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Abstract—Levenberg-Marquardt (abbr.L-M) method based 

iterative square root cubature Kalman filter (abbr. 

ISRCKFLM) inherits the numerical stability of square root 

Cubature Kalman filter and effectively suppresses the 

influence of the larger initial estimation error and the 

nonlinearity of the measurement equation on the state 

estimation in the nonlinear state estimation due to obtaining 

the optimal state and variance estimates using the latest 

measurement through L-M method. We apply the ISRCKFLM 

algorithm to the state estimation of maneuvering re-entry 

target tracking, the simulation results demonstrate that the 

ISRCKFLM algorithm has better accuracy of state estimation, 

comparable to Unscented Kalman filter and square root 

Cubature Kalman filter, according to estimation error analysis 

of the position, velocity, drag coefficient, turn coefficient and 

climbing force coefficient, and has fast convergence rate. 
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I. INTRODUCTION  

The state estimate of maneuver re-entry target is highly 
non-linear filtering problem and has been much attention in 
the academic and engineering domain [1, 2]. Up to now, the 
commonly used non-linear filtering is the extended Kalman 
filter (EKF) [3]. The EKF is based on first-order Taylor 
approximations of state transition and observation equation 
about the estimated state trajectory under Gaussian 
assumption, so EKF may introduce significant bias, or even 
convergence problems due to the overly crude approximation 
[4]. Especially, for highly nonlinear problems such as state 
estimation of maneuver re-entry target, EKF may produce 
large filtering errors and even divergence. Based on the 
Unscented Transformation (UT), the Unscented Kalman 
filter (UKF) use a set of deterministic sampling points to 
approximate the posterior probability distribution of the 
system state, that is, the Sigma points are used to capture the 
mean and variance information of the state [5]. 

Recently, as a new way to solve the nonlinear estimation 
problem, cubature rules based cubature Kalman filter (CKF) 
proposed in [6] uses numerical multi-dimensional integral to 
approximate the recursive Bayesian estimation integrals 
under the Gaussian assumption. The CKF can solve high-

dimensional nonlinear filtering problems with minimal 
computational effort. Then the square root cubature Kalman 
filter algorithm (SRCKF) was proposed in order to improve 
the numerical stability [6]. 

On the other hand, in order to decrease the effect of 
initial estimation error and nonlinearity of measurement 
equation, Levenberg-Marquardt method based iterative 
square root cubature Kalman filter (ISRCKFLM) was 
developed on the basis of the SRCKF in [7]. In this paper, 
we apply the ISRCKFLM algorithm to state estimation of 
maneuver re-entry target. Simulations demonstrate that the 
ISRCKFLM algorithm can greatly improve the tracking 
accuracy of maneuver re-entry target and obtain fast 
convergence, compared with the UKF and SRCKF 
algorithms. 

The rest of the paper is organized as follows. We begin 
with a description of the ISRCKFLM algorithm in Section 2. 
Then we apply the ISRCKFLM algorithm to track re-entry 
ballistic target (RBT) with unknown ballistic coefficient and 
discuss the simulation results in Section 3. Finally, we draw 
conclusion in Section 4. 

II. L-M BASED ITERATIVE SQUARE ROOT CUBATURE 

KALMAN FILTER 

Consider the following non-linear dynamics system: 

 1 1( )k k k  x f x w  

 ( )k k k z h x v . 

where f and h are some known nonlinear functions; 

xn

k x and zn

k z  is state and the measurement vector, 

respectively; 1kw  and kv  are process and measurement 

Gaussian noise sequences with zero means and covariance 

1kQ and kR , respectively, and 1{ }kw  and { }kv  are mutually 

uncorrelated. 
Suppose that the state distribution at k-1 time 

is
1 1 1 1

ˆ( , )T

k k k k   x x S S , Levenberg-Marquardt based 

Iterative square root cubature Kalman filter (ISRCKFLM) is 
described as follows. 
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A. Time Update 

1) Calculate the cubature points and propagate the 

cubature points through the state equation 


, 1 1 1

ˆ
i k k i k   X S ξ x . 


*

, , 1( )i k i kX f X  

where 2[1] , 1 , 1, 2i i i xm m i m n   ξ ,the [1]i is a 

xn dimensional vector and is generated according to the way 

described in [2]. 

2) Evaluate the predicted state and square root of the 

predicted covariance 


*

,

1

m

k i i k

i




x X  


*

, 1([  ])k k Q kTria S χ S  

here,
, 1Q kS denotes a square-root factor of 1kQ and Tria() is 

denoted as a general triagularization algorithm. The matrix 
*

kχ is defined as: 


* * * *

1, 2, ,1 [   , , ]k k k k k m k km   χ X x X x X x  

3) Evaluate the modified covariance: 



1

1T T T

k k k k k k k

i

  
    
   

P I S S S S I S S  

where i is adjusting parameter. 

B. Measurement update 

1) Set the initial value as:
(0)ˆ
k kx x

. 

2) Assuming the i-th iterate
( )ˆ i

kx
, calculate the matrix 


1

( ) ( ) ( ) ( )ˆ ˆ ˆ( ) ( ) ( )i T i i T i

k k h k h k k h k k



   
 L P J x J x P J x R  

3) Calculate the i-th iterate 

  

 

( 1) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ

ˆ ˆ( ) ( )( )

ˆ ˆ( ) ( )

i i

k k k

i i i

k k h k k k

i i i

i k h k k k k

  

  

  

x x L

z h x J x x x

I L J x P x x

 

4) Calculate the iteration termination condition 

 ( 1) ( )ˆ ˆi i

k k   x x or maxi N  

 and maxN are predetermined threshold and maximum iterate 

number, respectively. If the termination condition meets, the 

iterate return to 5); otherwise, set ( ) ( 1)ˆ ˆ=i i

k k


x x , continue to 2). 

5) Calculate the state estimation at time instant 

 ( )ˆ ˆ N

k kx x  

6) Evaluate the cross-covariance and square root of 

innovation covariance at k time 

 ( )ˆ( )T T N

xz k k h kP S S J x  

 ( )

,
ˆ( ( ) )N

zz h k k R kChol    S J x S S  

7) Calculate the square root of covariance at k time 

 / /T

k xz zz zzK P S S  

 ( )

,
ˆ( ( ) )N

k k k h k k k R kChol    S S K J x S K S  

where symbol “/ ” represents the matrix right divide operator. 

III. APPLICATIONS TO MANEUVERING REENTRY TARGET 

TRACKING 

In the simulation, the trajectory of the maneuvering re-
entry generated in [8] is used with the same parameters, 
initial state and covariance estimation. To compare the 
performance of the ISRCKFLM with the UKF and SRCKF 
algorithms, we obtain the root mean square errors (RMSEs) 
in the position, velocity, drag coefficient, turn coefficient and 
climb coefficient showed in the Figure 1-5. All performance 
curves were obtained by averaging over 100 independent 
Monte Carlo runs. Table.1 lists the accumulated root mean 
square errors (ARMSEs). 
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Figure 1.  RMSE in Position 

From Figur.1-2, we can see the ISRCKFLM’s RMSEs in 
positon and velocity are lower than those of UKF and 
SRCKF algorithms, especially, the RMSEs of ISRCKFLM 
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algorithm are effectively suppressed, and those of UKF and 
SRCKF algorithms have a big jump when the target 
experiences the high maneuver at altitude 23km and 10km. 
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Figure 2.  RMSE in Velocity 
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Figure 3.  RMSE in Drag Coefficient 
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Figure 4.  RMSE in Turn Coefficient 

As for the estimate on drag coefficient, turn coefficient 
and climbing coefficient of maneuver re-entry target, from 
Figure.3-5we can see the RMSEs of three algorithms 
decrease between 35km-30km at altitude, and the RMSEs of 
three algorithms reach the smallest at about 30km at altitude. 

Then the RMSEs of three algorithms increases when a dive 
and turn maneuver occurs on re-entry target, however, the 
ISRCKFLM’s RMSEs are lower than those of the other two 
algorithms. The RMSEs of all filters gradually increase when 
the target experiences an increased climb force at altitude 
16km-10km, but the ISRCKFLM’s RMSE increases slightly 
slower. After the maneuver was withdrawn, the RMSE of the 
three algorithms began to decline. 

05101520253035
0

1

2

3

4

5

6

Altitude/km

R
M

S
E

 i
n

 c
li
m

b
in

g
 c

o
e

ff
ic

ie
n

t(
1

0 -
3
)/

k
g

 m
-2

 

 

UKF

SRCKF

ISRCKFLM

 
Figure 5.  RMSE in Climbing Coefficient 

TABLE I.  ARMSES IN THREE FILTERS 

Algori-

thms 

ARMSEp

/m 

ARMSEv

/ms-1 

ARMSEd/

kgm-2 

ARMSEt

/kgm-2 

ARMSEc

/kgm-2 

UKF 42.3763 202.0984 
0.000277

31 
0.001000

4 
0.001468

8 

SRCKF 38.9467 184.3961 
0.000251

65 

0.000982

07 

0.001386

5 

ISRCKF
LM 

22.4556 141.8943 
0.000218

02 
0.000899

5 
0.001186

1 

Moreover, the ARMSEs of the ISRCKFLM in the 
positon, velocity, drag coefficient, turn coefficient and 
climbing coefficient are lower than those of UKF and 
SRCKF algorithms from Table.1. 

Therefore, on the basis of the simulation results presented 
in Figure.1-5, we can draw a conclusion that the ISRCKFLM 
yields on the superior performance over the UKF and 
SRCKF on the state estimation of maneuvering re-entry 
target. 

IV. CONCLUSION 

In this paper we apply the ISRCKFLM algorithm to 
maneuvering re-entry target tracking. The latest 
measurement are fully used in the ISRCKFLM algorithm, 
and innovation covariance and cross-covariance are 
improved in the iterative process, so we can obtain the 
optimal state estimation and covariance estimation.  
Simulation results demonstrate that the performance of 
ISRCKFLM algorithm is superior to UKF and CKF 
algorithms by analysis of errors in position, velocity, drag 
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coefficient, turn coefficient and climbing coefficient, and has 
the faster convergence rate. 
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