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ABSTRACT
Data streams can be defined as the continuous stream of data coming from different
sources and in different forms. Streams are often very dynamic, and its underlying
structure usually changes over time, which may result to a phenomenon called
concept drift. When solving predictive problems using the streaming data, traditional
machine learning models trained on historical data may become invalid when such
changes occur. Adaptive models equipped with mechanisms to reflect the changes
in the data proved to be suitable to handle drifting streams. Adaptive ensemble
models represent a popular group of these methods used in classification of drifting
data streams. In this paper, we present the heterogeneous adaptive ensemble
model for the data streams classification, which utilizes the dynamic class weighting
scheme and a mechanism to maintain the diversity of the ensemble members.
Our main objective was to design a model consisting of a heterogeneous group of
base learners (Naive Bayes, k-NN, Decision trees), with adaptive mechanism which
besides the performance of the members also takes into an account the diversity of
the ensemble. The model was experimentally evaluated on both real-world and
synthetic datasets. We compared the presented model with other existing adaptive
ensemble methods, both from the perspective of predictive performance and
computational resource requirements.

Subjects Algorithms and Analysis of Algorithms, Data Mining and Machine Learning,
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INTRODUCTION
Nowadays, the size of data is growing in a much faster fashion than in the past.
Information is being collected from household appliances, tools, mobile devices, vehicles,
sensors, websites, social networks, and many other devices. An increasingly large number
of organizations are starting to analyze large volumes of data, as the information
obtained from these data can provide a competitive advantage over other businesses. Data
collection from devices is often continuous, and data come in the form of data streams.

Data stream classification is an active field of research, as more data sources can be
considered as streaming data. When solving classification tasks using streaming data, the
data generation process is not strictly stationary, and its underlying structure may change
over time. The changes in the underlying data distribution within the streams may
result in dynamic, non-stationary target concepts (Gama et al., 2014; Žliobaite, 2010).
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This phenomenon is called concept drift, and from the perspective of the training of
classification models on the drifting data, the most crucial requirement is the ability of the
model to adapt and incorporate new data into the model in order to react to potential
changes (Barddal et al., 2017). In concept drift, the adaptive learning algorithms are
advanced machine learning methods that can reflect the changing concepts in data streams
in real time. Multiple approaches were proposed to extend the standard machine learning
models with the ability to adapt to the changes in streams, including drift detectors
(Gonçalves et al., 2014; Baena-García et al., 2006) and various sliding window techniques
(Bifet & Gavaldà, 2007).

Ensemble models are a popular classification method, often providing better
performance when compared to the standard machine learning models (Breiman, 1996,
2001; Freund & Schapire, 1996). When processing dynamic data streams, where the
concepts change over time, dynamic adaptive ensembles present a suitable method that
retains long-present historical concepts and covers newly appearing ones. Ensemble
methods proved to be capable of handling streaming data by updating its base learners
(Kolter & Maloof, 2007; Bifet et al., 2015; Brzeziński & Stefanowski, 2011; Gomes et al.,
2017) in either block-based, batch mode or instance-based, incremental mode. One of the
crucial aspects of the ensemble classifiers for static data is to ensure the diversity of the base
classifiers within the ensemble. In contrast to the diversity of the ensembles for the static
data (Carney & Cunningham, 2000; Kuncheva & Whitaker, 2003), which is fairly well
studied in the literature, there are fewer studies dealing with the ensemble’s diversity in the
presence of concept drift (Brzezinski & Stefanowski, 2016; Abassi, 2019).

The main objective of the work presented in this paper is to present the design and
implementation of a novel adaptive ensemble classification algorithm. The primary
motivation of this study is to design a model capable of handling various types of drifts.
The proposed method can be characterized as a heterogeneous, chunk-based approach
that utilizes different types of base classifiers within the ensemble. The model also uses Q
statistic as a metric to measure the diversity between the ensemble members and
dynamic weighting scheme. We assume that the creation of a heterogeneous ensemble
consisting of different base learners with an adaptation mechanism that ensures the
diversity of its members can lead to a robust ensemble that is able to handle the drifting
data efficiently. To confirm these assumptions, we conducted an extensive experimental
study, where we evaluated the proposed model performance on the selection of both
real-world and synthetic, generated datasets with different types of concept drift.
We also compared the proposed method to 12 adaptive ensemble methods, including
state-of-the-art adaptive ensembles. The main objective was to compare the performance
of the methods using standard evaluation metrics, as well as training times and
resource consumption.

The paper is organized as follows. The background section provides basic definitions
of the terms related to the data streams and the concept drift therein. The following
section is dedicated to the state of the art in the area of the adaptive ensemble models
used to handle the concept drift and defines the motivation for the presented approach.
The following section describes the designed and implemented adaptive ensemble method.
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We then describe the datasets used in the experimental evaluation. The experimental
results section summarizes the conducted experiments and achieved results. Concluding
remarks and possibilities for future work in this area are then summarized.

BACKGROUND
A data stream is defined as an ordered sequence of data items, which appear over time.
Data streams are usually unbounded and ordered sequences of the data elements
hx1; x2; . . . ; xj; . . . ; i sequentially appearing from the stream source item by item (Gama,

Aguilar-Ruiz & Klinkenberg, 2008). Each stream element is generated using a probability
distribution Pj. The time interval between the particular elements on the stream may
vary. Particular data elements in the stream are usually of standard size, and most of
the data streams are generated at high speed, e.g., the elements in the data streams
appear rapidly.

Compared with static data, which is usually analyzed offline, data streams need to be
analyzed in real time. The differences in the processing of the data streams compared to the
processing of the static data can be summarized according to Gama (2010):

� The data elements in the stream arrive online or in batches. Elements appearing online
are processed one by one, and batches usually have the same size and are processed at
once.

� The processing system has no control over the order in which data elements appear,
either within a data stream or across multiple data streams.

� Data streams are potentially unbound in size. The size of the particular elements is
usually small. In contrast, the entire data size may be huge, and it is generally impossible
to store the whole stream in memory.

� Once an element from a data stream has been processed, it is usually discarded. It cannot
be retrieved unless it is explicitly stored in memory.

The data streams can be divided into two groups:

� stationary data streams—the data distribution does not change over time, e.g., the
stream elements are generated from a fixed probability distribution;

� non-stationary data streams—data are evolving, and the data distribution may change
over time. Usually, these changes may also affect the target concepts (classes).

Concept drift
When solving predictive data analytical tasks on the static data, the data distribution
usually does not change, and data used for the training and testing of the model have the
same distribution. When processing the data streams, we often observe the changing
nature of the data. In predictive data stream analytical tasks, we experience a phenomenon
called concept drift.

Concept drift is related to the data distribution Pt(x,y), where x ¼ ðx1; x2 . . . xnÞ is a data
sample represented by an n-dimensional feature vector appearing at time t, and y
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represents the target class. The concepts in the data are stable (or stationary) if all the data
samples are generated with the same distribution. If there is an x in the interval between t
and t + Δ, which holds the expression Pt(x,y) ≠ Pt + Δ(x,y), then concept drift is present
(there is a change in the underlying data distribution) (Žliobaite, 2010). Concept drift
usually occurs in a non-stationary and dynamically changing environment, where the data
distribution or relation between the input data and the target variable changes over time.

The concept drift phenomenon may occur in various real-world data and
corresponding applications (Žliobaite, Pechenizkiy & Gama, 2016):

� computer systems or networks, through network intrusion detection, where new
techniques and methods may appear (Liu et al., 2017; Mukkavilli & Shetty, 2012);

� industry, when dynamic data streams are produced by sensors in production equipment
and machines (Lin et al., 2019; Zenisek, Holzinger & Affenzeller, 2019);

� marketing and management, when users change their buying behavior and their
preferences (Black & Hickey, 2003; Chiang, Wang & Chu, 2013; Lo et al., 2018);

� medical data, e.g., in the case of antibiotic resistance (Stiglic & Kokol, 2011; Tsymbal
et al., 2006);

� social networks, when users change their behavior and generated content (Lifna &
Vijayalakshmi, 2015; Li et al., 2016);

� spam categorization, where spam keywords can change over time (Delany et al., 2005;
Ruano-Ordás, Fdez-Riverola & Méndez, 2018).

The authors in Tsymbal (2004), Žliobaite (2010) and Khamassi et al. (2019) describe a
complex taxonomy of existing drift types. In general, there are several different types of
concept drift, based on how the phenomenon occurs within the data stream:

� Sudden/Abrupt—In this case, the concept change occurs suddenly. A concept (e.g., a target
class) is suddenly replaced by another one. For example, in the topic modeling domain, the
main topic of interest may unexpectedly switch to a different one.

� Incremental—Changes in the data distribution are slower and proceed over time.
Changes are not as visible as in a sudden drift, but they gradually emerge. The changes
are usually relatively slow and can be observed when comparing the data over more
extended time periods.

� Gradual—In this drift type, both concepts are present, but over time, one of them
decreases, while the other one increases. For example, such a change may reflect the
evolution of points of interest, e.g., when a point of interest is gradually being replaced
by a newer one.

� Re-Occurring—A previously active concept reappears after some time. Re-occurrence
may appear in cycles or not (e.g., reappearing fashion trends).

Besides the mentioned drift types, some publications (Gama et al., 2014) distinguish
between two kinds of concept drift: real drift and virtual drift. Virtual concept drift is
defined by the changes in data distribution but does not affect the target concept.
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Real concept drift (also called concept shift) represents a change in the target concept,
which may modify the decision boundaries.

Figure 1 visualizes the drift types. In concept drift detection, it is also necessary to
distinguish between the drift and outlier occurrence. Outliers may produce false alarms
when detecting the concept drift.

When processing the non-stationary drifting streams, the necessary feature of the
predictive algorithms is their ability to adapt. Some of the algorithms are naturally
incremental (e.g., Naive Bayes), while others require significant changes in the algorithm
structure to enable incremental processing. Therefore, the learning algorithms applied on
the drifting streams are usually extended with a set of mechanisms, which enhance the
models with the ability of continuously forgetting the obsolete learned concepts and
updating the model with the newly arrived data in the stream. There are several types of
models used to handle concept drift. To detect the concept drift in data streams, we can
use drift detectors. These can detect possible concept drift by analyzing the incoming
data or by monitoring the classifier performance. Detectors process the signal from the
data about changes in data stream distribution. Drift detectors usually signalize drift
occurrence and trigger the updating/replacement of the classifier. There are several drift
detection methods available (Gonçalves et al., 2014), and the Drift Detection Method
(DDM) (Gama et al., 2004), the Early Drift Detection Method (EDDM) (Baena-García
et al., 2006), and ADWIN (Bifet & Gavaldà, 2007) are the most popular.

For predictive data modeling applied on the drifting streams, advanced adaptive
supervised machine learning methods are used. Supervised learning methods used for
drifting stream classification could be categorized from several perspectives, depending on
how they approach the adaptation (Ditzler et al., 2015; Krawczyk et al., 2017):

� Active/Passive—Active methods usually utilize drift detection methods to detect the
drift and to trigger the model update. Passive methods periodically update the model,
without any knowledge of the drift occurrence.

Figure 1 Concept drift types according to Gama et al. (2014). (A) Sudden/Abrupt, (B) incremental,
(C) gradual, (D) re-occuring. Full-size DOI: 10.7717/peerj-cs.459/fig-1
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� Chunk-Based/Online—Chunk-based methods process the streaming data in batches
(each batch consists of a specified fixed number of stream elements). Online methods
process the stream elements separately when they appear.

Ensemble models represent a popular solution for the classification of drifting data
streams. An ensemble classification model is composed of a collection of classifiers
(also called base learners, ensemble members, or experts) whose individual decisions are
combined (most often by voting) to classify the new samples (Sagi & Rokach, 2018).
The main idea of the ensemble model is based on the assumption that a set of classifiers
together can achieve better performance than individual classifiers (Kuncheva &Whitaker,
2003). The selection of the ensemble experts is a crucial factor, as the ideal ensemble
consists of a set of diverse base learners. Ensemble models are also suitable for data stream
classification, where target concepts change over time. The following section summarizes
the use of ensembles in the classification of drifting streams.

RELATED WORK
There are several approaches to the design of adaptive ensemble models. Some of them use
the same technique as approaches to static data processing, such as Online Boosting
(Wang & Pineau, 2013), which is based on the classic Boosting method, extended with
online processing capabilities. For adaptation to concept drift, it uses concept drift
detection. If a concept drift occurs, the entire model is discarded and replaced by a new
model. Another well-known model is the OzaBagging (Oza, 2005) ensemble. Unlike
Bagging for static data, OzaBagging does not use random sampling from the training data,
but each of the samples is trained k times, which leads to a Poisson distribution.

Further studies have focused on the design of the ensemble models that would be simple
(in terms of their run time) and able to adapt to the concept drift dynamically. For
example, the Accuracy Weighted Ensemble (AWE) (Brzeziński & Stefanowski, 2011) uses
the assignment of weight to the base classifiers based on a prediction error. Old and
weak members are gradually being replaced by the new ones, with a lower error rate.
The update mechanism is based on the assumption that the latest training chunk will
better represent the current test chunk. Another model, Dynamic Weighted Majority
(DWM) (Kolter & Maloof, 2007), dynamically changes the weights of the base classifiers
in the case of incorrect classification. A new classifier is added if the model incorrectly
classifies the training example, and old classifiers are discarded if their weights fall below
a threshold value. Online Bagging and Boosting algorithms were recently used as a
basis for more advanced streaming ensembles, such as Adaptive Ensemble Size (AES)
(Olorunnimbe, Viktor & Paquet, 2018), which dynamically adapts the ensemble size, or an
approach (Junior & Nicoletti, 2019), where boosting is applied to the new batches of
data and maintains the ensemble by adding the base learners according to the ensemble
accuracy rate. Learn++ (inspired by AdaBoost) is an incremental learning ensemble
approach consisting of base learners trained on a subset of training data and able to
learn the new classes (Polikar et al., 2001). Several modifications of this approach
exist, focused on improvement of the number of generated ensemble members
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(Muhlbaier, Topalis & Polikar, 2004). The Random Forests method is probably the most
popular ensemble method on static data at present. Its adaptive version for stream
classification, Adaptive Random Forests (ARF), was introduced in Gomes et al. (2017)
and has shown a high learning performance on streaming data. More recently, multiple
adaptive versions of popular ensemble methods gaining improved performance or
achieving speedup in execution have been introduced, e.g., the adaptive eXtreme
Gradient Boosting method (Montiel et al., 2020), the streaming Active Deep Forest
method (Luong, Nguyen & Liew, 2020), or Random Forests with an implemented
resource-aware elastic swap mechanism (Marrón et al., 2019).

All ensemble models work with the assumption of the diversity of the individual
classifiers in the ensemble, while the diversity is achieved in different ways. Diversity can
help in evolving data streams, as the most suitable method may also change as a result of
the stream evolution Pesaranghader, Viktor & Paquet (2018). Diverse ensembles by
themselves cannot guarantee faster recovery from drifts, but can help to reduce the initial
increase in error caused by a drift Minku, White & Yao (2010). There are several ways to
achieve diversity in the ensemble. Either the classifiers are trained on different data
samples, or the model is composed of a set of heterogeneous classifiers. Recently, Khamassi
et al. (2019) studied the influence of diversity techniques (block-based, weighting-data, and
filtering-data) on adaptive ensemble models and designed a new ensemble approach
that combines the three diversity techniques. The authors in Sidhu & Bhatia (2018)
experimented with a diversified, dynamic weighted majority voting approach consisting of
two ensembles (with low and high diversity, achieved by replacing the Poisson (1) with
Poisson (κ) distribution in online bagging (Oza & Russell, 2001)). The Kappa Updated
Ensemble (KUE) Cano & Krawczyk (2020) trains its base learners using different subsets of
features and updates them with new instances with a given probability following a Poisson
distribution. Such an approach results in a higher ensemble diversity and outperforms
most of the current adaptive ensembles. However, there are not many studies where the
model uses the model diversity score as a criterion for the base classifiers in the ensemble
(Krawczyk et al. (2017)) as opposed to static data processing, where such a complex
model exists (Lysiak, Kurzynski &Woloszynski, 2014). According to Yang (2011), diversity
correlates with model accuracy. A suitable diversity metric used in ensembles is a paired
diversity Q statistic (Kuncheva, 2006), which provides information about differences
between two base classifiers in the ensemble.

Another aspect of the ensemble classifiers is the composition of the base classifiers in the
model. The most common are homogeneous ensemble methods, which use the same
algorithm to train the ensemble members (Fernandez-Aleman et al., 2019). On the other
hand, heterogeneous approaches are based on the utilization of multiple algorithms to
generate ensemble members. Such an approach could lead to the creation of more diverse
ensembles. For the data stream classification, a Heterogeneous Ensemble with Feature
drift for Data Streams (HEFT-Stream) Nguyen et al. (2012) builds a heterogeneous
ensemble composed of different online classifiers (e.g., Online Naive Bayes). Adaptive
modifications of the heterogeneous ensembles were also successfully applied on the
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drifting data streams (Van Rijn et al., 2016; Frías-Blanco et al., 2016; Van Rijn et al., 2018;
Idrees et al., 2020), and many of them proved suitable to address issues such as class
imbalance (Large, Lines & Bagnall, 2017; Fernández et al., 2018; Ren et al., 2018; Wang,
Minku & Yao, 2018; Ghaderi Zefrehi & Altınçay, 2020). The approach described in this
paper aims to combine the construction of the adaptive heterogeneous ensemble with a
diversity-based update of the ensemble members. This approach could result in a robust
model, with the adaptation mechanism ensuring that newly added members are as
diverse as possible during the ensemble updates. Maintaining the diversity of the overall
model can also lead to a reduction of model updates and therefore faster execution during
the run time.

DDCW ENSEMBLE METHOD
In the following section, we introduce the design of the Diversified Dynamic Class
Weighted (DDCW) ensemble model. The design of the model is based on the assumption
that a robust model consists of a collection of heterogeneous base classifiers that are
very diverse. When applied to static data, the diversity is used within the ensemble models
to tune the combination rule for voting and the aggregation of component classifier
predictions. We propose the design of a heterogeneous ensemble model, which combines
the dynamic weighting of the ensemble members with the mutual diversity score criterion.
The diversity measures are used to rank the members within the ensemble and update
their weights according to the diversity value, so the model prefers experts with higher
mutual diversity, thereby creating a more robust ensemble. When ranking the base
classifiers, the diversity measurement is combined with the lifetime of individual base
classifiers in the model. The criterion is expected to cause the importance of the
long-lasting base classifiers to gradually fade, which should ensure the relevance of the
whole ensemble to evolving and changing data streams.

The model is composed of m ensemble members e1,…, em, trained using each chunk of
incoming samples in the stream, as depicted in Fig. 2. Each of those experts e1,,…, em, have
assigned weights for each target class. The weights are tuned after each period (after
each chunk is processed) based on individual base classifier performance. First, for each
class that a base classifier predicts correctly, the weight is increased. Second, after each
chunk is processed, the model calculatesQ pairwise diversity between each of the ensemble
members and uses this value to modify model weights.

Pairwise Q diversity metric is calculated as follows (Kuncheva & Whitaker, 2003):
let Z ¼ z1;…; zN be a labeled data set, zj 2 Rn coming from the classification problem.
The output of a classifier Di is an N-dimensional binary vector yi ¼ ½y1;i;…; yN;i�T , such
that yj;i ¼ 1, if Di recognizes correctly zj, and 0 otherwise, i ¼ 1;…; L. Q statistic for
two classifiers, Di and Dk, is then computed as: Qi;k ¼ N11N00�N01N10

N11N00þN01N10 where N
ab is the

number of elements zj of Z for which yj;i ¼ a and yj;k ¼ b. Q varies between −1 and 1;
classifiers that tend to recognize the same samples correctly will have positive values of Q,
and those that commit errors on different objects will render Q negative. For statistically
independent classifiers, the value of Qi,k is 0.
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The value for each member div_ei in DDCW model is obtained as the
average of contributions of individual pair diversities and is calculated as follows:

div ei ¼ 1
m�1

Pm
k¼1;k6¼i Qi;k. Then, after each period, the lifetime coefficient Ti of each

ensemble member is increased. Afterwards, the weights of each of the base classifiers are
modified using the lifetime coefficient. After this step, the weights are normalized for
each class, and a score is calculated for each target class by the classifier predictions.
In the last step, the global ensemble model prediction is selected as a target class with the
highest score.

Model weights can be represented as a matrix W
m�c

, where m is a number of classifiers in
the ensemble, and c is a number of target classes in the data. The weights wi,j directly
determine the weight given to classifier i for class j as seen in Table 1. In the beginning, the
weights are initialized equally, based on the number of classes in the data. During the
process, the individual weights for each base classifier and corresponding target class are
modified using the parameter β. The weight matrix allows the calculation of the score
of the base classifiers, as well as the score of predicted target classes. The score of the
classifier is calculated as

Pc
j¼1 wi;j for each classifier. This score allows the identification of

poorly performing base classifiers in the ensemble. However, the score of the target class is
calculated as the contribution of weight wi,j of classifier i and its predicted class j.

Figure 2 Overall scheme of the proposed ensemble model.
Full-size DOI: 10.7717/peerj-cs.459/fig-2

Table 1 Weight matrix.

C1 C2 … Cc Classifier score

e1 w1,1 w1,2 … w1,c
Pc

j¼1 w1;j

e2 w2,1 w2,2 … w2,c
Pc

j¼1 w2;j

… … … … … …

em wm,1 wm,2 … wm,c
Pc

j¼1 wm;j
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The weight matrix enables the efficient contribution of each of the ensemble members
in building the model. We proceeded from the assumption of having a diverse ensemble.
Such a model could consist of members, which perform differently in specific target
class values, e.g., some of the members are more precise when predicting a particular class
than others and vice versa. In that case, we can use a set of classifiers; each of them
focused on a different target class (while the distribution of these classes may change
over time). The class weighting alone may lead to an ensemble consisting of similar,
well-performing models. But the combination of class weighting with diversity measure
can lead to a set of balanced members, more focused on specific classes and
complementing each other.

The proposed ensemble model belongs to the category of passive chunk-based
adaptive models. In the presented approach, the size of the model dynamically changes
according to the global model performance. The minimum size of the model is set by the
parameter k, and the maximum size is set by the parameter l.

Each base classifier in the ensemble is assigned with a weight vector for each target class.
If a new target class appears in the chunk used in training, the new target will be added to
the weight vector for each base classifier. Initially, the ensemble consists of a randomly
initialized set from a list of defined base algorithms (Hoeffding Tree or Naive Bayes). Other
experts can be added in the following periods (interval representing the chunk of arriving
data, where base learners and their weights are modified) until the minimum size of
the model is reached, i.e., either the model size is smaller than the defined minimum size or
the particular member weight falls under the defined threshold.

In each iteration, the experts are used to predict the target class of incoming samples in
the processed chunk (Lines 3–5). If a prediction of an expert is correct, the weights of the
particular expert and target class are multiplied by a coefficient β (Line 7). In the case
period p has occurred, Q statistic diversity is calculated for each pair of experts in the
ensemble, and the weights of each expert is modified using the particular expert’s diversity
(Line 12 and 16). This mechanism enables the construction of more robust ensembles,
by preferring the diverse base models. The weights of base classifiers are also reduced by
the exponential value of their lifetime in the ensemble (Line 15). In this case, the lifetime
of the expert represents the number of periods since its addition to the ensemble.
The exponential function is used, so the experts are influenced minimally during their
initial periods in the ensemble but become more significant for the long-lasting members.
This implementation works as a gradual forgetting mechanism of the ensemble model,
as the weakest experts are gradually removed from the model and replaced by the
new ones.

After the update, the weights are normalized for each target class (Line 24). Afterwards,
if the maximum size of the model is reached and the global prediction is incorrect, the
weakest expert is removed from the ensemble (Line 27). A new random expert can then be
added to the ensemble (Lines 30–31). In each period, all experts where the sum of
weights is lower than defined threshold θ are removed from the ensemble. In the end,
each sample is weighted by a random uniform value m times, where m represents the
actual size of ensemble (Line 41). Each expert is than trained with a new set of incoming

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 10/31

http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


Algorithm 1 Diversified dynamic class weighted ensemble.

Procedure: DDCW({X, Y}, p, k, l, α, β, θ)

Input: Data and labels {x, y}, chunk size p, min_experts k, max_experts l, fading factor α, multiplier β,
threshold θ

Output: Global predictions G

1: Experts ← create_random_experts(k);

2: initialize class weights wi,j

3: for s = 0,…,n do

4: for i = 1,…, num_experts(Experts) do

5: Local_predictions = classify(Expertsi, xs);

6: if Local_predictions = ys then

7: wi,L = β * wi,L; ←Multiply weight of particular expert and target class from local prediction by β

8: end if

9: end for

10: if all samples in a chunk are processed then

11: Local_predictions = classify(Experts, x_s);

12: Diversity = calculate_diversity(Local_predictions, y_s);

13: for i = 1,…, num_experts(Experts) do

14: expert_lifetime ← Increase expert lifetime in each period;

15: wi = wi – (exp(α * expert_lifetime) – 1)/10;

16: wi = wi (1 – Diversityi);

17: end for

18: end if

19: for j = 0,…,Class_labels do

20: Global_predictionsj ← sum(wj);

21: end for

22: Global_predictions ← argmax(Global_predictionsj);

23: if all samples in chunk are processed then

24: w ← normalize_weights(w);

25: if Global_predictionss! = ys then

26: if num_experts(Experts) == l then

27: {Experts, w, expert_lifetime} ← Remove weakest expert ei based on experts score

28: end if

29: if num_experts(Experts) < l then

30: Expertsnew ← create_random_expert();

31: wnew ← 1/num_experts(Experts);

32: end if

33: end if

34: {Experts, w, expert_lifetime} ← Remove experts which score is below threshold θ

(Continued)
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samples, with individual weights from the last chunk of data (Line 42). After training, the
global predictions of actual samples are retrieved, and the algorithm then continues back
to Line 3.

DATASETS DESCRIPTION
To experimentally evaluate the performance of the presented approach, we decided to use
both real-world and synthetically generated datasets. We tried to include multiple drifting
datasets that contain different types of concept drift. Datasets used in the experiments
are summarized in Table 2.

Real datasets
In our study, we used 12 real datasets, including the frequently used ELEC dataset
(Harries, 1999), the KDD 99 challenge dataset (Tavallaee et al., 2009), Covtype (Blackard,
1998), the Airlines dataset introduced by Ikonomovska (http://kt.ijs.si/elena_
ikonomovska/data.html), and data streams from the OpenML platform Bischl et al. (2019)
generated from a real-world dataset using a Bayesian Network Generator (BNG) Van Rijn
et al. (2014). We included a wide range of datasets to evaluate the performance of the
DDCW model on datasets with both binary and multi-class targets or with balanced and
imbalanced classes, especially some of them, such as KDD99 and Shuttle are heavily
imbalanced. To examine the imbalance degree of the datasets, we included the class ratios
in the documentation on the GitHub repository (https://github.com/Miso-K/DDCW/
blob/master/classratios.txt). As it is difficult to determine the type of a real drift contained
in such data, we tried to estimate and visualize possible drift occurrences. Multiple
techniques for concept drift visualization exist (Pratt & Tschapek, 2003). We used
visualization based on feature importance (using the Gini impurity) and the respective
changes within the datasets, as they may signalize changes in concepts in the data. Based
on the work described in Cassidy & Deviney (2015), we used feature importance scores
derived from the Online Random Forest model trained on the datasets. Such an
approach can help to visualize the so-called feature drift, which occurs when certain

Algorithm 1 (continued)

35: if num_experts(Experts) < k then

36: Expertsnew ← create_random_expert();

37: wnew ← 1/num_experts(Experts);

38: end if

39: end if

40: for i = 1,…, num_experts(Experts) do

41: Sample_weightss ← random_uniform_weight();

42: Expertsi ← learn_expert(Expertsi, xs, ys, Sample_weightss);

43: end for

44: return Global_predictions;

45: end for
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features stop (or start) being relevant to the learning task. Fig. 3 shows such visualizations
for the real-world datasets used in the experiments. The visualization depicts how the
importance of the features changes over time in the data. x-axis represents number of
samples, y-axis feature indices and the size of the dots correspond to a feature importance
in the given chunk.

Synthetic datasets
Besides the real-world datasets, we used synthetic data streams containing generators with
various types of drifts. In most cases (except LED and STAGGER data), we used
streams of 1,000,000 samples, with three simulated drifts. We used the Agrawal generator
(Agrawal, Imieliński & Swami, 1993) and SEA (Nick Street & Kim, 2001) generators
with abrupt and gradual drifts, RBF and Waveform streams without any drift and with
simulated gradual drift, a Stagger Concepts Generator (Schlimmer & Granger, 1986) with
abrupt drift, an LED (Gordon et al., 1984) stream with gradual drift, and a Mixed stream
with an abrupt drift with balanced and imbalanced target attributes.

Table 2 Datasets used in the experiments. (Dataset type) R: real, S: synthetic. (Drift type) A: abrupt, G:
gradual, –: none, ?: unknown.

Dataset Drift type Dataset type Samples Features Classes

ELEC ? R 45,312 6 2

KDD99 ? R 494,021 41 23

AIRL ? R 539,383 7 2

COVT ? R 581,012 54 7

SHUTTLE ? R 58,000 9 7

POWERSUPPLY ? R 29,928 3 24

CONNECT-4 ? R 65,557 43 3

BNG_BRIDGES ? R 1,000,000 13 6

BNG_BRIDGES1vsAll ? R 1,000,000 13 6

BNG_HEPATITIS ? R 1,000,000 20 2

BNG_ZOO ? R 1,000,000 17 7

BNG_LYMPH ? R 1,000,000 19 4

AGRa A S 1,000,000 9 2

AGRg G S 1,000,000 9 2

SEAa A S 1,000,000 3 2

SEAg G S 1,000,000 3 2

STAGGER A S 100,000 3 2

LED G S 100,000 24 10

MIXED_BALANCED A S 1,000,000 5 2

MIXED_IMBALANCED A S 1,000,000 5 2

RBF – S 1,000,000 50 4

RBF_DRIFT G S 1,000,000 50 4

WAVEFORM – S 1,000,000 40 3

WAVEFORM_DRIFT G S 1,000,000 40 3
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EXPERIMENTAL RESULTS
The purpose of the experiments was to determine the performance of the DDCWmodel in
a series of different tests. We used the python implementation of all models, and the
experiments were performed using the Scikit-multiflow framework (Montiel et al., 2018).
All experiments were performed on a virtual server equipped with 6 CPU cores and
8 GB RAM.

During the first series of experiments, we aimed to examine the impact of the different
setting of the chunk-size parameter in which the model is updated and the diversity is

Figure 3 Feature importance progress in the real-world datasets. (A) ELEC, (B) airlines, (C) KDD 99,
(D) covtype, (E) shuttle, (F) connect-4 (x axis) number of samples (y axis) feature indices, the size of the dots
correspond to a feature importance in the given chunk. Full-size DOI: 10.7717/peerj-cs.459/fig-3
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calculated. The model was tested with varying sizes of the chunk, with values set to
100, 200, 300, 400, 500, and 1,000 samples on all considered datasets. The primary
motivation of the experiments was to find the most suitable chunk size parameter for
different datasets, which will be used to compare the DDCW with other ensemble models.
To evaluate the models, we used prequential evaluation (or interleaved test-then-train
evaluation), in which the testing is performed on the new data before they are used to train
the model.

In the second set of the experiments, the main goal was to compare the performance
of the DDCW model with the selected other streaming ensemble-based classifiers.
We considered multiple ensemble models: DWM, AWE, Online Boosting, OzaBagging,
and the currently best performing streaming ensembles such as ARF and KUE. To analyze
the performance of these models, standard classification metrics were used (accuracy,
precision, recall, and F1). Besides the comparison of the model performance, we measured
the metrics related to resource consumption, such as total time required for training,
scoring time of an instance, and memory requirements of the models. During these
experiments, we set the chunk size to 1,000 samples (although we included DDCW with a
chunk size of 100 samples for comparison) and set the model’s hyper-parameters to create
similar-sized ensemble models (min. 5 and max. 20 members in the ensemble).

Performance with the different chunk sizes
In this experiment, we explored the influence of the chunk window on the classifier’s
performance on different datasets. The main goal was to find the optimal chunk
window size for a particular dataset. We set different chunk sizes and measured the
model performance using selected metrics in defined periods (e.g., every 100 samples).
We computed the average model performance on the entire dataset using the
above-mentioned classification metrics. A comparison of the DDCW classifier accuracy
and F1 with different sizes of the chunks is shown in Table 3.

Besides setting the chunk size, we fine-tuned the model hyper-parameters. Our main
objective was to estimate the suitable combinations of the parameters α, β, and θ. As the
experiments were computationally intensive, most of the models were trained using
the default hyper-parameter settings, with particular values set to α = 0.002, β = 3, and
θ = 0.02. Regarding the model behavior with different hyper-parameter settings, α
influences the lifetime of an expert in the ensemble and the speed of degradation of the
expert score with increasing lifetime. Increasing values led usually to a more dynamic
model, able to adapt rapidly, while lower values led to a more stable composition of the
model. β influences the preference of the experts, which classified the samples correctly.
Higher values of this parameter can suppress the poor-performing experts and raise
the probability of updating them in the following iteration. θ serves as a threshold for the
expert update. Lower values usually lead to more weak experts in the ensemble, a marginal
contribution to the performance , but raise the model complexity significantly. Higher
values force the updating of weak experts. However, some of themmay be missing later on,
after drift occurrence and the reappearance of previous concepts.
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Table 3 Performance of the DDCW model with different chunk sizes. Bold values show the best
results.

Chunk size 100 200 300 400 500 1,000
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

ELEC 0.849 0.842 0.831 0.847 0.832 0.810

KDD99 0.995 0.995 0.995 0.996 0.995 0.991

AIRL 0.636 0.641 0.644 0.645 0.645 0.649

COVT 0.849 0.842 0.831 0.847 0.832 0.810

SHUTTLE 0.953 0.955 0.965 0.975 0.953 0.992

POWERSUPLY 0.156 0.155 0.156 0.153 0.155 0.157

CONNECT4 0.686 0.693 0.687 0.669 0.674 0.705

BNG_BRIDGES 0.689 0.703 0.711 0.715 0.718 0.725

BNG_BRIDGES1vsAll 0.962 0.963 0.964 0.965 0.965 0.966

BNG_HEPATITIS 0.858 0.867 0.870 0.873 0.874 0.897

BNG_ZOO 0.876 0.892 0.900 0.905 0.908 0.921

BNG_LYMPH 0.796 0.811 0.819 0.824 0.830 0.879

AGRa 0.857 0.871 0.874 0.876 0.878 0.879

AGRg 0.827 0.847 0.852 0.856 0.859 0.874

SEAa 0.873 0.876 0.877 0.878 0.881 0.888

SEAg 0.868 0.874 0.873 0.874 0.877 0.884

STAGGER 0.946 0.946 0.933 0.938 0.912 0.923

LED 0.892 0.888 0.882 0.884 0.884 0.860

MIXED_BALANCED 0.927 0.934 0.935 0.939 0.943 0.964

MIXED_IMBALANCED 0.924 0.930 0.932 0.936 0.939 0.964

RBF 0.855 0.872 0.877 0.879 0.881 0.882

RBF_DRIFT 0.546 0.562 0.573 0.585 0.592 0.601

WAVEFORM 0.819 0.826 0.830 0.832 0.835 0.837

WAVEFORM_DRIFT 0.820 0.826 0.829 0.834 0.835 0.836

F1 F1 F1 F1 F1 F1

ELEC 0.815 0.807 0.791 0.811 0.791 0.760

KDD99 0.570 0.591 0.602 0.581 0.582 0.596

AIRL 0.531 0.538 0.533 0.537 0.529 0.535

COVT 0.815 0.807 0.791 0.811 0.791 0.760

SHUTTLE 0.506 0.510 0.536 0.606 0.672 0.702

POWERSUPLY 0.109 0.110 0.109 0.105 0.108 0.110

CONNECT4 0.483 0.486 0.470 0.466 0.481 0.464

BNG_BRIDGES 0.588 0.609 0.620 0.627 0.632 0.635

BNG_BRIDGES1vsAll 0.866 0.872 0.873 0.877 0.877 0.883

BNG_HEPATITIS 0.907 0.913 0.915 0.918 0.918 0.935

BNG_ZOO 0.784 0.806 0.818 0.825 0.831 0.853

BNG_LYMPH 0.548 0.577 0.595 0.607 0.618 0.752

AGRa 0.842 0.858 0.864 0.868 0.868 0.869

AGRg 0.808 0.830 0.835 0.840 0.845 0.874

SEAa 0.895 0.898 0.899 0.900 0.902 0.909
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The results proved, that the chunk size does have an impact on the model performance,
and there are mostly minor differences in the performance metrics with different chunk
size parameter setting. Although accuracy is not affected much, F1 metric improves
significantly with larger chunk sizes, especially on the BNG_Zoo and BNG_Lymph
datasets. In general, we can observe, that on the larger data (with more than 100,000
samples in the stream), larger windows resulted in slightly better performance. On the
other hand, smaller chunk sizes enable the model to react more quickly to concept drift.
In some cases, the accuracy metric proved to be not very useful, as the target class is
strongly unbalanced or multi-class. It is evident mostly on the KDD99 or BNG_Lymph
datasets, where high accuracy values are caused mainly by the classification into the
majority class, while other minor classes do not influence this metric very much. A much
better perspective on the actual model performance could be given by F1 measure.

The experiments summarized averaged results that the models achieved on the entire
stream, but it is also important to explore how the performance progressed during the
stream processing and observe their reactions to concept drift.

Figure 4 visualizes the accuracy achieved by the DDCW models on the real datasets
with both chunk sizes. The performance of the method with both settings is overall
similar; however, we can see a difference in cases when a change (possible drift) occurs.
On the KDD99 dataset, there is a significant decrease in the accuracy of the model
after around 52,000 samples. Shorter chunk windows resulted in a much earlier reaction
to the change, without any significant decrease in performance. On the Elec and
Covtype datasets, the earlier reactions are also present and visible, resulting in higher
performance metrics.

Figure 5 depicts the DDCW model performance on the synthetic datasets with both
chunk sizes. In the case of Stagger and LED datasets, the effects of different chunk sizes
are comparable with the impact on the real datasets. Larger chunk sizes lead to later
reactions to drift and a more significant decrease in accuracy. In contrast, performance
evaluation on larger streams, such as AGR or Mixed streams, showed that the chunk size
effect on stream processing is different. Contrary to previous datasets, larger chunk
sizes resulted in a more robust model, still covering some of the previous concepts after

Table 3 (continued)

Chunk size 100 200 300 400 500 1,000
Accuracy Accuracy Accuracy Accuracy Accuracy Accuracy

SEAg 0.892 0.896 0.896 0.897 0.899 0.906

STAGGER 0.949 0.949 0.937 0.941 0.919 0.928

LED 0.892 0.888 0.882 0.884 0.884 0.860

MIXED_BALANCED 0.928 0.934 0.935 0.939 0.943 0.964

MIXED_IMBALANCED 0.930 0.935 0.936 0.940 0.943 0.966

RBF 0.850 0.868 0.873 0.875 0.878 0.881

RBF_DRIFT 0.528 0.550 0.562 0.570 0.576 0.618

WAVEFORM 0.814 0.822 0.826 0.828 0.832 0.834

WAVEFORM_DRIFT 0.814 0.822 0.824 0.830 0.832 0.834
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Figure 4 Performance of the DDCW model on the real datasets. (A) ELEC, (B) KDD 99, (C) airlines, (D) covtype, (E) shuttle, (F) powersupply,
(G) connect-4, (H) BNG Bridges, (I) BNG Bridges1vsAll, (J) BNG Hepatitis, (K) BNG Zoo, (L) BNG Lymph (y axis) accuracy (x axis) number of
samples. Full-size DOI: 10.7717/peerj-cs.459/fig-4
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Figure 5 Performance of the DDCW model on the synthetic datasets. (A) AGR_a, (B) AGR_g, (C) SEA_a, (D) SEA_g, (E) stagged, (F) LED,
(G) mixed-balanced, (H) mixed-imbalanced, (I) RBF, (J) RBF Drift, (K) waveform, (L) waveform drift (y axis) accuracy (x axis) number of samples.

Full-size DOI: 10.7717/peerj-cs.459/fig-5
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drift occurrence. After the drift, the model performance dropped significantly. When using
larger chunk sizes, the model was able to use more data to update the ensemble, which led
to improved performance.

Figure 6 depicts the size of the ensemble during stream processing on selected datasets
with the diversity of the ensemble members disabled and enabled. During the experiments,
we set the minimum size of the DDCW ensemble to 5 and the maximum size to 20.
Initially, we performed a set of tests to estimate the optimal ensemble size. Larger
ensembles did not perform significantly better, while the computational complexity of the
model was considerably higher. The experiments proved that, during the run time, the
algorithm preferred a smaller pool of ensemble members. The algorithm added more
ensemble members when a concept drift occurred. Enabling the diversity-based selection
of experts resulted in a more stable composition of the ensemble and required fewer
member updates.

Comparison with other ensemble models
In these experiments, we compared the DDCW model performance with the selected
ensemble models. In the comparison, we included AWE, DWM, Online Boosting,
OzaBagging, ARF, and KUE models. Each of the ensemble models was tested with
different base learners. We evaluated Naive Bayes, Hoeffding Tree, and k-NN as base
learners. Similar to the previous set of experiments, we used the accuracy, precision, recall,

Figure 6 Size of the DDCW ensemble during the run-time on the selected datasets. (A) Airlines,
(B) covtype, (C) stagger, (D) AGR_a (y axis) Number of ensemble members (x axis) number of samples.

Full-size DOI: 10.7717/peerj-cs.459/fig-6
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and F1 metrics for comparison purposes computed in the prequential fashion. When using
the DDCWmodel, we included the DDCWmodel with a combination of Naive Bayes and
Hoeffding trees as base learners, as well as a tree-based homogeneous ensemble alone.

Performance comparison
To summarize the experiments, Table 4 compares the performance of all evaluated models
on the real datasets and Table 5 provides the similar comparison on the synthetic data
streams. As in the previous experiments, the tables consists of overall averaged results that
the models achieved on the entire stream. While most of the studies focus only on a
comparison of accuracy, we decided to analyze other classification metrics as well.
Especially in the case of multi-class or heavily imbalanced data (e.g., KDD99), accuracy
might not be the best choice to truly evaluate the performance of the model, therefore
we choose also F1 metric as well. Please note, that we were unable to properly obtain F1
values from the KUE model on some of the datasets.

The DDCW model proved to be suitable for data streams with different concept drifts
and either binary or multi-class classification tasks. When considering the composition
of the DDCW ensemble, the fact that the model relies on different base learners enables it
to utilize the strengths of particular learners. Dynamic composition of the ensemble

Table 4 Comparison of accuracy and F1 metrics of evaluated ensemble models on the real data streams.

DDCWHT DDCWHTNB DWMNB AWENB DWMHT AWEHT OBkNN OzakNN OBHT OzaHT OBNB OzaNB ARFHT KUEHT

Accuracy

ELEC 0.853 0.810 0.800 0.756 0.869 0.788 0.765 0.780 0.858 0.793 0.792 0.734 0.857 0.668

KDD99 0.995 0.991 0.983 0.420 0.989 0.103 0.999 0.998 0.998 0.995 0.995 0.946 0.999 0.999

AIRL 0.662 0.649 0.640 0.618 0.620 0.575 0.587 0.639 0.634 0.653 0.619 0.644 0.666 0.663

COVT 0.853 0.810 0.823 0.592 0.812 0.215 0.927 0.918 0.876 0.871 0.783 0.871 0.941 0.904

SHUTTLE 0.996 0.992 0.896 0.949 0.946 0.949 0.990 0.991 0.982 0.978 0.950 0.922 0.998 0.997

POWERSUPLY 0.158 0.158 0.074 0.186 0.074 0.187 0.029 0.167 0.013 0.162 0.007 0.161 0.156 0.218

CONNECT4 0.719 0.705 0.671 0.286 0.693 0.613 0.702 0.728 0.675 0.696 0.636 0.572 0.739 0.650

BNG_BRIDGES 0.737 0.725 0.611 0.698 0.612 0.698 0.621 0.670 0.699 0.750 0.687 0.684 0.756 0.738

BNG_BRIDGES1vsAll 0.970 0.966 0.962 0.967 0.962 0.967 0.936 0.958 0.970 0.973 0.957 0.962 0.973 0.958

BNG_HEPATITIS 0.909 0.897 0.854 0.877 0.856 0.913 0.839 0.884 0.913 0.920 0.868 0.853 0.922 0.923

BNG_ZOO 0.928 0.921 0.812 0.913 0.806 0.913 0.909 0.927 0.931 0.915 0.903 0.889 0.942 0.939

BNG_LYMPH 0.883 0.878 0.801 0.825 0.802 0.825 0.787 0.828 0.846 0.809 0.818 0.806 0.871 0.903

F1

ELEC 0.826 0.760 0.749 0.694 0.852 0.757 0.721 0.730 0.828 0.744 0.722 0.595 0.825 0.668

KDD99 0.587 0.549 0.502 0.045 0.397 0.029 0.712 0.642 0.593 0.645 0.577 0.530 0.649 NaN

AIRL 0.556 0.535 0.320 0.293 0.534 0.425 0.436 0.430 0.563 0.522 0.534 0.259 0.577 NaN

COVT 0.826 0.760 0.594 0.156 0.569 0.085 0.740 0.718 0.721 0.675 0.626 0.679 0.779 NaN

SHUTTLE 0.611 0.702 0.397 0.398 0.446 0.399 0.517 0.435 0.623 0.452 0.530 0.621 0.677 NaN

POWERSUPLY 0.113 0.110 0.066 0.134 0.066 0.134 0.034 0.161 0.106 0.014 0.009 0.107 0.149 NaN

CONNECT4 0.470 0.464 0.466 0.272 0.437 0.382 0.587 0.517 0.431 0.406 0.420 0.381 0.496 0.506

BNG_BRIDGES 0.649 0.635 0.515 0.601 0.515 0.601 0.527 0.567 0.611 0.669 0.599 0.596 0.673 0.656

BNG_BRIDGES1vsAll 0.895 0.883 0.871 0.886 0.869 0.886 0.790 0.857 0.899 0.906 0.852 0.872 0.906 0.915

BNG_HEPATITIS 0.943 0.935 0.904 0.921 0.907 0.922 0.898 0.929 0.945 0.950 0.914 0.902 0.952 0.887

BNG_ZOO 0.860 0.853 0.714 0.832 0.704 0.832 0.824 0.855 0.865 0.844 0.821 0.821 0.887 0.882

BNG_LYMPH 0.740 0.752 0.610 0.603 0.609 0.603 0.602 0.584 0.735 0.658 0.679 0.659 0.636 0.827
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enables it to adapt to the particular stream by preferring a base learner that is more suitable
for the given data. In general, the DDCW performs very well on the generated streams,
gaining at least competitive results compared to the other models on the real-world
datasets. The method appears to struggle more with some of the imbalanced datasets, as is
apparent from the F1 results achieved on the KDD 99 or Airlines dataset. During this
experiment, we also used two different DDCW method setups to compare the effect of
the base learner selection. We used DDCW with only Hoeffding trees as a base learner
and DDCW with a combination of Naive Bayes and Hoeffding trees. Although the
homogeneous ensemble mostly performed slightly better, the heterogeneous one was
usually faster to train and score and maintained a similar performance, which was a
result of the inclusion of fast Naive Bayes ensemble members. In a similar fashion, we
experimented with an integration of k-NN into the DDCW model, but as expected,
k-NN base learners raised the resource requirements of the model and failed to provide
a sufficient performance boost, so we did not include k-NN base learners in further
experiments.

Performance comparison showed that the DDCW method can produce results that are
comparable to the related ensemble models on both, real and synthetic streams. In many

Table 5 Comparison of accuracy and F1 metrics of evaluated ensemble models on the synthetic data streams.

DDCWHT DDCWHTNB DWMNB AWENB DWMHT AWEHT OBkNN OzakNN OBHT OzaHT OBNB OzaNB ARFHT KUEHT

Accuracy

AGRa 0.918 0.879 0.770 0.821 0.810 0.822 0.611 0.662 0.818 0.913 0.816 0.658 0.926 0.943

AGRg 0.896 0.874 0.750 0.800 0.792 0.800 0.600 0.649 0.794 0.845 0.786 0.658 0.897 0.943

SEAa 0.890 0.888 0.876 0.879 0.874 0.878 0.753 0.863 0.871 0.868 0.846 0.854 0.894 0.902

SEAg 0.887 0.884 0.874 0.876 0.872 0.875 0.750 0.860 0.867 0.868 0.845 0.854 0.891 0.910

STGR 0.937 0.923 0.901 0.948 0.947 0.947 0.929 0.945 0.941 0.872 0.924 0.602 0.949 0.962

LED 0.873 0.860 0.831 0.893 0.831 0.893 0.682 0.770 0.768 0.848 0.770 0.698 0.892 0.893

MIXED_BALANCED 0.984 0.964 0.916 0.919 0.973 0.919 0.967 0.976 0.922 0.988 0.912 0.920 0.995 0.998

MIXED_IMBALANCED 0.985 0.964 0.916 0.920 0.922 0.920 0.968 0.976 0.926 0.988 0.909 0.920 0.995 0.998

RBF 0.924 0.882 0.712 0.733 0.712 0.733 0.915 0.940 0.816 0.940 0.719 0.720 0.941 0.954

RBF_DRIFT 0.618 0.601 0.520 0.516 0.516 0.512 0.554 0.572 0.580 0.705 0.544 0.546 0.655 0.788

WAVEFORM 0.840 0.837 0.797 0.830 0.797 0.830 0.762 0.815 0.844 0.855 0.807 0.805 0.843 0.844

WAVEFORM_DRIFT 0.840 0.836 0.797 0.830 0.797 0.830 0.763 0.815 0.843 0.855 0.807 0.805 0.843 0.852

F1

AGRa 0.912 0.869 0.750 0.812 0.810 0.812 0.592 0.616 0.808 0.802 0.773 0.542 0.922 0.944

AGRg 0.888 0.864 0.728 0.787 0.788 0.786 0.580 0.602 0.782 0.835 0.773 0.543 0.890 0.939

SEAa 0.910 0.909 0.900 0.901 0.898 0.901 0.791 0.889 0.895 0.894 0.875 0.885 0.914 0.909

SEAg 0.908 0.906 0.898 0.899 0.896 0.899 0.799 0.886 0.892 0.893 0.874 0.885 0.911 0.905

STGR 0.941 0.928 0.947 0.951 0.949 0.949 0.934 0.947 0.945 0.887 0.930 0.633 0.952 0.963

LED 0.873 0.860 0.832 0.893 0.832 0.893 0.682 0.768 0.768 0.848 0.770 0.693 0.892 0.893

MIXED_BALANCED 0.984 0.964 0.917 0.919 0.973 0.919 0.967 0.976 0.923 0.988 0.912 0.920 0.995 0.998

MIXED_IMBALANCED 0.985 0.966 0.923 0.925 0.928 0.926 0.969 0.977 0.928 0.989 0.914 0.927 0.996 0.998

RBF 0.923 0.881 0.716 0.738 0.716 0.738 0.916 0.941 0.816 0.939 0.721 0.720 0.941 0.954

RBF_DRIFT 0.620 0.619 0.545 0.533 0.521 0.517 0.559 0.585 0.578 0.703 0.577 0.595 0.644 0.788

WAVEFORM 0.839 0.834 0.784 0.824 0.784 0.824 0.762 0.814 0.843 0.854 0.796 0.792 0.842 0.844

WAVEFORM_DRIFT 0.840 0.834 0.784 0.824 0.784 0.824 0.763 0.814 0.842 0.854 0.795 0.792 0.842 0.852
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cases, it is able to outperform existing algorithms (e.g., AWE, DWM, OZA, and OB) in
both of the explored metrics. Current state-of-the-art methods such as KUE and ARF
usually produce slightly better results, but the DDCWmethod showed a fairly competitive
performance, surpassing on several datasets one of those methods in both, accuracy and
F1 scores. However, the evaluation metrics represent only one aspect of the adaptive
models’ performance. During the experiments, we tried to evaluate another aspect of the
studied models that may influence the run time of the models during deployment in
real-world scenarios. We focused mostly on monitoring the model performance in terms
of their demand on resources and resource consumption during the process. During
the experiments, we collected data about the overall run-time aspects of the model.
The following section compares the models from the perspective of training/scoring times
and memory requirements.

Training time and memory usage
We analyzed the training and scoring times and the memory consumption during the
training process to provide a different view of the models’ performance, comparing
performance metrics with resource consumption requirements. We measured the overall
training and scoring times on the entire data by summing up all partial re-training and
scoring times over the stream. Table 6 summarizes the results of all evaluated models.
The table compares the total training time consumed in the training and re-training of the
models, the total scoring time of all processed instances, and the average size of the
model in memory during the entire stream processing. The results represent an averaged
value of the total of five separate runs of each experiment. It is important to note that
the KUE model was not included in this comparison. We used Python implementations of
all evaluated models and the scikit-multiflow library during the experiments. The KUE
model was available only in its Java implementation using the MOA library, therefore using
different underlying technologies could influence the objective comparison of resource
consumption. At the same time, it is essential to note that the Java implementation of the
KUE model was significantly effective than all Python-based models, mostly in training
times, which were remarkably shorter.

The choice of a base classifier heavily influences the overall run-time requirements of all
models. Most apparently, the choice of k-NNADWIN as a base learner for OnlineBagging
and OzaBagging methods leads to a massive increase of memory consumption and
data processing times. Nearest neighbor classifiers require to store the training data in
memory, which could lead to increased memory consumption and therefore increased
training times. On the other hand, ensembles which consist of Naive Bayes and Hoeffding
Tree classifiers as the base learners are much faster to train and require significantly lower
memory during the run-time. However, Online Boosting and OzaBagging methods are
much more sensitive to the number of features of the processed data. It can be observed on
KDD99 and Covtype datasets, where these relatively faster models, required significantly
longer times to either train or score the instances. DDCW ensemble training time and
memory consumption requirements reflect the fact that the model consists of a mixture of
Hoeffding Tree and Naive Bayes classifiers. When experimenting with the homogeneous
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DDCW ensemble, the performance results were better on many of the datasets. On the
other hand, heterogeneous DDCW model provided a small decrease of the performance,
but in most of the cases, inclusion of a Naive Bayes base learner led to a shorter training
times and reduced memory usage (most significantly on e.g., Waveform data, where
the training time was reduced to a half of the total training time of the homogeneous
DDCW ensemble). When taking into consideration both aspects, DDCW model can, in
some cases present a compromise between performance and resource requirements.
Although Online Boosting or OzaBagging model performs with higher degrees of accuracy
on some of the datasets, their computational intensiveness and more extended training
and scoring times may be a factor to consider a simpler model. Similarly, ARF and KUE
models provide superior performance on the majority of the datasets. When compared
to those state of the art methods, DDCW method produced mostly comparable results,
but needed less training time with lesser memory requirements (especially on the larger
synthetic data streams) than ARF method. DDCW ensemble, in this case, may offer a
reasonable alternative by providing a well-performing model, while maintaining
reasonable requirements on run-time.

CONCLUSIONS
In the presented paper, we propose a heterogeneous adaptive ensemble classifier with a
dynamic weighting scheme based on the diversity of its base classifiers. The algorithm was
evaluated on a wide range of datasets, including real and synthetic ones, with different
types of concept drift. During the experiments, we compared the proposed method with
several other adaptive ensemble methods. The results proved that the proposed model
is able to adapt to drift occurrence relatively fast and is able to achieve at least comparable
performance to the existing approaches, on both real and synthetically generated datasets.
While still performing well, the model also manages to maintain reasonable resource
requirements in terms of memory consumption and time needed to score the unknown
samples. The proposed approach is also dependent on chunk size parameter setting, as
the performance of the model on certain datasets change significantly with different
chunk sizes. Further research with adaptive heterogeneous ensemble models may lead
to an exploration of modifications to weighting schemes that improve performance in
multi-class classification problems or classifications of heavy imbalanced data. Another
interesting field for future work is the integration of adaptation mechanisms with semantic
models of the application domain. A domain knowledge model could provide a description
of the data, the essential domain concepts, and their relationships. Such a model could
also be used to improve classification performance by capturing expert domain knowledge
and utilizing it in the process of classification of unknown samples. A knowledge
model could be used to extract new expert features not previously contained in the data
or to extract interesting trends present in the data stream. Such extensions could
represent expert knowledge and could thus be leveraged to detect frequent patterns leading
to concept drift while reducing the time normally needed to adapt the models with
that knowledge.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 26/31

http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The work was supported by the Slovak Research and Development Agency under the
contract No. APVV-16-0213 Knowledge-based approaches for intelligent analysis. The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Slovak Research and Development Agency: APVV-16-0213.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Martin Sarnovsky conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Michal Kolarik conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Source codes of the model is available at GitHub: https://github.com/Miso-K/DDCW.

REFERENCES
Abassi MS. 2019. Diversity of ensembles for data stream classification. arXiv. Available at

https://arxiv.org/abs/1902.08466.

Agrawal R, Imieliński T, Swami A. 1993. Mining association rules between sets of items in large
databases. ACM SIGMOD Record 22(2):207–216.

Baena-García M, Del Campo-Ávila J, Fidalgo R, Bifet A, Gavaldà R, Morales-Bueno R. 2006.
Early drift detection method. In: 4th ECML PKDD International Workshop on Knowledge
Discovery from Data Streams.

Barddal JP, Gomes HM, Enembreck F, Pfahringer B. 2017. A survey on feature drift adaptation:
definition, benchmark, challenges and future directions. Journal of Systems and Software
127(1):278–294 DOI 10.1016/j.jss.2016.07.005.

Bifet A, De Francisci Morales G, Read J, Holmes G, Pfahringer B. 2015. Efficient online
evaluation of big data stream classifiers. In: Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. New York: ACM.

Bifet A, Gavaldà R. 2007. Learning from time-changing data with adaptive windowing.
In: Proceedings of the 7th SIAM International Conference on Data Mining. 443–448.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 27/31

https://github.com/Miso-K/DDCW
https://arxiv.org/abs/1902.08466
http://dx.doi.org/10.1016/j.jss.2016.07.005
http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


Bischl B, Casalicchio G, Feurer M, Hutter F, Lang M, Mantovani RG, van Rijn JN, Vanschoren
J. 2019. Openml benchmarking suites. arXiv. Available at https://arxiv.org/abs/1708.03731.

Black M, Hickey R. 2003. Learning classification rules for telecom customer call data under
concept drift. Soft Computing 8:102–108.

Blackard JA. 1998. Comparison of neural networks and discriminant analysis in predicting forest
cover types. PhD thesis, Colorado State University, Fort Collins, CO, USA.

Breiman L. 1996. Bagging predictors. Machine Learning 24:123–140Machine Learning.

Breiman L. 2001. Random forests. Machine Learning 45:5–32.

Brzeziński D, Stefanowski J. 2011. Accuracy updated ensemble for data streams with concept
drift. Lecture Notes in Computer Science 6679 LNAI(PART 2):155–163.

Brzezinski D, Stefanowski J. 2016. Ensemble diversity in evolving data streams. In: Lecture Notes
in Computer Science. Vol. 9956. Cham: Springer DOI 10.1007/978-3-319-46307-0_15.

Cano A, Krawczyk B. 2020. Kappa updated ensemble for drifting data stream mining. Machine
Learning 109:175–218.

Carney JG, Cunningham P. 2000. Tuning diversity in bagged ensembles. International Journal of
Neural Systems 10(4):267–279.

Cassidy AP, Deviney FA. 2015. Calculating feature importance in data streams with concept drift
using online random forest. In: Proceedings—2014 IEEE International Conference on Big Data.
Piscataway: IEEE.

Chiang RD, Wang YH, Chu HC. 2013. Prediction of members’ return visit rates using a time
factor. Electronic Commerce Research and Applications 12(5):362–371.

Delany SJ, Cunningham P, Tsymbal A, Coyle L. 2005. A case-based technique for tracking
concept drift in spam filtering. In: Knowledge-Based Systems.

Ditzler G, Roveri M, Alippi C, Polikar R. 2015. Learning in nonstationary environments:
a survey. IEEE Computational Intelligence Magazine 10(4):12–25.

Fernández A, García S, Galar M, Prati RC, Krawczyk B, Herrera F. 2018. Learning from
imbalanced data sets. Berlin: Springer.

Fernandez-Aleman JL, Carrillo-De-Gea JM, Hosni M, Idri A, Garcia-Mateos G. 2019.
Homogeneous and heterogeneous ensemble classification methods in diabetes disease: a review.
In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and
Biology Society, EMBS. Piscataway: IEEE.

Freund Y, Schapire RE. 1996. Experiments with a new boosting algorithm. In: Proceedings of the
13th International Conference on Machine Learning.

Frías-Blanco I, Verdecia-Cabrera A, Ortiz-Díaz A, Carvalho A. 2016. Fast adaptive stacking of
ensembles. In: Proceedings of the ACM Symposium on Applied Computing.

Gama J. 2010. Knowledge discovery from data streams. First Edition. London: Chapman & Hall/
CRC.

Gama J, Aguilar-Ruiz J, Klinkenberg R. 2008. Knowledge discovery from data streams. Intelligent
Data Analysis 12(3):251–252 DOI 10.3233/IDA-2008-12301.

Gama J, Medas P, Castillo G, Rodrigues P. 2004. Learning with drift detection. In: Lecture Notes
in Computer Science. Vol. 3171. Berlin: Springer DOI 10.1007/978-3-540-28645-5_29.

Gama J, Zliobaite I, Bifet A, Pechenizkiy M, Bouchachia A. 2014. A survey on concept drift
adaptation. ACM Computing Surveys 46(4) DOI 10.1145/2523813.

Ghaderi Zefrehi H, Altınçay H. 2020. Imbalance learning using heterogeneous ensembles.
Expert Systems with Applications 142:113005.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 28/31

https://arxiv.org/abs/1708.03731
http://dx.doi.org/10.1007/978-3-319-46307-0_15
http://dx.doi.org/10.3233/IDA-2008-12301
http://dx.doi.org/10.1007/978-3-540-28645-5_29
http://dx.doi.org/10.1145/2523813
http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


Gomes HM, Bifet A, Read J, Barddal JP, Enembreck F, Pfharinger B, Holmes G, Abdessalem T.
2017. Adaptive random forests for evolving data stream classification. Machine Learning
106(9–10):1469–1495 DOI 10.1007/s10994-017-5642-8.

Gonçalves PM, De Carvalho Santos SG, Barros RS, Vieira DC. 2014. A comparative study on
concept drift detectors. Expert Systems with Applications 41(18):8144–8156.

Gordon AD, Breiman L, Friedman JH, Olshen RA, Stone CJ. 1984. Classification and Regression
Trees. Biometrics 40(3):874 DOI 10.2307/2530946.

Harries M. 1999. Splice-2 comparative evaluation: electricity pricing. Technical report, University
of New South Wales, School of Computer Science and Engineering.

Idrees MM, Minku LL, Stahl F, Badii A. 2020. A heterogeneous online learning ensemble for
non-stationary environments. Knowledge-Based Systems 188(4):104983
DOI 10.1016/j.knosys.2019.104983.

Junior B, Nicoletti MDC. 2019. An iterative boosting-based ensemble for streaming data
classification. Information Fusion 45:66–78.

Khamassi I, Sayed-Mouchaweh M, Hammami M, Ghédira K. 2019. A new combination of
diversity techniques in ensemble classifiers for handling complex concept drift. Learning from
Data Streams in Evolving Environments 41(August 2018):39–61.

Kolter JZ, Maloof MA. 2007. Dynamic weighted majority: an ensemble method for drifting
concepts. Journal of Machine Learning Research 8:2755–2790.

Krawczyk B, Minku LL, Gama J, Stefanowski J, Woźniak M. 2017. Ensemble learning for data
stream analysis: a survey. Information Fusion 37:132–156.

Kuncheva L. 2006. Ten measures of diversity in classifier ensembles: limits for two classifiers. In:
A DERA/IEE Workshop on Intelligent Sensor Processing (Ref. No. 2001/050), Birmingham, UK.
Piscataway: IEEE DOI 10.1049/ic:20010105.

Kuncheva LI, Whitaker CJ. 2003. Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning 51:181–207.

Large J, Lines J, Bagnall AJ. 2017. The heterogeneous ensembles of standard classification
algorithms (HESCA): the whole is greater than the sum of its parts. CoRR. arXiv. Available at
https://arxiv.org/abs/1710.09220v1.

Li CT, Shan MK, Jheng SH, Chou KC. 2016. Exploiting concept drift to predict popularity of
social multimedia in microblogs. Information Sciences 339:310–331.

Lifna CS, Vijayalakshmi M. 2015. Identifying concept-drift in Twitter streams. Procedia Computer
Science 45:86–94.

Lin CC, Deng DJ, Kuo CH, Chen L. 2019. Concept drift detection and adaption in big imbalance
industrial IoT data using an ensemble learning method of offline classifiers. IEEE Access
7:56198–56207.

Liu S, Feng L, Wu J, Hou G, Han G. 2017. Concept drift detection for data stream learning based
on angle optimized global embedding and principal component analysis in sensor networks.
Computers and Electrical Engineering 58(8):327–336 DOI 10.1016/j.compeleceng.2016.09.006.

Lo YY, Liao W, Chang CS, Lee YC. 2018. Temporal matrix factorization for tracking concept
drift in individual user preferences. IEEE Transactions on Computational Social Systems
5(1):156–168 DOI 10.1109/TCSS.2017.2772295.

Luong AV, Nguyen TT, Liew AW-C. 2020. Streaming active deep forest for evolving data stream
classification. Available at https://arxiv.org/abs/2002.11816.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 29/31

http://dx.doi.org/10.1007/s10994-017-5642-8
http://dx.doi.org/10.2307/2530946
http://dx.doi.org/10.1016/j.knosys.2019.104983
http://dx.doi.org/10.1049/ic:20010105
https://arxiv.org/abs/1710.09220v1
http://dx.doi.org/10.1016/j.compeleceng.2016.09.006
http://dx.doi.org/10.1109/TCSS.2017.2772295
https://arxiv.org/abs/2002.11816
http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


Lysiak R, Kurzynski M, Woloszynski T. 2014. Optimal selection of ensemble classifiers using
measures of competence and diversity of base classifiers. Neurocomputing 126:29–35
DOI 10.1016/j.neucom.2013.01.052.

Marrón D, Ayguadé E, Herrero JR, Bifet A. 2019. Resource-aware elastic swap random forest for
evolving data streams. arXiv. Available at https://arxiv.org/abs/1905.05881.

Minku LL, White AP, Yao X. 2010. The impact of diversity on online ensemble learning in the
presence of concept drift. IEEE Transactions on Knowledge and Data Engineering 22(5):730–742
DOI 10.1109/TKDE.2009.156.

Montiel J, Mitchell R, Frank E, Pfahringer B, Abdessalem T, Bifet A. 2020. Adaptive XGBoost
for evolving data streams. Available at https://arxiv.org/abs/2005.07353.

Montiel J, Read J, Bifet A, Abdessalem T. 2018. Scikit-multiflow: a multi-output streaming
framework. Journal of Machine Learning Research 19(72):1–5.

Muhlbaier M, Topalis A, Polikar R. 2004. Learn++.MT: a new approach to incremental learning.
In: Roli F, Kittler J, Windeatt T, eds. Multiple Classifier Systems. Berlin: Springer, 52–61.

Mukkavilli SK, Shetty S. 2012. Mining concept drifting network traffic in cloud computing
environments. In: Proceedings—12th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing. Piscataway: IEEE.

Nguyen HL, Woon YK, Ng WK, Wan L. 2012. Heterogeneous ensemble for feature drifts in data
streams. In: Lecture Notes in Computer Science. Vol. 7302. Berlin: Springer
DOI 10.1007/978-3-642-30220-6_1.

Nick Street W, Kim YS. 2001. A streaming ensemble algorithm (SEA) for large-scale classification.
In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining.

Olorunnimbe MK, Viktor HL, Paquet E. 2018. Dynamic adaptation of online ensembles for
drifting data streams. Journal of Intelligent Information Systems 50(2):291–313
DOI 10.1007/s10844-017-0460-9.

Oza NC. 2005. Online bagging and boosting. In: Conference Proceedings—IEEE International
Conference on Systems, Man and Cybernetics. Piscataway: IEEE.

Oza NC, Russell S. 2001. Experimental comparisons of online and batch versions of bagging and
boosting. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. New York: ACM.

Pesaranghader A, Viktor H, Paquet E. 2018. Reservoir of diverse adaptive learners and
stacking fast hoeffding drift detection methods for evolving data streams. Machine Learning
107:1711–1743.

Polikar R, Upda L, Upda SS, Honavar V. 2001. Learn++: an incremental learning algorithm for
supervised neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C
31(4):497–508 DOI 10.1109/5326.983933.

Pratt KB, Tschapek G. 2003. Visualizing concept drift. In: Proceedings of the ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.

Ren S, Liao B, Zhu W, Li Z, Liu W, Li K. 2018. The gradual resampling ensemble for mining
imbalanced data streams with concept drift. Neurocomputing 286(PA):150–166
DOI 10.1016/j.neucom.2018.01.063.

Ruano-Ordás D, Fdez-Riverola F, Méndez JR. 2018. Concept drift in e-mail datasets: an empirical
study with practical implications. Information Sciences 428:120–135.

Sagi O, Rokach L. 2018. Ensemble learning: a survey.Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery 8(5):e1249.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 30/31

http://dx.doi.org/10.1016/j.neucom.2013.01.052
https://arxiv.org/abs/1905.05881
http://dx.doi.org/10.1109/TKDE.2009.156
https://arxiv.org/abs/2005.07353
http://dx.doi.org/10.1007/978-3-642-30220-6_1
http://dx.doi.org/10.1007/s10844-017-0460-9
http://dx.doi.org/10.1109/5326.983933
http://dx.doi.org/10.1016/j.neucom.2018.01.063
http://dx.doi.org/10.7717/peerj-cs.459
https://peerj.com/computer-science/


Schlimmer JC, Granger RH. 1986. Incremental learning from noisy data. Machine Learning
1:317–354.

Sidhu P, Bhatia MPS. 2018. A novel online ensemble approach to handle concept drifting data
streams: diversified dynamic weighted majority. International Journal of Machine Learning and
Cybernetics 9(1):37–61 DOI 10.1007/s13042-015-0333-x.

Stiglic G, Kokol P. 2011. Interpretability of sudden concept drift in medical informatics domain.
In: Proceedings—IEEE International Conference on Data. Mining, ICDM. Piscataway: IEEE.

Tavallaee M, Bagheri E, Lu W, Ghorbani AA. 2009. A detailed analysis of the KDD CUP 99 data
set. In: IEEE Symposium on Computational Intelligence for Security and Defense Applications,
CISDA 2009. Piscataway: IEEE.

Tsymbal A. 2004. The problem of concept drift: definitions and related work. Trinity College Dublin:
Computer Science Department.

Tsymbal A, Pechenizkiy M, Cunningham P, Puuronen S. 2006. Handling local concept drift
with dynamic integration of classifiers: domain of antibiotic resistance in nosocomial infections.
In: Proceedings—IEEE Symposium on Computer-Based Medical Systems.

Van Rijn JN, Holmes G, Pfahringer B, Vanschoren J. 2014. Algorithm selection on data streams.
In: Džeroski S, Panov P, Kocev D, Todorovski L, eds. Discovery Science. Cham: Springer
International Publishing, 325–336.

Van Rijn JN, Holmes G, Pfahringer B, Vanschoren J. 2016. Having a blast: Meta-learning and
heterogeneous ensembles for data streams. In: Proceedings—IEEE International Conference on
Data. Mining, ICDM. Piscataway: IEEE.

Van Rijn JN, Holmes G, Pfahringer B, Vanschoren J. 2018. The online performance estimation
framework: heterogeneous ensemble learning for data streams. Machine Learning 107:149–176.

Wang B, Pineau J. 2013.Online ensemble learning for imbalanced data streams, 1–15. Available at
https://arxiv.org/abs/1310.8004.

Wang S, Minku LL, Yao X. 2018. A systematic study of online class imbalance learning with
concept drift. In: IEEE Transactions on Neural Networks and Learning Systems. Piscataway:
IEEE.

Yang L. 2011. Classifiers selection for ensemble learning based on accuracy and diversity.
Procedia Engineering 15(1–2):4266–4270 DOI 10.1016/j.proeng.2011.08.800.

Zenisek J, Holzinger F, Affenzeller M. 2019. Machine learning based concept drift detection
for predictive maintenance. Computers and Industrial Engineering 137:106031
DOI 10.1016/j.cie.2019.106031.

Žliobaite I. 2010. Learning under concept drift: an overview. arXiv. Available at
https://arxiv.org/abs/1010.4784.

Žliobaite I, Pechenizkiy M, Gama J. 2016. An overview of concept drift applications. Big Data
Analysis: New Algorithms for a New Society 16:91–114.

Sarnovsky and Kolarik (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.459 31/31

http://dx.doi.org/10.1007/s13042-015-0333-x
https://arxiv.org/abs/1310.8004
http://dx.doi.org/10.1016/j.proeng.2011.08.800
http://dx.doi.org/10.1016/j.cie.2019.106031
https://arxiv.org/abs/1010.4784
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.459

	Classification of the drifting data streams using heterogeneous diversified dynamic class-weighted ensemble
	Introduction
	Background
	Related work
	Ddcw ensemble method
	Datasets description
	Experimental results
	Conclusions
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


