
Submitted 13 February 2015
Accepted 5 June 2015
Published 24 June 2015

Corresponding author
Alexander Safatli, safatli@cs.dal.ca

Academic editor
Keith Crandall

Additional Information and
Declarations can be found on
page 6

DOI 10.7717/peerj-cs.9

Copyright
2015 Safatli and Blouin

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Pylogeny: an open-source Python
framework for phylogenetic tree
reconstruction and search space
heuristics
Alexander Safatli1 and Christian Blouin1,2

1 Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
2 Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada

ABSTRACT
Summary. Pylogeny is a cross-platform library for the Python programming
language that provides an object-oriented application programming interface for
phylogenetic heuristic searches. Its primary function is to permit both heuristic
search and analysis of the phylogenetic tree search space, as well as to enable the
design of novel algorithms to search this space. To this end, the framework supports
the structural manipulation of phylogenetic trees, in particular using rearrangement
operators such as NNI, SPR, and TBR, the scoring of trees using parsimony
and likelihood methods, the construction of a tree search space graph, and the
programmatic execution of a few existing heuristic programs. The library supports
a range of common phylogenetic file formats and can be used for both nucleotide
and protein data. Furthermore, it is also capable of supporting GPU likelihood
calculation on nucleotide character data through the BEAGLE library.
Availability. Existing development and source code is available for contribution and
for download by the public from GitHub (http://github.com/AlexSafatli/Pylogeny).
A stable release of this framework is available for download through PyPi (Python
Package Index) at http://pypi.python.org/pypi/pylogeny.

Subjects Bioinformatics, Computational Biology
Keywords Phylogenetic, Python, Heuristic, Alignment, Maximum likelihood, Library,
Combinatorial, Programming, Parsimony

INTRODUCTION
There is a need for tree manipulation, scoring, and flexible heuristic designs as part of

larger bioinformatics pipelines. Introduced here is a cross-platform library called Pylogeny

intended for heuristic search and analysis of the phylogenetic tree search space, as well as

the design of novel algorithms to search this space. This framework is written in the Python

programming language, yet it uses efficient auxiliary libraries to perform computationally

expensive steps such as scoring. As a programming interface, Pylogeny addresses the

needs of both researchers and programmers who are exploring the combinatorial problem

associated with phylogenetic trees.

The phylogenetic tree search space describes the combinatorial space of all possible

phylogenetic trees for a set of operational taxonomic units. This forms a finite graph

How to cite this article Safatli and Blouin (2015), Pylogeny: an open-source Python framework for phylogenetic tree reconstruction and
search space heuristics. PeerJ Comput. Sci. 1:e9; DOI 10.7717/peerj-cs.9

mailto:safatli@cs.dal.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.9
http://dx.doi.org/10.7717/peerj-cs.9
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://github.com/AlexSafatli/Pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://pypi.python.org/pypi/pylogeny
http://dx.doi.org/10.7717/peerj-cs.9

where nodes represent tree solutions and edges represent rearrangement between two trees

according to a given operator. Operators include Nearest Neighbor Interchange (NNI),

Subtree Prune and Regraft (SPR), and Tree Bisection and Reconnection (TBR), most of

which are implemented presently in Pylogeny (Felsenstein, 2004). These nodes can be

evaluated for fitness against sequence data. We can also evaluate properties of the space

such as location of local and global maxima, and the quantity of the latter. The presence of

multiple maxima is a confounding factor in heuristic searches which may lead to drawing

incorrect conclusions on evolutionary histories.

The source code and library requires only a small number of dependencies. Python

dependencies include NumPy (Walt, Colbert & Varoquaux, 2011), a ubiquitous numerical

library, NetworkX (Hagberg, Schult & Swart, 2008), a graph and network library, Pandas

(McKinney, 2010), a high-performance library for numerical data, and P4 (Foster, 2004), a

phylogenetic library. An additional dependency that is required is a C phylogenetic library

called libpll that underlies the RAxML application and is used to score likelihood of trees

(Stamatakis, 2014; Flouri et al., 2014). Optionally, the BEAGLE (Ayres et al., 2012) package

could be used for scoring as well. Most dependencies are automatically resolved by a single

command by installing the package from the PyPi Package Index. Primary documentation

is available on the library’s website and alongside the library. All major classes and methods

also possess documentation that can be accessed using a native command.

FEATURES
The functionality to maintain a phylogenetic landscape is implemented in the landscape

class defined in the landscape module of this library. This object interacts with a

large number of other classes and supports tree scoring using standard phylogenetic

methods. Many of the more relevant objects are tabulated and explained in Table 1. A

large coverage of unit testing has been performed on most of the major features including

tree rearrangement, heuristic exploration, and landscape construction.

The Pylogeny library can read sequence alignments and character data in formats

including FASTA, NEXUS, and PHYLIP. Tree data can only currently be read in a single

format with future implementations to allow for a greater breadth of formats. Persistence

and management of character data is performed by an alignment module, while trees are

stored by their representative string in a tree module. They can be instantiated into a richer

topology object in order to manipulate and rearrange them.

Phylogenetic tree manipulation and scoring
For the purposes of this framework, if instantiated into a topology object, phylogenetic

trees are modelled in memory as rooted. Therefore, manipulation and access of the tree

components, such as nodes and edges, presupposes a rooted structure. Unrooted trees,

either multifurcating or bifurcating, can nevertheless still be output and read. Support

is also present for splits or bipartitions (as in the bipartition object) of these trees,

required by many phylogenetic applications such as consensus tree generation (Margush &

McMorris, 1981).

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 2/8

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.9

Table 1 Overview of the basic objects in the Pylogeny library.

Class name Module name Description

alignment alignment Represents a biological sequence alignment of character data to enable phylogenetic inference and
other operations.

treeBranch base Represents a branch in a tree structure, such as a phylogenetic tree, and its associated information.

treeNode base Represents a node in a tree structure, such as a phylogenetic tree, and its associated information.

treeStructure base A collection of treeNode and treeBranch objects to comprise a tree structure.

executable executable An interface for the instantation and running of a single call of some given binary application
(in a Unix shell).

heuristic heuristic An interface for a heuristic that explores a state graph and all associated metadata.

graph landscape Represents a state graph.

landscape landscape Represents a phylogenetic tree search space, modelled as a graph.

vertex landscape Represents a single node in the phylogenetic landscape, associated with a tree, and adds conve-
nient functionality to alias parent landscape functionality.

landscapeWriter landscapeWriter Allows one to write a landscape object to a file, including alignment and tree information.

landscapeParser landscapeWriter Allows one to parse a landscape that was written to a file.

newickParser newick Allows one to parse a Newick or New Hampshire format string of characters representing a
(phylogenetic) tree.

rearrangement rearrangement Represents a movement of a branch or node on one tree to another part of that same tree.

topology rearrangement An immutable representation of a phylogenetic tree where movements can be performed to
construct new topology or tree objects.

bipartition tree Represents a bipartition of a phylogenetic tree. A branch in a phylogenetic tree defines a single
bipartition that divides the tree into two disjoint sets of leaves.

tree tree Represents a phylogenetic tree which does not contain structural information and only defines
features such as its Newick string, fitness score, and origin.

treeSet tree Represents an ordered, disorganized collection of trees that do not necessarily comprise a
combinatorial space.

Iterators can be created for visiting different elements in a tree. Unrooting, rerooting,

and other simple manipulation can also be performed on a tree. For more complex

manipulation, rearrangement operators (using the rearrangement module) can be

performed on a tree to convert it to another topology. To save memory and computation,

rearrangements are not performed unless the resultant structure is requested, storing

movement information in a transient intermediate structure. This avoids large-scale

instantiations of new topology objects when exploring the search space.

Scoring topologies using parsimony or likelihood is done by calling functions present

in the library that wrap libpll or the high-performance BEAGLE library. These software

packages are written in C or C++, the latter of which allows for increased performance by

using the Graphics Processing Unit (GPU) found in a computer for processing.

Tree search space graph construction and search
The tree search space is abstracted as a graph where a number of graph algorithms and

analyses can be performed on it. We do this by utilizing routines found in the NetworkX

library which has an efficient implementation of the graph in C. Accessing elements of

the graph can be done by iteration or by node name, and properties of the space can be

identified by function.

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 3/8

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.9

Exploring the space is done by performing rearrangements on trees as topology

objects where different methods of exploration include a range of enumeration and

stochastic-based sampling approaches. In order to make Newick strings consistent

amongst trees in a phylogenetic tree search space, an arbitrary but efficient rooting strategy

is used to avoid redundancy. Rearranging trees in the search space reroots resultant trees

to the lexicographically lowest-order taxa name. This means that different rearrangements

that lead to the same topology, with a possibly different ordering of leaves, can still be

recognized as not being a new addition to the space. Restriction on this exploration

is supported by allowing limitations on movement by disallowing breaking certain

bipartitions.

A minimal example to demonstrate constructing a landscape from an alignment file,

and finding trees in the space, is found below. The landscape is initialized with a single

tree corresponding to an approximate maximum likelihood tree as determined using the

FastTree executable (Price, Dehal & Arkin, 2010).

from pylogeny.alignment import *

from pylogeny.landscape import landscape

Open an alignment compatible with the strict

PHYLIP format.

ali = phylipFriendlyAlignment(’al.fasta’)

startTree = ali.getApproxMLTree()

Create the landscape with a root tree.

lscape = landscape(ali,starting_tree=startTree,

root=True)

Explore around that tree.

trees = lscape.exploreTree(lscape.getRoot())

The variable trees now holds a list of integers. These integers correspond to the names

of new trees that have populated our landscape object. These new trees comprise the

neighbors of the starting tree, a tree found using FastTree. One could now query the

landscape object for new information such as listing these neighbors or writing all of the

Newick strings of these trees.

See trees around the starting tree.

for i in trees: # Iterate over these.

Print their Newick strings.

print lscape.getTree(i)

Applying search space heuristics
Performing a heuristic search of the combinatorial space comprised by a phylogenetic

landscape can be done with relative ease using this library. Not only can the heuristic’s

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 4/8

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.9

steps be later analysed, the resulting space that is explored can also be later viewed

and investigated for its properties. The heuristic module has a number of already

defined approximate methods to discover the global maximum of the space, and with

understanding of the object hierarchy, one can create their own.

As an example, one could perform a greedy hill-climbing heuristic on the search

space by comparing the trees’ parsimony scores. To do this, they would instantiate a

parsimonyGreedy object from the heuristicmodule and provide an existing landscape

and tree in that landscape to initiate the climb. The minimal code to achieve a search from

the initial tree would be:

from pylogeny.alignment import alignment

from pylogeny.landscape import landscape

from pylogeny.heuristic import parsimonyGreedy

ali = Open an alignment file.

lscape = Construct a landscape.

...

h = parsimonyGreedy(lscape,lscape.getRootNode())

h.explore()

We have applied a heuristic to the landscape which has populated it with new trees.

Nothing is returned here. In order to investigate what new trees have been added, we can

query the heuristic object. Furthermore, we can access these new trees from the landscape

object.

newTrees = h.getPath() # List of tree names.

for name in newTrees:

Visit all trees found by heuristic.

tree = lscape.getTree(name)

print tree.getScore() # Print scores.

Existing phylogenetic and heuristic programs
The library supports executing other software on its objects. Implementations are present

in the framework to call on the FastTree (Price, Dehal & Arkin, 2010) and RAxML heuristics

for finding an approximate maximum likelihood tree. There is also an implementation for

the use of TreePuzzle (Schmidt et al., 2002) and CONSEL (Shimodaira & Hasegawa, 2001)

in order to acquire confidence interval of trees as defined by the Approximately Unbiased

(AU) test (Shimodaira, 2002). Further implementations can be created by extending a base

interface found in the library.

An example of code to demonstrate the use of CONSEL, to generate a confidence

interval of trees with default settings, is as follows.

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 5/8

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.9

from pylogeny.alignment import alignment

from pylogeny.executable import consel

ali = Open an alignment file.

trees = A set of trees (e.g., a landscape).

...

AUTest = consel(trees,ali,’AUTestName’)

interval = AUTest.getInterval()

We now have a treeSet, or collection, of tree objects assigned to the variable interval

which have been deemed to be significant and relevant.

OTHER LIBRARIES
Other Python libraries that perform similar tasks to this framework include DendroPy

(Sukumaran & Holder, 2010), ETE, and the P4 Phylogenetic Library. Elements of alignment

management and tree manipulation are present in all three of these libraries, but none

of them allow for the manipulation and heuristic search of a combinatorial space of

phylogenetic trees. There remains a deficiency for this functionality across many languages,

Python included. Despite this, this framework can serve to work alongside such libraries

for further power.

DendroPy possesses a number of metrics and other tree operations that are not present

in Pylogeny. This library supports translating its tree structure to the structure found

in DendroPy. Therefore, these operations can still be accessed. Similarly, ETE allows

for a number of rich visualization techniques not possible with this framework that can

also be accessed in such a manner. A small part of the Pylogeny library is built on the P4

Phylogenetic Library and the P4 library performs a number of operations that are found in

this framework, such as scoring and manipulation of trees. We, however, did not find P4 as

flexible an API as it appears to be designed for scripting and for work in a terminal rather

than as a component of a larger application. For example, P4 likelihood calculations are

printed to the standard output rather than returned from a function.

ACKNOWLEDGEMENTS
The authors thank Professor R. Beiko and the members of Dr. Beiko’s Lab in Dalhousie

University for some helpful suggestions. The members of the Blouin Lab are also

acknowledged for helpful comments and critical review of this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by NSERC Discovery Grant No. 120504858. The funders had no

role in study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 6/8

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.9

Grant Disclosures
The following grant information was disclosed by the authors:

NSERC Discovery: 120504858.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Alexander Safatli performed the experiments, wrote the paper, prepared figures and/or

tables, performed the computation work, reviewed drafts of the paper.

• Christian Blouin reviewed drafts of the paper, provided advice and supervision.

Data Deposition
The following information was supplied regarding the deposition of related data:

GitHub: https://github.com/AlexSafatli/Pylogeny.

REFERENCES
Ayres DL, Darling A, Zwickl DJ, Beerli P, Holder MT, Lewis PO, Huelsenbeck JP, Ronquist F,

Swofford DL, Cummings MP, Rambaut A, Suchard MA. 2012. Beagle: an application
programming interface and high-performance computing library for statistical phylogenetics.
Systematic Biology 61(1):170–173 DOI 10.1093/sysbio/syr100.

Felsenstein J. 2004. Inferring phylogenies. vol. 2. Sunderland: Sinauer Associates.

Flouri T, Izquierdo-Carrasco F, Darriba D, Aberer A, Nguyen L-T, Minh B, von Haeseler A,
Stamatakis A. 2014. The phylogenetic likelihood library. Systematic Biology
DOI 10.1093/sysbio/syu084.

Foster PG. 2004. Modeling compositional heterogeneity. Systematic Biology 53(3):485–495
DOI 10.1080/10635150490445779.

Hagberg AA, Schult DA, Swart PJ. 2008. Exploring network structure, dynamics, and function
using NetworkX. In: Proceedings of the 7th Python in science conference (SciPy2008), Pasadena,
CA, USA, 11–15.

Margush T, McMorris FR. 1981. Consensus n-trees. Bulletin of Mathematical Biology
43(2):239–244.

McKinney W. 2010. Data structures for statistical computing in Python. In: Van der Walt S,
Millman J, eds. Proceedings of the 9th Python in science conference. 51–56.

Price MN, Dehal PS, Arkin AP. 2010. Fasttree 2–approximately maximum-likelihood trees for
large alignments. PLoS ONE 5(3):e9490 DOI 10.1371/journal.pone.0009490.

Schmidt HA, Strimmer K, Vingron M, von Haeseler A. 2002. Tree-puzzle: maximum likelihood
phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504
DOI 10.1093/bioinformatics/18.3.502.

Shimodaira H. 2002. An approximately unbiased test of phylogenetic tree selection. Systematic
Biology 51(3):492–508 DOI 10.1080/10635150290069913.

Shimodaira H, Hasegawa M. 2001. Consel: for assessing the confidence of phylogenetic tree
selection. Bioinformatics 17(12):1246–1247 DOI 10.1093/bioinformatics/17.12.1246.

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 7/8

https://peerj.com/computer-science/
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
https://github.com/AlexSafatli/Pylogeny
http://dx.doi.org/10.1093/sysbio/syr100
http://dx.doi.org/10.1093/sysbio/syu084
http://dx.doi.org/10.1080/10635150490445779
http://dx.doi.org/10.1371/journal.pone.0009490
http://dx.doi.org/10.1093/bioinformatics/18.3.502
http://dx.doi.org/10.1080/10635150290069913
http://dx.doi.org/10.1093/bioinformatics/17.12.1246
http://dx.doi.org/10.7717/peerj-cs.9

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
phylogenies. Bioinformatics DOI 10.1093/bioinformatics/btu033.

Sukumaran J, Holder MT. 2010. Dendropy: a Python library for phylogenetic computing.
Bioinformatics 26(12):1569–1571 DOI 10.1093/bioinformatics/btq228.

Walt SVD, Colbert SC, Varoquaux G. 2011. The numpy array: a structure for efficient numerical
computation. Computing in Science & Engineering 13(2):22–30 DOI 10.1109/MCSE.2011.37.

Safatli and Blouin (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.9 8/8

https://peerj.com/computer-science/
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1093/bioinformatics/btq228
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.7717/peerj-cs.9

	Pylogeny: an open-source Python framework for phylogenetic tree reconstruction and search space heuristics
	Introduction
	Features
	Phylogenetic tree manipulation and scoring
	Tree search space graph construction and search
	Applying search space heuristics
	Existing phylogenetic and heuristic programs

	Other Libraries
	Acknowledgements
	References

