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ABSTRACT
Hard C-means (HCM; k-means) is one of the most widely used partitive clustering
techniques. However, HCM is strongly affected by noise objects and cannot represent
cluster overlap. To reduce the influence of noise objects, objects distant from cluster
centers are rejected in some noise rejection approaches including general noise rejection
(GNR) and cluster-wise noise rejection (CNR). Generalized rough C-means (GRCM)
can deal with positive, negative, and boundary belonging of object to clusters by
reference to rough set theory. GRCM realizes cluster overlap by the linear function
threshold-based object-cluster assignment. In this study, as a unified approach for GNR
and CNR in HCM, we propose linear function threshold-based C-means (LiFTCM)
by relaxing GRCM. We show that the linear function threshold-based assignment in
LiFTCM includes GNR, CNR, and their combinations as well as rough assignment of
GRCM. The classification boundary is visualized so that the characteristics of LiFTCM
in various parameter settings are clarified. Numerical experiments demonstrate that
the combinations of rough clustering or the combinations of GNR and CNR realized
by LiFTCM yield satisfactory results.

Subjects Data Mining and Machine Learning, Data Science, Optimization Theory and
Computation
Keywords Clustering, k-means, Noise rejection, Rough set theory

INTRODUCTION
Clustering, which is an important task in data mining/machine learning, is a technique
for automatically extracting group (cluster) structures from data without supervision.
It is useful for analyzing large-scale unlabeled data. Hard C-means (HCM; k-
means) (MacQueen, 1967) is one of the most widely used partitive clustering techniques.
Real-world datasets often contain noise objects (outliers) with irregular features that may
distort cluster shapes and deteriorate clustering performance. SinceC-means-typemethods
are formulated based on theminimization of the total within-cluster sum-of-squared-error,
they are strongly affected by noise objects, which are distant from cluster centers. We focus
on two types of noise rejection, namely, general noise rejection (GNR) and cluster-wise
noise rejection (CNR). In GNR approaches, whether each object is noise or not is defined
in the whole cluster structure. Objects distant from any cluster center are rejected as noise.
On the other hand, in CNR approaches, whether each object is noise or not is defined for
each cluster. For each cluster, objects distant from its center are rejected as noise. Both
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GNR and CNR perform noise rejection while GNR performs exclusive cluster assignment
whereas CNR allows cluster overlap.

HCM assigns each object to one and only one cluster with membership in the Boolean
(hard; crisp) domain {0,1}, and thus it cannot represent belonging to multiple clusters
or non-belonging to any cluster. However, in real-world datasets, belonging of object to
clusters is often unclear. Soft computing approaches are useful to represent belonging
to multiple clusters or non-belonging to any cluster. Clustering based on rough set
theory (Pawlak, 1982; Pawlak, 1991) considers positive, negative, and boundary belonging
of object to clusters. Lingras and West proposed rough C-means (LRCM) (Lingras &
West, 2004) as a rough-set-based C-means clustering, and Peters proposed a refined
version of RCM (PRCM) (Peters, 2006). Ubukata et al. proposed the generalized RCM
(GRCM) (Ubukata, Notsu & Honda, 2017) by integrating LRCM and PRCM. GRCM
realizes cluster overlap by a linear function threshold with respect to the distance to the
nearest cluster and detects the upper area composed of objects that possibly belong to the
cluster. Specifically, the threshold based on the distance to the nearest cluster center is
lifted by the linear function to allow the cluster to be assigned to relatively near clusters as
well as the nearest cluster.

In this study, we investigate the characteristics of the linear function threshold-based
object-cluster assignment in GRCM. We show that the linear function threshold-based
assignment in relaxed GRCM can realize GNR, CNR, and their combinations as well
as rough assignments. One important point is that the linear function threshold-based
assignment essentially includes GNR and CNR in compliance with RCM standards without
any extra formulation. As a unified approach for GNR and CNR in HCM, we propose
linear function threshold-based C-means (LiFTCM) by relaxing GRCM. The classification
boundary is visualized so that the characteristics of LiFTCM in various parameter settings
are clarified. Numerical experiments demonstrate that the combinations of rough clustering
or the combinations of GNR and CNR realized by LiFTCM yield satisfactory results.

The remainder of the paper is organized as follows. In ‘‘Related Work,’’ related works
are discussed. ‘‘Preliminaries’’ presents the preliminaries for clustering methods. In ‘‘A
unified approach for cluster-wise and general noise rejection approaches,’’ we show that
the linear function threshold-based assignment in relaxed GRCM can realize GNR, CNR,
and their combinations as well as rough assignments. In ‘‘Proposed Method,’’ we propose
LiFTCM as one of the relaxed GRCM. In ‘‘Visualization of Classification Boundaries,’’ the
classification boundaries of LiFTCM with various parameter settings are considered. In
‘‘Numerical Experiments,’’ the clustering performance of LiFTCM with various parameter
settings is discussed. In ‘‘Discussion,’’ the calculation of the cluster center in the proposed
method are discussed. Finally, the conclusions are presented in ‘‘Conclusions.’’

RELATED WORK
Noise rejection in regression analysis and C-means-type clustering
Many machine learning tasks such as regression analysis are formulated in a framework of
least mean squares (LMS) proposed by Legendre or Gauss (Legendre, 1805; Gauss, 1809),

Ubukata (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.238 2/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.238


which minimizes the sum of the squared residuals to fit models to a dataset. However,
since the LMS criterion is strongly affected by noise objects and has the lack of robustness,
various robust estimation methods have been proposed to reduce the influence of noise
objects. Least absolute values (LAV) (Edgeworth, 1887) is a criterion that minimizes the
sum of the absolute values of the residuals to reduce the influence of large residuals.
M-estimator (Huber, 1964; Huber, 1981) is one of the most widely used robust estimators,
which replaces the square function in LMS by a symmetric function with a unique
minimum at zero that reduces the influence of large residuals. Least median of squares
(LMedS) (Hampel, 1975; Rousseeuw, 1984) minimizes the median of the squared residuals.
Least trimmed squares (LTS) (Rousseeuw & Leroy, 1987) minimizes the sum of the squared
residuals up to h-th objects in ascending list of residuals.

Since C-means-type clustering methods are generally formulated based on the
minimization of the within-cluster sum-of-squared-error, the above-mentioned robust
estimation methods are promising approaches to noise in the cluster structure (Kaufmann
& Rousseeuw, 1987; Dubes & Jain, 1988). In C-means-type clustering, the distance between
object and its nearest cluster center is identified as the residual. Thus, in GNR, objects
distant from any cluster center are rejected as noise. For instance, trimmed C-means
(TCM; trimmed k-means, TKM) (Cuesta-Albertos, Gordaliza & Matrán, 1997; Garcia-
Escudero & Gordaliza, 1999) introduces LTS criterion to HCM. TCM calculates the new
cluster center by using objects up to h-th in ascending list of the distances to their nearest
cluster centers. As a result, objects more than a certain distance away are rejected as noise.
Noise rejection in C-means-type clustering is also well discussed in the context of fuzzy
C-means (FCM) (Dunn, 1973; Bezdek, 1981). In noise fuzzy C-means (NFCM) (Davé,
1991; Davé & Krishnapuram, 1997), a single noise cluster is introduced in addition to
the intended regular clusters and objects distant from any cluster center are absorbed in
the noise cluster. Another approach to noise is CNR. For instance, possibilistic C-means
(PCM) (Krishnapuram & Keller, 1993;Krishnapuram & Keller, 1996) considers cluster-wise
noise rejection, in which each cluster is extracted independently while rejecting objects
distant from its center. The membership values are interpreted as degrees of possibility
of the object belonging to clusters. PCM represents typicality as absolute membership to
clusters rather than relative membership by eliminating the sum-to-one constraint. Fuzzy
possibilistic C-means (FPCM) (Pal, Pal & Bezdek, 1997) uses both relative typicalities
(memberships) and absolute typicalities. Possibilistic fuzzy C-means (PFCM) (Pal et al.,
2005) is a hybridization of FCM and PCM using both probabilistic memberships of FCM
and possibilistic memberships of PCM.

In this study, we show that GNR, CNR, and their combinations are realized by the
linear function threshold-based object-cluster assignment in the proposed LiFTCM. The
above-mentioned approaches introduce various mechanisms to realize GNR and CNR. In
contrast, the linear function threshold-based assignment essentially includes GNR, CNR,
and their combinations in compliance with RCM standards without any extra formulation.
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Generalized approaches to hard, fuzzy, noise, possibilistic, and rough
clustering
Maji & Pal (2007a) proposed rough-fuzzy C-means (RFCM) as a hybrid algorithm of FCM
and RCM. RFCM is formulated so that objects in the lower areas have crisp memberships
and objects in the boundary areas have FCM-based fuzzy memberships. Furthermore,
Maji & Pal (2007b) proposed rough-fuzzy possibilistic C-means (RFPCM) based on
possibilistic fuzzy C-means (PFCM) (Pal et al., 2005). Masson and Denœux proposed
evidential C-means (ECM) (Masson & Denoeux, 2008) as one of the evidential clustering
(EVCLUS) (Denoeux & Masson, 2003; Denoeux & Masson, 2004) methods based on the
Dempster-Shafer theory of belief functions (evidence theory). Evidential clustering
considers the basic belief assignment, which indicates the membership (mass of belief) of
each object to each subset of clusters with the probabilistic constraints that derive credal
partition. Credal partition can represent hard and fuzzy partitions with a noise cluster
considering assignments to a singleton and the empty set. Possibilistic and rough partitions
are represented by using the plausibility function and the belief function (Denoeux &
Kanjanatarakul, 2016).

Although RFCM and RFPCM provide interesting perspectives on the handling of the
uncertainty in the boundary area, the object-cluster assignment is different from that of
RCM and transform into different types of approach. Although the credal partition in
ECM has high expressiveness including hard, noise, possibilistic, and rough clustering,
the object-cluster assignment and cluster center calculation of ECM do not boil down to
those of RCM. In contrast to the above-mentioned approaches, the formulation of the
proposed LiFTCM is fully compliant with RCM standards. This study reveals that RCM
itself inherently includes GNR, CNR, and their combinations as well as rough clustering
aspects without any extra formulation.

PRELIMINARIES
Hard C-means and noise rejection
Let U ={x1,...,xi,...,xn} be a set of n objects, where each object xi= (xi1,...,xij,...,xip)>

is a p-dimensional real feature vector. In C-means-type methods, C (2≤C < n) represents
the number of clusters, and C clusters composed of similar objects are extracted from
U . Each cluster has a prototypical point (cluster center), which is a p-dimensional vector
bc = (bc1,...,bcj,...,bcp)>. Let uci be the degree of belonging of object i to cluster c . Let
dci= ||xi−bc || be the distance between the cluster center bc and the object i.

The optimization problem of HCM (MacQueen, 1967) is given by

min. JHCM =
C∑
c=1

n∑
i=1

ucid2ci, (1)

s.t. uci ∈ {0,1},∀c,i, (2)
C∑
c=1

uci= 1,∀i. (3)
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HCMminimizes the total within-cluster sum-of-squared-error (Eq. (1)) under the Boolean
domain constraints (Eq. (2)) and the sum-to-one constraints across clusters (Eq. (3)).

HCM first initializes cluster centers and then alternately updates uci and bc until
convergence by using the following update rules:

uci=

1
(
c = argmin

1≤l≤C
dli

)
,

0 (otherwise),

(4)

bc =
∑n

i=1ucixi∑n
i=1uci

. (5)

There are various strategies for initializing cluster centers. A naive strategy is to choose C
objects as initial cluster centers from U by simple random sampling without replacement.
Alternatively, there are strategies that set the initial cluster centers away from each other
to reduce initial value dependencies and improve clustering performance, such as KKZ
(Katsavounidis, Kuo & Zhang, 1994) and k-means++ (Arthur & Vassilvitskii, 2007).

General noise rejection (GNR)
Since HCM is formulated based on the LMS criterion, it is strongly affected by noise
objects. Like TCM, which introduces the LTS criterion, the influence of noise objects can
be reduced by rejecting objects distant from any cluster. In this type of GNR, each object is
assigned to the nearest cluster under the condition that the distance dci is less than or equal
to a threshold (noise distance) δ(δ > 0):

uci=

1
(
c = argmin

1≤l≤C
dli∧dci≤ δ

)
,

0 (otherwise).

(6)

The smaller δ is, the more objects are rejected as noise. The noise distance δ can depend
on how many (what percentage of) objects to reject as noise.

Cluster-wise noise rejection (CNR)
GNR is based on HCM-based exclusive assignment and cannot represent cluster overlap.
By performing noise rejection independently for each cluster, possibilistic aspects that
present non-belonging to any cluster and belonging to multiple clusters are achieved. In
this type of CNR, noise rejection is performed for each cluster by rejecting objects over δc
distant from its center:

uci=

{
1 (dci≤ δc),
0 (otherwise).

(7)

The smaller δc is, the more objects are rejected as noise for each cluster c . The cluster-wise
noise distance δc can depend on how many (what percentage of) objects to reject as noise
for each cluster.

Generalized rough C-means
In RCM-type methods, which are rough set clustering schemes, membership in the lower,
upper, and boundary areas of each cluster represents positive, possible, and uncertain
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Figure 1 GRCM: the linear function threshold T and the allowable range of dci (gray area).
Full-size DOI: 10.7717/peerjcs.238/fig-1

belonging to the cluster, respectively (Lingras & West, 2004; Peters, 2006; Peters et al., 2013;
Ubukata, Notsu & Honda, 2017). GRCM is constructed based on a heuristic scheme, not
an objective function.

In every iteration, the membership uci of object i to the upper area of cluster c is first
calculated as follows:

dmin
i = min

1≤l≤C
dli, (8)

uci=

{
1 (dci≤αdmin

i +β),
0 (otherwise),

(9)

where α (α≥ 1) and β (β ≥ 0) are user-defined parameters that adjust the volume of the
upper areas. GRCM assigns each object to the upper area of not only its nearest cluster but
also of other relatively nearby clusters using a linear function of the distance to its nearest
cluster as a threshold. Larger α and β imply larger clustering roughness and larger overlap
of the upper areas of the clusters. Figure 1 shows the linear function threshold T and the
allowable range of dci (gray area) in GRCM.

The membership uci and ûci of object i to the lower and boundary areas, respectively, is
calculated using uci as follows:

uci=

1
(
uci= 1∧

C∑
l=1

uli= 1

)
,

0 (otherwise),

(10)
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ûci=

1
(
uci= 1∧

C∑
l=1

uli 6= 1

)
,

0 (otherwise)

(11)

= uci−uci. (12)

GRCM represents each cluster by the three regions. Therefore, the new cluster center
is determined by the aggregation of the centers of these regions. The cluster center bc is
calculated by the convex combination of the centers of the lower, upper, and boundary
areas of the cluster c :

bc =


∑n

i=1ucixi∑n
i=1uci

( n∑
i=1

uci= 0∨
n∑

i=1

ûci= 0

)
,

w
∑n

i=1ucixi∑n
i=1uci

+w
∑n

i=1ucixi∑n
i=1uci

+ ŵ
∑n

i=1 ûcixi∑n
i=1 ûci

(otherwise),

(13)

w,w,ŵ ≥ 0, (14)

w+w+ ŵ = 1, (15)

where w , w , and ŵ are user-defined parameters that represent the impact of the centers
of the lower, upper, and boundary areas, respectively. Ubukata, Notsu & Honda (2017)
suggest ŵ = 0 because the centers of the boundary areas tend to cause instability in the
calculations and poor classification performance.

A UNIFIED APPROACH FOR CLUSTER-WISE AND GENERAL
NOISE REJECTION APPROACHES
In this section, we show that GNR, CNR, and their combinations are realized by the linear
function threshold in relaxed GRCM. Here, we consider relaxing the condition α≥ 1 to
α≥ 0 in Eq. (9).

HCM
In HCM, each object is assigned to the cluster whose center is nearest to the object. This
assignment can be interpreted as assigning object i to cluster c if dci is equal to (or less
than) dmin

i , that is,

uci=

{
1 (dci≤ dmin

i ),
0 (otherwise).

(16)

This is the caseα= 1 andβ = 0 in the linear function thresholdαdmin
i +β for the assignment

of upper area in GRCM (Eq. (9)). Figure 2A shows the linear function threshold T and the
allowable range of dci in HCM. The allowable range is limited to the case dci= dmin

i . We note
that if there are multiple nearest cluster centers for an object, HCM requires certain tie-
breaking rules for satisfying the sum-to-one constraints, such as exclusive assignment based
on cluster priority and uniform assignment by distributing the membership, depending on
the implementation. However, in the present linear function threshold-based assignment,
an object has membership 1 with respect to all its nearest clusters.
The calculation of uci in HCM can be represented by that of uci in GRCM. The lower
and boundary areas are not used in HCM. Thus, the cluster center calculation of HCM
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Figure 2 The linear function threshold T and the allowable range of dci (gray area): (A) HCM, (B)
GNR, and (C) CNR.

Full-size DOI: 10.7717/peerjcs.238/fig-2

is consistent with that of GRCM only using the upper areas, that is, w = 1 in Eq. (13).
Therefore, GRCM(α= 1,β = 0,w = 1) represents HCM.

GNR
In GNR, a condition that the distance is less than δ is imposed in addition to the threshold-
based HCM assignment (Eq. (16)) to reject noise objects over δ distant from any clusters.
For each object i to be assigned to the cluster c , dci must be equal to (or less than) dmin

i ,
and equal to or less than the noise distance δ, that is,

uci=

{
1 (dci≤ dmin

i ∧dci≤ δ),
0 (otherwise).

(17)

This assignment can also be approximated using the linear function threshold by setting
α= δ−ε

δ
and β = ε, where ε→+0, that is,

uci=

1
(
dci≤

δ−ε

δ
dmin
i +ε

)
,

0 (otherwise).
(18)

Equation (18) implies that uci= 1 if dci≤ dmin
i and dci≤ δ. Thus, Eq. (18) approaches the

update rule Eq. (17). In order to show that Eqs. (17) and (18) are equivalent, we show that
the condition dci≤ dmin

i ∧dci≤ δ and the condition dci≤ δ−ε
δ
dmin
i +ε are equivalent, under

the condition δ > 0 and ε→+0.
Proposition 1 If dci≤ dmin

i ∧dci≤ δ, then dci≤ δ−ε
δ
dmin
i +ε.

proof.
(1) dci≤ dmin

i ∧dci≤ δ (Assumption)
(2) dci≤ dmin

i (Conjunction elimination: (1))
(3) dci≤ δ (Conjunction elimination: (1))
(4) dmin

i ≤ dci (Definition: (Eq. (8)))
(5) dmin

i ≤ δ (Transitivity: (3), (4))
(6) ε

δ
dmin
i +

δ−ε
δ
dmin
i ≤

ε
δ
δ+ δ−ε

δ
dmin
i (Multiply by ε

δ
and add δ−ε

δ
dmin
i in both sides of

(5))
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(7) dmin
i ≤

δ−ε
δ
dmin
i +ε (Deformation: (6))

(8) dci≤ δ−ε
δ
dmin
i +ε (Transitivity: (2), (7)) �

Proposition 2 If dci≤ δ−ε
δ
dmin
i +ε, then dci≤ dmin

i ∧dci≤ δ, under the condition that ε is
sufficiently small.

proof.
(1) dci≤ δ−ε

δ
dmin
i +ε (Assumption)

(2) dci≤ dmin
i (From (1) and ε→+0)

(3) dmin
i ≤ dci (Definition: (Eq. (8)))

(4) dci≤ δ−ε
δ
dci+ε (From (1), (3))

(5) δdci≤ δdci−εdci+δε (Multiply by δ in both sides of (4))
(6) dci≤ δ (Deformation: (5))
(7) dci≤ dmin

i ∧dci≤ δ (Conjunction introduction: (2), (6)) �
Hence, (Eq. (17)) induces (Eq. (18)), and vice versa.

Figure 2B shows the linear function threshold T and the allowable range of dci (gray
area) in GNR. Since the intersection of the two lines y = δ−ε

δ
dmin
i +ε and y = dmin

i is (δ,δ),
if dci>δ, object i is never assigned to cluster c . If dmin

i ≤ δ, the threshold approaches the
HCM-based nearest assignment. These characteristics are consistent with those of GNR.

Similar to HCM, in GNR, the cluster centers are calculated only using the upper areas.
Therefore, GRCM(α= δ−ε

δ
,β = ε,w = 1) represents GNR.

CNR
The object-cluster assignment of CNR is determined only by the magnitude relation
between dci and δc without considering dmin

i . We note that the case α= 0 and β = δc in
Eq. (9) corresponds to the update rule Eq. (7) of CNR. Figure 2C shows the linear function
threshold T and the allowable range of dci (gray area) in CNR. Independent of dmin

i , if
dci≤ δ, object i is assigned to cluster c .

Similar to HCM and GNR, in CNR, the cluster centers are calculated only using the
upper areas. Therefore, GRCM(α= 0,β = δc ,w = 1) represents CNR.

Smooth transition between GNR and CNR by tuning linear function
threshold
In reference to the threshold-based assignment of GNR, i.e., Eq. (18), we construct the
following rule using a parameter t ∈ [0,δc ]:

uci=

1 (dci≤
δc− t
δc

dmin
i + t ),

0 (otherwise).
(19)

If t = 0, then Eq. (19) reduces to Eq. (16) of HCM. If t = ε, where ε→+0, then Eq. (19)
changes to Eq. (18) of GNR. If t = δc , then Eq. (19) reduces to Eq. (7) of CNR. If t ∈ (0,δc),
then Eq. (19) represents the combinations of GNR and CNR. Thereby, smooth transition
between HCM, GNR, and CNR is realized.
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Figure 3 Combination of GNR and CNR: the linear function threshold T and the allowable range of
dci (gray area).

Full-size DOI: 10.7717/peerjcs.238/fig-3

Figure 3 shows the linear function threshold T and the allowable range of dci (gray
area) in the combinations of GNR and CNR. It can be seen that this linear function can
transition between the states shown in Fig. 2 by t .
For practical use, we consider the normalized parameter z ∈ [0,1]. We let z = t

δc
∈ [0,1]

and replace t in Eq. (19) with zδc :

uci=

{
1 (dci≤ (1−z)dmin

i +zδc),
0 (otherwise).

(20)

Then, z = 0 represents HCM, z →+0 represents GNR, z ∈ (0,1) represents the
combinations of GNR and CNR, and z = 1 represents CNR. By Eq. (20), the threshold value
is represented by the convex combination of dmin

i and δc . That is, HCM, GNR, and CNR
can be characterized depending on which of dmin

i and δc is emphasized as the threshold
value.

PROPOSED METHOD
In this study, we propose LiFTCM as one of the relaxed GRCM. ‘‘LiFT’’ is an acronym that
stands for ‘‘linear function threshold’’ and suggests that the threshold is lifted by the linear
function.

A sample procedure of LiFTCM is described in algorithm 1.
Although this algorithm just corresponds to the case where the condition α ≥ 1 in

GRCM is relaxed to α ≥ 0, LiFTCM can represent GNR, CNR, and their combinations
in addition to GRCM. If 0≤ α ≤ 1, LiFTCM includes HCM, GNR, CNR, and their
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Algorithm 1 LiFTCM

Step 1. Determine α (α≥ 0), β (β ≥ 0), and w,w,ŵ ≥ 0 such that w+w+ ŵ = 1.

Step 2. Initialize bc .

Step 3. Calculate uci using Eqs. (8) and (9).

Step 4. Calculate uci and ûci using Eqs. (10) and (11).

Step 5. Calculate bc using Eq. (13).

Step 6. Repeat Steps 3-5 until uci do not change.

Table 1 Relationship between HCM, GNR, CNR, and rough clustering, and their combinations in
terms of the linear function threshold in LiFTCM.

Linear function Threshold: αdmin
i +β β= 0 β→+0 0<β

α= 0 – – CNR
0<α< 1 – GNR Combinations of GNR and CNR
α= 1 HCM HCM LRCM
1<α PRCM PRCM Combinations of LRCM and PRCM

(GRCM)

combinations. If α≥ 1, LiFTCM includes HCM, LRCM, PRCM, and their combinations.
Table 1 summarizes the relationships between HCM, GNR, CNR, and rough clustering,
and their combinations depending on the values of the parameters α and β in LiFTCM.

As it is difficult to adjust noise sensitivity by directly changing α and β when noise
rejection is considered in LiFTCM, it is convenient to fix the cluster-wise noise distance
δc and adjust the combination of HCM, GNR, and CNR by the parameter z ∈ [0,1] with
α= (1−z) and β = zδc .

The representations of the conventional methods by setting the parameters of LiFTCM
are summarized as follows:
1. HCM: LiFTCM(α= 1, β = 0, w = 1).
2. LRCM: LiFTCM(α= 1, β ≥ 0, w = 0).
3. PRCM: LiFTCM(α≥ 1, β = 0, ŵ = 0).
4. GRCM: LiFTCM(α≥ 1, β ≥ 0).
5. GNR: LiFTCM(α= 1−z , β = zδc , z→+0, w = 1).
6. CNR: LiFTCM(α= 0, β = δc , w = 1).
7. Combinations of GNR and CNR: LiFTCM(α= 1−z , β = zδc , z ∈ [0,1], w = 1).

VISUALIZATION OF CLASSIFICATION BOUNDARIES
In this section, we visualize the classification boundaries of the proposed LiFTCM. LiFTCM
was applied to a grid point dataset, in which n= 100×100 objects are uniformly arranged
in the unit square [0,1]× [0,1]. C = 3 clusters (c = 1,2,3), which correspond to the
primary colors (Red,Green,Blue), respectively, are extracted by LiFTCM. The RGB-color
of object i is determined by (R,G,B)i= (255×u1i,255×u2i,255×u3i). Objects belonging
to a single cluster are represented by primary colors, objects belonging to multiple clusters
are represented by additive colors, and objects not belonging to any cluster are represented
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Figure 4 Classification boundaries of LiFTCM(α ≥ 1, β ≥ 0,w = 1) representing LRCM, PRCM, and
GRCM assignments: (A) LiFTCM(α= 1, β= 0.1,w = 1) (LRCM assignment), (B) LiFTCM(α= 1.4, β=
0,w = 1) (PRCM assignment), and (C) LiFTCM(α= 1.4, β= 0.1,w = 1) (GRCM assignment).

Full-size DOI: 10.7717/peerjcs.238/fig-4

by black color. The cluster centers are indicated by cross marks. Initial cluster centers were
determined by b1= (0,0)>, b2= (0.5,1)>, and b3= (1,0)>.

Figure 4 shows the results of LiFTCM(α ≥ 1, β ≥ 0, w = 1), which corresponds to
GRCM(w = 1). Figure 4A shows the result of LiFTCM(α= 1, β = 0.1, w = 1), which is
interpreted as the LRCM assignment. Figure 4B shows the result of LiFTCM(α = 1.4,
β = 0, w = 1), which is interpreted as the PRCM assignment. Figure 4C shows the result of
LiFTCM(α= 1.4, β = 0.1, w = 1), which is interpreted as the GRCM assignment. Thereby,
cluster overlap is realized by lifting the threshold by a linear function.
Figure 5 shows the results of LiFTCM(α= 1−z , β = zδc , z ∈ [0,1], w = 1) in which noise
rejection is intended. The noise distance was set to δc = 0.35 and the parameter z was set
to {0,0.001,0.25,0.5,0.75,1}. Figure 5A shows the result for z = 0. A hard partition with
a Voronoi boundary is generated in the same manner as in HCM. Figure 5B shows the
result for z = 0.001. Such a small value of z realize general noise rejection, that is, objects
over δc distant from any cluster are rejected. The boundary between clusters is the Voronoi
boundary, and objects whose distance to any cluster is greater than the noise distance δc
are shown in black and rejected as noise. As z approaches 1 in the order of Figs. 5C–5E,
the overlap between clusters increases. Figure 5F shows the result for z = 1. In this case,
cluster-wise noise rejection is performed and each cluster is composed of a circle with
radius δc centered at the cluster center. By adjusting the threshold relative to δc , cluster
overlap and noise rejection are realized simultaneously.
Thereby, LiFTCM can realize HCM, GRCM, GNR, CNR, and their combinations by lifting
the threshold by a linear function.

Schematic diagram
Figure 6 is a schematic diagram of the proposal of this study. Representations of HCM,
LRCM, PRCM, GRCM, GNR, CNR, and their combinations by the linear function
threshold in LiFTCM with the parameters (α, β), and their relationships are shown.
(α,β)= (1,0) is the default state and represents HCM assignment. Increasing α from 1 and
β from 0 increases cluster overlap. Simultaneously increasing α and β increases clustering
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Figure 5 Classification boundaries of LiFTCM(α = 1− z , β = zδc ,w = 1) representing HCM, GNR,
CNR, and their combinations: (A) z = 0 (HCM), (B) z = 0.001 (GNR), (C) z = 0.25 (combination), (D)
z = 0.5 (combination), (E) z = 0.75 (combination), and (F) z = 1 (CNR).

Full-size DOI: 10.7717/peerjcs.238/fig-5

roughness. This shows combinations of LRCM and PRCM, namely, GRCM. LiFTCM
gives an interpretation in 0≤ α ≤ 1 in addition to GRCM. As proposed in the smooth
transition, when the parameter z is increased from 0 to 1, (α,β) transits from (1,0) to
(0,δc), namely, from HCM to CNR via GNR. The parameter z has the effect of changing
clustering more possibilistic. Cluster overlap in CNR is attributed to the increase in β in
LRCM. The direction in which the destination δc is lowered is the direction in which noise
objects are more rejected.

NUMERICAL EXPERIMENTS
This section presents the results of numerical experiments for evaluating the clustering
performance of the proposed LiFTCM with various parameter settings in four real-world
datasets downloaded from UCI Machine Learning Repository (https://archive.ics.uci.edu/
ml/) and summarized in Table 2. Performance was evaluated by the accuracy of class center
estimation. The datasets are labeled and include the feature vector and the correct class
label of each object. Each dataset was partitioned into disjoint classes according to the class
labels, and the center of each class (class center) was calculated. LiFTCM was applied to the
generated unlabeled datasets. The number C of clusters was set to the number of classes.
To avoid initial value dependence, the initial cluster centers were set to the cluster centers
generated by KKZ-based HCM. Considering the correspondence of the clusters and the
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Figure 6 Schematic diagram: representations of HCM, LRCM, PRCM, GRCM, GNR, CNR, and their
combinations by a linear function threshold in LiFTCMwith the parameters (α, β), and their relation-
ships.

Full-size DOI: 10.7717/peerjcs.238/fig-6

classes, the minimum total error of the cluster centers and the class centers, which is called
center-error, was taken as the measurement value. Let b̂c be the class center of the class
corresponding to cluster c . Center-error is calculated by

center_error =
C∑
c=1

||bc− b̂c ||. (21)

If the center-error is small, the accuracy of class center estimation is high, and clustering
performance is assumed to be high.

Figure 7 shows the center-error measurements as α and β take 100 equally distributed
values using contour lines. Colors closer to purple imply smaller center-error and hence
better clustering performance. Figure 7A shows the results for the Iris dataset. Performance
is improved at approximately α= 1 and β = 0.35, and when α is increased, performance is
maintained by decreasing β. This implies that moderate roughness improves performance.
Figure 7B shows the results for theWine dataset. Performance is improved at approximately
α = 1.9 and β = 100. When α and β exceed certain values, performance deteriorates
rapidly. This implies that moderate roughness is acceptable, but excessive roughness
degrades performance. Figure 7C shows the results for the Glass dataset. Performance is
improved at approximately α= 1.3 and β = 0.7. As with the Iris dataset, performance is
improved with moderate roughness. Figure 7D shows the results for the Breast Cancer
Wisconsin dataset. Performance is improved at approximately α= 1 and β = 2, and it is
clear that performance is improved with moderate roughness, as is the case with the Iris
and the Glass datasets. Therefore, it is suggested that performance is improved when α and
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Table 2 Characteristics of the datasets and the range of parameters α, β, δc , and z , which tune the lin-
ear function threshold in LiFTCM.

Dataset #classes #features #objects
(#objects in classes)

Settings of parameters

Iris 3 4 150
(50, 50, 50)

α ∈ [1,1.2],
β ∈ [0,0.6],
δc ∈ [0.85,1.5],
z ∈ [0,1]

Wine 3 13 178
(59, 71, 48)

α ∈ [1,2.4],
β ∈ [0,250],
δc ∈ [150,1000],
z ∈ [0,1]

Glass 6 9 214
(70, 76, 17, 13, 9, 29)

α ∈ [1,1.6],
β ∈ [0,1.5],
δc ∈ [10,30],
z ∈ [0,1]

Breast Cancer Wisconsin 2 9 683
(444, 239)

α ∈ [1,1.5],
β ∈ [0,4],
δc ∈ [5,70],
z ∈ [0,1]

β are increased to obtain moderate roughness. Thus, the representation of combinations
of LRCM and PRCM by LiFTCM performs well.
Figure 8 shows the center-error measurements as δc and z take 100 equally distributed
values using contour lines. Figure 8A shows the results for the Iris dataset. Performance
is improved at approximately δc = 1.1 and z = 0.3, or at approximately δc = 1.3 and
z = 0.3. This implies that setting an appropriate noise distance and combinations of noise
and possibilistic clustering yield satisfactory results. Figure 8B shows the results for the
Wine dataset. Performance is improved at approximately δc = 300 and z = 0.5. When δc
is increased, performance is maintained by decreasing z . This implies that general noise
rejection performs better than cluster-wise noise rejection when the noise distance is large.
Figure 8C shows the results for the Glass dataset. Performance is improved at approximately
δc = 25 and z = 0.05. Among combinations, those closer to general noise rejection perform
well. Figure 8D shows the results for the Breast Cancer Wisconsin dataset. Performance is
improved at approximately δc = 20 and z = 0.2. As with the other datasets, combinations
perform well. As in the case of the Wine dataset, states close to general noise rejection
perform well when δc is large. Therefore, the representation of combinations of GNR and
CNR by LiFTCM is satisfactory. When the noise distance is large, states close to GNR tend
to yield satisfactory results.

DISCUSSION
Cluster center calculation utilizing probabilistic memberships
RCM-type methods have the problem that even if the number of objects in the boundary
area is small, they have unnaturally large impacts on the new cluster center compared to the
objects in the lower area, because the cluster center is calculated by the convex combination
of these areas. To cope with the problem, Peters proposed πPRCM by introducing the
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Figure 7 Minimum total errors between cluster centers and class centers by LiFTCM(α≥ 1, β≥ 0,w =
1) representing GRCM(w = 1): (A) Iris, (B)Wine, (C) Glass, and (D) Breast CancerWisconsin.

Full-size DOI: 10.7717/peerjcs.238/fig-7

cluster center calculation based on the normalized membership of the membership to
the upper area, which satisfies the probabilistic constraint (Peters, 2014; Peters, 2015).
‘‘π ’’ is an acronym that stands for ‘‘Principle of Indifference,’’ in which the probability
is assigned equally by dividing the number of possible clusters. Ubukata et al. proposed
πGRCM (Ubukata et al., 2018) based on GRCM. The proposed LiFTCM has almost the
same formulation as GRCM except that the condition α ≥ 1 is relaxed to α ≥ 0. Thus,
πLiFTCM can be formulated in a similar manner to πGRCM by introducing the following
normalized membership ũci of the membership to the upper area and the cluster center
calculation based on ũci:

ũci=
uci∑C
l=1uli

, (22)

bc =
∑n

i=1 ũcixi∑n
i=1 ũci

. (23)

Here, attention should be paid to the following cases. In the case of α < 1, that is, in the
case of GNR and CNR, since non-belonging of the object to any cluster is handled and
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Figure 8 Minimum total errors between cluster centers and class centers by LiFTCM(α = 1− z , β =
zδc , z ∈ [0,1],w = 1) representing HCM, GNR, CNR, and their combinations: (A) Iris, (B)Wine, (C)
Glass, and (D) Breast CancerWisconsin.

Full-size DOI: 10.7717/peerjcs.238/fig-8

thus the denominator
∑C

l=1uli can become zero, it is necessary to set ũci= 0 for all clusters
in such cases.

CONCLUSIONS
In this study, as a unified approach for general noise rejection (GNR) and cluster-wise
noise rejection (CNR) in hard C-means (HCM), we proposed linear function threshold-
based C-means (LiFTCM) by relaxing generalized rough C-means (GRCM) clustering. We
showed that the linear function threshold-based assignment in LiFTCMcan represent GNR,
CNR, and their combinations as well as GRCM. By the visualization of the classification
boundaries, transitions among conventional methods based on LiFTCM and their
characteristics were clarified. In the numerical experiments, the clustering performance
by LiFTCM with various parameter settings was evaluated. It was demonstrated that
combinations of LRCM and PRCM, or combinations of GNR and CNR by LiFTCM
performed well.
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We plan to investigate the relationship between the proposed method and fuzzy
clustering with noise rejection. Automatic determination of parameters will also be
considered.
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