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Abstract
Hairball buster (HB) (also called node-neighbor centrality or NNC) is 
an approach to graph analytic triage that uses simple calculations and 
visualization to quickly understand and compare graphs. Rather than 
displaying highly interconnected graphs as ‘hairballs’ that are difficult 
to understand, HB provides a simple standard visual representation of 
a graph and its metrics, combining a monotonically decreasing curve 
of node metrics with indicators of each node’s neighbors’ metrics. The 
HB visual is canonical, in the sense that it provides a standard output 
for each node-link graph. It helps analysts quickly identify areas for 
further investigation, and also allows for easy comparison between 
graphs of different data sets. The calculations required for creating an 
HB display is order M plus N log N, where N is the number of nodes 
and M is the number of edges. This paper includes examples of the 
HB approach applied to four real-world data sets. It also compares HB 
to similar visual approaches such as degree histograms, adjacency 
matrices, blockmodeling, and force-based layout techniques. HB 
presents greater information density than other algorithms at lower 
or equal calculation cost, efficiently presenting information in a single 
display that is not available in any other single display.

Keywords
Graph analytic triage, Node-neighbor centrality, Standard canonical 
form for graphs, Comparing graphs.

Purpose and overview

The purpose of this paper is to describe a new 
method for analyzing relationships among nodes in 
a graph using a canonical representation that also 
enables comparison between different graphs. The 
approach is called ‘node-neighbor centrality’ (NNC), 
or more colloquially, ‘hairball buster’ (HB).

HB computes a centrality measure (such as node 
degree) for a node and its neighbors, and presents 
this computation in an efficient, standardized visual 
form that scales to very large graphs. Using the visual 
depiction of the measure, an analyst can quickly answer 
questions such as whether the graph is (generally) from 
a social network or a random graph. Additionally, the 
depiction retains information about relationships, so an 

analyst can also quickly determine whether high-degree 
nodes are connected to each other directly or through 
a mutually adjacent node, such as in a bipartite graph.

This paper presents examples of the HB approach 
addressing five types of analytic questions using four 
real-world data sets. HB is a canonical approach using 
node degrees that allows for comparison of different 
graphs, while extensions of HB include the display of 
selected graph attributes such as link weights. The use 
of alternative measures of centrality is also presented. 
The approach is compared and contrasted with other 
common graph algorithms. The paper concludes with 
the limitations of the HB approach and future planned 
features and applications.

The HB python code is available at https://github.
com/PatAllen496/Hairball-Buster.

© 2020 Authors. This work is licensed under the Creative Commons  
Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/).
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The need

The most commonly used graph visualization 
techniques include node-link visualizations that embed 
a graph’s nodes and links in two-dimensional space, 
and adjacency matrix visualizations that show the 
entire space of possible connections in a large matrix. 
Each of these techniques has a number of advantages 
and disadvantages (Ghoniem et al., 2005).

A particularly challenging case is graphs that have 
so many elements and interconnected features that 
it becomes difficult to determine which nodes and 
links are most ‘important.’ When using standard 
graph visualization algorithms such as force-directed 
(Kamada and Kawai, 1989; Fruchterman and 
Reingold, 1991) or dimensional reduction, the usual 
starting point is a depiction of all nodes and links. 
For many kinds of graphs, especially those with high 
connectivity, this results in a ‘hairball’ as shown in 
Figure 1, which shows a link between every pair of 
jazz musicians that have performed together (Gleiser 
and Danon, 2003).

The purpose of graph visualization is to help an 
analyst understand features of the graph or a particular 
node, using visual queries (Freeman, 2000; Peterson, 
2011; Ware, 2010). However, in this typical ‘hairball,’ it 
is difficult to determine at a glance the nodes with the 
highest degree, the distribution of nodes by degree, 
and whether the highest degree nodes are directly 
connected to each other. An analyst needs to apply a 
range of other algorithms to further dissect the graph, 
sometimes requiring multiple iterations, to determine 
how the various nodes relate to each other.

In addition, there are a number of additional 
challenges that arise when visualizing graphs that 

change over time (Bender-deMoll and McFarland, 
2006; Peterson, 2011). There is a tendency in 
force-directed visualization for nodes and links to 
reposition themselves, every time new nodes or 
links are added or removed. This makes it difficult 
not only to identify key nodes, but to track them 
over time. A number of approaches have been 
suggested, but they do not fully address the issue 
and are computationally expensive (Bender-deMoll 
and McFarland, 2006; Brandes and Corman, 2003; 
Moody et al., 2005; Peterson, 2011; Zweig, 2016).

An alternative approach is the backbone layout, 
which attempts to directly resolve difficulties in 
visualizing particularly dense portions of a force-
directed layout (Lehmann and Kottler, 2007, Nocaj 
et al., 2014, 2015). Figure 2 shows the same data set 
using Visone’s Quadrilateral Simmelian backbone 
layout. While the big hairball of Figure 1 has been 
broken up into four clusters, one large hairball has 
turned into several smaller hairballs. One still cannot 
answer many questions of interest to a data analyst, 
e.g. which nodes have the highest degree or how 
nodes of high degree are connected to each other.

There is also an inherent performance cost when 
generating force-directed graph displays, most of 
which are at a minimum order N2, where N is the 
number of nodes (Fruchterman and Reingold, 1991).

Because of the challenges in visualizing node-
link diagrams in these cases, alternatives, such as 
an adjacency matrix visualization, are often proposed 
(Sheny and Maz, 2007). Adjacency matrices also can 
be a very effective way to visualize clusters, so they are 
often used when studying communities, sometimes 
referred to as clustering or blockmodeling (Wasserman 
and Faust, 1994; White et al., 1976). In one study, the 
authors found that the adjacency matrix is almost 
always superior for a certain set of tasks to the node-
link diagram (Ghoniem et al., 2005). However, the 
authors did not include any graphs with more than 100 
nodes in their study, and this is the principle drawback 
of adjacency matrix visualizations: they do not scale 
well to graphs with thousands or millions of nodes.

HB approach

HB is a new way of looking at graph data that scales 
effectively to large, dense graphs. The approach is 
simple to calculate and plot, and provides an easy 
way to identify by inspection the most connected 
nodes and most important links in the graph.

Assume there is a graph with N nodes and M 
links. The degree of each node is the number of links 
connected to that node. (Throughout this paper, we 
will use degree as our primary measure of centrality, 

Figure 1: Sample ‘Hairball’ showing jazz 
players that performed with each other.
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although HB representations of other centrality 
measures are presented later.) There are six steps to 
creating the HB plot as follows:

1. Calculate the centrality (degree) of each node 
(which requires M calculations).

2. Sort the nodes by degree, assigning ranks 
from 1 (the highest degree node) to N (which 
requires N log N calculations).

3. Plot (in one color) the monotonically decreas-
ing curve of degree (vertical axis) vs. node rank 
(horizontal axis). (There will be N points on this 
curve, one for each node.) Call this ‘the curve’ 
and the nodes on it ‘curve nodes.’

4. Calculate the neighbors of each node and 
place each neighbor on a list associated with 
each ranked node. (The placement of the 
neighbor on the list of neighbors for each node 
is accomplished during the initial M calcula-
tions in Step 1.)

5. Store the degree of the neighbor with the 
neighbor node. (This step uses an index for 
each node so that the degree of the neighbor is 
an indexed look-up.)

6. For each node, plot (in another color) the value 
of each of its neighbor’s degrees on the verti-
cal line at the same horizontal position as that 
node, so that each of its neighbors will be rep-
resented above or below that node’s position 
on the curve. Call these the ‘neighbor nodes.’

Optional calculations, such as ensuring canonicalization 
and parallelization, and display options for log–log,  
semi–log, inverse, and same degree offsets, are pre-
sented in Section ‘optional steps of the HB algorithm.’

The computational efficiency of HB is on the order of 
M + N Log N. In contrast, traditional graph displays that 
look like the hairball shown in Figure 1 require order N2 
(Fruchterman and Reingold, 1991). In addition, some 
algorithms only sample the graph data set, while the 
HB approach deals with the whole data set in one pass 
(Squartini et al., 2015). See Section ‘HB measures of 
performance’ for further details.

In addition to computational efficiency, HB uses 
visual space more efficiently than an adjacency 
matrix, making it suitable for graphs of any size. It 
supports many of the same visual queries as an 
adjacency matrix, with the additional advantage that it 
can highlight not just a node’s neighbors or clusters, 
but also how a node’s centrality measure relates to 
those of its neighbors. In the remainder of this paper, 
these advantages are described in more detail by 
analyzing several real-world sample graphs.

First application: quickly identifying 
key nodes and relationships  
in a graph

This section uses the jazz data set to illustrate how 
HB can answer common analytic questions about 

Figure 2: Visone backbone layout of jazz player data set.
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which nodes have the highest degree and how these 
are connected to other types of nodes.

Figure 3 depicts the degree curve (Step 3, above). 
Note that there are four very high-degree nodes in the 
upper-left-hand corner. The rest of the nodes follow 
a fairly linear path from upper left to lower right. (This 
pattern is typical for social networks.)

Figure 4 displays the neighbors of the curve 
nodes (Steps 4, 5, and 6 above). Each red dot 
represents one or more links on a traditional graph 
display. The dot’s vertical position indicates the node 
at one end of the link and its horizontal position 
indicates the node at the other end. For example, 
the red dot at coordinate (2,100) is the link between 

Figure 3: Sample HB curve for jazz players that performed with each other.

Figure 4: Neighbors plot for jazz players that performed with each other.
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the first and second nodes on the curve (first two 
blue dots).

This curve is not quite the same as a histogram or 
node-degree distribution, where one dot represents 
many nodes of the same degree. As with node-
degree curves, the shape can be useful for comparing 
different graphs. However, HB displays one dot for 
each node, since the horizontal axis is the degree rank 
of the node. This is an important distinction, because 
HB retains connectivity information about individual 
nodes that other techniques do not and can therefore 
answer a much broader class of questions. It can 
also address additional questions that an adjacency 
matrix cannot, as will be summarized later.

Unlike the backbone layout display, the HB chart 
clearly shows which nodes have highest degree, how 
much higher their degree is than other nodes, whether 
the highest degree nodes are directly or indirectly 
connected to other high-degree nodes, and how high-
degree nodes tend to connect to low-degree nodes. 
This is summarized in Figure 5.

For instance, using the HB visual for jazz players 
in Figure 4, the top 8 nodes are all clearly connected 
to each other (forming a fully connected subgraph), 
since there is a red dot on the same row and column 
as the three blue dots representing the eight highest 
degree nodes on the curve. For example, the highest 
degree node (rank 1, degree 100) is connected to 
the second highest ranked node (rank 2, degree 96), 
indicated by the red dots plotted at rank 1/degree 96 
and rank 2/degree 100. This pattern continues with 
the remainder of the top 8 nodes. This specific kind of 
connectivity information cannot be determined from a 
backbone or a histogram display.

Second, the highest degree jazz players rarely 
performed with the lowest-degree jazz players, as 
shown by the gaps in the far side of the upper right 
quadrant, which increase in frequency and length as 
the rank increases to the right. This means that the 

number of lower-ranked musicians with whom the 
most connected musician performed is small.

Third, there are few dots near the bottom of the 
chart. This shows that jazz players who have performed 
with many others have tended to perform with other 
jazz players who have also performed with many others, 
and not with those who have performed with few.

In general, the upper-left ‘quadrant’ or section 
of Figure 5 shows which high-degree nodes are 
mutually connected to other high-degree nodes. If 
some of the highest degree nodes are not connected 
with each other, this can indicate that there are 
different clusters of nodes around some of the high-
degree nodes (an observation that can be made 
without running a clustering algorithm). Conversely, 
if the highest degree nodes are mostly directly 
connected to each other, this provides a different 
pattern around a core group to analyze further.

In the upper right and lower left quadrants, it is 
easy to see which high-degree nodes connect with 
lower-degree nodes and which do not. A high-degree 
node with many connections to one-degree nodes 
indicates a common star pattern on traditional graph 
displays. However, if one finds the highest degree 
nodes are connected to low-degree nodes rather 
than each other, then one may have a bipartite graph 
or other distinguishing feature.

The lower right quadrant shows which lower-
degree nodes connect with each other. If this area 
is sparse or empty, then the lower-degree nodes are 
only connecting with the higher-degree nodes. This 
is indicative of a star-like shape for some of the high-
degree nodes.

The visual can also be used to find nodes that 
are indirectly connected via an intermediate node. If 
two nodes A and B have a common neighbor C, then 
C will be depicted as a neighbor node on the same 
horizontal line above or below each of A and B.

Figure 6 shows how the HB chart can appear 
for a directed graph. In this example, we randomly 
assigned a direction to the Jazz player data set, 
where green indicates an ‘in’ link to the node in that 
row, while red indicates an ‘out’ link. The Jazz player 
data set consisted of undirected links, and this figure 
just shows how directed graphs would appear if the 
links were directed.

Second application: quickly 
identifying core groups or 
multiple groups

This section shows how HB can quickly determine 
whether there is a single core group or multiple core 
groups in a data set. This example uses Toaster 

Figure 5: Questions addressed by 
location of neighbor nodes.
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Figure 6: Sample directed neighbors plot for jazz player data set (Green = In, Red = Out).

(Toster dot ru), which is a Russian social media site 
for software support and help from a community 
of subject matter experts (SMEs). It is similar to the 
popular StackOverflow site, but the Toaster data set 
is smaller and provides a form of ground truth in terms 
of user-provided tags for purposes of comparison.

The Toaster data have a set of threaded discussions 
where a person posts a question, someone else 
posts an answer (usually an SME), and then others 
can comment on both the question and the answer. 
The data set at the time of download had over 30,000 
nodes, 3,865,650 edges, and over 14,000 discussions. 
Initial work by others at APL examined how to find 

Figure 7: Force-directed representation 
of the Toaster data set.

sub-communities within the larger community 
represented by the Toaster data set. See Figure 7 for 
a traditional force-directed visualization of the Toaster 
data set. This image definitely qualifies as a hairball! 
As shown in Figure 8, the backbone layout did not 
produce more informative results.

To apply the HB approach to this data set, we 
first removed duplications and focused entirely on 
whether any username in the data set communicated 
with any other username in the data set. The 
analytic question we are asking is ‘Who are the core 
members, and are there any large communities with 
unique core members?’

While the original data set had 30,000 nodes and 
almost 4 million edges, the de-duped data set had 
23,916 nodes and 75,050 edges. Figure 9 shows the 
HB representation of the nearly 24,000 nodes.

Focusing on the highest-ranked nodes, the top 28 
can be readily identified, while the remaining are difficult 
to visually distinguish. Each of the top-ranked nodes 
appears to connect to all the other high-ranked nodes, 
and the first obvious visual gaps occur at around 1,000 
nodes. This indicates that the top-ranked nodes are 
either fully connected or very nearly fully connected.

While displaying the full data set provides the 
information described above for the first 28 nodes, 
it does not definitively indicate whether the highest 
degree nodes are fully connected, or whether they 
belong to separate clusters due to visual occlusion.

To address this limitation, it helps to view the 
‘inverse’ of the neighbors – that is, to display the 
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Figure 8: Backbone layout representation of the Toaster data set.

Figure 9: HB representation of the Toaster data set (directionality ignored).

missing links (the gaps), and to zoom in on the 
top nodes. (Zooming in on the display adds no 
additional computational penalty beyond rendering.) 
When there are no dots in the inverse, the graph is 
fully connected. Figure 10 shows this inverse display 
zoomed in on the first 250 nodes. It appears that 

the top 20 nodes are almost, but not quite, fully 
connected.

Figure 11 zooms in further on just the top 20 
nodes, again showing the ‘inverse’ neighbors. It is 
clear that nodes 1 through 15 are fully connected and 
that nodes 1 through 20 are almost fully connected. 
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Figure 10: HB representation of the inverse of neighbor nodes (e.g. gaps).

Figure 11: HB inverse representation of just the top 100 ranked nodes with each other in Toaster 
data set.

Note that zooming in on the inverse neighbors was 
a simple way to gain a more definitive understanding 
of the graph while incurring virtually no additional 
computational cost.

In summary, using our triage approach based on 
HB, we can quickly see that the top-ranked 15 SMEs 
in the Toaster data set have all commented on, or 

been commented on, by each other, and the top 20 
nearly so. This means that there is likely to be just one 
core group in the Toaster community all connected 
with each other.

In contrast, it takes more than one algorithm and 
manual steps to provide similar data. For example, 
we ran a histogram on the Toaster data set, which 
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While k-truss is not available in Gephi, it is useful 
in identifying clusters in data sets. However, when 
the top nodes are fully or nearly fully connected, the 
k-truss algorithm will not provide additional useful 
information about these nodes.

Third application: HB and  
temporal graphs

A significant benefit of the HB chart approach is 
that the canonical format allows multiple curves/
graphs to be compared at once. As an example, 
we divided the Toaster data set into blocks of 3,500 
connections representing approximate slices of the 
data set over time (since the initial data set was in 
roughly chronological order). We then compared the 
HB depictions of the first 3,500 node connections 
with the second and third blocks. Figures 13 to 15 
show these three batches of nodes and links plotted 
with the same axis scales for ease of comparison.

In Figure 13, there is one node above degree 
180, which is a much higher degree than any of the 
other nodes. The next highest node is around 110, 
followed by a couple at 70 and then a fairly smooth 
curve toward the lowest degrees. Figure 14 shows 
that in this next time period, the 110-degree node is 
the highest-ranked node and the 70-degree nodes 
are still present, but there is also an interesting bump 
in the curve around degree 20. Figure 15 also has a 

Figure 12: Force Atlas 2 on top 20 
nodes in Toaster data set.

identified the top 25 to 30 nodes as having the 
highest degree. We then ran Gephi, ranking the 
nodes by degree and manually copied the top 20 
nodes to visualize using Force Atlas 2. Figure 12 
shows the results using degree as the node label. 
While the process took roughly 5 min, HB provided 
the results in 1 sec for the initial display and then for 
the inverse display. The Gephi example does show 
highly connected nodes, but does not conclusively 
show which are fully connected, and required greater 
time and calculation cost than HB.

Figure 13: HB chart of first 3,500 connections in Toaster data set.
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Figure 15: HB chart of third 3,500 connections in Toaster data set.

Figure 14: HB chart of second 3,500 connections in Toaster data set.

maximum degree node at 110, but also one at 90, 80, 
and 60. This third set of 3,500 connections also has 
a ‘bump’ in the curve around degree 20 that is similar 
to the bump in Figure 14.

In typical node-link visualizations, visualizing 
changing graphs compounds many of the issues 

associated with visualizing static graphs. In addition, 
there are new forms of ‘visual noise’: nodes/edges 
that are displayed or removed without warning, and 
nodes/edges that move rapidly from one time period 
to the next without warning (Peterson, 2011). Many 
approaches have been suggested to address these 
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issues, but they are computationally expensive and 
only work well in limited cases (Bender-deMoll and 
McFarland, 2006; Brandes and Corman, 2003; 
Moody et al., 2005; Peterson, 2011; Zweig, 2016). 
In contrast, the HB approach is computationally 
inexpensive and high in information content.

HB does not address all of these issues, but allows 
the analyst to focus on how the centrality of a specific 
node changes over time, or how the distribution of 
centrality changes over time. For example, does the 
shape of the curve change over time? This is shown 
in Figures 13 to 15 for the Toaster data set. Does the 
rank of each node change over time? This can be 
added in a later version of the HB code. See Section 
‘future features and applications of HB’ for such an 
approach.

Fourth application: identifying  
anomalous features

This section describes how HB can be used to 
quickly identify selected anomalous features in a data 
set associated with the highest degree nodes, using 
suspended Iranian Twitter™ accounts obtained from 
https://about.twitter.com/en_us/values/elections-
integrity.html#data (Twitter™, 2018). This data set 
for user-id replies with no retweets between nodes 
included 228,626 nodes and 440,244 edges. 
Figure 16 was calculated in about 40 sec on a single-
threaded laptop, and shows that one node dominated 

with over 260,000 replies. The next two highest 
nodes had around 90,000 replies and just under 
30,000 replies, respectively. (Displaying over 200,000 
nodes and 400,000 links would not be feasible in 
an adjacency matrix. See Section ‘comparing HB 
to other algorithms’ for comparisons to both the 
adjacency matrix and blockmodeling.) Figure 16 
shows how much larger the degree of highest node 
is compared to all other nodes, as well as for the 
second and third degree nodes.

More importantly, this figure shows an interesting 
pattern in gaps in the reply pattern of these top 
3 nodes, as well as the highest of the next lower-
degree-ranked nodes. For example, the highest 
degree mode appears to connect with most of the 
rest of the nodes except around nodes ranked at 
160K, while the second highest degree node has 
multiple gaps and the third highest degree node does 
not appear to connect with about half the nodes.

Zooming in on the left-hand side, Figure 17 shows 
the same data limited to the first 200 nodes. Note 
that the three top-ranked nodes connected with each 
other and many other nodes, but did not connect 
with the next 40 highest-ranked nodes except in 
one case. What is the reason for such an unusual 
pattern? The authors do not know for sure, but it may 
be that nodes 4 through 44 are bots run by a different 
team than those running the first three nodes. (Of the 
4th through 44th nodes, the 4th node communicated 
with most of the other 43 nodes, but most of the 
rest of the 43 nodes did not communicate with each 

Figure 16: HB chart of suspended Iranian Twitter™ accounts, user-id replies, and no retweets.
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other.) In any case, HB is an efficient way to quickly 
identify areas of interest and further investigation 
into anomalous data without having to slowly whittle 
down a huge hairball display. This approach might 
also be useful in helping identify other Twitter™ bots 
in the future based on similar patterns.

Fifth application: quickly identify 
nodes connected by highest-value 
link weights

This section shows how HB can be used to identify 
key relationships in graphs with link weights. 
This example uses output data from a tool called 
CodeDNA™, a patented malware analysis tool 
developed at JHU/APL that provides a fast, reliable, 
automated means for recognizing related malware 
binaries and linking variants. It ‘supports crowd-
sourcing of information by providing a robust 
malware identifier (fingerprint) that is deterministic 
and repeatable for correlating reports, analyses, and 
other information about attackers, yet cannot be 
used to re-create the original malware’ (Maughan and 
Carlsten, 2018). By generating DNA-like fingerprints 
from input files, and computing similarity between 
these fingerprints, CodeDNA™ can effectively 
identify clusters of related malware in very large data 
sets. Figure 18 shows some samples of clusters of 
malware previously produced by CodeDNA™.

For purposes of this paper, we obtained a data set 
based on Linux coreutils rather than real malware, and 

Figure 17: HB chart of suspended Iranian Twitter™ accounts, user-id replies, no retweets, first 
200 nodes showing gaps among the top 3 and the next 40 nodes.

processed the data through CodeDNA™ software. 
Figure 19 shows the seven clusters produced by 
CodeDNA™, where each cluster represents elements 
of the code that have ‘similarity scores’ between 0.6 
and 1.0. A similarity score is an output of CodeDNA™ 
that determines how similar one code binary is 
to another code binary. In Figure 19, the red lines 
represent a similarity score of 1.0, meaning the code 
samples are nearly identical. The blue lines represent 
the score of 0.6, meaning that roughly 60% of the 
code is similar according to CodeDNA’s algorithms. 
The remaining links between the nodes are shaded 
between blue and red as the similarity score 
increases.

Using 0.6 as the lowest similarity score that defines 
a related cluster, Figure 19 shows that the outputs 
divide into seven clusters. To challenge the HB 
approach, we selected the cluster that had the most 
nodes (27) and the most links (292). This is almost a 
fully connected graph, which would have 378 links.

Figure 20 shows the first attempt at displaying 
this cluster’s data in HB. The problem is that many 
of the nodes have exactly the same rank, which 
makes it difficult to discern how the nodes relate to 
each other. It would also be useful to color code the 
similarity scores of each edge to provide further detail 
about how these nodes relate to each other.

The solution is to offset the nodes slightly on the 
vertical in order to allow for each unique link between 
nodes to be displayed. In Figure 21, nodes with the 
same degree are increased or decreased by 0.1 so 
that the monotonically decreasing curve is maintained, 
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Figure 18: Sample chart of CodeDNA™ cluster outputs of malware binaries.

and is centered on the original degree value. (If there 
are more than nine nodes with the same degree, use 
a smaller offset to fit them in between the next whole 
number degree rows.) We added a line to connect the 
nodes to make it easier to see the curve.

In addition to the vertical offset, we further color-
coded the similarity values of each link or edge. The 
following colors represent the different ranges of 
similarity scores: orange = 0.6 to 07, red = 0.7 to 0.8, 
green = 0.8 to 0.9, and purple = 0.9 to 1.0. Note that 
nodes 9 through 15 have high similarity scores, and a 
bit less similarity with nodes 7, 8, and 16, even though 
they share the same degree. Nodes 9 through 15 are 

Figure 19: Sample CodeDNA™ cluster outputs of Linux coreutils binaries.

also similar to the nodes with degree 23. Likewise, 
nodes 20 through 24 are similar to each other and 
to the nodes with degree 23. Figure 22 highlights 
these areas of high similarity by placing purple boxes 
around them.

HB algorithm is canonical

The applications above have illustrated how hairball 
buster can be used to answer key analytic questions. 
We now move on to a general discussion of the 
benefits of the approach and how it compares to 
similar existing techniques.
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Figure 20: Sample CodeDNA™ cluster output in standard hairball buster (blue = nodes, gray 
dots = links).

Figure 21: Sample CodeDNA™ cluster output in HB with vertical offset.

HB is canonical in the sense that each graph 
has a unique visual representation. This consistency 
is a significant benefit, allowing different data sets, 
or different time slices of the same data set as in 
Section ‘third application: HB and temporal graphs,’ 
to be compared, regardless of size.

To ensure uniqueness, the ranking of nodes by 
degree must be consistent, and this ordering must be 
chosen at the outset. The simplest way to do this is 
to assign a unique label to each node and sort them 
alphanumerically, thus ensuring a canonical display. This 
was done ‘behind the scenes’ in the above applications.
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Another approach is to rank nodes that are tied 
by having the same degree by their connections to 
neighbors with the highest rank. For example, all of 
the one-degree nodes will be ‘tied’ with each other, 
but a tie-breaker is the degree of the node to which 
it is connected. If ties still exist after a first pass, then 
nodes can be ranked by the neighbor’s neighbors. 
Repeat as necessary. If there is still ambiguity 
between any nodes, simply assign a label to the node 
and republish the data set so all parties interested in 
that data set may use the same labels.

HB measures of performance

Many traditional graph layout approaches are 
computationally intensive because they position each 
node based on distance relative to every other node 
and on which nodes share (or are otherwise affected 
by) links. This N2 computation means that significant 
time is required to render a single ‘hairball’ graph 
with several thousand nodes, and many additional 
computationally intensive steps may be required 
to break the hairball into something more readily 
understandable.

In contrast, the HB algorithm has order N log 
N. For small data sets such as the Jazz data set, 
on a single-threaded laptop there is no noticeable 
difference in the performance between the two. 
For large data sets such as the Twitter™ data set 
with over 200,000 nodes, however, the difference 
between N2 and N Log N becomes very significant. 
Table 1 shows experimental results. While the run 

time is similar for HB and backbone for small data 
sets, the larger the data set, the better HB performs 
compared to backbone layout. For 500K nodes, 
backbone could not complete in 20 min, whereas 
HB completed in less than 30 sec. Moreover, HB 
consistently completed for graphs of 1 million nodes 
in around 45 sec, whereas the backbone algorithm 
could not be tested because visone could not load 
this volume of data.

The HB approach uses Python code to calculate 
the curves and neighbors from networks defined 
in standard graphml or csv form. It then creates 
Cartesian plots for the actual visualization. The 
approach could be probably executed much faster if 
optimized and parallelized.

In HB, every node and neighbor’s location is well 
defined, easily calculated, and does not change 
significantly when a new set of nodes or links are 
added. It does not answer every question, but 
can identify features that help effectively target 
what subsets of nodes to use as inputs to more 
computationally intensive algorithms that do answer 
deeper questions.

HB using other measures  
of centrality

In addition to degree, HB can also display the rank 
of the nodes by other centrality measures. These 
expand the type of questions that can be answered 
by analysts using HB.

Figure 22: Sample CodeDNA™ cluster output in HB with vertical offset and highlighting nodes 
with highest similarity scores.
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node relationships and graph characteristics, (ii) 
representing large or directed networks or graphs 
with weighted links, and (iii) the ability to represent 
other centrality measures and representing graphs in 
a standard format at low calculation cost. These are 
used to compare HB with several other techniques: 
a histogram of node centralities, a standard force-
directed layout, a backbone layout, a standard 
adjacency matrix with nodes sorted by degree, and 
an adjacency matrix where nodes have been ordered 
based on clusters (i.e. blockmodeling).

The histogram does not provide information about 
neighbors, connectivity, number of clusters, weighted 
links, or directedness. Similarly, the adjacency matrix 
cannot represent centrality measures other than 
degree, has no visual cues for comparing one node’s 
degree to its neighbors or finding clusters, is not 
usable for very large data sets, and has no log–log 
or semi–log representation. (This paper assumes 
that the adjacency matrix has already been sorted by 
degree in terms of both rows and columns in order to 
compare well against HB.)

While blockmodeling can depict the number of 
clusters in a graph, it cannot represent other centrality 
measures, log–log or semi–log representation, 
is not canonical, and requires a large number of 
calculations. Moreover, even when successfully 
representing clusters, blockmodeling works well only 
when there are several communities highly connected 
within blocks and having only sparse connections 
between blocks. Blockmodeling requires at least N2 
calculations, and most references cite N3 calculations 
being required (White et al., 1976; Wasserman and 
Faust, 1994; Girvan and Newman, 2002; Jackson, 
2010; Gopalan et al., 2012).

While force-directed and backbone layout 
visualizations can show some clustering, they cannot 
provide the distribution of nodes by degree and the 

We focused on the following measures. The clique 
count of a node with N neighbors as the count of  
the 

N

2




  neighbor pairs that are connected. The clique 

count (order 2) is the number of node pairs within 
distance 2 of the node that are connected. The decay 
centrality of a node i is the weighted sum decay 
(i) = ∑ j≠iδ

l(i,j), where δ is a decay parameter and l(i,j) 
is the minimum distance from i to j (or infinite if the 
nodes are in different components). The betweenness 
centrality of a node measures how likely the node is 
to lie along the shortest paths between other nodes in 
the graph. More details on these centrality measures 
are available in the studies of Wasserman and Faust 
(1994) and Jackson (2010).

Figure 23 shows the HB visual for each of these 
measures for both the jazz data set and a randomly 
generated graph. The resulting figures emphasize 
how a node’s centrality measure is related to those of 
its neighbors. Each chart illustrates major structural 
differences between the jazz graph and a random 
graph. For example, in the decay centrality figures, 
the centrality of neighbors in the jazz data sets differs 
significantly, whereas in the random graph case the 
decay centrality of neighbors is very similar (note the 
vertical axis shows values between 52 and 61 only).

These examples also show how HB can be applied 
to floating point as well as integer-valued metrics. 
(Note that some metric calculations, betweenness 
centrality in particular, are computationally expensive 
and may negate some of the performance advantages 
of the HB approach.)

Comparing HB to other algorithms

This section describes how HB differs from other 
commonly used graph analytic and visualization 
algorithms. Table 2 lists 14 analytic questions and 
features grouped into three sections: (i) understanding 

Figure 23: Displaying different measures of centrality in HB.

Graph Degree
Distribution

Degree Centrality Clique Count Clique Count
(order 2)1

Decay Centrality
(decay parameter 0.5)

Betweenness
Centrality2

Jazz
N=198,
E=2742

Random
Edges
N=198,
E=2742

1. Order 2 means displaying the number of triangles in the subgraph formed from all nodes within two hops of the chosen node
2. Betweenness Centrality is expensive to compute, so this version of the plot lacks the benefit of fast computation



18

Hairball Buster: A Graph Triage Method for Viewing and Comparing Graphs

T
ab

le
 2

. C
o

m
p

ar
in

g
 H

B
 f

ea
tu

re
s 

to
 o

th
er

 g
ra

p
h 

an
al

yt
ic

 a
nd

 v
is

ua
liz

at
io

n 
al

g
o

ri
th

m
s.

F
ea

tu
re

H
ai

rb
al

l 
b

us
te

r

H
is

to
g

ra
m

/
no

d
e-

d
eg

re
e 

d
is

p
la

y

F
o

rc
e-

 
d

ir
ec

te
d

V
is

o
ne

 
b

ac
kb

o
ne

A
d

ja
ce

nc
y 

m
at

ri
x

B
lo

ck
 

m
o

d
el

in
g

U
nd

er
st

an
di

ng
 n

od
e 

re
la

tio
ns

hi
ps

 a
nd

 g
ra

ph
 c

ha
ra

ct
er

is
tic

s

1.
 D

is
tr

ib
ut

io
n 

of
 n

od
es

 b
y 

de
gr

ee
Y

es
Y

es
N

o
N

o
N

of
N

of

2.
 Q

ui
ck

ly
 d

et
er

m
in

e 
th

e 
nu

m
be

r 
of

 h
ig

h-
de

gr
ee

 n
od

es
Y

es
Y

es
N

o
N

o
Y

es
N

of

3.
 Q

ui
ck

ly
 id

en
tif

y 
w

hi
ch

 a
re

 th
e 

hi
gh

es
t d

eg
re

e 
no

de
s

Y
es

Y
es

a
N

ob
N

o
Y

es
Y

es

4.
  D

et
er

m
in

e 
if 

th
e 

hi
gh

es
t d

eg
re

e 
no

de
s 

ar
e 

di
re

ct
ly

 c
on

ne
ct

ed
 to

 
ot

he
r 

hi
gh

-d
eg

re
e 

no
de

s
Y

es
N

o
Y

es
c

N
ob

Y
es

Y
es

5.
  D

et
er

m
in

e 
w

he
th

er
 th

e 
hi

gh
es

t d
eg

re
e 

no
de

s 
ar

e 
co

nn
ec

te
d 

to
 

ea
ch

 o
th

er
 in

di
re

ct
ly

 v
ia

 tw
o 

ho
ps

Y
es

N
o

Y
es

Y
es

c
Y

es
Y

es

6.
  D

et
er

m
in

e 
w

hi
ch

 lo
w

er
-d

eg
re

e 
no

de
s 

ar
e 

di
re

ct
ly

 c
on

ne
ct

ed
 to

 
th

e 
hi

gh
-d

eg
re

e 
no

de
s

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

7.
  P

ro
vi

de
 v

is
ua

l c
ue

 o
f h

ow
 m

uc
h 

di
ffe

re
nc

e 
ex

is
ts

 b
et

w
ee

n 
th

e 
de

gr
ee

 o
f t

he
 n

od
es

, e
sp

ec
ia

lly
 h

ig
h-

de
gr

ee
 n

od
es

Y
es

Y
es

N
o

N
o

N
o

Y
es

8.
  D

et
er

m
in

e 
if 

th
er

e 
is

 o
ne

 c
en

tr
al

 c
lu

st
er

 o
r 

m
an

y 
cl

us
te

rs
 th

at
 

co
nt

ai
n 

th
e 

hi
gh

es
t d

eg
re

e 
no

de
s

Y
es

N
o

Y
es

Y
es

N
o

Y
es

R
ep

re
se

nt
in

g 
la

rg
e 

or
 d

ire
ct

ed
 n

et
w

or
ks

, o
r 

w
ith

 w
ei

gh
te

d 
lin

ks

9.
  P

ro
vi

de
 lo

g–
lo

g 
or

 s
em

i–
lo

g 
re

pr
es

en
ta

tio
n 

fo
r v

er
y 

la
rg

e 
da

ta
 s

et
s

Y
es

Y
es

N
o

N
o

N
o

N
o

10
. C

an
 v

is
ua

liz
e 

bo
th

 d
ire

ct
ed

 a
nd

 u
nd

ire
ct

ed
 g

ra
ph

s
Y

es
N

o
Y

es
e

Y
es

e
Y

es
Y

es

11
. D

et
er

m
in

e 
w

hi
ch

 n
od

es
 c

on
ne

ct
 to

 th
e 

hi
gh

es
t w

ei
gh

te
d 

lin
ks

Y
es

N
o

Y
es

d
Y

es
Y

es
g

Y
es

g

O
th

er
 c

en
tr

al
ity

 m
ea

su
re

s,
 s

ta
nd

ar
d 

fo
rm

at
, l

ow
 c

al
cu

la
tio

n 
co

st

12
. D

is
tr

ib
ut

io
n 

of
 n

od
es

 b
y 

ot
he

r 
ce

nt
ra

lit
y 

m
ea

su
re

s
Y

es
Y

es
N

o
N

o
N

o
N

o

13
. P

ro
vi

de
 a

 c
an

on
ic

al
 r

ep
re

se
nt

at
io

n 
of

 th
e 

gr
ap

h
Y

es
Y

es
N

o
N

o
Y

es
N

o

14
. L

ow
 c

al
cu

la
tio

n 
co

st
Y

es
Y

es
N

o
N

o
Y

es
N

oh

N
ot

es
: a If

 d
is

pl
ay

ed
 o

r 
av

ai
la

bl
e 

vi
a 

to
ol

tip
 d

is
pl

ay
; b

ex
ce

pt
 fo

r 
ve

ry
 s

m
al

l d
at

a 
se

ts
; c fo

r 
sm

al
l g

ra
ph

s 
or

 w
he

n 
ed

ge
s 

ar
e 

no
t o

cc
lu

de
d;

 d
in

 s
om

e 
ca

se
s;

 
e if

 li
nk

 w
ei

gh
ts

 d
is

pl
ay

ed
, e

.g
., 

by
 c

ol
or

 o
r 

w
id

th
; f u

nl
es

s 
on

e 
ca

n 
co

un
t 

nu
m

be
r 

of
 n

od
e 

or
 li

nk
s 

ve
ry

 c
ar

ef
ul

ly
; g if

 li
nk

 w
ei

gh
ts

 d
is

pl
ay

ed
 a

s 
at

tr
ib

ut
es

 o
f 

do
ts

 in
 th

e 
m

at
rix

; h o
rd

er
 a

t l
ea

st
 N

2  
an

d 
m

os
t r

ef
er

en
ce

s 
st

at
e 

N
3 .



19

CONNECTIONS

number and identity of highest degree nodes or their 
direct connectivity to other high-degree nodes except 
in very small data sets. There are also no visual cues 
as to how much larger one node’s degree is compared 
to another high-degree node. Moreover, they do 
not represent other measures of centrality, are not 
canonical, and require at least N2 calculation cost.

As shown in Table 2, the only algorithms that 
can come close to the HB analytic triage approach 
in terms of computation time is the adjacency matrix 
and the node-degree distribution or histogram 
display. Even then, the histogram cannot address six 
of the features available in HB, while the adjacency 
matrix cannot address four. Overall, HB efficiently 
presents information about a graph in a single display 
that is not available in any other single display.

We also compared these approaches visually. 
Figure 24 illustrates five graphs using force-based 
layout, a histogram, an adjacency matrix, and HB. 
We have shown in previous sections the variety 
of questions that can be answered using HB. In 
contrast, there is little that can be determined directly 
from the force-based layout except for maybe the 
preferential attachment graph. While the histogram 
correlates well with the HB curve, the histogram 
provides no data whatsoever about the neighbors of 
the nodes. The adjacency matrix shows little in the 

way of patterns in these examples, except for the third 
and fourth graph, although this may be improved by 
using other node orderings such as those obtained in 
blockmodeling.

An interesting characteristic of HB not previously 
discussed is also shown in the proximity graph. It 
is clear from the histogram that the distribution is 
bimodal, and the adjacency matrix shows a blob in 
the lower left corner. HB shows not only the cluster in 
the upper-left corner where most of the high-degree 
nodes are interconnected, but also that this cluster is 
mostly disconnected from other parts of the graph; 
this could not be discovered from the histogram and 
is difficult to ascertain from the adjacency matrix.

Optional steps of the HB algorithm

Section ‘HB approach’ presented the six basic steps 
of the HB algorithm. This section describes four 
optional steps mentioned in the previous use cases:

1. If one requires the HB chart to be canonical, 
then rank nodes of the same degree in lexico-
graphic ordering based on the node labels.

2. Display the inverse (the gaps) of links to the 
neighbors.

3. Display a log–log or semi–log chart.

Figure 24: Comparing different types of graphs and algorithms.

Graph Type Force-Based Layout Distribution Adjacency Matrix Neighbor-Metric Plot (HB)
Jazz
N=198, E=2742

Random Edges
N=200, E=400

Watts-Strogatz Random
Graph
N=200, E=400

Proximity Graph
N=200, E=401

Preferential Attachment
N=200, E=379
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4. Display nodes with the same metric value us-
ing vertical offsets.

Displaying the inverse is performed at the time the 
chart is rendered. Rather than displaying the neighbor 
nodes at their specified X and Y coordinates, display 
dots where there is no neighbor node, as shown in 
Figures 10 and 11.

Displaying a log–log or semi–log chart benefits 
from offsetting the origin by 10,10 or 100,100 
depending on the size of the original data set, as 
described in the Appendix.

Displaying multiple nodes with the same centrality 
measure using vertical offsets makes relationships 
easier to see. In this case, select the nodes of the 
same centrality that are of interest, as shown in 
Figures 21 and 22. Calculate the size of the offset 
based on the number of curve nodes with the same Y 
coordinate that need to fit within the space 0.5 above 
and 0.5 below the Y-value.

Limitations of HB

At the time of this writing, we have identified four 
limitations of the HB approach. First, if there are two or 
more nodes with the same degree (or other centrality 
measure), even though each node on the curve will 
have a different rank (X-coordinate), their neighbor 
nodes may land on top of each other. This reduces the 
ability of the HB display to allow an analyst to clearly 
see how the nodes and their neighbors relate to each 
other, as well as more difficult to identify which high-
degree nodes are connected by two hops.

To address this limitation, the HB algorithm and 
code allows for vertical offsets for nodes that share 
the same degree, as described in Section ‘optional 
steps of the HB algorithm.’ Note that for most social 
networks, the high-degree nodes tend not to share 
the same degree, and when they do, usually only a 
small number share the same degree. For the low-
degree nodes, there is little interest in identifying 
whether one-degree nodes are sharing the same row. 
If there is a dot above it, then that one-degree node 
is connected to that higher-degree node. If there is no 
dot about it, then that node is connected to another 
one-degree node and not connected to the rest of 
the graph and is an outlier.

The second limitation is that if the graph has 
multiple links per pair of nodes, as in a multirelational 
network (Zweig, 2016), then those will not appear on 
the HB chart. To address this, one could translate the 
number of links into a link weight and color-code the 
weights as shown in Figures 21 and 22. However, if 
the multiple links each have their own weights, most 

approaches – including HB, the adjacency matrix, 
and blockmodeling – would be unable to represent 
the weights.

Third, HB is not designed to represent loops, or 
nodes that connect to themselves. While this is not 
usually an issue for social network graphs, it is a 
limitation for the basic HB algorithm. One could apply 
workarounds, such as a vertical offset if not otherwise 
being used in this HB case, or one could extend the 
HB display to a third dimension.

Fourth, while Figure 9, for example, provides 
a clear indication of which nodes have the highest 
degree and whether they are highly connected to 
other (neighbor) nodes, it can be difficult to identify 
exactly which of the highest degree nodes are 
connected to each other due to the large number of 
nodes being displayed. To solve this display problem, 
we recommend taking the inverse and displaying 
the gaps when encountering situations with very 
large numbers of highly connected nodes, as well as 
displaying the top 1% of the highest-ranked nodes. 
(This requires no new calculations – just selecting the 
range of top nodes to zoom in on.) Figure 10 is an 
example of applying this solution, and clearly shows 
how few links are missing from the top 20 nodes to 
be fully connected.

When to use HB

Given the strengths and limitations of the HB 
approach, when should an analyst use or not use 
HB? The authors recommend that HB be used as 
the initial algorithm to apply to a data set because of 
its information density and computational efficiency. 
As a triage method, HB can provide in the first pass 
the number of highest degree nodes, how they relate 
to each other, and how they relate to their neighbors. 
For graphs with large number of nodes that cannot 
be visually separated in the full HB plot, zooming in on 
the top nodes provides a computationally inexpensive 
way to get the same information.

The results of this triage can indicate areas of 
particular interest, such as gaps in the curve or 
neighbor nodes. Moreover, if a graph reference library 
(see Section ‘future features and applications of HB’) 
is available, the new, unknown data set can be quickly 
compared to its closest matches of known data sets, 
thereby suggesting likely underlying structures and 
algorithms to try next.

HB may be less useful for very small graphs, when 
the structure of the graph is already well-understood, 
when an analyst already knows exactly what metrics 
to compute, or, as indicated by the limitations above 
(Section ‘limitations of HB’), when the graph structure 
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includes multiple links per node pair or links that loop 
back to the same node.

Future features and applications 
of HB

The first planned future feature is to create a graph 
reference library (GRL) to compare new, unknown 
graphs to a set of graphs whose underlying 
structure is known. For example, curves generated 
by exponential random graph models (ERGMs) 
will appear different from known social media data 
curves. Once the known curves closest to the 
unknown curve have been identified, one can also 
display their neighbors and compare the neighbor 
distribution to the unknown graph neighbor 
distribution. This can provide a significant benefit to 
an analyst by quickly recommending known graphs 
to consider when analyzing a new graph to better 
understand its underlying structure. This comparison 
approach could also be automated or semi-
automated by using convolutional neural networks 
to make these comparisons more thoroughly. Note 
that such a broad range of comparisons is possible 
because the HB representation is canonical. Creation 
of the GRL and the ability to display multiple curves 
on the same chart for purposes of comparison will be 
addressed in a subsequent paper.

One proposed visualization approach is to provide 
cross-highlighting or ‘brushing’ capabilities among 
different types of displays. For example, mousing 
over the HB display could not only provide additional 
information as tooltips, but by connecting to other 
display types such as backbone layout, also highlight 
the same nodes in other displays. This ability to cross-
highlight selections in multiple displays would provide 
particular benefit in the examination of temporal 
displays, identifying which have changed positions in 
the curve and which have not.

An alternative visualization approach for highlighting 
similarities and differences in temporal graphs is to 
highlight which nodes have not changed rank by more 
than one or two, and so on for a selected number of 
bands identifying such changes. This method of triage 
will also help analysts quickly focus on similarities and 
differences in temporal displays.

Summary of advantages of HB

Hairball buster (or node-neighbor centrality) is an 
approach that provides a computationally efficient 
approach to graph analytic triage. HB provides a 
unique, canonical representation of any node-link 
data set. The ability of HB to provide a standard 

representation allows different node-link data sets, 
or different time slices of the same data set, to be 
compared to identify anomalies or large structural 
changes. The computational efficiency of HB is on 
the order of M, where M is the number of links, plus N 
log N, where N is the number of nodes.

Because of its computational efficiency, HB can 
act as a triage method to identify key features of a 
data set, including whether the curve appears more 
representative of a social network or a random graph. 
It can also be used to quickly identify how many high-
degree nodes are in the graph, which are the highest 
ranked nodes, whether those nodes are connected to 
each other directly or by two hops, and how connected 
the higher ranked nodes are to the lower-ranked nodes.

In addition to degree, HB can visualize graphs 
using other centrality measures such as clique count, 
decay centrality, and betweenness. This flexibility of 
HB to represent a wide range of centrality measures 
is a significant benefit to analysts.

This paper also presented differences between HB 
and force-directed and backbone layout visualization 
algorithms. In each case, HB provides greater 
information density than other algorithms at lower or 
equal calculation cost. Overall, HB presents information 
about a graph in a single display that is not available 
in any other single display and can complement the 
analyst’s existing toolkit.
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Appendix. Semi–log and log–log displays 
for the hairball buster approach

For very large data sets, a Cartesian representa-
tion of the HB algorithm may not be sufficient to 
encompass the whole data set. Although the HB 
approach has been successfully applied to data 
sets with over 600,000 nodes displayed on Carte-
sian coordinates, there exist much larger data sets 
for which a semi–log or log–log display would be 
needed to represent all of the data in a single HB 
chart. (In this appendix, we will always be referring 
to log-base-10.)

When simply taking the semi–log or log–log of a 
data set, we immediately discovered that the display 
is dominated by the first few nodes, leaving little 
visual benefit in the remaining part of the chart. See 
Figure A1 for an example of a log–log display based 
on the jazz player data set. This does not present 
particularly useful information to the analyst.

However, there is an easy solution to this problem. 
By adding either 10 or 100 to all of the data points, we 
are essentially creating an ‘offset’ of the origin to point 
10,10 or point 100,100. Figure A2 shows an offset of 
the origin to the point at coordinates 10,10 for the Jazz 
Player data set. Although a relatively small data set, 

Figure A1: Sample Log10–log10 plot of jazz player data set with no offset.

Figure A2: Sample offset of origin to 10,10 for Log10–log10 plot of jazz player data set.
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Figure A3: Sample offset of origin to 10,10 for semi–log plot of Toaster data set.

this example shows how the offset of the origin allows 
a much smoother and continuous representation of the 
curve compared to Figure A1. (One needs to remember 
that when reading the chart, the origin has been offset.)

Figure A3 shows the Toaster data set in semi–log 
format. No offset was needed because the log of one 

is 0. Since most of the connections are of degree 1, 
the origin of zero–zero works. However, the display 
tool the authors applied would not display anything 
at coordinate value of 0 for the Y-axis. Therefore, we 
placed the degree one nodes at the lowest Y-value 
on the semi–log display.


