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ABSTRACT
Data classification is a fundamental task in data mining. Within this field, the
classification of multi-labeled data has been seriously considered in recent years.
In such problems, each data entity can simultaneously belong to several categories.
Multi-label classification is important because of many recent real-world
applications in which each entity has more than one label. To improve the
performance of multi-label classification, feature selection plays an important role.
It involves identifying and removing irrelevant and redundant features that
unnecessarily increase the dimensions of the search space for the classification
problems. However, classification may fail with an extreme decrease in the number
of relevant features. Thus, minimizing the number of features and maximizing the
classification accuracy are two desirable but conflicting objectives in multi-label
feature selection. In this article, we introduce a multi-objective optimization
algorithm customized for selecting the features of multi-label data. The proposed
algorithm is an enhanced variant of a decomposition-based multi-objective
optimization approach, in which the multi-label feature selection problem is
divided into single-objective subproblems that can be simultaneously solved using
an evolutionary algorithm. This approach leads to accelerating the optimization
process and finding more diverse feature subsets. The proposed method benefits
from a local search operator to find better solutions for each subproblem. We also
define a pool of genetic operators to generate new feature subsets based on old
generation. To evaluate the performance of the proposed algorithm, we compare it
with two other multi-objective feature selection approaches on eight real-world
benchmark datasets that are commonly used for multi-label classification.
The reported results of multi-objective method evaluation measures, such as
hypervolume indicator and set coverage, illustrate an improvement in the results
obtained by the proposed method. Moreover, the proposed method achieved
better results in terms of classification accuracy with fewer features compared with
state-of-the-art methods.
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INTRODUCTION
In traditional classification approaches, each sample in a dataset belongs to one class.
However, in recent years, to adapt to real-world problems, researchers have studied
multi-label learning (Zhang & Zhou, 2014). In such problems, each sample in a dataset can
simultaneously belong to several classes. Therefore, a set of labels is defined for each data
entity. Because this is supervised learning, the objective of the classification is to create
a model by using the training data to predict the unseen data labels. In real-world
applications, it is less common for each entity to have exactly one label; for this reason,
this is an important direction for research. In multi-label text classification, each text
sample can simultaneously belong to different classes (such as “politics” and “sports”)
(Ueda & Saito, 2003). Another example is digital image classification: an image sample
may contain a mountain, lake, and tree; hence, the image is included in each of the
classes (Boutell et al., 2004). In the functional classification of genes, every gene is also a
member of different functional classes (such as “metabolism” and “protein synthesis”)
(Li, Miao & Pedrycz, 2017).

The accuracy of a classification task strongly depends on the selected features that
provide the most relevant knowledge about the data to construct a reliable model. Feature
selection is a data mining preprocessing task that removes irrelevant and redundant
features. It reduces computational complexity in the learning process and improves the
classifier’s performance (Zhang, Gong & Rong, 2016). In multi-label datasets, each sample
is related to more than one label, and the corresponding labels are not necessarily
independent of each other; hence, feature selection in such a dataset is more complicated
than in single-label classification (Zhang et al., 2017). Several researchers have reported
that classification performance can be improved using a proper feature selection strategy in
multi-label data (Madjarov et al., 2012; Lee & Kim, 2015; Dembczynski et al., 2012).
The feature selection methods for both multi-label and single-label datasets can be divided
into three categories: wrapper, filter, and embedded methods (Pereira et al., 2016).
The wrapper methods select the features based on the resulting classification performance;
hence, the learning task is a part of the feature selection process. Additionally, wrapper
methods have been used for multi-label data feature selection (Dendamrongvit, Vateekul &
Kubat, 2011; Wandekokem, Varejão & Rauber, 2010). In filter methods, the best set of
features is selected using the statistical characteristics of data (e.g., the correlation among
features and classes). Many filter-based feature selection methods have been proposed
for multi-label data (SpolaôR et al., 2013a, 2013b; Reyes, Morell & Ventura, 2015; Lin et al.,
2016; Li, Miao & Pedrycz, 2017). The embedded methods select best subset of features
as a integrated part of the learning algorithm. One of the well-known embedded methods
is Decision Tree algorithm (Safavian & Landgrebe, 1991). This classifier constructs a tree
structure model which selects best feature at each node in term of a discriminancy
criterion. To obtain the best subset of features out of d features, we need to evaluate 2d

possible subsets. Consequently, selecting the best subset out of all possible subsets is
extremely time-consuming; therefore, it is not practical to employ a brute force approach.
In fact, feature selection is an NP-hard problem (Chandrashekar & Sahin, 2014;
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Blum & Langley, 1997). Therefore, the use of meta-heuristic search strategies, such as
evolutionary algorithms, can be beneficial in this regard (Ibrahim et al., 2019b, El Aziz &
Hassanien, 2018; Elaziz et al., 2017; Mousavirad & Ebrahimpour-Komleh, 2014).
Evolutionary algorithms have attracted significant attention because they are more robust
in avoiding local optima, compared with traditional optimization methods (Ibrahim et al.,
2019a; Elaziz et al., 2020). Various evolutionary algorithms have been used for multi-
label feature selection (Zhang, Pena & Robles, 2009; Lee & Kim, 2015; Reyes, Morell &
Ventura, 2014; Shao et al., 2013).

Some studies in feature selection have considered only classification accuracy for their
optimization algorithm, whereas several other objectives can be simultaneously optimized
using multi-objective optimization algorithms. Although feature selection can enhance
the accuracy of the classification task and decrease the computational complexity, an
extreme reduction of relevant features will degrade the accuracy. On the other hand,
increasing the number of appropriate features gives more relevant knowledge of data to
construct an accurate model. Accordingly, a massive number of features increases the
computational complexity of a classification task because of the complexity of its search
space. Therefore, the main goal of multi-objective feature selection has two conflicting
objectives, that is, to minimize the number of features while maintaining an acceptable
classification accuracy (Dembczynski et al., 2012; Xue, Zhang & Browne, 2013).

To the best of our knowledge, a few articles have used multi-objective optimization
methods for feature selection of multi-label data. Yin, Tao & Xu (2015) attempted to find
the best subset of features by using the nondominated sorting genetic algorithm II
(NSGA-II) (Deb et al., 2000). In another study, feature selection in multi-label datasets
used a differential evolution algorithm (Zhang, Gong & Rong, 2016). Zhang et al. (2017)
presented a particle swarm optimization (PSO)-based multi-objective optimization
algorithm and achieved a better accuracy compared with the previous methods. Lee, Seo &
Kim (2018) proposed an evolutionary multi-label feature selection that used dependencies
between the features and labels to select more relevant features. Their method selects
features that have a higher level of correlation with the labels and have not been selected
using genetic operators during the optimization process. In another study , the most salient
features were selected by mapping the features to a multi-dimensional space based on
the correlation between features and each label (Kashef & Nezamabadi-pour, 2019).
However, the authors have only used the Pareto-dominance concept inspired by
multi-objective optimization. In other words, they do not search the features’ space using a
multi-objective optimization algorithm.

Evolutionary-based multi-objective optimization algorithms can be divided into three
categories: dominance-based, decomposition-based, and indicator-based methods
(Trivedi et al., 2017). The dominance-based methods attempt to find the solutions that
optimize the objective functions by using a concept called dominance, which will be
defined in the next section. All the above-mentioned studies on multi-label feature
selection belong to this category of multi-objective optimization algorithms. The indicator-
based methods evaluate the fitness of each solution by assessing an indicator (such as
hypervolume) to improve the convergence and diversity criteria simultaneously.
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On the contrary, the decomposition-based methods decompose the whole search space
into smaller subproblems and solve all of them simultaneously. Therefore, the convergence
rate of the algorithm is significantly improved, which enhances the diversity of the
obtained solutions (Zhang & Li, 2007). An advantage of decomposition-based methods is
their potential for scalability to multi-objective optimization problems (Zhang & Li, 2007).

Research on feature selection for multi-label data has started recently; therefore, few
studies have been conducted in this area, especially for multi-objective problems. The most
important aim of this paper is to address this problem for multi-objective optimization.

In this article, we propose a decomposition-based method for multi-label feature
selection. The objective functions used in this paper include Hamming loss and the
number of features. The main contributions of the paper can be summarized as follows:
(1) we address the problem of multi-objective feature selection by solving several single-
label subproblems, that is, for the first time, decomposition-based evolutionary multi-
objective optimization has been used for multi-label classification; (2) we apply a local
search strategy to increase the exploitation power of the proposed method; (3) we propose
a hybrid crossover scheme that switches among crossover operators with a predefined
probability. Because some of the benchmark datasets have more than 1,000 features, we
used decomposition-based algorithms, which are beneficial for large-scale problems.

To validate the results, we compared the proposed method of multi-label feature
selection with state-of-the-art methods. Furthermore, to validate the performance of the
proposed algorithm, we conducted an extensive set of experiments on real-world multi-
label datasets. The results show a significant improvement compared with the other
methods in terms of multi-objective evaluation measures, such as hypervolume indicator
and set-coverage criterion.

This article is organized as follows. “Background Review” describes related work on
multi-label classification, multi-objective optimization, and the existing methods for multi-
objective multi-label feature selection. The proposed algorithm is explained in “Proposed
Method”. The experiments are presented in “Experimental Design”. “Results and
Discussion” describes and discusses the results. Finally, “Concluding Remarks” concludes
the article.

Background review
In the following subsections, we briefly review related concepts. We start with a brief
explanation of multi-label classification to clarify the importance of this research problem.
Next, we explain multi-objective optimization and the corresponding challenges. Finally,
we examine existing multi-label feature selection methods that have been proposed for
multi-objective optimization algorithms.

Multi-label classification
If a dataset X contains d-dimensional samples and Y represents the set of the q possible
labels in a multi-label problem, the objective of multi-label classification is to create a
model in the form of h : X ! 2Y from m training examples, D = (Xi, Yi|1 ≤ i ≤ m). For
each multi-label sample (Xi, Yi), Xi includes a d-dimensional feature vector and Yi includes
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a set of labels associated with Xi. For unseen data Xi, the multi-label classifier predicts h(X)
as the set of labels. Multi-label learning algorithms can be divided into two main categories:
problem transformation and algorithm adaptation methods (Zhang & Zhou, 2014).
In the problem transformation methods, the multi-label classification problem is
converted into a single-label problem to classify data using existing single-label classifiers.
The basic idea of the algorithm adaptation methods is to adapt single-label classifiers to
deal with multi-label data. Multi-label K-nearest neighbor (ML-KNN) (Zhang & Zhou,
2007) is one of the most well-known adaptive methods, and it was used in this study to
evaluate feature subsets. In the single-label version of this algorithm, to predict the class
label of the sample, the algorithm calculates the distance between the query sample and
the other samples in dataset. K neighbors (smallest distances) of the sample should be
picked. The algorithm gets the labels of the selected K entries. Then it returns the mode of
the K labels as the class of query sample. Despite its simplicity, this classifier is commonly
used on various applications. In its multi-label version ML-KNN, as in the single-label
version, the sample would be labeled by classes in which the distribution of neighbors is
higher. In this direction, decision making is performed for every class as follows:

Y ¼ fyijPðHjjCjÞ=Pð�HjjCjÞ. 1; 1 � j � qg (1)

Sample x belongs to class j if the posterior probability P(Hj|Cj) that x belongs to class j,
providing that x has exactly Cj neighbors with label yj, is bigger than P(∼Hj|Cj). To obtain
the value of posterior probability, Bayes’ theorem mentioned in Eq. (2) has been
applied. The ratio of two mentioned posterior probabilities determines belonging of the
sample to class j. According to this equation, the posterior probability is dependent on the
values of prior probabilities (P(Hj) and P(∼Hj)) and likelihood functions (P(Cj|Hj) and
P(Cj|∼Hj)).

PðHjjCjÞ
Pð�HjjCjÞ ¼

PðHjÞ � PðCjjHjÞ
Pð�HjÞ � PðCjj�HjÞ (2)

To calculate the P(Hj), we obtain the ratio of the samples that have label yj to the total
samples. The value of P(Cj|Hj)) is also calculated using Eq. (3), where kj(r) is the number of
samples in the training set that have label yj and have exactly r neighbors with label yj.
Based on this definition, kj(Cj) is the number of samples that belong to class j and have r
neighbors in this class.

PðCjjHjÞ ¼ kjðCjÞXk

r¼0
kjðrÞ

ð1 � j � q; 0 � Cj � kÞ (3)

Because of the simplicity and popularity of ML-KNN, we used this classifier to evaluate
the quality of selected features in our proposed method. Moreover, we use the same
classifier to compare several algorithms.

Multi-objective optimization
Most real-world optimization problems involve multiple conflicting objectives (Konak,
Coit & Smith, 2006). Hence, multi-objective optimization problems have various practical
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applications. The use of evolutionary algorithms has been motivating for solving such
problems. Because of the population-based nature of these algorithms, we obtain a set of
solutions on every run. In a multi-objective optimization problem, the definition of
optimality is not as simple as in single-objective optimization. When the optimal solution
of an objective function conflicts with an optimal solution of another objective function,
the problem becomes challenging. Therefore, to solve such problems, it is necessary to
find a trade-off between objective functions. The obtained solutions of multi-objective
algorithms are called nondominated solutions or Pareto-optimal solutions. Theoretically,
if a multi-objective optimization problem is a minimization problem, it is formulated as
follows (Mirjalili et al., 2016).

Min FðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fMðxÞ�
s:t: Li � xi � Ui; i ¼ 1; 2; . . . ; d

(4)

Subject to the following equality and inequality constraints:

giðxÞ � 0 j ¼ 1; 2;…; J
hkðxÞ ¼ 0 k ¼ 1; 2;…;K

(5)

whereM is the number of objectives, and d is the number of decision variables (dimension)
of solution x, so that xi should be in interval [Li,Ui] (i.e., box-constraint). Finally, fi is the
objective function that should be minimized. To compare two candidate solutions in
multi-objective problems, we can use the concept of Pareto dominance. Mathematically,
the Pareto dominance is defined as follows. If x = (x1, x2,…, xd) and �x ¼ ð�x1; �x2; . . . ; �xdÞ are
two vectors in the search space, x dominates �xðx � �xÞ if and only if

8i 2 f1; 2; . . . ;Mg; fiðxÞ � fið�xÞ^
9j 2 f1; 2; . . . ;Mg : fjðxÞ, fjð�xÞ (6)

This means that solution x dominates solution �x (is better) if and only if the objective
values of x are better than or equal to all objective values of �x (is not worse than �x in any of
the values of the objective functions) and it has a better value than x in at least one of
the objective functions. If the solution x is better than �x in all objectives, we call strong
dominance but in the case that they have at least one equal objective, the weak dominance
happens. All nondominated solutions construct a Pareto front.

Crowding distance (Deb et al., 2000) is another measure to compute the distribution of
candidate solutions in the objective space. It is calculated using the sum of distances
between each solution and its neighbors. It is computed using Eq. (7).

CDi ¼
XM
j¼1

jfjðiþ 1Þ � fjði� 1Þj; (7)

where fj(i + 1) and fj(i − 1) indicate the jth objective value of the previous and next
neighbors of solution i. Larger distance indicates a non-crowded space. Hence, a selection
of solutions from this region creates a better distribution. In fact, it represents the
distribution of the members surrounding each solution. Decomposition-based methods
are a category of multi-objective optimization algorithms that decompose the

Asilian Bidgoli et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.261 6/32

http://dx.doi.org/10.7717/peerj-cs.261
https://peerj.com/computer-science/


approximation of PF into a number of single-objective optimization subproblems. All
subproblems can be solved by using other classical optimization or evolutionary methods
simultaneously. A strategy is required to convert a multi-objective optimization problem
to single-objective one. During optimization, the trade-off relation between objectives
can be applied by considering information mainly from subproblem neighboring.
The neighborhood concept is defined by producing a set of weight vectors in objective
space. If the subproblems are solved by evolutionary algorithms, neighbors communicate
with each other to reproduce the new candidate solutions and update the existing
individuals in the population. The steps of a decomposition-based method has been
explained in “Proposed Method” section.

Tchebycheff method
As stated before, multi-objective optimization problems can be solved by different
methods. Traditional multi-objective optimization methods seek a way to convert the
multi-objective problem into a single-objective problem. One of these methods is the
Tchebycheff method (Jaszkiewicz, 2002), which was used in this study to solve multi-
objective subproblems. The Tchebycheff method looks for the optimal solutions that have
the minimum distance from a reference point. The single-objective optimization problem
is defined as Eq. (8).

Minimize gteðxj�o; z�Þ ¼ maxf�ijfiðxÞ � z�i jg
subject to x 2 S;

(8)

where z� = (z1�,…,zm�)T is a reference point used to evaluate the quality of the obtained
solutions, m is the number of objective functions, and S is the search space. According to
this equation, the distances between the objective function values of each solution x
and reference point z� are calculated. The single-objective optimization problem is
regarded as minimizing the maximum of these distances. A uniform weight vector
λ = (λ1, λ1,…, λm) is defined for each solution such that

Pm
i �i ¼ 1. Therefore, weight λi is

assigned to the objective function fi. To obtain each optimal solution of the minimization
problem defined in Eq. (8), we need to find an appropriate weight vector. The obtained
optimal solution would be one of the Pareto optimal solutions. As a result, the traditional
methods are time-consuming because of continuous changes in the weights required
to obtain the best solutions. Therefore, we consider a set of distributed weight vectors in
the decomposition-based evolutionary methods for all the subproblems. Reference point
selection is another issue that should be considered in the Tchebycheff method. For a
minimization problem, the minimum value obtained for each objective function can be a
reference point.

z�i ¼ minfiðxÞjx 2 S (9)

Therefore, the value of the reference point is also updated after each iteration. Figure 1
shows the Tchebycheff method for obtaining an optimal solution on the Pareto front. As
an example, we show that the reference point has been placed at the center of the
coordinates, where the values of both objective functions are minimal. We show a sample
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weight vector (λ1, λ2), and the solutions from each iteration are shown in blue. The
solutions converge toward the reference point in the direction of the weight vector until the
optimal point on the Pareto front (in red) is obtained. At each iteration, the previous
solution is replaced with a new solution if the new one outperforms the previous one.

Multi-label feature selection using multi-objective evolutionary
algorithms
A review of the literature shows little research in the area of multi-label feature selection
using multi-objective evolutionary algorithms. Next, we briefly explain the state-of-the-art
methods.

Multi-label feature selection algorithm based on NSGA-II
Yin, Tao & Xu (2015) have selected the optimal features for multi-label data classification
using the NSGA-II algorithm. The Hamming loss and the average precision criteria
have been considered as the objective functions. This paper has yielded the Pareto front
using the NSGA-II algorithm. NSGA-II uses fast non-dominated sorting to rank feature
subsets. The fast non-dominated sorting technique categorizes the population members
in different ranks. For each solution p, the number of members for which solution p
dominates and the number of members that dominate solution p are specified.

All solutions that have never been dominated (members with a domination count of
zero) are added to a set named F1. Here, F1 is the first Pareto front that contains the best-
qualified members of the current population. In the next step, the members included in F1
are removed from the population, and the remaining members that have never been
dominated construct the second rank F2. This procedure continues in the same way until
all population members are ranked.

At the end of the algorithm, the members of the first front F1 are presented as the
optimal Pareto front. The proposed method was tested on multi-label standard data

Optimal Point

( 1 , 2)

Z*

2( )

1( )

Figure 1 Illustration of Tchebycheff method. Full-size DOI: 10.7717/peerj-cs.261/fig-1
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classified using the ML-KNN classifier. The authors compared the proposed method with
several filter-based feature selection methods.

PSO-based multi-objective multi-label feature selection

PSO is a well-known population-based evolutionary algorithm. Zhang et al. (2017)
presented a multi-objective PSO-based method for feature selection of multi-label data.
They considered the number of features and accuracy of classification as conflicting
objectives. In the PSO algorithm, population consists of particles that have two properties:
position and velocity. The position and the velocity of the i-th particle are presented as
Pi(t) = (pi,1, pi,2,…, pi,D) and Vi(t) = (vi,1, vi,2,…, vi,D), respectively. The position of the
particle is updated based on the previous position and velocity. Moreover, the particle
velocity is updated according to Eq. (10) based on two parameters: (1) the best individual
position of the particle up to now Lbi(t) = (lbi,1, lbi,2,…, lbi,D) and (2) the best global
position among all particles Gb(t) = (gb1, gb2,…, gbD).

vi;jðt þ 1Þ ¼w	 vi;jðtÞ þ r1 	 c1 	 ðlbi;jðtÞ � pi;jðtÞÞ þ r2 	 c2 	 ðgbjðtÞ � pi;jðtÞÞ (10)

pi;jðt þ 1Þ ¼ pi;jðtÞ þ vi;jðt þ 1Þ (11)

where t is the number of iterations; r1 and r2 are two random vectors uniformly distributed
in the range (0, 1); c1 and c2 are two parameters that represent the particle’s confidence
in itself and in the swarm, respectively, and w determines the effect of previous velocity,
called inertia weight. Generating an initial population is the first step of PSO-based
multi-label feature selection. Then, an archive of nondominated solutions is provided.
Velocities and positions of all particles are updated in each iteration. We also need to
update the particle’s best individual position and the best global position. The particle’s
best individual position is calculated using the domination concept. In addition, the best
global position is selected among the particles’ historical positions by using the crowding
distance criterion. An adaptive mutation operator has been used to produce offspring;
the number of the mutated elements in a particle is determined using a non-linear
function. For this purpose, K variables of some particles are randomly selected to be
reinitiated. The proposed method has been evaluated on standard benchmark problems
using the ML-KNN classifier. The results show significant improvements compared to the
previous state-of-the-art methods.

PROPOSED METHOD
Decomposition methods (such as the Tchebycheff method) are traditional methods of
multi-objective optimization. They transform the problem of approximation of the Pareto
front into a number of scalar optimization problems. As mentioned before, because of the
continuous modifications of the objective functions’ weights for obtaining a Pareto
solution, these methods may be time-consuming. Some of them are unable to discover all
Pareto points in convex problems effectively (Zhang & Li, 2007). An evolutionary
algorithm can be used to overcome this problem. Recently, a method based on
decomposition and evolutionary algorithms (MOEA/D) was proposed for solving a multi-
objective problem (Zhang & Li, 2007). MOEA/D uses evolutionary algorithms for
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decomposition of the problem space into scalar subproblems and simultaneously solves
them. Hence, it increases the speed of finding Pareto-optimal solutions and improves the
diversity of the obtained solutions (Zhang, Gong & Rong, 2016). The scalar subproblems
are simultaneously solved by receiving information from neighboring subproblems;
therefore, the algorithm has less computational complexity compared to the domination-
based algorithms. MOEA/D has several advantages over Pareto dominance-based
algorithms, such as computational efficiency, scalability to optimization problems with
many objectives , and high search ability for combinatorial optimization problems
(Jiang et al., 2011).

In this article, we propose a decomposition-based multi-objective feature selection for
multi-label data classification. This is the first time that a decomposition-based approach
has been customized to tackle multi-label classification. Figure 2 shows the overall
flowchart of the proposed method. According to the overall structure, the search process
needs an encoding strategy to define the search space which is explained in the next
subsection. Algorithm, as an iterative process, starts with initialization step. At each

Reproduc�on using 
proposed gene�c 

operators

Encoding

Replacement 
neighbors  based on 

Tchebychef 
algorithm

Stop

Ini�aliza�on
(Popula�on, Weight 
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features, Hamming lose)
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No
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Number of features

H
am

m
in

g 
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Trade-off solu�ons
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Figure 2 Flowchart of overall structure of the proposed method.
Full-size DOI: 10.7717/peerj-cs.261/fig-2
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iteration, based on the proposed operators, new feature subsets are created and evaluated
using objective functions. Using Tchebychef method, the neighbors of generated
solutions and reference points will be updated. After applying a local search, a set of
non-dominated solutions are obtained as trade-off feature subsets. Algorithm 1 also
represents the Pseudo-code of the proposed method which in the following subsections, we
describe the details of its main components.

Representation of individuals
Each member of the population indicates a candidate solution in the search space. In this
paper, the representation of individuals for feature selection is a string with a length
equal to the number of features. A cell of the vector is randomly filled with a real value
between 0 and 1. This representation is used in problems that need a continuous
representation of the solutions (Xue, Zhang & Browne, 2013). The use of real values is due
to the use of continuous genetic operators. A cell with a value greater than 0.5 indicates the
selection of the feature, and a value less than 0.5 indicates that a feature is not selected.
If the length of the feature vector is D, the i-th population member is defined as ci(t) = (ci,1,
ci,2,…, ci,d). The feature subsets use the following notation: when a feature is selected, the
corresponding cell value changes to 1; otherwise, it becomes zero. Hence, the string is
converted to a binary vector, where 0 indicates the rejection of the feature, and 1 indicates
the selection of the feature. Therefore, the number of selected features is equivalent to the
count of “1” in the vector. An instance of a feature vector is shown in Fig. 3.

Objective functions
To acquire the best solutions in feature selection, we consider two objective functions: the
number of selected features and the Hamming loss. As mentioned before, the goal of
feature selection is to remove irrelevant and redundant features and, therefore, to reduce
the complexity of the search space in the classification task or any other feature-based
process. The ratio of the features selected for each solution to all the features (a value
between 0 and 1) is our first objective function. The second objective function evaluates the
learning accuracy of multi-label data. The Hamming loss is one of the most well-known
measures for computing the classification error for multi-label data; it has been used
in several papers on multi-label wrapper feature selection (Zhang et al., 2017; Yin, Tao &
Xu, 2015; Jungjit & Freitas, 2015). The Hamming loss evaluates the fraction of misclassified
instance-label pairs, that is, a relevant label is missed, or an irrelevant one is predicted
(Zhang & Zhou, 2014). The Hamming loss is defined as follows:

hlossðhÞ ¼ 1
p

Xn
i¼1

1
q
jhðxiÞDYij; (12)

where q is the number of labels, and p is the total number of multi-label samples. If xi
shows the i-th sample, h(xi) represents the labels predicted by model h. Moreover, Yi are
the actual labels of the i-th sample. Δ is the difference between the vectors of the predicted
and actual labels. The Hamming loss error is our second objective function for feature
selection. Hence, multi-objective optimization can be applied to minimize this objective as
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Algorithm 1. Pseudo-code for the proposed method.

input : NP: the number of subproblems, T: the number of neighbors in the decomposition-based optimization
algorithm, K: the number of neighbors in the multi-label KNN classifier, R: the number of iterations

output : final feature selection subsets

// Initialization

1 Divide multi-label data into two training and test sets;

2 Produce the weight vectors by uniformly distributed aggregation values;

3 Generate the initial population uniform randomly;

4 Evaluate the objective functions for each candidate solution according to (Eq. 12) using training set;

5 Compute the T neighbors for each weight vector using Euclidean distance;

6 Initialize the reference point according to (Eq. 9);

7 Determine the non-dominated solutions in the initial population as an archive (AC);

8 it=0;

// Main algorithm

9 while it < R do

10 for i)1 to NP do // For each individual, xi, in the population

// Regeneration

11 Randomly select two candidate solutions from among the neighbors of x1;

12 Produce two new candidate solutions, y1, y2 using the proposed genetic operators;

// Comparison and replacement (Eq. 8)

13 for j)1 to T do // For each neighbor

14 if gte(y1|W
j,Z) ≤ gte(x1|W

j ,Z) then

15 xj = y1

16 end

// Update the reference point (Eq. 9)

17 if f1(y1) < z1 then

18 z1 = f1(y1)

19 end

20 if f2(y1) < z2 then

21 z2 = f2(y1)

22 end

23 if gte(y2|W
j ,Z) ≤ gte(x1|W

j ,Z) then

24 xj = y2

25 end

// Update the reference point (Eq. 9)

26 if f1(y2) < z1 then

27 z1 = f1(y2)

28 end

29 if f2(y2) < z2 then
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well. According to the definitions of the two objective functions, the proposed method
attempts to find feature sets with a minimum number of features and a minimum
classification error.

The proposed genetic operators
In this paper, we introduce a pool of crossover operators to obtain the benefits of various
operators to produce better solutions. Three genetic operators—single point, double point,
and uniform crossover—are used to produce a new generation of candidate solutions.
In each iteration, one of these crossover operators is selected. A random number P between
0 and 1 is generated as the selection probability of one of the operators. The ranges of
the selection are specified using P1 and P2, which can be determined in the experiments.
If the generated number is less than P1, the single-point crossover is applied to the
parent solutions. In the single-point crossover, a random point is selected, and the tails of
its two parents are swapped to generate new offspring. The double-point crossover is
selected if P is between P1 and P2. The double-point crossover is a generalization of the
single-point crossover wherein alternating segments are swapped to generate new

Algorithm 1. (continued).

30 z2 = f2(y2)

31 end

32 end

33 end

// Local Search and obtaining final Pareto

34 Separate non-dominated solutions from the updated population (NS);

35 Separate non-dominated solutions from AC and NS (EP);

36 Select a solution with the maximum crowding distance (Xcr) and two random solutions Xn1, Xn2

from EP;

37 Produce a new solution by using (Eq. 13);

38 Select the non-dominated solutions as the final Pareto set from EP and �X;

39 Update the archive;

40 it = it +1;

41 end

42 Obtain the hamming loss for test data with the selected features of solutions in the final Pareto front.

Number of features

0.8….0.350.61….0.440.30.7

1….01….001

Figure 3 An instance of a feature selection representation.
Full-size DOI: 10.7717/peerj-cs.261/fig-3
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offspring. A probability greater than P2 causes the selection of the uniform crossover to
produce offspring. It performs the swapping of the parents by choosing a uniform random
real number (between 0 and 1). The random real number decides whether the first
child selects the ith gene from the first or the second parent. For each variable, a uniform
random number is generated. Based on the value of this number, the child’s variable is
selected from one of the parents. If the random number is more than 0.5, the first parent’s
variable would be selected, and vice versa. Figure 4 shows the process of selecting crossover
operators.

A uniform mutation is applied for a newly produced individual to guarantee the
diversity property. A random number of features is selected from the generated subset.
Then, the values of the variables related to the corresponding features will be replaced with
a new random uniform number between 0 and 1.

Local search
The domination concept is used to separate the best candidate solutions at the end of each
iteration. All dominated solutions are omitted from the population. To improve the
obtained Pareto front in the decomposition-based algorithm, a local search (Zhang et al.,
2017) is applied to produce a candidate solution in the search space with a large crowding
distance. We estimate the density of solutions surrounding each solution; hence,
producing a new solution in the area with less density is desirable. For this purpose, at the
end of each iteration, the final Pareto front is saved in the archive (AC). A solution with the
maximum crowding distance (Xcr) is selected among non-dominated solutions of the
new Pareto front obtained from the current generation and the solutions in the archive
(from the previous generations). A new solution is produced by using Xcr and two random
solutions, Xn1, Xn2, based on the following equation:

�Xi ¼ Xcr þ F � ðXn1 � Xn2Þ (13)

0.27 0.87 0.54 0.11 0.91 0.20 0.49

0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.27 0.87 0.54 0.11 0.91 0.20 0.49

0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.27 0.87 0.54 0.11 0.91 0.20 0.49

0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.27 0.87 0.54 0.11 0.91 0.20 0.49
0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.27 0.87 0.54 0.11 0.91 0.20 0.49

Produce a real random number (p)

p
P≤P1 P>P2

P1<P≤P2

0.42 0.15 0.73 0.91 0.63 0.12 0.82

0.27 0.87 0.54 0.11 0.91 0.20 0.49

Figure 4 The process of selecting crossover operators. Full-size DOI: 10.7717/peerj-cs.261/fig-4
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Parameter F is a scale factor that amplifies the difference between the two vectors. The final
Pareto front will include nondominated solutions among the newly produced solutions
in the local search and AC; this local search is inspired by the differential evolution (DE)
algorithm (Price, Storn & Lampinen, 2006).

Overall structure of the proposed method
In the proposed method, the multi-objective problem is divided into scalar subproblems,
and the best solution is simultaneously searched in each subproblem using an evolutionary
algorithm. An appropriate Pareto front will be achieved by solving each subproblem.
Figure 5 illustrates the general idea of a minimization problem with two objectives and
11 subproblems. As seen, a composition function g converts two objectives (f1 and f2) into
one scalar objective. In addition, there exists a vector (with its dimensions equal to the
number of objectives) that weights each objective in the composite function. According to
the figure, the search space is divided into 11 sections using uniformly distributed
aggregation weight vectors. Each section has a different weight vector, and each weight
vector determines a search direction. The weight vectors are generated using Das and
Dennis’ method (Das & Dennis, 1998). In this approach for constructing the weight
vectors, we apply the uniform distribution scheme. Let N be the number of subproblems,
and λ1, λ2,…, λN be the weight vectors, where each weight has a value from {0, 1/N,
2/N,…,1}. The sum of the individual weights of every subproblem should be equal to
one. In the proposed method, �1

1 is the weight of the first objective (number of
features) and �1

2 is the weight of the second objective (the Hamming loss) in the first
subproblem.

Figure 5 Distribution of weight vectors in a minimization problem.
Full-size DOI: 10.7717/peerj-cs.261/fig-5
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Each subproblem includes the following parts:
• An individual Xi

• The objective functions (i.e., the number of features and hamming loss, are
considered)

• A weight vector λi

• The neighborhood of subproblem i
• Composite objective function gte based on Eq. (8).
The number of subproblems is usually considered equal to the population size. In each

generation, we form a population of the best solutions found for each subproblem.
The neighborhood relations among subproblems are defined based on the distance
between the weight vectors. During the search, we produce new solutions for each
subproblem by the cooperation of neighborhood members and by using the proposed
genetic operators (selection, crossover, and mutation). The new solutions compete with the
neighbors of the old solutions; specifically, we compare weighted combinations of two
objective functions for different solutions. The function weights indicate the moving
direction of the population for finding an optimal solution. Subsequently, the steps of the
proposed algorithm are explained in detail.

Step 1. Initialization: In this step, subproblems should be initialized. The proposed
method starts by generating an initial population and weight vectors. The structure of each
solution in the population is described in “Representation of Individuals”. There is a
weight vector corresponding to every subproblem that is used to convert the multi-
objective problem into a single-objective problem by using the Tchebycheff method. As a
result, the number of subproblems, the number of candidate solutions in the population,
and the number of weight vectors are the same. The length of the weight vector would
be equal to the number of objective functions. Different uniformly distributed aggregation
weight vectors distribute the candidate solutions in the whole search space; hence, a Pareto
front with appropriate diversity is achieved. In the subproblems where larger weight
values are assigned to the first objective function, the number of features becomes more
important than classification performance. Therefore, the composite function forces the
subproblem to find solutions with fewer features. In addition, we use the neighborhood
concept to produce new solutions and improve the available solutions in the
decomposition-based methods. Therefore, for each subproblem, the closest weight vectors
are calculated based on the Euclidean distance from their neighbors. The values of the
objective functions for all solutions in the initial population need to be calculated.
Therefore, the ML-KNN classifier is applied to the training data with the feature subset of
each candidate solution. Furthermore, at the beginning of the algorithm, the reference
point should be initialized to evaluate the candidate solutions using the Tchebycheff
method. In the proposed method, the minimum values of the objective functions among
all the obtained candidate solutions are regarded as the reference point. Point z = (z1, z2) is
considered as the reference point, where z1 is the minimum number of the selected features
among the obtained solutions, and z2 is the minimum value of the classification error. This
step is shown in lines 1–8 of Algorithm 1.
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Step 2. Regeneration: Producing new candidate solutions (offspring) is one of the
main steps of evolutionary algorithms. In the proposed method, the genetic operators
(explained in the previous section) were used to produce new offspring. At every iteration,
for each available subproblem, a new candidate solution should be produced. Specifically,
for each subproblem, two candidate solutions are randomly selected among the
subproblem’s neighbors (the closest weight vectors). Then, the proposed genetic crossover
operator (explained in “The Proposed Genetic Operators”) is applied to them.
Furthermore, a uniform mutation is used. The current candidate solution and all the
neighbors are replaced with the newly obtained candidate solution if the new candidate
solution performs better. This step is shown in lines 11–12 of Algorithm 1.

Step 3. Comparison and replacement: Because of the conflicting objectives in multi-
objective optimization problems, the comparison of the candidate solutions is always
challenging. To compare the new candidate solution with the available ones, we use a
decomposition-based method. Specifically, the decomposition method tries to combine the
objective functions and achieve a scalar function for making the comparison possible.
Here, different combination methods can be used. The proposed method uses the
Tchebycheff method to combine the objective functions. As mentioned in “Tchebycheff
Method”, this method considers the distances between the objective values and the
reference point. The distances of the first objective value (number of features) have larger
values than the Hamming loss, and this affects the performance of the Tchebycheff
method. Therefore, it is better to normalize the obtained values of the objective functions.

The Tchebycheff value for the new candidate solution is calculated using the weight
vector of the current solution. Then, the new solution is compared with the current
solution and any of its neighbors. The new solution replaces them if it is better than
the previous solutions. Finally, we expect to achieve a population with an improved
generation. The population contains the best solution for each subproblem found so far.
Whenever a new solution is produced, the reference point also needs to be updated. These
steps are shown in lines 13–31 of Algorithm 1.

Step 4. Local search and obtaining the Pareto front: To increase the efficiency of the
proposed algorithm, we use a local search with the concept of crowding distance. The
details of the local search are given in “Local Search”. The final set of nondominated
solutions will be obtained from the archive. These steps are shown in lines 34–39 of
Algorithm 1.

As it is mentioned before, a set of non-dominated solutions are obtained at the last
part of the search process. These solutions are trade-off feature subsets with a variety of
number of features and classification performance. A user has different options and
accordingly can make a decision based on corresponding application. For example, if the
user prefers less computational complexity, he/she can select one of the small subsets with
a small value of sacrificing the classification accuracy. Multi-criteria decision making
(MCDM) (Velasquez & Hester, 2013) is a process to rank and select from a set of candidate
solutions with conflicting and non-commensurable criteria As an example, VIKOR
(Bidgoli et al., 2019) is one of such methods which ranks the multi-criteria solutions based
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on the particular measure of closeness to the ideal point (a constructed point using
minimum value of each objective).

EXPERIMENTAL DESIGN
Datasets
For many applications, standard multi-label datasets are available. For each application,
several datasets were selected to evaluate the proposed method. We consider the eight real-
world multi-label datasets presented in Table 1. These are complex datasets with many
labels and features. The feature numbers ranged between 19 and 1,449. Thus, feature
selection in such datasets is considered as a large-scale optimization problem. Moreover,
the number of labels is between 6 and 23. Two datasets were selected from the field of
biology. The first one is the Yeast dataset (Elisseeff & Weston, 2002). In this dataset,
genes can be placed in different activity groups. Genbase is another dataset in the field of
biology, which is related to the protein families (Diplaris et al., 2005). There are 27 different
groups of protein structures defined in this dataset. Every protein fiber can belong to
one or several structures. In image classification, two datasets are used, Scene (Boutell et al.,
2004) and Flags (Dheeru & Karra Taniskidou, 2017). The Scene dataset is related to the
categories of desert, beach, mountain, etc. For example, a scene image can have the
labels of “mountain” and “sea” at the same time. The Flags dataset contains information on
flag images of different countries. In addition, we use multi-label text classification datasets
to evaluate the efficiency of the proposed algorithm. The Medical dataset (Pestian et al.,
2007) includes the classification of radiological reports in 45 different categories.
The Enron (Klimt & Yang, 2004) dataset is another text classification dataset that includes
the categories of the collected emails. In audio classification, the Emotions dataset includes
the categories of feelings in music (Trohidis et al., 2008). The features of music have
been extracted and categorized into 6 categories of feelings (surprised, amazed, happy,
pleased, calm, relaxing). Each piece of music can include more than one feeling. The Birds
dataset (Briggs et al., 2013) is related to the classification of birds using their recorded
sounds. This dataset categorizes 19 species of birds.

Table 1 Multi-label datasets used in the experiments.

Datasets Domain #Training instances #Test instances #Labels #Features

Emotions Music 391 202 6 72

Scene Image 1,211 1,196 6 294

Flags Image 129 65 7 19

Yeast Biology 1,500 917 14 103

Birds Audio 322 323 19 260

Genbase Biology 463 199 27 1,186

Medical Text 645 333 45 1,449

Enron Text 1,123 579 53 1,001
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Experimental setup
The multi-label dataset should be divided into training and test sets to evaluate the
proposed method. During the optimization process, the performance of the selected
features is evaluated by computing the accuracy of classification on training data. The test
set is used to evaluate the obtained features and to report the final results at the end of
the algorithm. The number of the training and test samples for each dataset is provided in
Table 1. The splitting of data into test and train subsets is based on the Mulan library
(Tsoumakas et al., 2011), which provided these datasets. The classifier algorithm used
in multi-label learning is the ML-KNN classifier. To simplify the evaluation process,
Euclidean distance with k = 10 was used in this study (Zhang & Zhou, 2007). Some
parameters need to be adjusted before the implementation of the proposed algorithm.
The population size and the number of the function evaluations used were 100 and 50,000,
respectively, for all methods. The algorithms were run 40 times independently for each
dataset. In the proposed method, the number of neighbors, T, was set to 10. The mutation
rate in the genetic operators was 0.05. To increase the diversity of solutions, a random
number between 0.1 and 0.9 was used as the value of parameter F in the local search based
on Zhang et al. (2017). Finally, the values of parameters P1 and P2 for selecting the
crossover operator were set to 0.1 and 0.2, respectively.

RESULTS AND DISCUSSION
Each dataset introduced in the previous section was given to the algorithm as the input
data for evaluating the proposed method. Then, a set of nondominated solutions was
reported at the end of the algorithm. For each dataset, the algorithms were run for 40
independent runs, and we obtained 40 Pareto fronts. The nondominated solutions in the
union set of all Pareto fronts were determined as the best Pareto front. Therefore, all
comparisons were carried out between the best Pareto fronts of the methods. The proposed
method has been compared with the PSO-based algorithm (Zhang et al., 2017) and the
NSGA-II-based (Yin, Tao & Xu, 2015) multi-label feature selection algorithm, which are
explained in “Multi-label Feature Selection Using Multi-objective Evolutionary
Algorithms” and the main version pf MOEA/D algorithm.

Assessment metrics
A comparison of the multi-objective optimization methods in various applications is
always challenging. Therefore, we should find assessment metrics that facilitate the
comparison. In this study, we used an extensive set of measures to evaluate the efficiency of
the proposed algorithm.

Some assessment measures focus on one of the objective functions. The minimum
number of the obtained features and the minimum classification error on the training and
test sets are single-objective criteria for feature selection. Because there may be some
subsets with only a few features but a large classification error, we consider the subsets with
a lower classification error instead of those using all features.

From the multi-objective point of view, there are many evaluation measures that
compare the obtained Pareto fronts of competitors (Akkan & Gülcü, 2018).
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The hypervolume indicator (Auger et al., 2009) is one of the well-known criteria for
evaluating multi-objective optimization methods. This indicator evaluates multi-objective
optimization algorithms according to both diversity and convergence to the optimal
Pareto front. This indicator determines the volume of the n-dimensional space that is
surrounded by a set of points. The number of dimensions would be equal to the number of
objectives. Therefore, the volume of the two-dimensional space that is surrounded by the
Pareto solutions is calculated for the feature selection problem. The larger this space,
the wider the points (surrounding a larger space) and the closer the Pareto front to the
optimal Pareto. A reference point is needed to acquire the intended volume. The selection
of a reference point is one of the challenges for the calculation of the hypervolume
indicator. For example, a point with the worst obtained values among the objective
functions is an option for this purpose. As shown in Fig. 6, the volume of the gray regions
between the solutions on the Pareto front and the reference point would be considered as
the hypervolume indicator. The measure is defined in Eq. (14) (Auger et al., 2009):

HVðAÞ ¼vol
[
a2A

½f1ðaÞ; r1� 	 ½f2ðaÞ; r2� 	 . . .	 ½fMðaÞ; rM�
 !

; (14)

where a ∈ A is a point at which all candidate solutions are weakly dominated by it.
The coverage of two sets is another metric for comparing the Pareto front obtained by

multi-objective methods (Zitzler & Thiele, 1998). This criterion uses the domination
concept. Coverage (A, B) for two algorithms A and B is the total number of obtained

Reference Point

f1

f2

Figure 6 Hypervolume indicator. Full-size DOI: 10.7717/peerj-cs.261/fig-6
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solutions on the final Pareto front of algorithm A that dominates the solutions of the
Pareto front of algorithm B. In this way, coverage (B, A) indicates the number of
obtained solutions of B that dominate the Pareto points of A. To evaluate the statistical
significance of the obtained results, we conducted the Friedman test (Calzada-Ledesma
et al., 2018) with a confidence interval of 95%. The ranks computed by means of the
non-parametric test are reported for the obtained results. In each table, the last row
indicates the statistical test results. w/t/l represents the number of wins, ties, and losses of
the proposed method comparing to other algorithms.

Results and analysis
In this section, we report the results of the comparison between the proposed method and
two other multi-objective methods for multi-label data feature selection. Table 2 shows
the minimumHamming loss on the training and test data in different datasets. The second
column indicates the classification error on the test data using all features without feature
selection. The other columns show the classification error on training and test data by
applying feature selection methods. Reducing the Hamming loss of classification using
feature selection is evidence of existing irrelevant features in all datasets. Table 2 shows that
the proposed method has achieved significantly better results compared with the other two
methods on the training set. It obtained a smaller Hamming loss in 6 a out of 8 in
comparison with the PSO method. The results are even better comparing to MOEA/D
and NSGA-II, so that it has reached less error on 7 out of 8 datasets. Regarding the test
data, the proposed algorithm shows a better performance in most of the datasets. It
outperforms the PSO and MOEA/D in 6 out of 8 datasts. Comparing to NSGA-II,
The proposed method has better accuracy on 7 out of 8 datasets.

If the methods are evaluated in terms of the number of features in the obtained subsets,
regardless of the classification error, the solutions that have few features and high
classification errors would be reported as desirable solutions. Therefore, to give a
reasonable comparison, solutions that achieved a lower classification error than using all

Table 2 Comparison on minimum Hamming loss (HL) on training and test sets. The second column represents the HL values of the
classification using all features. Highlighted numbers in the table indicate which method reaches lower Hamming Loss on each dataset.

Datasets HL using all
features

Minimum training HL using feature selection Minimum testing HL using feature selection

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Emotions 0.2137 0.1343 0.1415 0.1462 0.1368 0.1939 0.2030 0.2013 0.1955

Scene 0.0962 0.0587 0.0635 0.0637 0.0601 0.0909 0.0943 0.0930 0.0916

Yeast 0.2005 0.1636 0.1666 0.1690 0.1665 0.1962 0.1979 0.1995 0.1986

Birds 0.0481 0.0371 0.0404 0.0407 0.386 0.0442 0.0445 0.0460 0.0442

Genbase 0.0043 0.0015 0.0015 0.0020 0.0022 0.0023 0.0022 0.0030 0.0022

Medical 0.0153 0.0080 0.0086 0.0096 0.0083 0.0105 0.0106 0.0111 0.0107

Enron 0.052 0.0399 0.0421 0.0428 0.0443 0.0495 0.0490 0.0498 0.0501

Flags 0.3099 0.2004 0.2004 0.2004 0.2004 0.2615 0.2527 0.2396 0.2549

w/t/l – 6/2/0 7/1/0 7/1/0 – 6/1/1 7/0/1 6/2/0
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features are selected. The minimum number of the selected features among these solutions
is reported in Table 3. In fact, this table represents the smallest subset of features which
could obtain a classification with Hamming loss less than using all features. Therefore
the minimum number of test features in this table indicates that which subset of features
with minimum number of features could reach less error than all features on test subset.
In most cases, the proposed method selected a lower number of features than two
other methods. The difference between the number of selected features using the proposed
method and competitors is remarkable; e.g., the proposed method has achieved a
smaller Hamming loss than other methods on the test set of the Birds dataset using only
5 features, whereas this number is 10 in the PSO-based method and 90 in NSGA-II,
which means that the proposed method has further reduced the number of features by
one-fiftieth. In the Genbase dataset, the proposed method has decreased the number of
features to 52, while the main dataset has 1,186 features.

Results based on set-coverage metric
As mentioned in the previous section, the set coverage criterion is another measure used to
compare the proposed method with other multi-objective feature selection methods.
Table 4 shows the values of set coverage obtained by the different methods. In this table,
‘A’ indicates the proposed method, and ‘B’ is the competitor. Therefore, C (A, B) shows the
average ratio of the number of solutions obtained by the proposed algorithm in each
run that dominate the solutions of another algorithm. The mean, median, and standard
deviation of 2-set coverage values are reported on training and test data in Table 4. As
shown in the table, the proposed method achieved comparable results to the PSO-based
method on the training set but a significant improvement on the test set. The results
show that in the datasets with large numbers of features, such as Genbase, Medical, and
Enron, the proposed method achieved significantly better results than the others. For
example, on the training results in the Genbase dataset, 65% of solutions of the proposed
method dominate PSO-based solutions, while this number is just 10% for PSO-based

Table 3 Comparison on smallest feature subset with Hamming loss less than all features obtained by each method on training and test sets.
Highlighted numbers in the table indicate which method reaches smaller feature subsets on each dataset.

Datasets All
features

Minimum number of training features Minimum number of test features

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Emotions 72 2 2 14 3 14 8 20 22

Scene 294 15 15 92 48 104 141 111 85

Yeast 103 3 4 19 8 41 21 54 50

Birds 260 7 9 80 39 5 10 90 47

Genbase 1,185 73 124 528 371 52 117 513 389

Medical 1,449 121 178 616 468 146 178 617 490

Enron 1,001 18 43 404 286 41 64 410 299

Flags 19 1 1 1 1 1 1 1 1

w/t/l – 5/3/0 7/1/0 7/1/0 – 5/1/2 7/1/0 7/1/0
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solutions. Therefore, the proposed method showed a high efficiency compared to two
other algorithms for large-scale optimization problems. In comparing to NSGA-II and
MOEA/D, the proposed method achieved significantly better results on all datasets.
It means that the obtained Pareto front completely dominates obtained solutions by these
algorithms.

Similar results are repeated for the test data, whose results are more important than the
training data. For test data, the proposed algorithm had a higher 2-set coverage value than
the PSO-based algorithm in all datasets except Flags and Emotions. The difference in
most datasets is significant. On datasets like Genbase and Medical, 2-set coverage of the
proposed method is two times more than competitors. For example, in the Genbase
dataset, the proposed method dominates 60% of PSO-based solutions, while the

Table 4 Comparison on 2-set coverage indicator of training and test data. C (A, B) is the value of the 2-set coverage between the proposed
method and competitor. Highlighted numbers in the table indicate which method reaches higher coverage on each dataset.

Datasets Training data Test data

PSO-based
method (B)

NSGA-II
method (B)

MOEA/D
method (B)

PSO-based
method (B)

NSGA-II
method (B)

MOEA/D
method (B)

C (A, B) C (B, A) C (A, B) C (B, A) C (A, B) C (B, A) C (A, B) C (B, A) C (A, B) C (B, A) C (A, B) C (B, A)

Emotions Mean 0.266 0.548 1.000 0.000 0.750 0.050 0.635 0.646 0.918 0.192 0.888 0.000

Median 0.270 0.533 1.000 0.000 0.703 0.010 0.714 0.657 1.000 0.200 0.745 0.000

Std 0.111 0.103 0.000 0.000 0.103 0.110 0.245 0.149 0.121 0.080 0.216 0.000

Scene Mean 0.283 0.373 1.000 0.000 1.000 0.000 0.551 0.343 0.847 0.035 0.470 0.322

Median 0.263 0.425 1.000 0.000 1.000 0.000 0.461 0.375 0.750 0.013 0.495 0.319

Std 0.156 0.088 0.000 0.000 0.000 0.000 0.212 0.111 0.141 0.041 0.173 0.103

Yeast Mean 0.320 0.467 0.995 0.000 0.636 0.272 0.680 0.555 0.949 0.174 0.875 0.066

Median 0.295 0.483 1.000 0.000 0.620 0.301 0.659 0.580 1.000 0.171 0.837 0.060

Std 0.144 0.090 0.027 0.000 0.030 0.013 0.119 0.181 0.065 0.093 0.240 0.172

Birds Mean 0.453 0.221 1.000 0.000 1.000 0.000 0.534 0.429 0.969 0.039 1.000 0.000

Median 0.455 0.211 1.000 0.000 1.000 0.000 0.536 0.474 1.000 0.000 1.000 0.000

Std 0.238 0.123 0.000 0.000 0.000 0.000 0.311 0.144 0.096 0.059 0.000 0.000

Genbase Mean 0.651 0.108 1.000 0.000 0.714 0.000 0.606 0.167 0.996 0.000 1.000 0.000

Median 0.845 0.091 1.000 0.000 0.719 0.000 0.768 0.134 1.000 0.000 1.000 0.000

Std 0.391 0.094 0.000 0.000 0.140 0.000 0.364 0.131 0.022 0.000 0.000 0.000

Medical Mean 0.360 0.202 1.000 0.000 1.000 0.000 0.579 0.287 1.000 0.001 1.000 0.000

Median 0.333 0.205 1.000 0.000 1.000 0.000 0.638 0.302 1.000 0.000 1.000 0.000

Std 0.267 0.102 0.000 0.000 0.000 0.000 0.267 0.095 0.000 0.005 0.000 0.000

Enron Mean 0.331 0.298 1.000 0.000 1.000 0.000 0.746 0.602 0.942 0.281 1.000 0.000

Median 0.325 0.302 1.000 0.000 1.000 0.000 0.793 0.628 1.000 0.279 1.000 0.000

Std 0.190 0.069 0.000 0.000 0.000 0.000 0.224 0.042 0.120 0.032 0.000 0.000

Flags Mean 0.014 0.544 0.912 0.057 0.166 0.000 0.447 0.579 0.865 0.298 0.142 0.400

Median 0.000 0.519 1.000 0.000 0.166 0.000 0.464 0.600 1.000 0.286 0.137 0.350

Std 0.057 0.105 0.170 0.135 0.000 0.000 0.103 0.115 0.202 0.192 0.249 0.130

w/t/l – 4/0/4 – 8/0/0 – 8/0/0 – 6/0/2 – 8/0/0 – 7/0/1
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PSO-based method dominates only 16% of the others’ solutions. Regarding the NSGA-II
method, the value of the 2-set coverage of the proposed method is significantly higher than
the NSGA-II method on all datasets. The proposed method even reached 100% 2-set
coverage in the Medical dataset. It means that all solutions of the proposed method
dominated the solutions obtained by the NSGA-II algorithm at each run. Also this table
shows the compared results of 2-set coverage on MOEA/D and the proposed method. On
most of the datasets, proposed method dominates all obtained solutions using MOEA/D
algorithm. It confirms that the modification of the algorithm, specially adding the local
search, leads finding more non-dominated solutions.

Results based on hypervolume metric

The hypervolume indicator is another multi-objective measure that compares the results
of the proposed method with other algorithms. The value of this criterion was calculated
for the Pareto front obtained in each run. The comparison of the mean, median, and
standard deviation of hypervolume indicators for 40 independent runs on each dataset is
provided in Table 5. In most of the datasets, the hypervolume indicator of the proposed
method is more than 0.9, while for two other methods, all the values are less than 0.9.
For NSGA-II, the hypervolume values are between 0.5 and 0.6. The PSO-based and
MOEA/D methods outperform the proposed method in terms of the hypervolume indicator
only on the Flags dataset. Otherwise, the proposed method had significantly better results
compared to other algorithms. Therefore, as this measure indicates, the proposed method
presents well-distributed solutions that are closer to the optimal Pareto front. The ranks
computed by means of non-parametric Friedman tests are reported at the end of Table 6
based on 2-set coverage and hypervolume metric. Notice that the smallest rank corresponds
to the best-performing method.

Results based on Pareto fronts
The comparison between the best obtained Pareto fronts in different methods on training
and test sets is shown in Figs. 7 and 8. The proposed method has a better Pareto front in
most of the datasets compared to the other methods in terms of both the number of
features and the classification performance. The diversity of the obtained solutions is
one of the properties of the obtained Pareto front of the proposed method. In datasets
such as Genbase, the proposed method has a better Pareto front than other methods.
It means that, with equal numbers of features, the proposed method achieved a lower
Hamming loss. In some datasets such as Birds, Emotions, and Enron, the Pareto front
obtained from the PSO-based method has a better performance than the proposed method
only in a few regions (mostly in the middle part of the Pareto front). However, we can
see that the 2-set coverage of the proposed method is higher in most of the datasets,
according to Pareto fonts. Based on a comparison of the hypervolume indicator, it is
obvious that wider Pareto fronts lead to higher values of hypervolume on all datasets.
Furthermore, the proposed algorithm has a considerably better performance than the
NSGA-II algorithm in all datasets, and as discussed previously, all the solutions of
NSGA-II are dominated using the proposed method. NSGA-II has a smaller Pareto front
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compared to other methods. This algorithm could find just a small number of solutions in
the search space. Regarding the comparison between the proposed method and the original
version of MOEA/D, as it is presented in the plots, the proposed method obtains the wider
Pareto front with more non-dominated solutions. On most of the datasets, MOEA/D
Pareto front is placed between NSGA-II and PSO PFs (i.e., better than NSGA-II but worse

Table 5 Comparison on hypervolume indicator of training and test Pareto fronts. Highlighted numbers in the table indicate which method
reaches higher hypervolume indicator on each dataset.

Datasets Hypervolume of training Pareto front Hypervolume of test Pareto front

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Proposed
method

PSO-based
method

NSGA-II
method

MOEA/D
method

Emotions Mean 0.849 0.820 0.647 0.828 0.776 0.750 0.607 0.770

Median 0.849 0.820 0.647 0.828 0.774 0.750 0.607 0.770

Std 0.000 0.000 0.000 0.000 0.005 0.001 0.000 0.000

Scene Mean 0.932 0.780 0.324 0.783 0.898 0.752 0.313 0.758

Median 0.932 0.863 0.591 0.783 0.898 0.831 0.570 0.758

Std 0.000 0.019 0.021 0.001 0.018 0.021 0.000 0.000

Yeast Mean 0.827 0.794 0.570 0.780 0.796 0.763 0.550 0.751

Median 0.827 0.794 0.570 0.780 0.796 0.763 0.550 0.751

Std 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000

Birds Mean 0.959 0.920 0.630 0.830 0.953 0.915 0.627 0.826

Median 0.958 0.920 0.630 0.830 0.952 0.915 0.627 0.826

Std 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Genbase Mean 0.995 0.854 0.568 0.990 0.996 0.854 0.569 0.688

Median 0.995 0.854 0.568 0.990 0.995 0.854 0.569 0.688

Std 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000

Medical Mean 0.989 0.833 0.552 0.672 0.987 0.831 0.551 0.670

Median 0.989 0.833 0.552 0.672 0.987 0.831 0.551 0.670

Std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Enron Mean 0.957 0.819 0.492 0.682 0.949 0.813 0.489 0.678

Median 0.957 0.819 0.492 0.682 0.949 0.813 0.489 0.678

Std 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Flags Mean 0.781 0.786 0.736 0.785 0.731 0.731 0.687 0.737

Median 0.781 0.786 0.736 0.785 0.731 0.731 0.687 0.737

Std 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

w/t/l – 7/0/1 8/0/0 7/0/1 – 7/1/0 8/0/0 7/0/1

Table 6 Ranks of feature selection methods according to Friedman test. Highlighted numbers in the
table indicate which method reaches best rank.

Proposed method PSO-based NSGA-II MOEA/D

2-Set Coverage 1.034 2.14 2.85 2.57

Hypervolume indicator 1.012 2.26 2.73 2.52
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than PSO) while the proposed method dominates most of the obtained solutions of
those methods. It means that modification on original algorithm has improved the
performance of process of the multi-objective search. The local search strategy finds better
solutions in terms of dominance, however, MOEA/D algorithm doesn’t utilize dominance
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Figure 7 Train Pareto front on training data including (A) emotions, (B) scene, (C) yeast, (D) birds,
(E) enron, and (F) flags. Full-size DOI: 10.7717/peerj-cs.261/fig-7
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concept to select the best solutions. Therefor, as it is obvious, a combination of
decomposition and dominance can find more promising regions in the search space. This
strategy improves the exploitation power of the algorithm. On the other hand, applying a
combination of crossover operators increases the exploration power of the search
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Figure 8 Pareto front on test data including (A) emotions, (B) scene, (C) yeast, (D) birds, (E) enron,
and (F) flags. Full-size DOI: 10.7717/peerj-cs.261/fig-8
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algorithm. Another advantage of the obtained Pareto front in the proposed algorithm is
the ability of the method to search in the scope of the solutions with a low number of
features while the other two methods have not obtained such solutions. This issue is more
prominent regarding the NSGA-II algorithm, and the solutions obtained by this method
have not been as successful as the other two methods in decreasing the number of
features. The number of features in the proposed method is usually smaller than
PSO-based and NSGA-II obtained features. As it is concluded from experiments, the
proposed method can find a set of feature subsets which in multi-label classification tasks
can be used. In each multi-label classification such as all applications which are
experimented in this paper, we need to select the best features. Therefore, based on
MCDM, a set of features can be selected among subsets on the Pareto front to improve the
performance of the classification.

CONCLUDING REMARKS
Many real-world applications require multi-label classification. If more than one label
exists, feature selection plays a significant role in the performance of the multi-label
classification. The main purpose of this paper is to propose a decomposition-based
evolutionary multi-objective method for selecting optimal features in multi-label data. The
multi-objective search space is divided into several scalar subproblems so that each
subproblem can be solved using evolutionary algorithms. It yields a more effective search
process to improve the quality of the obtained solutions. To increase the efficiency of
the proposed method, a local search is used. This gives more exploitation power for finding
better feature subsets. In addition, a combination of the various crossover operators results
in more diverse solutions. The results indicate that this method achieves a better
Pareto front in most of the standard multi-label datasets compared to the other methods in
terms of both the number of features and the classification performance. Furthermore, the
progress of the results in other evaluation criteria, such as the 2-set coverage and
hypervolume indicator, represents a considerable performance improvement of the
proposed method compared to the previous methods. Despite the satisfactory
performance of the proposed method, several points are considered for future
investigations. The efficiency of the proposed algorithm can be examined in more
problems, especially in more real-world applications. In the present study, only two
objectives were evaluated. Additional objective functions may be considered in future
work. Moreover, the proposed method uses continuous genetic operators, which can be
replaced with binary operators to improve the performance.
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