
vi

de
 a

 c
an

on
ic

al
 r

ep
re

se
nt

at
io

n
of

 th
e

gr
ap

h
Y

es
Y

es
N

o
N

o
Y

es
N

o

14
. L

ow
 c

al
cu

la
tio

n
co

st
Y

es
Y

es
N

o
N

o
Y

es
N

oh

N
ot

es
: a If

 d
is

pl
ay

ed
 o

r
av

ai
la

bl
e

vi
a

to
ol

tip
 d

is
pl

ay
; b

ex
ce

pt
 fo

r
ve

ry
 s

m
al

l d
at

a
se

ts
; c fo

r
sm

al
l g

ra
ph

s
or

 w
he

n
ed

ge
s

ar
e

no
t o

cc
lu

de
d;

 d
in

 s
om

e
ca

se
s;

e if

 li
nk

 w
ei

gh
ts

 d
is

pl
ay

ed
, e

.g
.,

by
 c

ol
or

 o
r

w
id

th
; f u

nl
es

s
on

e
ca

n
co

un
t

nu
m

be
r

of
 n

od
e

or
 li

nk
s

ve
ry

 c
ar

ef
ul

ly
; g if

 li
nk

 w
ei

gh
ts

 d
is

pl
ay

ed
 a

s
at

tr
ib

ut
es

 o
f

do
ts

 in
 th

e
m

at
rix

; h o
rd

er
 a

t l
ea

st
 N

2
an

d
m

os
t r

ef
er

en
ce

s
st

at
e

N
3 .

19

CONNECTIONS

number and identity of highest degree nodes or their
direct connectivity to other high-degree nodes except
in very small data sets. There are also no visual cues
as to how much larger one node’s degree is compared
to another high-degree node. Moreover, they do
not represent other measures of centrality, are not
canonical, and require at least N2 calculation cost.

As shown in Table 2, the only algorithms that
can come close to the HB analytic triage approach
in terms of computation time is the adjacency matrix
and the node-degree distribution or histogram
display. Even then, the histogram cannot address six
of the features available in HB, while the adjacency
matrix cannot address four. Overall, HB efficiently
presents information about a graph in a single display
that is not available in any other single display.

We also compared these approaches visually.
Figure 24 illustrates five graphs using force-based
layout, a histogram, an adjacency matrix, and HB.
We have shown in previous sections the variety
of questions that can be answered using HB. In
contrast, there is little that can be determined directly
from the force-based layout except for maybe the
preferential attachment graph. While the histogram
correlates well with the HB curve, the histogram
provides no data whatsoever about the neighbors of
the nodes. The adjacency matrix shows little in the

way of patterns in these examples, except for the third
and fourth graph, although this may be improved by
using other node orderings such as those obtained in
blockmodeling.

An interesting characteristic of HB not previously
discussed is also shown in the proximity graph. It
is clear from the histogram that the distribution is
bimodal, and the adjacency matrix shows a blob in
the lower left corner. HB shows not only the cluster in
the upper-left corner where most of the high-degree
nodes are interconnected, but also that this cluster is
mostly disconnected from other parts of the graph;
this could not be discovered from the histogram and
is difficult to ascertain from the adjacency matrix.

Optional steps of the HB algorithm

Section ‘HB approach’ presented the six basic steps
of the HB algorithm. This section describes four
optional steps mentioned in the previous use cases:

1. If one requires the HB chart to be canonical,
then rank nodes of the same degree in lexico-
graphic ordering based on the node labels.

2. Display the inverse (the gaps) of links to the
neighbors.

3. Display a log–log or semi–log chart.

Figure 24: Comparing different types of graphs and algorithms.

Graph Type Force-Based Layout Distribution Adjacency Matrix Neighbor-Metric Plot (HB)
Jazz
N=198, E=2742

Random Edges
N=200, E=400

Watts-Strogatz Random
Graph
N=200, E=400

Proximity Graph
N=200, E=401

Preferential Attachment
N=200, E=379

20

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

4. Display nodes with the same metric value us-
ing vertical offsets.

Displaying the inverse is performed at the time the
chart is rendered. Rather than displaying the neighbor
nodes at their specified X and Y coordinates, display
dots where there is no neighbor node, as shown in
Figures 10 and 11.

Displaying a log–log or semi–log chart benefits
from offsetting the origin by 10,10 or 100,100
depending on the size of the original data set, as
described in the Appendix.

Displaying multiple nodes with the same centrality
measure using vertical offsets makes relationships
easier to see. In this case, select the nodes of the
same centrality that are of interest, as shown in
Figures 21 and 22. Calculate the size of the offset
based on the number of curve nodes with the same Y
coordinate that need to fit within the space 0.5 above
and 0.5 below the Y-value.

Limitations of HB

At the time of this writing, we have identified four
limitations of the HB approach. First, if there are two or
more nodes with the same degree (or other centrality
measure), even though each node on the curve will
have a different rank (X-coordinate), their neighbor
nodes may land on top of each other. This reduces the
ability of the HB display to allow an analyst to clearly
see how the nodes and their neighbors relate to each
other, as well as more difficult to identify which high-
degree nodes are connected by two hops.

To address this limitation, the HB algorithm and
code allows for vertical offsets for nodes that share
the same degree, as described in Section ‘optional
steps of the HB algorithm.’ Note that for most social
networks, the high-degree nodes tend not to share
the same degree, and when they do, usually only a
small number share the same degree. For the low-
degree nodes, there is little interest in identifying
whether one-degree nodes are sharing the same row.
If there is a dot above it, then that one-degree node
is connected to that higher-degree node. If there is no
dot about it, then that node is connected to another
one-degree node and not connected to the rest of
the graph and is an outlier.

The second limitation is that if the graph has
multiple links per pair of nodes, as in a multirelational
network (Zweig, 2016), then those will not appear on
the HB chart. To address this, one could translate the
number of links into a link weight and color-code the
weights as shown in Figures 21 and 22. However, if
the multiple links each have their own weights, most

approaches – including HB, the adjacency matrix,
and blockmodeling – would be unable to represent
the weights.

Third, HB is not designed to represent loops, or
nodes that connect to themselves. While this is not
usually an issue for social network graphs, it is a
limitation for the basic HB algorithm. One could apply
workarounds, such as a vertical offset if not otherwise
being used in this HB case, or one could extend the
HB display to a third dimension.

Fourth, while Figure 9, for example, provides
a clear indication of which nodes have the highest
degree and whether they are highly connected to
other (neighbor) nodes, it can be difficult to identify
exactly which of the highest degree nodes are
connected to each other due to the large number of
nodes being displayed. To solve this display problem,
we recommend taking the inverse and displaying
the gaps when encountering situations with very
large numbers of highly connected nodes, as well as
displaying the top 1% of the highest-ranked nodes.
(This requires no new calculations – just selecting the
range of top nodes to zoom in on.) Figure 10 is an
example of applying this solution, and clearly shows
how few links are missing from the top 20 nodes to
be fully connected.

When to use HB

Given the strengths and limitations of the HB
approach, when should an analyst use or not use
HB? The authors recommend that HB be used as
the initial algorithm to apply to a data set because of
its information density and computational efficiency.
As a triage method, HB can provide in the first pass
the number of highest degree nodes, how they relate
to each other, and how they relate to their neighbors.
For graphs with large number of nodes that cannot
be visually separated in the full HB plot, zooming in on
the top nodes provides a computationally inexpensive
way to get the same information.

The results of this triage can indicate areas of
particular interest, such as gaps in the curve or
neighbor nodes. Moreover, if a graph reference library
(see Section ‘future features and applications of HB’)
is available, the new, unknown data set can be quickly
compared to its closest matches of known data sets,
thereby suggesting likely underlying structures and
algorithms to try next.

HB may be less useful for very small graphs, when
the structure of the graph is already well-understood,
when an analyst already knows exactly what metrics
to compute, or, as indicated by the limitations above
(Section ‘limitations of HB’), when the graph structure

21

CONNECTIONS

includes multiple links per node pair or links that loop
back to the same node.

Future features and applications
of HB

The first planned future feature is to create a graph
reference library (GRL) to compare new, unknown
graphs to a set of graphs whose underlying
structure is known. For example, curves generated
by exponential random graph models (ERGMs)
will appear different from known social media data
curves. Once the known curves closest to the
unknown curve have been identified, one can also
display their neighbors and compare the neighbor
distribution to the unknown graph neighbor
distribution. This can provide a significant benefit to
an analyst by quickly recommending known graphs
to consider when analyzing a new graph to better
understand its underlying structure. This comparison
approach could also be automated or semi-
automated by using convolutional neural networks
to make these comparisons more thoroughly. Note
that such a broad range of comparisons is possible
because the HB representation is canonical. Creation
of the GRL and the ability to display multiple curves
on the same chart for purposes of comparison will be
addressed in a subsequent paper.

One proposed visualization approach is to provide
cross-highlighting or ‘brushing’ capabilities among
different types of displays. For example, mousing
over the HB display could not only provide additional
information as tooltips, but by connecting to other
display types such as backbone layout, also highlight
the same nodes in other displays. This ability to cross-
highlight selections in multiple displays would provide
particular benefit in the examination of temporal
displays, identifying which have changed positions in
the curve and which have not.

An alternative visualization approach for highlighting
similarities and differences in temporal graphs is to
highlight which nodes have not changed rank by more
than one or two, and so on for a selected number of
bands identifying such changes. This method of triage
will also help analysts quickly focus on similarities and
differences in temporal displays.

Summary of advantages of HB

Hairball buster (or node-neighbor centrality) is an
approach that provides a computationally efficient
approach to graph analytic triage. HB provides a
unique, canonical representation of any node-link
data set. The ability of HB to provide a standard

representation allows different node-link data sets,
or different time slices of the same data set, to be
compared to identify anomalies or large structural
changes. The computational efficiency of HB is on
the order of M, where M is the number of links, plus N
log N, where N is the number of nodes.

Because of its computational efficiency, HB can
act as a triage method to identify key features of a
data set, including whether the curve appears more
representative of a social network or a random graph.
It can also be used to quickly identify how many high-
degree nodes are in the graph, which are the highest
ranked nodes, whether those nodes are connected to
each other directly or by two hops, and how connected
the higher ranked nodes are to the lower-ranked nodes.

In addition to degree, HB can visualize graphs
using other centrality measures such as clique count,
decay centrality, and betweenness. This flexibility of
HB to represent a wide range of centrality measures
is a significant benefit to analysts.

This paper also presented differences between HB
and force-directed and backbone layout visualization
algorithms. In each case, HB provides greater
information density than other algorithms at lower or
equal calculation cost. Overall, HB presents information
about a graph in a single display that is not available
in any other single display and can complement the
analyst’s existing toolkit.

Acknowledgments

No external funding was used to develop the Hairball
Buster approach and code. The Johns Hopkins
University Applied Physical Laboratory (JHU/APL)
funded a small internal research and development
seedling project to develop the initial code in Python
(developed by co-author Mark Matties) and Java
(developed by co-author Elisha Peterson). The authors
would also like to thank the following for providing
data sets (Cetin Savkli for the Jazz player data set,
Matt Elder and Janis Butkevics for the Toaster data,
Bobby Seng for the CodeDNA™ data, and Mark
Matties for the Iranian Twitter™ data), Marc Johnson
for complexity algorithm citations, and Roger Butler
for recognizing that the HB approach was canonical.

References
Bender-deMoll, S. and McFarland, D. A. 2006.

The art and science of dynamic network visualization.
Journal of Social Structure, 7.

Brandes, U. and Corman, S. R. 2003. Visual
unrolling of network evolution and the analysis of

22

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

dynamic discourse. Information Visualization, 2(1):
40–50, available at: https://doi.org/10.1057/palgrave.
ivs.9500037.

Freeman, L. C. 2000. Visualizing social networks.
Journal of Social Structure, 1(1): 4, available at: https://
www.researchgate.net /profile/L inton_Freeman/
publication/242008428_Social_Network_Visualization_
Methods_of/links/57516bfc08ae02ac12759651.pdf.

Fruchterman, T. M. J. and Reingold, E. M. 1991.
Graph drawing by force-directed placement. Software:
Practice and Experience, 21(11): 1129–1164, available
at: https://doi.org/10.1002/spe.4380211102.

Ghoniem, M., Fekete, J.-D. and Castagliola, P. 2005.
On the readability of graphs using node-link and matrix-
based representations: a controlled experiment and
statistical analysis. Information Visualization, 4(2): 114–135,
available at: https://doi.org/10.1057/palgrave.ivs.9500092.

Girvan, M. and Newman, M. E. J. 2002. Community
structure in social and biological networks. Proceedings
of the National Academy of Sciences, 99(12): 7821–7826,
available at: https://doi.org/10.1073/pnas.122653799.

Gleiser, P. and Danon, L. 2003. Adv. Complex Syst.6,
565, available at: http://deim.urv.cat/~alexandre.arenas/
data/welcome.htm as cited on the Konect website:
http://konect.uni-koblenz.de/networks/arenas-jazz.

Gleiser, P. M. and Danon, L. 2003. Community
structure in jazz. Advances in Complex Systems 6(4):
565–573, available at: https://www.worldscientific.
com/doi/abs/10.1142/S0219525903001067.

Gopalan, P. K., Gerrish, S., Freedman, M., Blei, D. M.
and Mimno, D. M. 2012. Scalable inference of
overlapping communities. In Pereira, F., Burges, C. J. C.,
Bottou, L. and Weinberger, K. Q. (Eds), Advances in
Neural Information Processing Systems. MIT Press,
Cambridge MA, pp. 2249–2257, available at: http://
papers.nips.cc/paper/4573-scalable-inference-of-
overlapping-communities.pdf.

Jackson, M. O. 2010. Social and Economic Networks,
Princeton University Press, Princeton and Oxford.

Kamada, T. and Kawai, S. 1989. An algorithm
for drawing general undirected graphs. Information
Processing Letters, 31(1): 7–15, available at: https://doi.
org/10.1016/0020-0190(89)90102-6.

Lehmann, K. A. and Kottler, S. 2007. Visualizing
large and clustered networks. In Kaufmann, M. and
Wagner, D. (Eds), Graph Drawing. Springer, Berlin and
Heidelberg, pp. 240–251.

Maughan, D. and Carlsten, N. 2018. Transition to
Practice Technology Guide. Department of Homeland

Security Washington DC, available at: https://www.
dhs.gov/sites/default/files/publications/CSD_TTP_
Guide_2018_webversion_06262018_508%20Final.pdf.

Moody, J., McFarland, D. and Bender-deMoll,
S. 2005. Dynamic network visualization. American
Journal of Sociology, 110(4): 1206–1241, https://doi.
org/10.1086/421509.

Nocaj, A., Ortmann, M. and Brandes, U. 2014.
Untangling hairballs. In Duncan, C. and Symvonis, A.
(Eds), Graph Drawing. Springer, Berlin and Heidelberg,
pp. 101–112.

Nocaj, A., Ortmann, M. and Brandes, U. 2015.
Untangling the hairballs of multi-centered, small-
world online social media networks. Journal of Graph
Algorithms and Applications 19(2): 595–618, available
at: https://doi.org/10.7155/jgaa.00370.

Peterson, E. 2011. Time spring layout for
visualization of dynamic social networks. 2011 IEEE
Network Science Workshop, pp. 98–104, available at:
https://doi.org/10.1109/NSW.2011.6004630.

Sheny, Z. and Maz, K.-L. 2007. Path visualization
for adjacency matrices. Proceedings of the 9th Joint
Eurographics/IEEE VGTC Conference on Visualization,
83–90, available at: https://doi.org/10.2312/VisSym/
EuroVis07/083-090.

Squartini, T., Mastrandrea, R. and Garlaschelli, D.
2015. Unbiased sampling of network ensembles. New
Journal of Physics, 17(2): 023052, available at: https://
doi.org/10.1088/1367-2630/17/2/023052.

Twitter™ 2018. Twitter™ website, data set
regarding election integrity, PERISCOPE, SCOPE and
the Periscope logo are trademarks of Twitter, Inc. or
its affiliates, available at: https://about.twitter.com/
en_us/values/elections-integrity.html#data (accessed
November 8, 2018).

Ware, C. 2010. Visual Thinking: for Design. Elsevier,
Amsterdam.

Wasserman, S. and Faust, K. 1994. Social
network analysis by Stanley Wasserman, Cambridge
University Press, available at: https://doi.org/10.1017/
CBO9780511815478 (accessed October 29, 2019).

White, H. C., Boorman, S. A. and Breiger, R. L.
1976. Social structure from multiple networks. I.
blockmodels of roles and positions. American Journal
of Sociology, 81(4): 730–780, available at: https://doi.
org/10.1086/226141.

Zweig, K. A. 2016. Network Analysis Literacy:
a Practical Approach to the Analysis of Networks.
Springer Science & Business Media, Wein, p. 115.

23

CONNECTIONS

Appendix. Semi–log and log–log displays
for the hairball buster approach

For very large data sets, a Cartesian representa-
tion of the HB algorithm may not be sufficient to
encompass the whole data set. Although the HB
approach has been successfully applied to data
sets with over 600,000 nodes displayed on Carte-
sian coordinates, there exist much larger data sets
for which a semi–log or log–log display would be
needed to represent all of the data in a single HB
chart. (In this appendix, we will always be referring
to log-base-10.)

When simply taking the semi–log or log–log of a
data set, we immediately discovered that the display
is dominated by the first few nodes, leaving little
visual benefit in the remaining part of the chart. See
Figure A1 for an example of a log–log display based
on the jazz player data set. This does not present
particularly useful information to the analyst.

However, there is an easy solution to this problem.
By adding either 10 or 100 to all of the data points, we
are essentially creating an ‘offset’ of the origin to point
10,10 or point 100,100. Figure A2 shows an offset of
the origin to the point at coordinates 10,10 for the Jazz
Player data set. Although a relatively small data set,

Figure A1: Sample Log10–log10 plot of jazz player data set with no offset.

Figure A2: Sample offset of origin to 10,10 for Log10–log10 plot of jazz player data set.

24

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

Figure A3: Sample offset of origin to 10,10 for semi–log plot of Toaster data set.

this example shows how the offset of the origin allows
a much smoother and continuous representation of the
curve compared to Figure A1. (One needs to remember
that when reading the chart, the origin has been offset.)

Figure A3 shows the Toaster data set in semi–log
format. No offset was needed because the log of one

is 0. Since most of the connections are of degree 1,
the origin of zero–zero works. However, the display
tool the authors applied would not display anything
at coordinate value of 0 for the Y-axis. Therefore, we
placed the degree one nodes at the lowest Y-value
on the semi–log display.

