
68

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

Research on Optimization of memory
pool management for high concurrent

service requests

LIU Pingping, LU Zhaopan

School of Computer Science and Engineering

Xi’an Technological University, Xi’an 710021,China

Email:1341369601@qq.com

Abstract. In order to quickly and accurately return the information to the user after the keyword
are entered, and to effectively reduce the effect on the performance of the program when the search
system allocates and deal locates memory frequently under the high concurrency, the Recoverable Fixed
Length Memory Pool, Recoverable Variable Length Memory Pool and Allocate Not Free Memory Pool
were designed. According to the different scenes features of the search engine. The result shows that,
compared with the default system memory allocator, the efficiency of the Recoverable Fixed Length
Memory Pool is increased by 70.20% ,the efficiency of the Recoverable Variable Length Memory Pool is
increased by 13.84% and the efficiency of the Allocate Not Free Memory Pool is increased by 90.80%.

Keywords: High Concurrency, search engine, memory pool, distributor

1. Introductiong

The search engine is one of the most important applications of the Internet, which involved in
information retrieval, distributed processing, semantic web, data mining etc. The reasonable data
structure design, the index and the high concurrent system structure are all the factors that influence the
query speed. The basic principle of the search engine has been very stable, but in terms of service, quality
and performance needs to be optimized.

Most of traditional search engines use keyword matching mode, the system manages memory when
the application is not released too frequently, but in the face of massive data processing and storage,
search engines seem powerless. There are some drawbacks that directly using the system call Malloc/
Free and New/Delete[1] to distribute and release the memory. For example, calling the Malloc/New
system in accordance with the “first match” and “best match” or other algorithms in free memory
block table to find a free memory, the memory usage is not high; The system may need to merge free
memory blocks when Free / Delete is called, which will result in extra time and space overhead; It is easy
to produce a large number of memory fragments when used frequently, which reduces the efficiency
and stability of the program; Memory more prone to leaks[2] that caused by memory size continues to
increase and memory exhausted. For memory allocation problem, Wang Xiaoyin, a professor of Xi’an
University of Posts and telecommunications, analysis and research about the method and principle of
the establishment of the memory pool in the article of Implementation and Application of the Memory
Pool in Linux Kernel[3]. Memory allocated in memory pool does not need to release, it will be released

Research on Optimization of memory pool management for high concurrent service requests

69

when the memory pool is destroyed. Avantages:It speeds up memory allocation, when block of memory
is enough, only conduct simple operation such as size judgment and pointer offset; Small memory
payloads are high, require less additional information; The memory pool allocated memory usually do
not need a separate release, but a unified recovery; In addition to using memory allocation functions
instead of malloc, no other special conventions are used.

Therefore, to compare of the traditional search engine memory allocation and the memory
poolallocation. In this paper, different memory pools are designed for different application scenarios,
it managememory allocation to get the fastest allocate and release speed. For the user’s query, the
system’s memory management is completely taken over by the programmer, which is more conducive
to investigate problem and optimize system, and quickly return a satisfied result for customer.

2. Pinciples and Key Technologies of Search Engine

Search engine is based on the information extracted from the web site to establish the database, search
the relevant records of user query condition matching, and then return the results to the user according
to a certain order. The working principle[4] of search engine is divided into four steps: First, using web
crawler technology[5] to automatically grab the web page from the Internet, then analysis the original web
page, and set up an index database, and finally searching and sorting in the index database .When there
are multiple threads operating, if the system only has one CPU, it can not be carried out more than one
thread at the same time, it can only divided the running time of CPU into several periods, then allocate
the period of time to each thread, a thread code is run in a time, other threads are hanged up, this way
we call concurrency. In the condition of high concurrency, the search system frequently allocate and
recover memory will degrade the performance of program and the memory is used in a particular way,
and pay the cost of performance on the function that is not required.

For long-running background service system, the performance decrease mainly due to the default
memory management is a universal, and general memory management usually consider many factors,
including the thread, size, recovery time, distribution, frequency and so on. For this reason, it is
common to consider use of the memory pool to manage memory allocation, rather than simply using
New/Delete, Malloc/Free for dynamic memory allocation. By designing a dedicated memory pool
to allocate specific memory and optimize performance in different search application scenarios of
search system, and to enhance the mass data storage and search speed, in order to solve the problem of
universal memory.

2.1 Principle of memory pool

Memory pool[6] is a way of memory allocation, is a device that can dynamically allocate memory. It can
only be used by a specific kernel component (that is, the owner of the pool). Owners usually do not
directly use the memory pool, when the common memory allocation fails, the kernel call a particular
memory pool function to extract the memory pool, in order to get the extra memory. So the memory
pool is only a memory of the kernel memory, used at a specific time.

As shown in figure 1, the memory pool contains a total of 4 memory blocks. When the memory pool
is initially generated, only one block of memory is applied to the system, and the returned pointer acts
as the head of the entire memory pool. After the application of the continuous demand for memory,
memory pool judgment need to dynamically expand, then once again to apply for a new memory block
of the system, and all of these memory blocks linked by pointers.

70

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

For the operating system, it has been allocated four equal-sized memory blocks for the application
program. For example, on the fourth block of memory to enlarge, which contains a part of the memory
pool information and three equal size memory pool units. The unit 1 and unit 3 are free, unit 2 has
been allocated. When application program need to allocate a unit size of memory through the memory
pool, only need a simple traversal of all pool size information, then locate quickly the free memory pool
block unit. Then according to the size of the block position information directly locate the first free unit
address, return the address and mark the next free unit; Marking directly the corresponding memory
unit of the memory pool size information is free when the application program release a memory pool
unit.

Figure.1 The Working Principle of Memory Pool

2.2 Small object allocation technology

Due to the application of memory block size of memory pool is uncertain, usually directly use the API of
New and Malloc to apply for allocating memory. It is not effective for the small object allocation, when
frequently used will cause a large amount of memory fragmentation and then reduce the performance,
so the small object memory allocation technology[7] suitable for the small object memory allocation is
used here.

The size and number of blocks can be set in the construction period of the small object distributor. The
Chunk layer contains logical information, it can configured and returned the block from memory. Once
there is no free block in the Chunk layer, the function returns zero. Small Object Pool layer contains a
vector, Chunk objects stored inside, the Chunk layer has been extended. There is a chunk queue, which
stores all the information, there are two Chunk pointers, one pointing to the currently available Chunk,
one pointing to the current with the release of a pointer.

2.3 Scene analysis of search engine system

In this paper, analyzing the characteristics of the three scenes, Fixed length scene, Size is not fixed scene
and Multiple allocation scene, designing the corresponding memory pool.

1) Fixed length scene

In the existing search engine system, cache design takes advantage of the hash tables, Original system
use the New and Delete functions for the allocation and release of each node of the hash table, and the
size of the node is fixed, according to the allocation and release of the fixed size nodes, a memory pool
is designed to improve the speed of cache allocation and release. A lot of places use the Map of STL[9] in

Research on Optimization of memory pool management for high concurrent service requests

71

the present search engine system, and the allocation and release of memory of each node in the Map is
managed by the distributor in the STL, take over the fixed node memory allocation and release by itself,
enhance efficiency, easy to debug.

Based on the above two scenarios, the common is that how to deal with node fixed size, design a small
object dispenser to distribute and release the fixed size memory node.

2) Size is not fixed scene

In the cache management of the currents earch system, the search results are put into the cache, which
is helpful for the next search, the size of each node in the cache is uncertain, and the time to enter the
cache and propose cache can not be estimated. In the update module of the current search system,
which manages the update and delete of the document, but the size of the document and the time of the
update is unknown.

For this scene, it can design a recoverable variable length memory pool, the lock can be added to deal
with base on the characteristics of cache multi thread[10].

3) Multiple allocation scene

The current search engine will return a result within 10M size after input a keyword, and a lot of
information that comes with results will be allocated and released by using New and Delete function, it
cause that the New function used frequently, and affect efficiency and bring memory fragments[11].

After analysis, the search engine return the result sat the same time, memory is frequently allocated, the
number of release carried out only when the results of the query are returned, so the factor of frequent
distribution should be considered, and the total capacity is not more than 10M, therefore, it is consider
to allocate a large chunk of memory, after which all of the small memory is allocated, and finally released
through the interface. Based on this scene design allocate not free memory pool.

3. Memory pool design and realize based on the high concurrency

Three scenarios are obtained by analyzing the current search engines: Hash table insert delete, Cache
update and document update module, Query result return. Three memory pools are designed for the
three scenarios: Recoverable Fixed Length Memory Pool and Recoverable Variable Length Memory
Pool and Allocate Not Free Memory Pool were designed. The design structure of the search system
memory pool is shown in Figure 2.

Figure.2 The Design Framework of Memory Pool of Search System

72

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

3.1 Recoverable Fixed Length Memory Pool

Recoverable Fixed Length Memory Pool is Small object distributor, it divided into 4 layers structure.
As shown in Figure 3, the bottom layer is the Chunk object, each Chunk manages a large chunk of
memory, which contains an integer number of fixed size block. Chunk contains logical information,
the user can configure and return the block according to it. When the Chunk is no longer remaining
blocks, the configuration fails and returns to zero. The second layer is Fix Allocate, which base on the
first layer, using the known vector to expand the first layer and ensure that the size of the distribution
can be extended. The third layer is Small Object Allocator, which provide universal distribution and
return function. The third layer expand base on the second layer, it provide multiple second layer
objects, it make the fixed length of the distribution technology turn into a variable length distribution
technology. The fourth layer is Small Object, It made a package for the third layer, which provides
a number of generic interfaces for the third layer and some common interface, extend it into a multi
thread available distributor. Through layer by layer expansion, not only to ensure the release efficiency
of the distribution, but also to better package the internal structure together, it not visible to the outside.
By providing a common interface, to make it used like the operating system comes with the default
memory.

Figure.3 The Structure of Small Object Distributor

3.2 Recoverable Variable Length Memory Pool

Recovery variable length memory pool is a multi-threaded, variable length, recyclable memory pool,
similar to hash table. A linked list indicates an assignable size range, each element in the list is a specific
size of memory block pointer, which point to a list of memory blocks, to find specific head pointer by
aligning, and then assign a node outside in the list. The elements in the range will be allocated through
the New, when released, it will be returned to the pool for the next allocation, and beyond the range
of elements also be allocated through New, but when released, it directly call Delete, and return to the
operating system. About the factors of thread, add lock to ensure the thread safety after the specified by
the constructor. Mainly includes Block Header layer, tragCtrlUnit layer and RecycleLitePool layer. The
structure of the graph is shown in figure 4.

Block Header layer is the bottom of the distribution structure, nCtrlIndex indicates the size of block

Research on Optimization of memory pool management for high concurrent service requests

73

distribution, pNextBlock indicates the next block, the structure is linked list structure, the whole
structure is Union type, which save space and improve efficiency. The tragCtrlUnit layer is a headpointer
of each BlockHeader layer, and also contains a member that indicates the number of BlockHeader
objects. RecycleLitePool layer contains the thread element, the lock element, thetagCtrlUnit layer
pointer, some count elements and a memory distributor, default for the New distribution and delete
function to delete.

Figure.4 The Structure of Recyclelitepool

3.3 Allocate Not Free Memory Pool

Allocate Not Free Memory Pool is divided into four layers:

Memory Chunk layer: The bottom of the allocation block, there are three members inside, one indicates
block size, one indicates location of initial address, one indicates currently available location.

Chain of Memory Chunk layer: Memory Chunk object is organized into a two-way linked list.

Simple Allocate Poilcy layer: This layer accept the request of distribution, change the size to be allocated
not less than the size of Memory Chunk, and then added to the two-way linked list, the pointers of
current distribution block point to the new block.

StagePool layer: This layer is the outermost layer, The default template parameter is Simple
AllocatePolicy type, which provides external interface for distribution and release.

The overall structure of the StagePool contains a Chunk type pointer, which point to the currently
allocated block, the allocation request are looked for from the current block every time, when the margin
is not enough, it create a new block inserted into the list, select allocation strategy through the template
parameter of Allocate Policy. The structure of the graph is shown in figure 5.

74

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

Figure.5 The Structure of Stagepool

4. Performance test and analysis

Through the Centos operating system, the compiler and debugging tools of vim, g++ and scons,
Some scenarios are designed to simulate the actual scene of the search engine to test the performance
differences between the default memory distributor and the designed distributor.

4.1 Performance test and analysis of the small objects distributor

1) For the small objects allocator test, when the amount of data is 100000, by testing the system function
of New/Delete and the memory pool interface function of Allocate/Deallocate. Record 5 groups of
data, as shown in Table 1, by analyzing and calculating the time difference, the small objects allocator is
increased by 70.20% relative to New of system, and compared with the Delete, it is increased by 2.29%.

2) For the thread adapter hash table test, using the Node Allocator class to match the hash table,
construct an identical class of Default Allocator, the internal partition function use New/Delete to
achieve, using template parameters to match a hash table. For the single threaded test: For Node
Allocator and Default Allocator, to applicate and release 50000 block, assuming that the program is
running a fixed time of 10s, during this time repeated inserted and delete operation; Multi-threaded test:
For Node Allocator and Default Allocator, to open the same number of threads, and execute thread
function, to insert and delete data for corresponding hash tables. Table 2 indicates the test data of hash
table. By analyzing and calculating: In the case of Single threaded, in terms of distribution, the efficiency
of Node is increased by 22.61%, for the release, the efficiency of Node is reduced by 18.94%; In the case
of multiple threads, in terms of distribution, the efficiency of the Node is increased by 13.80%, for the
release, the efficiency of Node is reduced by 1.20%.

3) For the test of the small objects allocator adapter map container, to achieve a Small Object Alloator
type, internal distribution released is achieved by Small ObjectPool, through the Map function, fit Small
ObjectAllocator to Map, Map node distribution and release call interface of Allocate/Deallocate of
Small ObjectPool; Similarly to achieve a NewAllocator type, internal distribution release is achieved by

Research on Optimization of memory pool management for high concurrent service requests

75

New/Delete interface, also mapping to the Map through the constructed function; To compare with
distributor type provided by the system. Single threaded test: Three map were inserted into 100000
data; Multi threaded test: Map data is inserted and emptied by three Map circulation within a certain
time. Table 3 indicates the test data of adapter Map. By analyzing and calculating: In the case of Single
threaded, in terms of Default, the efficiency is increased by 48.30%, for the New, the efficiency is
increased by 54.50%; In the case of multiple threads, in terms of Default, the efficiency is increased by
35.90%, for the New, the efficiency is increased by 33.10%.

Table 1 Testing Data of the Small Objects Distributor(µs)

Number of times New allocation time New release time Small allocation time Small release time

1 5318 2739 3174 2157

2 4662 1994 1271 1792

3 4856 2317 1350 1919

4 5093 3044 1381 1988

5 4899 1953 1253 1916

6 4768 2344 1329 3160

7 4835 2051 1743 1858

8 5852 2070 1388 1819

9 6412 2783 1328 1892

10 5119 2310 1271 1859

Average time 5181.4 2360.5 1548.8 2036

Table 2 Testing Data of Thread Adapter Hash Table(µs)

 Number Single thread Single thread Single thread Single thread Multi-threaded Multi-threaded Multi-threaded Multi-threaded

 of times default default node node ded default ded default ded node ded node

 allocation release allocation release allocation release allocation release

1 42 39 33 48 141 130 121 131

2 43 39 33 48 143 130 123 131

3 43 40 33 47 147 127 119 125

4 43 40 33 48 147 133 131 134

5 43 39 33 48 141 127 123 131

6 43 40 33 48 140 125 121 128

7 43 40 33 48 143 129 126 131

8 43 39 33 48 140 125 119 125

9 43 40 34 39 141 125 123 129

10 43 40 34 49 141 127 122 129
Average time 42.9 39.6 33.2 47.1 142.4 127.8 122.8 129.4

76

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

Table 3 Testing data of Adapter Map Multi Thread(µs)

Number of times Single thread Default Single thread Small Single thread New Multi-threaded Default Multi-threaded Small Multi-threaded New

1 18 10 23 340 229 378

2 19 10 21 381 247 375

3 18 10 19 391 261 361

4 17 9 20 404 241 356

5 19 9 19 419 252 383

6 18 9 19 388 251 377

7 16 9 19 367 260 374

8 18 8 19 373 249 401

9 17 8 22 435 257 366

10 16 9 19 396 248 360
Average time 17.6 9.1 20 389.4 249.5 373.1

4.2 Performance test and analysis of recoverable variable length
memory pool

Given a set of arrays with assigned sizefrom 1-10000, 4 threads, 5000 insert delete action, then use a
variable length memory pool to assign and storage an array of pointers, to release and reallocate, cycle 20
times to get the test data results; Using Malloc to open the corresponding bytes of memory and assigning
to another pointer array to storage. Under the same conditions, compare the time of distribution and
release of the system function. Table 4 is the test data, by analyzing and calculating: In terms of New,the
efficiency of RecycleLitePool is increased by 13.84%.

Table 4 Testing Data of Recoverable Variable Length Distributor(ms)

Number of times New RecycleLitePool

1 183 177

2 185 157

3 181 154

4 197 164

5 177 153

6 183 154

7 183 156

8 182 154

9 183 159

10 181 153

Average time 183.5 158.1

Research on Optimization of memory pool management for high concurrent service requests

77

4.3 Performance test and analysis of allocate not free memory pool

Building a new distributor structure, alloc is interface of the distributor, using the space of distributor
to allocate 4 bytes every time, allocated 10000 times; As a contrast, the system call the New function
to allocate 4 bytes each time, to record the time of 50000 application action. Table 5 is the test data, by
analyzing and calculating: In terms of New, the efficiency of StagepPool is increased by 90.80%.

Table 5 Testing Data of Allocate Not Free Distributor(ΜS)

Number of times StagePool Newl

1 4 51

2 5 47

3 4 48

4 4 48

5 5 48

6 5 48

7 4 48

8 4 47

9 5 47

10 4 47

Average time 4.4 47.9

5. Conclusion

1)Three scenarios are obtained by analyzing the current search engines: Hash table insert delete,
Cache update and document update module, Query result return. Three memory pools are designed for
the three scenarios: Recoverable Fixed Length Memory Pool and Recoverable Variable Length Memory
Pool and Allocate Not Free Memory Pool were designed.

2)Using thesystem default memory management function, malloc/free and new/delete. By analyzing
of the various factors of the function. Allocating and freeing memory on the heap increases overhead.
The design of the memory pool is applied to the search engine system. It optimize the internal memory
management and improve the search speed. For the test of the three memory pool, Compared with the
system’s default memory, its efficiency are increased by 70.20%, 13.84%, 90.80%.

Sponsors or Supporters

This paper is partially supported by Special research project of Shaanxi Provincial Department of
Education “16JK1376”.

Reference

[1] DAI Chunyan, XU Zhiwen. Discussion About Malloc/Free and New/Delete in C++[J].Science&Technology

78

International Journal of Advanced Network Monitoring and Controls Volume 02, No.2, 2017

of Baotou Steel (Group)Corporation, 2009(35):59

[2] LI Qian, PAN Minxue, LI Xuandong. Benchmark of Tools for Memory Leak [J]. Journal of Frontiers of
Computer Science and Technology.2010(01)29.

[3] WANG Xiaoyin, CHEN Lijun. Implementation and Application of the Memory Pool in Linux Kernel [J].
Journal of Xi’an University of Posts and Telecommunications. 2011(04):40.

[4] QU Weihua, WANG Qun. Introduce and Analyzing of Search Engine Principle [J]. Computer
Knowledgeand Technology. 2006(06):113.

[5] DUAN Bingying. Study and Design of Web Crawler in Search Engine [D]. Xidian University. 2014.

[6] GUO Bingxuan, ZHANG Jingli, ZHANG Zhichao. Algorithm of Spatial Data Scheduling Based on Memory
Pool [J]. Computer Engineering. 2008,34(06):63.

[7] LIU Tao, NIE Xiaofeng, JING Jiwu, WANG Yuewu. Memory Management in Worm Simulation based on
Small Object Memory Allocation Technique on The GTNetS [J]. Journal of Graduate University of Chinese
Academy of Sciences. 2012,29(01):131.

[8] GUO Xufeng, YU Fang,LIU Zhongli. An Efficient Memory Built-in Self-Repair Method Based on Hash Table
[J]. Acta Electronica Sinica. 2013(07):1371.

[9] LAI Xiangfang. Select The Appropriate STL Containers [J]. Digital Technology and Application.
2015(09):177.

[10] Alexandrescu A.Modern C ++ design: Generic Programming and Design Patterns Applied [M]. Boston:
Addison-Wesley Professional. 2001.

[11] Robert W.P.Luka, Wai Lamb. Efficient In-Memory Extensible Inverted File [J]. Information Systems,
2007(32):733.

AuthorBrief

Liu Ping-Ping(1971-), female, Associate Professor, Xi’an Technological University, Research area:
Artificial intelligence

