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Abstract

Multi-modal models that learn semantic rep-
resentations from both linguistic and percep-
tual input outperform language-only models
on a range of evaluations, and better reflect
human concept acquisition. Most perceptual
input to such models corresponds to concrete
noun concepts and the superiority of the multi-
modal approach has only been established
when evaluating on such concepts. We there-
fore investigate which concepts can be effec-
tively learned by multi-modal models. We
show that concreteness determines both which
linguistic features are most informative and
the impact of perceptual input in such mod-
els. We then introduce ridge regression as
a means of propagating perceptual informa-
tion from concrete nouns to more abstract con-
cepts that is more robust than previous ap-
proaches. Finally, we present weighted gram
matrix combination, a means of combining
representations from distinct modalities that
outperforms alternatives when both modalities
are sufficiently rich.

1 Introduction

What information is needed to learn the meaning of
a word? Children learning words are exposed to a
diverse mix of information sources. These include
clues in the language itself, such as nearby words or
speaker intention, but also what the child perceives
about the world around it when the word is heard.
Learning the meaning of words requires not only
a sensitivity to both linguistic and perceptual input,
but also the ability to process and combine informa-
tion from these modalities in a productive way.

Many computational semantic models represent
words as real-valued vectors, encoding their rela-
tive frequency of occurrence in particular forms and
contexts in linguistic corpora (Sahlgren, 2006; Tur-
ney et al., 2010). Motivated both by parallels with
human language acquisition and by evidence that
many word meanings are grounded in the percep-
tual system (Barsalou et al., 2003), recent research
has explored the integration into text-based models
of input that approximates the visual or other sen-
sory modalities (Silberer and Lapata, 2012; Bruni
et al., 2014). Such models can learn higher-quality
semantic representations than conventional corpus-
only models, as evidenced by a range of evaluations.

However, the majority of perceptual input for the
models in these studies corresponds directly to con-
crete noun concepts, such as chocolate or cheese-
burger, and the superiority of the multi-modal over
the corpus-only approach has only been established
when evaluations include such concepts (Leong and
Mihalcea, 2011; Bruni et al., 2012; Roller and
Schulte im Walde, 2013; Silberer and Lapata, 2012).
It is thus unclear if the multi-modal approach is ef-
fective for more abstract words, such as guilt or obe-
sity. Indeed, since empirical evidence indicates dif-
ferences in the representational frameworks of both
concrete and abstract concepts (Paivio, 1991; Hill et
al., 2013), and verb and noun concepts (Markman
and Wisniewski, 1997), perceptual information may
not fulfill the same role in the representation of the
various concept types. This potential challenge to
the multi-modal approach is of particular practical
importance since concrete nouns constitute only a
small proportion of the open-class, meaning-bearing



words in everyday language (Section 2).
In light of these considerations, this paper ad-

dresses three questions: (1) Which information
sources (modalities) are important for acquiring
concepts of different types? (2) Can perceptual in-
put be propagated effectively from concrete to more
abstract words? (3) What is the best way to combine
information from the different sources?

We construct models that acquire semantic repre-
sentations for four sets of concepts: concrete nouns,
abstract nouns, concrete verbs and abstract verbs.
The linguistic input to the models comes from the
recently released Google Syntactic N-Grams Corpus
(Goldberg and Orwant, 2013), from which a selec-
tion of linguistic features are extracted. Perceptual
input is approximated by data from the McRae et
al. (2005) norms, which encode perceptual proper-
ties of concrete nouns, and the ESPGame dataset
(Von Ahn and Dabbish, 2004), which contains man-
ually generated descriptions of 100,000 images.

To address (1) we extract representations for
each concept type from combinations of information
sources. We first focus on different classes of lin-
guistic features, before extending our models to the
multi-modal context. While linguistic information
overall effectively reflects the meaning of all con-
cept types, we show that features encoding syntac-
tic patterns are only valuable for the acquisition of
abstract concepts. On the other hand, perceptual in-
formation, whether directly encoded or propagated
through the model, plays a more important role in
the representation of concrete concepts.

In addressing (2), we propose ridge regression
(Myers, 1990) as a means of propagating features
from concrete nouns to more abstract concepts. The
regularization term in ridge regression encourages
solutions that generalize well across concept types.
We show that ridge regression effectively propagates
perceptual information to abstract nouns and con-
crete verbs, and is overall preferable to both lin-
ear regression and the method of Johns and Jones
(2012) applied to a similar task by Silberer and La-
pata (2012). However, for all propagation methods,
the impact of integrating perceptual information de-
pends on the concreteness of the target concepts. In-
deed, for abstract verbs, the most abstract concept
type in our evaluations, perceptual input actually de-
grades representation quality. This highlights the

need to consider the concreteness of the target do-
main when constructing multi-modal models.

To address (3), we present various means of com-
bining information from different modalities. We
propose weighted gram matrix combination, a tech-
nique in which representations of distinct modalities
are mapped to a space of common dimension where
coordinates reflect proximity to other concepts. This
transformation, which has been shown to enhance
semantic representations in the context of verb-
clustering (Reichart and Korhonen, 2013), reduces
representation sparsity and facilitates a product-
based combination that results in greater inter-modal
dependency. Weighted gram matrix combination
outperforms alternatives such as concatenation and
Canonical Correlation Analysis (CCA) (Hardoon et
al., 2004) when combining representations from two
similarly rich information sources.

In Section 3, we present experiments with linguis-
tic features designed to address question (1). These
analyses are extended to multi-modal models in Sec-
tion 4, where we also address (2) and (3). We first
discuss the relevance of concreteness and part-of-
speech (lexical function) to concept representation.

2 Concreteness and Word Meaning

A large and growing body of psychological evidence
indicates differences between abstract and concrete
concepts.1 It has been shown that concrete words
are more easily learned, remembered and processed
than abstract words (Paivio, 1991; Schwanenflugel
and Shoben, 1983), while neuroimaging studies
demonstrate differences in brain activity when sub-
jects are presented with stimuli corresponding to the
two concept types (Binder et al., 2005).

The abstract/concrete distinction is important to
computational semantics for various reasons. While
many models construct representations of concrete
words (Andrews et al., 2009; Landauer and Dumais,
1997), abstract words are in fact far more common in
everyday language. For instance, based on an analy-
sis of those noun concepts in the University of South
Florida dataset (USF) and their occurrence in the
British National Corpus (BNC) (Leech et al., 1994),
72% of noun tokens in corpora are rated by human

1Here concreteness is understood intuitively, as per the psy-
chological literature (Rosen, 2001; Gallese and Lakoff, 2005).
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Figure 1: Boxplot of concreteness distributions for noun and verb concepts in the USF data, with selected example
concepts. The bold vertical line is the mean, boxes extend from the first to the third quartile, and dots represent outliers.

judges as more abstract than the noun war, a concept
that many would already consider quite abstract.2

The recent interest in multi-modal semantics fur-
ther motivates a principled modelling approach to
lexical concreteness. Many multi-modal models im-
plicitly distinguish concrete and abstract concepts
since their perceptual input corresponds only to con-
crete words (Bruni et al., 2012; Silberer and Lapata,
2012; Roller and Schulte im Walde, 2013). How-
ever, given that many abstract concepts express re-
lations or modifications of concrete concepts (Gen-
tner and Markman, 1997), it is reasonable to expect
that perceptual information about concrete concepts
could also enhance the quality of more abstract rep-
resentations in an appropriately constructed model.

Moreover, concreteness is closely related to more
functional lexical distinctions, such as those be-
tween adjectives, nouns and verbs. An analysis
of the USF dataset, which includes concreteness
ratings for over 4,000 words collected from thou-
sands of participants, indicates that on average verbs
(mean concreteness, 3.64) are considered more ab-
stract than nouns (mean concreteness, 4.91), an ef-
fect illustrated in Figure 1. This connection be-
tween lexical function and concreteness suggests
that a sensitivity to concreteness could improve
models that already make principled distinctions be-
tween words based on their part-of-speech (POS)
(Im Walde, 2006; Baroni and Zamparelli, 2010).

Although the focus of this paper is on multi-
modal models, few conventional semantic mod-
els make principled distinctions between concepts
based on function or concreteness. Before turning
to the multi-modal case, we thus investigate whether

2This sample covers 15.2% of all noun tokens in the BNC.

these distinctions are pertinent to text-only models.

3 Concreteness and Linguistic Features

It has long been known that aspects of word meaning
can be inferred from nearby words in corpora. Ap-
proaches that exploit this fact are often called dis-
tributional models (Sahlgren, 2006; Turney et al.,
2010). We take a distributional approach to learn-
ing linguistic representations. The advantage of us-
ing distributional methods to learn representations
from corpora versus approaches that rely on knowl-
edge bases (Pedersen et al., 2004; Leong and Mi-
halcea, 2011) is that they are more scalable, easily
applicable across languages and plausibly reflect the
process of human word learning (Landauer and Du-
mais, 1997; Griffiths et al., 2007). We group dis-
tributional features into three classes to test which
forms of linguistic information are most pertinent to
the abstract/concrete and verb/noun distinctions.

All features are extracted from The Google
Syntactic N-grams Corpus. The dataset contains
counted dependency-tree fragments for over 10bn
words of the English Google Books Corpus.

3.1 Feature Classes

Lexical Features Our lexical features are the co-
occurrence counts of a concept word with each of
the other 2,529 concepts in the USF data. Co-
occurrences are counted in a 5-word window, and, as
elsewhere (Erk and Padó, 2008), weighted by point-
wise mutual information (PMI) to control for the un-
derlying frequency of both concept and word.

POS-tag Features Many words function as more
than one POS, and this variation can be indicative of
meaning (Manning, 2011). For example, deverbal



Context Example
indirect object gave it to the man

Noun direct object gave the pie to him
Concepts subject the man grinned

in PP was in his mouth
adject. modifier the portly man
infinitive clause to eat is human
transitive he bit the steak

Verb intransitive he salivated
Concepts distransitive put jam on the toast

phrasal verb he gobbled it up
infinitival comp. he wants to snooze
clausal comp. I bet he won’t diet

Table 1: Grammatical features for noun/verb concepts

nouns, such as shiver or walk, often refer to pro-
cesses rather than entities. To capture such effects,
we count the frequency of occurrence with the POS
categories ajdective, adverb, noun and verb.

Grammatical Features Grammatical role is a
strong predictor of semantics (Gildea and Jurafsky,
2002). For instance, the subject of transitive verbs
is more likely to refer to an animate entity than a
noun chosen at random. Syntactic context also pre-
dicts verb semantics (Kipper et al., 2008). We thus
count the frequency of nouns in a range of (non-
lexicalized) syntactic contexts, and of verbs in one
of the six most common subcategorization-frame
classes as defined in Van de Cruys et al. (2012).
These contexts are detailed in Table 1.

3.2 Evaluation Sets

We create evaluation sets of abstract and con-
crete concepts, and introduce a complementary di-
chotomy between nouns and verbs, the two POS cat-
egories most fundamental to propositional meaning.
To construct these sets, we extract nouns and verbs
from word pairs in the USF data based on their ma-
jority POS-tag in the lemmatized BNC (Leech et al.,
1994), excluding any word not assigned to either of
the POS categories in more than 70% of instances.
From the resulting 2175 nouns and 354 verbs, the
abstract-concrete distinction is drawn by ordering
words according to concreteness and sampling at
random from the first and fourth quartiles. Any con-
crete nouns not occurring in the McRae et al. (2005)
Property Norm dataset were also excluded.

Concept Type Words Pairs Examples
concrete nouns 303 1280 yacht, cup
abstract nouns 100 295 fear, respect
all nouns 403 1716 cup, respect
concrete verbs 50 66 kiss, launch
abstract verbs 50 127 differ, obey
all verbs 100 221 kiss, differ

Table 2: Evaluation sets used throughout. All nouns and
all verbs are the union of abstract and concrete subsets
and mixed abstract-concrete or concrete-abstract pairs.

For each list of concepts L = concrete nouns,
concrete verbs, abstract nouns, abstract verbs, to-
gether with lists all nouns and all verbs, a corre-
sponding set of pairs {(w1, w2) ∈ USF : w1, w2 ∈
L} is defined for evaluation. These details are sum-
marized in Table 2. Evaluation lists, sets of pairs and
USF scores are downloadable from our website.

3.3 Evaluation Methodology

All models are evaluated by measuring correlations
with the free-association scores in the USF dataset
(Nelson et al., 2004). This dataset contains the free-
association strength of over 150,000 word pairs.3

These data reflect the cognitive proximity of con-
cepts and have been widely used in NLP as a gold-
standard for computational models (Andrews et al.,
2009; Feng and Lapata, 2010; Silberer and Lapata,
2012; Roller and Schulte im Walde, 2013).

For evaluation pairs (c1, c2) we calculate the co-
sine similarity between our learned feature represen-
tations for c1 and c2, a standard measure of the prox-
imity of two vectors (Turney et al., 2010), and follow
previous studies (Leong and Mihalcea, 2011; Huang
et al., 2012) in using Spearman’s ρ as a measure
of correlation between these values and our gold-
standard.4 All representations in this section are
combined by concatenation, since the present focus
is not on combination methods.5

3Free-association strength is measured by presenting sub-
jects with a cue word and asking them to produce the first word
they can think of that is associated with that cue word.

4We consider Spearman’s ρ, a non-parametric ranking cor-
relation, to be more appropriate than Pearson’s r for free asso-
ciation data, which is naturally skewed and non-continuous.

5When combining multiple representations we normalize



Feature Type All Nouns Conc. Nouns Abs. Nouns All Verbs Conc. Verbs Abs. Verbs
(1) Lexical 0.168* 0.199* 0.248* 0.173* 0.268* 0.109

(2) POS-tag 0.059* 0.012 0.119* 0.052 -0.074 0.123
(3) Grammatical 0.078* 0.027 0.121* 0.009 -0.017 0.114

(1)+(2)+(3) 0.182 * 0.181* 0.247* 0.172* 0.267* 0.108

Table 3: Spearman correlation ρ of cosine similarity between vector representations derived from three feature classes
with USF scores. * indicates statistically significant correlations (p < 0.05 ).

3.4 Results

The performance of each feature class on the eval-
uation sets is detailed in Table 3. When all linguis-
tic features are included, performance is somewhat
better on noun concepts (ρ = 0.182) than verbs
(ρ = 0.172). However, while correlations are sig-
nificant on concrete (ρ = 0.181) and abstract nouns
(ρ = 0.247) and concrete verbs, the effect is not
significant on abstract verbs (although it is on verbs
overall). The highest correlations for the linguistic
features together are on abstract nouns (ρ = 0.247)
and concrete verbs (ρ = 0.267). Referring back to
the continuum in Figure 1, it is possible that there
is an optimum concreteness level, exhibited by ab-
stract nouns and concrete verbs, at which conceptual
meaning is best captured by linguistic models.

The results indicate that the three feature classes
convey distinct information. It is perhaps unsur-
prising that lexical features produce the best perfor-
mance in the majority of cases; the value of lexical
co-occurrence statistics in conveying word meaning
is expressed in the well known distributional hy-
pothesis (Harris, 1954). More interestingly, on ab-
stract concepts the contribution of POS-tag (nouns,
ρ = 0.119; verbs, ρ = 0.123 ) and grammatical
features (nouns, ρ = 0.121; verbs, ρ = 0.114) is no-
tably higher than on the corresponding concrete con-
cepts. The importance of such features to modelling
free-association between abstract concepts suggests
that they may convey information about how con-
cepts are (subjectively) organized and interrelated in
the minds of language users, independent of their
realisation in the physical world. Indeed, since ab-
stract representations rely to a lesser extent than con-
crete representations on perceptual input (Section 4),
it is perhaps unsurprising that more of their meaning
is reflected in subtle linguistic patterns.

The results in this section demonstrate that differ-

each representation, then concatenate and then renormalize.

ent information is required to learn representations
for abstract and concrete concepts and for noun and
verb concepts. In the next section, we investigate
how perceptual information fits into this equation.

4 Acquiring Multi-Modal Representations

As noted in Section 2, there is experimental evi-
dence that perceptual information plays a distinct
role in the representation of different concept types.
We explore whether this finding extends to com-
putational models by integrating such information
into our corpus-based approaches. We focus on
two aspects of the integration process. Propaga-
tion: Can models infer useful information about ab-
stract nouns and verbs from perceptual information
corresponding to concrete nouns? And combina-
tion: How can linguistic and (propagated or actual)
perceptual information be integrated into a single,
multi-modal representation? We begin by introduc-
ing the two sources of perceptual information.

4.1 Perceptual Information Sources

The McRae Dataset The McRae et al. (2005)
Property Norms dataset is commonly used as a per-
ceptual information source in cognitively-motivated
semantic models (Kelly et al., 2010; Roller and
Schulte im Walde, 2013). The dataset contains prop-
erties of over 500 concrete noun concepts produced
by 30 human annotators. The proportion of sub-
jects producing each property gives a measure of the
strength of that property for a given concept. We en-
code this data in vectors with coordinates for each of
the 2,526 properties in the dataset. A concept rep-
resentation contains (real-valued) feature strengths
in places corresponding to the features of that con-
cept and zeros elsewhere. Having defined the con-
crete noun evaluation set as the 303 concepts found
in both the USF and McRae datasets, this informa-
tion is available for all concrete nouns.



The ESP-Game Dataset To complement the
cognitively-driven McRae data with a more explic-
itly visual information source, we also extract infor-
mation from the ESP-Game dataset (Von Ahn and
Dabbish, 2004) of 100,000 photographs, each an-
notated with a list of entities depicted in that im-
age. This input enables connections to be made be-
tween concepts that co-occur in scenes, and thus
might be experienced together by language learn-
ers at a given time. Because we want our models
to reflect human concept learning in inferring con-
ceptual knowledge from comparatively unstructured
data, we use the ESP-Game dataset in preference to
resources such as ImageNet (Deng et al., 2009), in
which the conceptual hierarchy is directly encoded
by expert annotators. An additional motivation is
that ESP-Game was produced by crowdsourcing a
simple task with untrained annotators, and thus rep-
resents a more scalable class of data source.

We represent the ESP-Game data in 100,000 di-
mensional vectors, with co-ordinates corresponding
to each image in the dataset. A concept representa-
tion contains a 1 in any place that corresponds to an
image in which the concept appears, and a 0 other-
wise. Although it is possible to portray actions and
processes in static images, and several of the ESP-
Game images are annotated with verb concepts, for a
cleaner analysis of the information propagation pro-
cess we only include ESP input in our models for the
concrete nouns in the evaluation set.

The data encoding outlined above results in per-
ceptual representations of dimension ≈ 100, 000,
for which, on average, fewer than 0.5% of entries are
non-zero 6. In contrast, in our full linguistic repre-
sentations of nouns (dimension ≈ 4, 000) and verbs
(dimension≈ 8, 000) (Section 3), an average of 24%
of entries are non-zero. One of the challenges for the
propagation and combination methods described in
the following subsections is therefore to manage the
differences in dimension and sparsity between lin-
guistic and perceptual representations.

4.2 Information Propagation

Johns and Jones Silberer and Lapata (2012) ap-
ply a method designed by Johns and Jones (2012) to

6The ESP-Game and McRae representations are of approxi-
mately equal sparsity.

infer quasi-perceptual representations for a concept
in the case that actual perceptual information is not
available. Translating their approach to the present
context, for verbs and abstract nouns we infer quasi-
perceptual representations based on the perceptual
features of concrete nouns that are nearby in the se-
mantic space defined by the linguistic features.

In the first step of their two-step method, for each
abstract noun or verb k, a quasi-perceptual represen-
tation is computed as an average of the perceptual
representations of the concrete nouns, weighted by
the proximity between these nouns and k

kp =
∑
c∈C̄

S(kl, cl)λ · cp

where C̄ is the set of concrete nouns, cp and kp are
the perceptual representations for c and k respec-
tively, and cl and kl the linguistic representations.
The exponent parameter λ reflects the learning rate.

Following Johns and Jones (2012), we define the
proximity function S between noun concepts to be
cosine similarity. However, because our verb and
noun representations are of different dimension, we
take verb-noun proximity to be the PMI between
the two words in the corpus, with co-occurrences
counted within a 5-word window.

In step two, the initial quasi-perceptual represen-
tations are inferred for a second time, but with the
weighted average calculated over the perceptual or
initial quasi-perceptual representations of all other
words, not just concrete nouns. As with Johns and
Jones (2012), we set the learning rate parameter λ to
be 3 in the first step and 13 in the second.

Ridge Regression As an alternative propagation
method we propose ridge regression (Myers, 1990).
Ridge regression is a variant of least squares re-
gression in which a regularization term is added to
the training objective to favor solutions with cer-
tain properties. Here we apply it to learn parame-
ters for linear maps from linguistic representations
of concrete nouns to features in their perceptual rep-
resentations. For concepts with perceptual represen-
tations of dimension np, we learn np linear functions
fi : Rnl → R that map the linguistic representations
(of dimension nl) to a particular perceptual feature
i. These functions are then applied together to map



the linguistic representations of abstract nouns and
verbs to full quasi-perceptual representations.7

As our model is trained on concrete nouns but
applied to other concept types, we do not wish the
mapping to reflect the training data too faithfully.
To mitigate against this we define our regulariza-
tion term as the Euclidian l2 norm of the inferred
parameter vector. This term ensures that the regres-
sion favors lower coefficients and a smoother solu-
tion function, which should provide better general-
ization performance than simple linear regression.
The objective for learning the fi is then to minimize

‖aX − Yi‖22 + ‖a‖22

where a is the vector of regression coefficients, X is
a matrix of linguistic representations and Yi a vector
of perceptual feature i for the set of concrete nouns.

We now investigate ways in which the (quasi-)
perceptual representations acquired via these meth-
ods can be combined with linguistic representations.

4.3 Information Combination
Canonical Correlation Analysis Canonical cor-
relation analysis (CCA) (Hardoon et al., 2004) is
an established statistical method for exploring re-
lationships between two sets of random variables.
The method determines a linear transformation of
the space spanned by each of the sets of variables,
such that the correlations between the sets of trans-
formed variables is maximized.

Silberer and Lapata (2012) apply CCA in the
present context of information fusion, with one set
of random variables corresponding to perceptual
features and another corresponding to linguistic fea-
tures. Applied in this way, CCA provides a mecha-
nism for reducing the dimensionality of the linguis-
tic and perceptual representations such that the im-
portant interactions between them are preserved.8

The transformed linguistic and perceptual vectors
are then concatenated. We follow Silberer and Lap-
ata by applying a kernalized variant of CCA.9

7Because the POS-tag and grammatical features are differ-
ent for nouns and for verbs, we exclude them from our linguistic
representations when implementing ridge regression.

8Dimensionality reduction is desirable in the present context
because of the sparsity of our perceptual representations.

9The KernelCCA package in Python:
http://pythonhosted.org/apgl/KernelCCA.html

Weighted Gram Matrix Combination The
method we propose as an alternative means of
fusing linguistic and extra-linguistic information is
weighted gram matrix combination, which derives
from an information combination technique applied
to verb clustering by Reichart and Korhonen (2013).
For a set of concepts C = {c1, . . . , cn} with
representations {r1, . . . , rn}, the method involves
creating an n× n weighted gram matrix L in which

Lij = S(ri, rj) · φ(ri) · φ(rj).

Here, S is again a similarity function (we use cosine
similarity), and φ(r) is the quality score of r.

The quality scoring function φ can be any map-
ping Rn → R that reflects the importance of a con-
cept relative to other concepts in C. In the present
context, we follow Reichart and Korhonen (2013) in
defining a quality score φ as the average cosine sim-
ilarity of a concept with all other concepts in C

φ(rj) =
1

n

n∑
i=1

S(ri, rj).

For cj ∈ C, the matrix L then encodes a scalar pro-
jection of rj onto the other members ri≤n, weighted
by their quality. Each word representation in the set
is thus mapped into a new space of dimension n de-
termined by the concepts in C.

Converting concept representations to weighted
gram matrix form has several advantages in the
present context. First, both when evaluating and
applying semantic representations, we generally re-
quire models to determine relations between con-
cepts relative to others. We might, for instance, re-
quire close associates of a given word, a selection of
potential synonyms, or the two most similar search
queries in a given set. This relative nature of seman-
tics is reflected by projecting representations into
a space defined by the set of concepts themselves,
rather than low-level features. It is also captured by
the quality weighting, which lends primacy to con-
cept dimensions that are central to the space.

Second, mapping representations of different di-
mension into vector spaces of equal dimension re-
sults in dense representations of equal dimension for
each modality. This naturally lends equal weighting
or status to each modality and resolves any issues
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of representations sparsity. In addition, the dimen-
sion equality in particular enables a wider range of
mathematical operations for combining information
sources. Here, we follow Reichart and Korhonen
(2013) in taking the product of the linguistic and per-
ceptual weighted gram matrices L and P , produc-
ing a new matrix containing fused representations
for each concept

M = LPPL.

By taking the composite product LPPL rather than
LP or PL, M is symmetric and no ad hoc status is
conferred to one modality over the other.

4.4 Results
The experiments in this section were designed to ad-
dress the three questions specified in Section 1: (1)
Which information sources are important for acquir-
ing word concepts of different types? (2) Can per-
ceptual information be propagated from concrete to
abstract concepts? (3) What is the best way to com-
bine the information from the different sources?

Question (1) To build on insights from Section
3, we first examined how perceptual input interacts
with the three classes of linguistic features defined
there. Figure 2 shows the additive difference in cor-
relation between (i) models in which perceptual and
particular linguistic features are concatenated and
(ii) models based on just the linguistic features.

For concrete nouns and concrete verbs, (actual
or inferred) perceptual information was beneficial
in almost all cases. The largest improvement for
both concept types was over grammatical features,
achieved by including only the McRae data. This
signals from this perceptual input and the grammat-
ical features clearly reflect complementary aspects
of the meaning of these concepts. We hypothe-
size that grammatical features (and POS features,
which also perform strongly in this combination)
confer information to concrete representations about
the function and mutual interaction of concepts (the
most ‘relational’ aspects of their meaning (Gentner,
1978)) which complements the more intrinsic prop-
erties conferred by perceptual features.

For abstract concepts, it is perhaps unsurpris-
ing that the overall contribution of perceptual in-
formation was smaller. Indeed, combining linguis-
tic and perceptual information actually harmed per-
formance on abstract verbs in all cases. For these
concepts, the inferred perceptual features seem to
obscure or contradict some of the information con-
veyed in the linguistic representations.

While the McRae data was clearly the most valu-
able source of perceptual input for concrete nouns
and concrete verbs, for abstract nouns the combi-
nation of ESP-Game and McRae data was most in-
formative. Both inspection of the data and cogni-
tive theories (Rosch et al., 1976) suggest that enti-
ties identified in scenes, as in the ESP-Game dataset,
generally correspond to a particular (basic) level of



Model All Nouns Conc. Nouns† Abs. Nouns All Verbs Conc. Verbs Abs. Verbs
Linguistic 0.175 — 0.335 0.169 — 0.317 0.233 — 0.344 0.148 — 0.178 0.204 — 0.191 0.094 — 0.330

(JJ)+Concat 0.116 — 0.375 0.258 — 0.442 0.190 — 0.267 0.129 — 0.162 0.301 — 0.062 0.019 — 0.280
(JJ)+CCA 0.082 — 0.021 0.001 — 0.067 0.085 — -0.018 0.027— 0.213 0.079 — 0.276 0.095 — 0.200

(JJ)+WGM 0.098 — 0.213 0.397 — 0.523 0.238 — 0.329 0.059 — 0.169 0.253 — 0.064 -0.080 — 0.254
RR+Concat 0.232 — 0.432 0.248 — 0.343 0.013 — 0.212 0.046 — 0.484 0.023 — 0.133

RR+CCA 0.033 — -0.045 0.044 — -0.023 0.001 — -0.006 0.018 — 0.344 0.018 — 0.085
RR+WGM 0.094 — 0.069 0.232 — 0.327 0.159 — 0.131 0.244 — 0.194 0.075 — 0.283

LR+ 0.216 — 0.402 0.216 — 0.282 0.004 — 0.051 -0.051 — 0.139 -0.008 — 0.197

Table 4: Performance of different methods of information propagation (JJ = Johns and Jones, RR = ridge regression,
LR = linear regression) and combination (Concat = concatenation, CCA = canonical correlation analysis, WGM =
weighted gram matrix multiplication) across evaluation sets. Values are Spearman’s ρ correlation with USF scores
(left hand side of columns) and WordNet path similarity (right hand side). For the LR baseline we only report the
highest score across the three combination types. †No propagation takes place for concrete nouns; this column reflects
the performance of combination methods only.

the conceptual hierarchy. The ESP-Game data re-
flects relations between these basic-level concepts
in the world, whereas the McRae data typically de-
scribes their (intrinsic) properties. Together, these
sources seem to combine information on the proper-
ties of, and relations between, concepts in a way that
particularly facilitates the learning of abstract nouns.

Question (2) The performance of different meth-
ods of information propagation and combination is
presented in Table 4. The underlying linguistic rep-
resentations in this case contained all three distribu-
tional feature classes. For more robust conclusions,
in addition to the USF gold-standard we also mea-
sured the correlation between model output and the
WordNet path similarity of words in our evaluation
pairs. The path similarity between words w1 and w2

is the shortest distance between synsets ofw1 andw2

in the WordNet taxonomy (Fellbaum, 1999), which
correlates significantly with human judgements of
concept similarity (Pedersen et al., 2004).10

The correlations with the USF data (left hand col-
umn, Table 4) of our linguistic-only models (ρ =
0.094 − 0.233) and best performing multi-modal
models (on both concrete nouns, ρ = 0.397, and
more abstract concepts, ρ = 0.095 − 0.301) were
higher than the best comparable models described
elsewhere (Feng and Lapata, 2010; Silberer and La-
pata, 2012; Silberer et al., 2013).11 This confirms

10Other widely-used evaluation gold-standards, such as
WordSim 353 and the MEN dataset, do not contain a sufficient
number of abstract concepts for the current purpose.

11Feng and Lapata (2010) report ρ = .08 for language-only

both that the underlying linguistic space is of high
quality and that the ESP and McRae perceptual in-
put is similarly or more informative than the input
applied in previous work.

Consistent with previous studies, adding percep-
tual input improved the quality of concrete noun
representations as measured against both USF and
path similarity gold-standards. Further, effective in-
formation propagation was indeed possible for both
abstract nouns (USF evaluation) and concrete verbs
(both evaluations). Interestingly, however, this was
not the case for abstract verbs, for which no mix of
propagation and combination methods produced an
improvement on the linguistic-only model on either
evaluation set. Indeed, as shown in Figure 2, no type
of perceptual input generated an improvement in ab-
stract verb representations, regardless of the under-
lying class of linguistic features.

This result underlines the link between concrete-
ness, cognition and perception proposed in the psy-
chological literature. More practically, it shows that
concreteness can determine if propagation of per-
ceptual input will be effective and, if so, the potential
degree of improvement over text-only models.

Turning to means of propagation, both the Johns
and Jones method and ridge regression outper-
formed the linear regression baseline on the major-
ity of concept types in our evaluation. Across the
five sets and ten evaluations on which propagation

and .12 for multi-modal models evaluated on USF over concrete
and abstract concepts. Silberer and Lapata (2012) report ρ =
.14 (language-only) and .35 (multi-modal) over concrete nouns.



takes place (All Nouns, Abstract Nouns, All Verbs,
Abstract Verbs and Concrete Verbs), ridge regression
performed more robustly, achieving the best perfor-
mance on six evaluation sets compared to two for the
Johns and Jones method.12

Question (3) Weighted gram matrix multiplica-
tion (ρ = 0.397 on USF and ρ = 0.523 on path sim-
ilarity) outperformed both simple vector concatena-
tion (ρ = 0.258 and ρ = 0.442) and CCA (ρ =
0.001 and ρ = 0.067) on concrete nouns. In the
case of both abstract nouns and concrete verbs, how-
ever, the most effective means of combining quasi-
perceptual information with linguistic representa-
tions was concatenation (abstract nouns, ρ = 0.248
and ρ = 0.343, concrete verbs, ρ = 0.301 and
ρ = 0.484). One evident drawback of multiplica-
tive methods such as weighted gram matrix combi-
nation is the greater inter-dependence of the infor-
mation sources; a weak signal from one modality
can undermine the contribution of the other modal-
ity. We hypothesize that this underlines the compar-
atively poor performance of the method on verbs and
abstract nouns, as the perceptual input for concrete
nouns is clearly a richer information source than the
propagated features of more abstract concepts.

5 Conclusion

Motivated by the inherent difference between ab-
stract and concrete concepts and the observation that
abstract words occur more frequently in language,
in this paper we have addressed the question of
whether multi-modal models can enhance semantic
representations of both concept types.

In Section 3, we demonstrated that different infor-
mation sources are important for acquiring concrete
and abstract noun and verb concepts. Within the lin-
guistic modality, while lexical features are informa-
tive for all concept types, syntactic features are only
significantly informative for abstract concepts.

In contrast, in Section 4 we observed that per-
ceptual input is a more valuable information source
for concrete concepts than abstract concepts. Nev-
ertheless, perceptual input can be effectively prop-
agated from concrete nouns to enhance representa-
tions of both abstract nouns and concrete verbs. In-

12For these comparisons, the optimal combination method is
selected in each case.

deed, conceptual concreteness appears to determine
the degree to which perceptual input is beneficial,
since representations of abstract verbs, the most ab-
stract concepts in our experiments, were actually de-
graded by this additional information. One impor-
tant contribution of this work is therefore an insight
into when multi-modal models should or should not
aim to combine and/or propagate perceptual input to
ensure that optimal representations are learned. In
this respect, our conclusions align with the findings
of Kiela and Hill (2014), who take an explicitly vi-
sual approach to resolving the same question.

Various methods for propagating and combining
perceptual information with linguistic input were
presented. We proposed ridge regression for in-
ferring perceptual representations for abstract con-
cepts, which proved more robust than alternatives
across the range of concept types. This approach is
particularly simple to implement, since it is based on
an established statistical prodedure. In addition, we
introduced weighted gram matrix combination for
combining representations from distinct modalities
of differing sparsity and dimension. This method
produces the highest quality composite representa-
tions for concrete nouns, where both modalities rep-
resent high quality information sources.

Overall, our results demonstrate that the potential
practical benefits of multi-modal models extend be-
yond concrete domains into a significant proportion
of the lexical concepts found in language. In fu-
ture work we aim to extend our experiments to con-
cept types such as adjectives and adverbs, and to de-
velop models that further improve the propagation
and combination of extra-linguistic input.

Moreover, while we cannot draw definitive con-
clusions about human language processing, the ef-
fectiveness of the methods presented in this paper
offer tentative support for the idea that even ab-
stract concepts are grounded in the perceptual sys-
tem (Barsalou et al., 2003). As such, it may be that,
even in the more abstract cases of human communi-
cation, we find ways to see what people mean pre-
cisely by finding ways to see what they mean.
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