
GWRA: grey wolf based reconstruction
algorithm for compressive sensing signals
Ahmed Aziz1, Karan Singh2, Ahmed Elsawy1, Walid Osamy1 and
Ahmed M. Khedr3

1 Computer Science Department, Faculty of Computers and Artificial Intelligence, Benha
University, Benha, Egypt

2 School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
3 Department of Computer Science, University of Sharjah, Sharjah, UAE, United Arab Emirates

ABSTRACT
The recent advances in compressive sensing (CS) based solutions make it a promising
technique for signal acquisition, image processing and other types of data compression
needs. In CS, the most challenging problem is to design an accurate and efficient
algorithm for reconstructing the original data. Greedy-based reconstruction
algorithms proved themselves as a good solution to this problem because of their fast
implementation and low complex computations. In this paper, we propose a new
optimization algorithm called grey wolf reconstruction algorithm (GWRA). GWRA
is inspired from the benefits of integrating both the reversible greedy algorithm
and the grey wolf optimizer algorithm. The effectiveness of GWRA technique is
demonstrated and validated through rigorous simulations. The simulation results
show that GWRA significantly exceeds the greedy-based reconstruction algorithms
such as sum product, orthogonal matching pursuit, compressive sampling matching
pursuit and filtered back projection and swarm based techniques such as BA and
PSO in terms of reducing the reconstruction error, the mean absolute percentage
error and the average normalized mean squared error.

Subjects Artificial Intelligence, Computer Networks and Communications, Network Science and
Online Social Networks
Keywords Average normalized mean squared error, Compressive sensing, Greedy-based
reconstruction algorithm, Grey wolf optimizer, Mean absolute percentage error, Reconstruction
algorithms

INTRODUCTION
Exploiting the sparse nature of the signals is highly challenging in various signal processing
applications such as signal compression, inverse problems and this motivated the
development of compressive sensing (CS) methodologies (Donoho, 2006). CS provides an
alternative new method of compressing data, offering a new signal sampling theory which
we can adopt in variety of applications including data and sensor networks (Cevher &
Jafarpour, 2010), medical systems, image processing and video camera, signal detection,
analog-to-digital convertors (Choi et al., 2010) and several other applications.

The CS reconstruction problems are solved by convex algorithms and greedy algorithms
(GAs). Convex algorithms are not efficient because they require high complex computations.
Thus, most of researchers choose GAs, which are faster and give the same performance
as convex algorithms in terms of minimum reconstruction error. On the other hand, GAs do
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not give a global solution as all heuristics algorithms that execute blind search and usually stuck
on local optima. In this paper, we use grey wolf optimizer (GWO), which is considered as
a meta heuristic algorithm that is prominent in finding global solution. Only a few works
involving swarm algorithms have been proposed to solve CS reconstruction problem such as in
Bao et al. (2018) andDu, Cheng & Liu (2013)where the authors used BAT and PSO algorithms
to reconstruct the CS data. However, these two algorithms (Bao et al., 2018; Du, Cheng &
Liu, 2013) have a number of drawbacks such as slow convergence velocity and tend to fall in
local optimum status easily. In contrast, the GWO algorithm showed better performance than
other swarm optimization algorithms (Mirjalili, Mohammad Mirjalili & Lewis, 2014).

PROBLEM FORMULATION
Consider x[n], where n = 1, 2 : : : N, denotes sensor nodes reading vector set, N represents
the count of sensor nodes. Any individual signal in RN can be expressed using basis of N� 1
vectors {�i}i=1

N . Employing the basis N � N matrix, expressed as =[�1|�2|�3|....|�N],
together with the vectors�i being the columns, we can represent the signal x as given below
(Donoho, 2006):

x ¼
XN
i¼1

gi �i: (1)

This representation is done in terms of N � N orthonormal basis transform matrix.
Here, g denotes the N � 1 sparse presentation of x. CS focuses on signals with a sparse
representation. The number of basis vectors of x is S, such that S << N. Also we have,
(N - S) values of g are zeros and only S values are non-zeros. Using Eq. (1), the compressed
samples y (compressive measurements) can be obtained as:

y ¼ fx ¼ f�g ¼ ug: (2)

Here, the compressed samples vector y ∈ RM, with M << N and θ is M � N matrix.
The challenge of solving an undetermined set of linear equations have motivated the

researchers to investigate upon this problem and as a result, diverse practical applications
emerged to meet this challenge. In CS approach, the main responsibility is to offer an
efficient reconstruction method enabling the recovery of the large and sparse signal with
the help of a few available measurement coefficients. The reconstruction of signal using
this available incomplete set of measurements is really challenging and relies on the sparse
representation of signal. An easiest approach for recovering the original inherent sparse
signal using its small set of linear measurements as shown in Eq. (2) is to compute the
number of non-zero entries obtained by solving ‖L‖0 minimization problem. The
reconstruction problem can thus be expressed as

x ¼ arg min xk k0 subject to y ¼ fx (3)

The ‖L‖0 minimization problem works well in theoretical aspects, but in general, it is an
NP-hard problem (Mallat & Wavelet, 1999; Candes & Tao, 2006) and hence Eq. (3) is
computationally intractable for any vector or matrix.
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The main task involved in CS is to reconstruct the compressed sparsely sampled signal,
involving solutions to an undetermined set of linear equations, with undefined set of
solutions. Therefore, an efficient reconstruction algorithm is required to recover the inherent
sparse signal. Main aim of signal reconstruction procedure is to evaluate the possible
solutions derived from the inverse equation defined above so that it is possible to find the
most appropriate estimate of the original sparse signal. The original signal reconstruction
problem can be viewed as an optimization problem and numerous algorithms have been
proposed with this intention. According to the CS method, the reconstruction
algorithms for recovering the original sparse signal can be broadly categorized into two
types: (i) convex relaxation, (ii) GA. Convex relaxation based optimization corresponds
to a class of algorithms which make use of linear programming approach to solve the
reconstruction problem. These techniques are capable of finding optimal/near optimal
solutions to the reconstruction issues, but they have relatively high computational
complexity. The examples for such algorithms are least absolute shrinkage and selection
operator, basis pursuit and basis pursuit de-noising. In order to overcome the computational
complexity of recovering the sparse signal, a family of GA/iterative algorithms have
been introduced. GA solves the reconstruction problem in greedy/iterative fashion,
with reduced complexity (Chartrand & Yin 2008). Therefore, GA is more adoptable
for signal reconstruction in CS. GA techniques are classified into two categories: (i)
reversible, (ii) irreversible. Both of them follows identical steps, detects the support-set
making use of matched filter (MF) and after that constructs the original sparse signal
using least squares (LS) method. In reversible GA, an element inserted to the support-set
can be removed anytime, following a backward step. However, in irreversible GA, an
element inserted to the support-set will remain there until the search ends. Examples
for reversible GA includes sum product (SP; Dai & Milenkovic, 2009), compressive
sampling matching pursuit (CoSaMP; Needell & Tropp, 2009) etc., whereas orthogonal
matching pursuit (OMP; Tropp & Gilbert, 2007) belongs to the class of irreversible
GA algorithms.

The authors of Mirjalili, Mohammad Mirjalili & Lewis (2014) proposed a swarm
intelligent technique, GWO, well tested with 29 benchmark functions. The benchmark
functions used are minimization functions and are divided into four groups: unimodal,
multimodal, fixed-dimension multimodal and composite functions. The GWO algorithm
is compared to PSO as an SI-based technique and GSA as a physics-based algorithm.
In addition, the GWO algorithm is compared with three EAs: DE, fast evolutionary
programing and evolution strategy with covariance matrix adaptation. The results showed
that GWO is able to provide highly competitive results compared to well-known heuristics
such as PSO, GSA, DE, EP and ES. First, the results on the unimodal functions showed
the superior exploitation of the GWO algorithm. Second, the exploration ability of
GWO is confirmed by the results on multimodal functions. Third, the results of the
composite functions showed high local optima avoidance. Finally, the convergence analysis
of GWO confirmed the convergence of this algorithm. Finding the global optimum
precisely requires balancing the exploration and exploitation (i.e., good equilibrium) and
this balance can be achieved using GWO (Faris et al., 2018).
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Here, we propose a new grey wolf based reconstruction algorithm (GWRA) for CS
signal reconstruction. GWRA algorithm is inspired from the GWO and the reversible GA.
GWRA has two forward steps (GA forward and GWO forward) and one backward step.
During the first iteration, GWRA matches filter detection to initialize the support set
(GA forward step) and adds q elements to it. Then, GWRA increases the search space in
this iteration by selecting extra K elements depending on GWO algorithm (GWO forward
step) and then solves the LS equation to select the best k elements from q + K elements
(backward step).

Summary of the contributions in this paper:

1. Develop a novel reconstruction algorithm based on grey wolf optimizer (GWRA) that:
(a) utilizes the advantages of GAs to initialize the forward steps and (b) utilizes the
advantages of GWO algorithm that enlarges the search space to determine the optimal
output and recover the data.

2. Provide extensive experiments, and the subsequent results illustrate that GWRA exhibit
high performance results than the existing techniques in terms of reconstruction error.

The rest of this paper is divided as follows: the related research of the proposed problem
is described in the section “Related Research.” In the section “Grey Wolf Optimizer
Background” presents the GWO background. Then in section “Grey Wolf Reconstruction
Based Algorithm,” we introduce our method to solve the proposed problem with the
illustration of a numerical example scenario. The simulation results of our approach and a
case study scenario is given in the section “Simulation Results.” Finally, the paper is
concluded in the section “Conclusion.” Table 1 explains the abbreviations which are used
this manuscript. Table 2 shows the notations used throughout the paper.

RELATED RESEARCH
Compressive sensing has become an attractive approach, convenient for use in internet of
things (IoT) platforms, which utilizes the sparse nature of sensor signals. The signal is
compressed (reduce signal dimension) from N toM such thatM << N, which will result in

Table 1 The following abbreviations are used in this manuscript.

CS Compressive sensing

IoT Internet of things

MAPE Mean absolute percentage error

GA Greedy algorithm

ANMSE Average normalized mean squared error

CoSaMP Compressive sampling matching pursuit

OMP Orthogonal matching pursuit algorithm

GWO Grey wolf optimizer

MP Matching pursuit

FBP Filtered back projection

SP Sum-product algorithm

BP Basis pursuit
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transmission of fewer samples, making it suitable for IoT applications that hold continuous
data. The main challenge in CS approach is to provide reconstructed signal with an
acceptable quality. Several reconstruction algorithms have been developed to meet this
requirement. The convex reconstruction approach converts the problem defined in Eq. (3)
to convex optimization problem, replacing non-convex L0 minimization problem with
convex L1, as defined in Eq. (4).

x ¼ arg min xk k1 subject to y ¼ fx (4)

Equation (4) is then solved using the L1-magic toolbox (Davenport et al., 2010) or any
such problem solvers or using any linear programming methods. Although these techniques
are capable of finding optimal/near optimal solutions to the reconstruction issues, the
relatively high computational complexity make them inappropriate for IoT applications.

On the other hand, GA-based algorithms could be suitable for IoT networks, as they
solve the reconstruction problem with low computation and reduced complexity. In
Mallat & Zhang (1993) matching pursuit algorithm (MP) is considered as the first GA
based algorithm in which the support-set is initialized by the index of the largest

Table 2 Table of notations.

Notation Description

x Original signal

M Number of measurements

y Compressed sample

f CS matrix

� Transform matrix

K Signal sparsity level

g Sparse presentation of x

r Residual of y

X Wolf position

Xp Prey position

q Number of selected columns by Wolf algorithm

Xa a Wolf position

Xβ β Wolf position

Xd d Wolf position

R Support set

C Search set

4c Sub-matrix contains columns with indices c from 4 matrix

best Best solution or Xa

Secbest Second best solution or Xβ

thirbest Third best solution or Xd

f Fitness value

x′ Estimated solution

t Number of iterations

† Pseudo-inverse

L Indices set of largest K magnitude entries in ’c
yy
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magnitude entries in 4Ty, this step is called forward step and then it solves the LS
problem. However, MP algorithm does not consider the non-orthogonality of the CS
matrix which leads to incorrect selection to the columns corresponding to the non-zero
values. This drawback has been solved by OMP algorithm (Tropp & Gilbert, 2007). The
OMP algorithm selects the index of the largest magnitude entries in 4Tr during
each iteration, where r is the residual of y, and then solves the LS problem. Different
algorithms have been proposed based on OMP algorithm as in Donoho et al. (2012) and
Needell & Vershynin (2009). In Donoho et al. (2012), a faster and enhanced version of
OMP called stagewise OMP (StOMP) is proposed. StOMP enhances the forward step
of OMP by selecting a number of columns, instead of one column as in OMP, the
magnitude values of the columns in 4Tr are greater than a threshold and then uses these
columns for solving the LS problem. In Needell & Vershynin (2009), in each iteration,
the inner-products with similar magnitudes are grouped into sets and the maximum
energy set is then selected.

The above algorithms are classified as irreversible GA class, as they do not have a
backward step. Backward step allows the algorithm to remove the wrong selection of
elements during the forward step, i.e., in these algorithms, once an element is inserted to
the support-set this element remains there until the search ends.

However, in reversible GAs such as SP (Dai & Milenkovic, 2009), IHT (Cevher &
Jafarpour, 2010), CoSaMP (Needell & Tropp, 2009) and filtered back projection (FBP;
Burak & Erdogan, 2013) algorithms, backward step is used to prune the wrong elements
that have been added to the support-set during the forward step.

In CoSaMP and SP, initialization of support-set is done by placing the indices of b
largest-magnitude components of F′y. The size of b is different in each algorithm, for
example, b = K in SP and b = 2K in CoSaMP where the value of sparsity level K is known.
On the other hand, FBP (Burak & Erdogan, 2013) algorithm has the ability to perform
without the knowledge of K. It assigns forward and backward step size depending on the
measurements size. In Cevher & Jafarpour (2010), the IHT algorithm considers iterative
gradient search algorithm which updates the estimate-set depending on e gradient of the
residue and keeps only the largest K entries by removing the wrong selection.

Even though GA based reconstruction have become significantly popular for recovery
of CS signals, in general they do not provide optimal solution to the problem of CS
reconstruction (Du, Cheng & Chen, 2014).

In Bao et al. (2018), the authors utilized the efficiency of the swarm algorithm BAT in
finding the optimal solution of CS reconstruction problem. Also, in Du, Cheng & Liu
(2013), PSO algorithm is used for CS data reconstruction. The results showed that
GWO is able to provide highly competitive results compared to well-known heuristics
algorithms such as PSO, GSA, DE, EP and ES (Mirjalili, Mohammad Mirjalili & Lewis,
2014). In contrast, the GWO algorithm displays better performance than other swarm
optimization algorithms. Here, we introduce a new technique (GWRA), integrating the
advantages of both GA and GWO in determining the optimal output for the desired
problem of CS reconstruction.
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GREY WOLF OPTIMIZER BACKGROUND
Grey wolf optimizer can be defined as an intelligent meta-heuristic approach, inspired by
group hunting behavior of grey wolves (Mirjalili, Mohammad Mirjalili & Lewis, 2014).
The GWO method simulates the social behavior and hierarchy of grey wolves
and their hunting method. The hierarchal leadership divides the grey wolves into four
categories: (i) alpha (a), (ii) beta (β), (iii) delta (d) and (iv) omega (v) as shown in Fig. 1.

The a grey wolves are principally the leaders of their strict dominant hierarchy, responsible
and powerful for decision making and leads the whole group during hunting, feeding,
migration etc. The subordinates of alpha wolves are called βwolves and they are placed on the
second level of the grey wolves’ hierarchy. They act as advisors and help the alpha wolves in
making decisions. Finally, d wolves execute alpha and beta wolves’ decision and manage v
wolves which are considered as the lowest ranking members of grey wolves hierarchy.

In GWO, a, β and d guide the optimization process, where GWO considers the best
solution and position for a wolves. In addition, the second and third best solutions and
positions are assigned for β and d, respectively. The other solutions are called v solutions
which always follow the solution of the other three wolves.

The mathematical representation of surrounding the prey and hunting process in GWO
algorithm can be modelled as follows:

Surrounding the prey
In the hunting process, the first step of grey wolves is “surrounding the prey,” which can be
expressed mathematically as:

D ¼ CXp � x tð Þ�� �� (5)

X t þ 1ð Þ ¼ Xp � AD (6)

Equation (5) expresses the distance between the wolf and the prey, where X is the wolf
position, Xp is the prey position, t denotes the current iteration and C is coefficient
vector which can be calculated using Eq. (7). The wolf ’s position is updated using Eq. (6),
where A denotes the coefficient vector and it can be calculated using Eq. (8).

C ¼ 2r2 (7)

A ¼ 2ar1 � a (8)

Figure 1 Grey wolfs’ hierarchal leadership (Faris et al., 2018).
Full-size DOI: 10.7717/peerj-cs.217/fig-1
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Here, r1 and r2 are random values in [0, 1] and the values of a’s linearly decrease from 2
to 0 in each iteration.

GWO hunting process
After surrounding prey process, a, β and d wolves lead the hunting process. During the
hunting process, GWO preserves the first three best solutions (according to their fitness
values) for a, β and d, respectively and according to the position of wolves a, β and d, the other
search agents (v) estimates their positions. Then, they start to attack the prey. The behavior of
this process can be represented mathematically as in Eqs. (9–11) (Faris et al., 2018):

Da ¼ C1Xa � Xj j;Db ¼ C2Xb � X
�� ��;Dd ¼ C3Xd � Xj j (9)

X1 ¼ Xa � A1Da; X2 ¼ Xb � A2Db; Xd ¼ Xd � A3Dd (10)

X t þ 1ð Þ ¼ X1 þ X2 þ X3

3
(11)

After updating the positions of all wolves, the hunting process starts the next iteration to find
the new best three solutions and repeat this process until the stopping condition is satisfied.

Algorithm 1 presents the GWO technique.

GREY WOLF RECONSTRUCTION BASED ALGORITHM
In this section, the proposed GWRA is described. GWRA can be used by the base station to
reconstruct the sensors readings again. GWRA algorithm is inspired from the GWO
algorithm and the reversible GA. GWRA has two forward steps (GA forward and GWO
forward) and one backward step. In the first iteration, GWRA starts like any GA by

Algorithm 1 GWO Algorithm

1: Initialize the grey wolf population Xi (i = 1, 2, 3, : : : ,n) and t = 1.

2: Initialize C, a, and A using Equations (7) and (8).

3: Calculate the fitness of each search agent.

4: Put the best search agent as Xa,

the second best search agent as Xβ and

the third best search agent as Xd.

5: while (t < Max number of iterations)

6: for each search agent

7: Modify the current search position using Equation (11).

8: end for

9: Update a, A, and C.

10: Calculate the fitness of all search agents.

11: Modify Xa, Xβ and Xd.

12: t = t + 1.

13: end while

14: return Xa.
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initializing the support-set R with q elements using MF detection (GA forward step).
GWRA increases the search space (search set C) by selecting extra K elements depending
on GWO algorithm (GWO forward step). Then, GWRA solves the LS equation to select the
best k elements from q + K elements (backward step).

Figure 2 GWRA algorithm flow chart. Full-size DOI: 10.7717/peerj-cs.217/fig-2
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At the end of this iteration, GWRA updates the support-set R with these K elements.
From the second iteration, GWRA depends only on GWO forward step to select new
k elements and add them to C, i.e., C has 2 � K elements in search space in each iteration
to select the best k elements till it reaches the maximum number of iterations. Flow chart of
GWRA is shown below in Fig. 2.

The difference between GWRA and the other reversible GA like CoSaMP (Needell &
Tropp, 2009) and SP (Dai & Milenkovic, 2009) algorithm is that in each iteration, GWRA
uses the strength of GWO algorithm to find the best k according to their fitness values
that leads the search toward the optimal solution. GWRA consists of two phases:
initialization and reconstruction, as described below.

Initialization phase
Grey wolf reconstruction algorithm performs the following initialization in this phase:

[1]. Initialize the support-set R with indices of 4T columns that corresponds to the largest q
magnitude components in H, where H = 4Ty.

[2]. Initialize the size of q to M/2 - K depending on the fact “CS reconstruction problem
can be resolved if the sparsity level K�M/2” [2]. Initializations [1] and [2] will be executed
only once at the beginning of the GWRA.

[3]. Represent the search agents (wolves) positions as matrix Xi � j, where i = number of
wolves and j = K. Each value of this matrix is a randomly selected integer [1, N], where N
denotes the count of columns in 4, where each number represents an index of a column in
f without duplication.

[4]. Initialize Xa, Xβ and Xd as vector 1 � K all of its components equal to 0s.

[5]. Initialize best = Secbest = thirbest = infinity.

[6]. Initialize outer-loop iteration t = 1.

[7]. Initialize the stopping threshold ε = 10-5.

[8]. Initialize the estimated solution x′ = ø.

Reconstruction phase
The details of the reconstruction phase are described as given below:

[1]. For each row i in matrix X do the following:

a. Create the search set C, where C = R ∪ {Row #i of Xi � j}.

b. Create the sub-matrix 4c from the CS matrix f. 4c includes the columns
corresponding to the indices in C.

c. Create the set I as the K indices in C that have largest amplitude components of 4c
†y.

d. Create sub-matrix L = fI, the columns of matrixf that corresponds to indices in set I
(backward step).

e. Calculate the fitness value f(L), GWRA uses the same fitness function in Du, Cheng &
Chen (2014) which can be expressed as follows:

f Lð Þ ¼ LLyy � yk��
2

(12)
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f. If best > f(L), then best = f(L) and Xa = I.

g. Otherwise if best < f(L) and Secbest > f(L), then Secbest = f(L) and Xβ = I.

h. Otherwise if best < f(L), Secbest < f(L) and thirbest > f(L), then thirbest = f(L) and Xd = I.

i. Set R = I.

[2].Updating wolves position: This step updates each search agent’s position according to
Eq. (11). The matrix X is updated according to the new position of Xa, Xβ and Xd.

[3]. In order to keep the values of Matrix X as integer values between [1, N], we modified
Eq. (11) as follows:

X t þ 1ð Þ ¼ Ceil Mod X1þX2þX3
3 ;N

� �� �
(13)

[4]. Check if t (the number of iterations) is less than the maximum count of iterations tmax

or best > ε where ε = 10-5, then t = t + 1 and go to [1] else stop and return x′ where x′I = L†y
and x′S-I = 0 where S = [1, 2 : : : N].

Algorithm 2 presents the GWRA algorithm.

Example scenario
For clarification, we illustrate the actions of GWRA using the following example:

Input: matrix f6 � 10 (M = 6 and N = 10) with elements generated from uniform
distribution, y = fx ∈ R6 is the compressed samples and the sparsity level K = 2.

Output: estimated signal x′.

f6 � 10 ¼
0:023 0:275 0:364 0:249 0:150 0:983 0:525 0:9753 0:824 0:075

0:489 0:847 0:207 0:287 0:561 0:412 0:456 0:972 0:360 0:592

0:945 0:804 0:847 0:155 0:271 0:502 0:194 0:306 0:541 0:970

0:967 0:062 0:979 0:609 0:606 0:266 0:214 0:739 0:753 0:573

0:853 0:594 0:374 0:156 0:973 0:260 0:713 0:773 0:850 0:974

0:181 0:483 0:452 0:460 0:357 0:339 0:549 0:538 0:911 0:598

0
BBBBBBBB@

1
CCCCCCCCA
;

y ¼

0:106

0:560

0:560

0:784

0:973

0:303

2
666666664

3
777777775
; x ¼

0:408

0

0

0

0:641

0

0

0

0

0

2
6666666666666666664

3
7777777777777777775
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Initialization phase execution

1. Support-set R = {10}, the indices of columns of f that correspond to the largest q(= 1)
amplitude components in H = 4Ty, where q ¼ M=2� K ¼ 1.

Algorithm 2 GWRA

1: Input: CS matrix fM � N, measurement vector y and sparsity level K.

2: Output: estimated solution set x′:

Initialization phase:

3: R ≜ {indices of the q largest magnitude entries in 4Ty}.

4: Initialize the grey wolf population matrix Xi � K with random integers between [1, N].

5: Xa = zeros (1, K), Xβ = zeros (1, K), Xd = zeros (1, K).

6: best = Secbest = thirbest = ∞.

7: x′ = ø, ε = 10-5 and t = 1.

Reconstruction phase:

8: while (t < tmax||best > ε)

9: for each row i of the matrix Xi � K do

10: C = Union(R, Row #i of Xi � j)

11: I ≜ {indices of the K largest magnitude entries in 4c
† y}.

12: L = 4I.

13: Calculate the fitness value f(L) using Equation 12.

14. If(best > f(L)), then

15: Xa = I,

16: Else If (best < f(L) && Secbest > f(L)), then

17: Secbest = f(L) and Xβ = I.

18: Else If (best < f(L) && Secbest < f(L) && thirbest > f(L)), then

19: thirbest = f(L) and Xd = I.

20: End If

21: Set R = I.

22: end for

23: Wolf positions updating step:

24: Update a, A, and C

25: for each search agent

26: Update the position of the current search agent by Equation (13).

27: end for

28: t = t + 1

29: End while

30: return x′ where x′I = L†y and x′S-I = L†y where S = [1, 2 : : : N].

Aziz et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.217 12/25

http://dx.doi.org/10.7717/peerj-cs.217
https://peerj.com/computer-science/


H ¼

0:023 0:275 0:364 0:249 0:150 0:983 0:525 0:9753 0:824 0:075

0:489 0:847 0:207 0:287 0:561 0:412 0:456 0:972 0:360 0:592

0:945 0:804 0:847 0:155 0:271 0:502 0:194 0:306 0:541 0:970

0:967 0:062 0:979 0:609 0:606 0:266 0:214 0:739 0:753 0:573

0:853 0:594 0:374 0:156 0:973 0:260 0:713 0:773 0:850 0:974

0:181 0:483 0:452 0:460 0:357 0:339 0:549 0:538 0:911 0:598

0
BBBBBBBB@

1
CCCCCCCCA

T

0:106

0:560

0:560

0:784

0:973

0:303

2
666666664

3
777777775
¼

2:450

1:729

1:899

1:044

2:014

1:181

1:450

2:316

2:288

2:464

2
6666666666666666664

3
7777777777777777775

2. Matrix Xi � K, where i = number of search agents (= 5) and K = 2, will be initialized as
follows:

X5� 2 ¼

5 7
8 6
9 2
2 4
8 2

0
BBBB@

1
CCCCA

3. Initialize Xa, Xβ and Xd as Xa = [0 0], Xβ = [0 0] and Xd = [0 0].
best = Secbest = thirbest =∞. Number of the outer-loop iteration is initialized to t = 1
and the estimated solution x′ = ø.

Reconstruction phase execution

1. For each row i in the matrix do: when i = 1

○ C ¼ R [ frow 1 of X5�2g ¼ f10; 5; 7g;
○ Create the sub-matrix fc by selecting the columns from f which correspond to the

indices in C.

ϕc¼ 5; 7; 10f g ¼

0:150 0:525 0:075
0:561 0:456 0:592
0:271 0:194 0:970
0:606 0:214 0:573
0:973 0:713 0:974
0:357 0:549 0:598

0
BBBBBB@

1
CCCCCCA

Aziz et al. (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.217 13/25

http://dx.doi.org/10.7717/peerj-cs.217
https://peerj.com/computer-science/


○ The set I will be created as the indices of the largest K(= 2) amplitude components
in fc

†y:

ϕc¼ 5; 7; 10f g
yy ¼

0:150 0:525 0:075
0:561 0:456 0:592
0:271 0:194 0:970
0:606 0:214 0:573
0:973 0:713 0:974
0:357 0:549 0:598

0
BBBBBB@

1
CCCCCCA

y 0:106
0:560
0:560
0:784
0:973
0:303

2
6666664

3
7777775
¼

0:927
0:300
0:338

2
4

3
5

i.e., I = {5, 10}. And then we create the sub-matrix

L ¼ ϕI ¼

0:150 0:075
0:561 0:592
0:271 0:970
0:606 0:573
0:973 0:974
0:357 0:598

0
BBBBBB@

1
CCCCCCA

○ Using Eq. (12), the fitness value f(L) of the sub-matrix will be 0.233.

○ Since best > f(L), best = 0.233, Xa = {5, 10}.

2. Repeating the same steps for all rows (i = 2, 3, 4, 5) of X, we will have best = 0.233,
Xa = I = {5, 10}. R will be updated as R = I = {5, 10}.

3. Using Eq. (13), the updated position matrix X will be:

X5 � 2 ¼

1 8
6 3
4 8
7 9
7 6

0
BBBB@

1
CCCCA

4. Since the stop criteria are not satisfied, the iteration number will be updated t = t + 1
and execute Reconstruction phase as follows:
For each row i in the matrix do: (when i = 1)

○ C = R ∪ {row 1 in X} = {10, 5, 1, 8},

○ Create the sub-matrix fc by selecting the columns from matrix f that correspond to
indices in C.

ϕc¼ 1; 5; 8; 10f g ¼

0:023 0:150 0:9753 0:075
0:489 0:561 0:972 0:592
0:945 0:271 0:306 0:970
0:967 0:606 0:739 0:573
0:853 0:973 0:773 0:974
0:181 0:357 0:538 0:598

0
BBBBBB@

1
CCCCCCA
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○ Create the set I as the indices of the largest K amplitude components in ϕc
yy:

ϕc
yy ¼

0:023 0:150 0:9753 0:075
0:489 0:561 0:972 0:592
0:945 0:271 0:306 0:970
0:967 0:606 0:739 0:573
0:853 0:973 0:773 0:974
0:181 0:357 0:538 0:598

0
BBBBBB@

1
CCCCCCA

y 0:106
0:560
0:560
0:784
0:973
0:303

2
6666664

3
7777775
¼

0:408
0:641
0:2338
0:2254
0:3215

2
66664

3
77775

i.e., I = {1, 5}.

○ The sub-matrix L will be:

L ¼ fI ¼

0:023 0:150
0:489 0:561
0:945 0:271
0:967 0:606
0:853 0:973
0:181 0:357

0
BBBBBB@

1
CCCCCCA

○ Using Eq. (12), the fitness value f(L) of the sub-matrix L will be 10-16.

○ Since best > f(L), then best = 10-16, Xa = {1, 5}.

5. Repeating the same steps for every row of X (i = 2, 3, 4, 5) in the wolf position matrix X,
we will have best = 10-16, Xa = {1, 5}, and updated R = I = {1, 5}.

6. Update each search agent’s position (matrix X) according to Eq. (13):

X5 � 2 ¼

2 7
5 3
4 5
1 9
5 6

0
BBBB@

1
CCCCA

7. According to the stop criteria best <10-5, stops and calculates x′ as following:

x0I¼ 1; 5f g ¼ Lyy ¼

0:023 0:150

0:489 0:561

0:945 0:271

0:967 0:606

0:853 0:973

0:181 0:357

0
BBBBBBBB@

1
CCCCCCCCA

0:106

0:560

0:560

0:784

0:973

0:303

2
666666664

3
777777775
¼ 0:408

0:641

� �

and then set x0S�I¼ 2; 3; 4; 6; 7; 8; 9; 10f g ¼ 0:
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Then, the estimated signal x′ will be as follows: x0 ¼

0:408
0
0
0

0:641
0
0
0
0
0

2
666666666666664

3
777777777777775

which is equals to x.

Therefore, GWRA succeeds to reconstruct the original data without any errors.

SIMULATION RESULTS
In this section, the MATLAB environment is used for performing all simulations and the
reconstruction is investigated by Gaussian matrix F, of size M � N, where M = 128 and
N = 256. Two types of data are used to evaluate the reconstruction performance of the
proposed algorithm: computer generated data and real data set. In the first type, we used
data generated from Uniform and Gaussian distribution as an example to evaluate the
proposed algorithm. The whole process is repeated over 500 times and then averaged on
randomly generated K sparse samples. The performance evaluation of GWRA and its
comparison with the baseline algorithms such as CoSaMP (Needell & Tropp, 2009), OMP
(Tropp & Gilbert, 2007), SP (Dai & Milenkovic, 2009), FBP (Burak & Erdogan, 2013),
BA (Bao et al., 2018) and PSO (Du, Cheng & Liu, 2013) in terms of both average
normalized mean squared error (ANMSE) and mean absolute percentage error (MAPE) is
given below. The setting of used Parameters is shown in Table 3.

Performance Metrics: The GWRA algorithm reconstruction’s performance is compared
with different reconstruction algorithms in terms of the following performance metrics:

1. Average normalized mean squared error: the average ratio x�x0=x2 defines the ANMSE,
where x represents the initial reading and x′ represents the reconstructed one.

2. Mean absolute percentage error: the ratio
P x�x0

x

�� ���
n defines the MAPE.

Average normalized mean squared error evaluation
The GWRA algorithm is evaluated in terms of ANMSE and the result is compared with the
existing algorithms.

Figure 3 illustrates the results of ANMSE evaluation in which Gaussian distribution is
used to generate the non-zero entries of the sparse signal. The results prove that GWRA
algorithm provides reduced ANMSE than CoSaMP, OMP, FBP, BA, PSO and SP. Also,
the ANMSE of GWRA starts to increase only when K > 57 while it increased when K > 22,
K� 19, K� 26, K� 33, K� 46, K� 38 for CoSaMP, OMP, FBP, SP, BA, PSO, respectively
as shown in Fig. 3. This is because GWRA applies the grey wolves’ behavior to hunt
the prey (k elements) inside search space (CS matrix) according to their fitness values (the
best fitness values). Then, in each iteration, the support-set will be updated with the best k
elements, i.e., GWRA has the best-estimated solution till it reaches the optimal one.
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Figure 4 illustrates the results of ANMSE evaluation in which Uniform distribution is
used to generate the non-zero entries of the sparse signal. The results prove that GWRA
algorithm still gives the lowest ANMSE value than CoSaMP, FBP, OMP, SP, BA, PSO
as K > 53, K� 25, K > 20, K > 26, K > 33, K� 45, K > 37, respectively, because what any GA
does in one round, GWRA does it for each search agent and then it selects the best one in
every iteration to converge at the optimal solution.

In the second test, we measure the reconstruction performance of GWRA as a function
in terms of the length of measurement-vector and then compared the results using
CoSaMP, FBP, SP, BA, OMP, PSO. The sparse signals are generated using Gaussian
distribution having length N = 120, M values varying from 10 to 60 with increment of 1.
Illustration of the reconstruction performance of GWRA, CoSaMP, OMP, FBP, SP, BA
and PSO with different measurement vector length, M is given in Fig. 5. From the
figure, we observe that GWRA algorithm still gives the lowest ANMSE results compared to
the others.

In the third test, reconstruction performance of GWRA is measured in terms of
ANMSE as a function of compression ratio over Uniform and Gaussian sparse vectors as

Figure 3 ANMSE in GWRA, CoSaMP, OMP, FBP, SP, BA and PSO algorithms over generated
Gaussian sparse vector. Full-size DOI: 10.7717/peerj-cs.217/fig-3

Table 3 Parameters setting.

Parameter Value

Signal length (N) 256

Measurement vector length (M) 128

CS matrix (F) 128 � 256

Sparse level (K) From 5 to 60 with five increment

search agents matrix Xi � j i = 100, j = K

Compression ratio 70%, 60%, 50%, 40% and 30%
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shown in Fig. 6 and Table 4, respectively. In this test, we have N = 256 and the different
compression ratios are 70%, 60%, 50%, 40% and 30% where K = M/2. Figure 6 shows the
ANMSE for GWRA, CoSaMP, OMP, FBP, SP, BA and PSO for different compression
ratios. From Fig. 6, we can conclude that GWRA algorithm achieves the best reconstruction
performance with different compression ratio. The same performance can be noted from
Table 4, where GWRA achieves the minimum reconstruction error in comparison to the
other algorithms for different compression ratio values.

Figure 5 ANMSE in GWRA, CoSaMP, OMP, FBP, SP, BA and PSO algorithms over generated
Gaussian matrix with different lengths of M. Full-size DOI: 10.7717/peerj-cs.217/fig-5

Figure 4 ANMSE in GWRA, CoSaMP, OMP, FBP, SP, BA and PSO algorithms over generated
Uniform sparse vector. Full-size DOI: 10.7717/peerj-cs.217/fig-4
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Table 4 ANMSE for different compression ratios over generated Gaussian sparse vector.

Compression
ratio (%)

GWRA COSAMP OMP FBP SP BA PSO

70 3.10710e-29 5.135 0.228 0.1717 1.699 0.245 0.354

60 0.0583 6.1224 0.828 0.2412 2.164 0.389 0.687

50 0.2515 6.575 1.125 0.2572 2.415 2.124 1.953

40 1.4313 7.025 1.820 2.3341 3.156 3.245 2.644

30 1.894 7.4220 2.348 3.2498 5.125 4.165 4.789

Figure 6 ANMSE in GWRA, CoSaMP, OMP, FBP, SP, BA and PSO algorithms for different
compression ratios. Full-size DOI: 10.7717/peerj-cs.217/fig-6

Figure 7 MAPE over sparsity for Uniform sparse vector in GWRA, CoSaMP, OMP, FBP, SP, BA and
PSO. Full-size DOI: 10.7717/peerj-cs.217/fig-7
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Mean absolute percentage error evaluation
In the fourth test, we measure the reconstruction performance of GWRA in terms of MAPE
and the result is compared with other algorithms. Figure 7 shows MAPE results for GWRA,
CoSaMP, OMP, FBP, SP, BA, PSO algorithms and it is clear that GWRA exceeds the
reconstruction performance of others in terms of reducing the MAPE, because GWRA
integrates the advantages of both greedy as well as the GWOalgorithm to achieve the best result.

Case study
Here, we demonstrate the effectiveness of the GWRA algorithm introduced in this paper
in reducing ANMSE and MAPE. For this purpose, the proposed algorithm is applied

Figure 8 Weather trace in DCT Domain: (A) the original data and (B) the sparse signal
representation. Full-size DOI: 10.7717/peerj-cs.217/fig-8

Figure 9 Weather trace in FFT domain: (A) the original data and (B) the sparse signal
representation. Full-size DOI: 10.7717/peerj-cs.217/fig-9
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to reconstruct real weather dataset (Ali, Gao & Mileo, 2018). This dataset contains
weather observations of Aarhus city, Denmark obtained during February–June 2014 and
also August–September 2014.

In this test, we use the weather dataset of February 2014 period as original data. Using
CS, February dataset is compressed, then we apply, evaluate and compare the performance
of GWRA, CoSaMP, OMP, FBP, LP (Pant, Lu & Antoniou, 2014) and SP to recover it
back. In addition, we use DCT (Duarte-Carvajalino & Sapiro, 2009) and FFT (Canli,
Gupta & Khokhar, 2006) as sparse domain, as shown in Figs. 8 and 9.

Figure 10 shows the ANMSE of GWRA, CoSaMP, OMP, FBP, LP and SP using DCT
domain. It is clear that GWRA achieves the great performance in reducing ANMSE than
other algorithms in case of using DCT as a signal transformer. Figure 11 shows that
using FFT domain as signal transformer, the ANMSE of all algorithms increases, but still
GWRA provides the best performance.

Figure 10 ANMSE in GWRA, SP, FBP, LP, OMP and CoSaMP algorithms using DCT domain (case
study). Full-size DOI: 10.7717/peerj-cs.217/fig-10

Figure 11 ANMSE in GWRA, SP, FBP, LP, OMP and CoSaMP algorithms using FFT domain (case
study). Full-size DOI: 10.7717/peerj-cs.217/fig-11
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As a last test in case study, the performance of GWRA, SP, FBP, LP, OMP and CoSaMP
are evaluated in terms of MAPE. It shows that GWRA still succeeds to be superior in
the reconstruction performance than the others in terms of reducing MAPE as shown in
Fig. 12.

Complexity analysis
Figure 13 shows the complexity in the GWRA, OMP, CoSaMP and SP algorithms. It is
clear that as swarm algorithm, the complexity of the proposed algorithm is higher than the
GA but it is more efficient in data reconstruction. However, the high complexity in
GWRA does not represent a problem, since the algorithms will be executed at the BS which
has enough hardware capability and not energy constraint.

Figure 12 MAPE in GWRA, SP, FBP, LP, OMP and CoSaMP algorithms for weather trace (case
study). Full-size DOI: 10.7717/peerj-cs.217/fig-12
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Figure 13 Complexity comparison GWRA, OMP, CoSaMP and SP algorithms.
Full-size DOI: 10.7717/peerj-cs.217/fig-13
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Image reconstruction test
In this test, we aim to evaluate the reconstruction performance of the GWRA, where it is
used to reconstruct 512 � 512 campanile image, which is a typical sight on the Berkeley
campus (https://github.com/dfridovi/compressed_sensing) (Fridovich-Keil & Kuo, 2019), as
shown in Fig. 14. It can be noted that GWRA efficiently succeeds to reconstruct the test
image with small error which proves the efficiency of GWRA.

CONCLUSION
In this paper, a novel reconstruction approach for CS signal, based on GWO has been
presented which integrates between GA and GWO algorithms to utilize their advantages in
fast implementation and finding optimal solutions. In the provided experiments, GWRA
exhibited better reconstruction performance for Gaussian and Uniform sparse signals.
GWRA achieved overwhelming success over the traditional GA algorithms CoSaMP,
OMP, FBP and SP. Also, GWRA provided better reconstruction performance than other
swarm algorithms BA and PSO. GWRA successfully reconstructed datasets of weather
observations as a case study and it is shown that GWRA succeeded to recover the data
correctly with lesser ANMSE and MAPE than compared with existing algorithms. The
demonstrated performance prove that GWRA is a promising technique that provides
significant reduction in reconstruction errors.
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