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A long-standing weakness of statistical language models is that their performance drastically

degrades if they are used on data that varies even slightly from the data on which they

were trained. In practice, applications require the use of adaptation methods to adjust the

predictions of the model to match the local context. For instance, in a speech recognition

application, a single static language model would not be able to handle all the different ways

that people speak to their voice assistants such as selecting music and sending a message

to a friend. An adapted model would make its predictions conditioned on the knowledge of

who is speaking and what task they are trying to do.

The current standard approach to recurrent neural network language model adaptation is

to apply a simple linear shift to the recurrent and/or output layer bias vector. Although this

is helpful, it does not go far enough. This thesis introduces a new approach to adaptation,

which we call the FactorCell, that generates a custom recurrent network for each context by

applying a low-rank transformation. The FactorCell allows for a more substantial change to

the recurrent layer weights. Different from previous approaches, the introduction of a rank

hyperparameter gives control over how different or similar the adapted models should be.

In our experiments on several different datasets and multiple types of context, the in-

creased adaptation of the recurrent layer is always helpful, as measured by perplexity, the

standard for evaluating language models. We also demonstrate impact on two applica-



tions: personalized query completion and context-specific text generation, finding that the

enhanced adaptation benefits both. We also show that the FactorCell provides a more ef-

fective text classification model, but more importantly the classification results reveal that

there are important differences between the models that are not captured by perplexity. The

classification metric is particularly important for the text generation application.
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Chapter 1

INTRODUCTION

1.1 Overview

Language is a highly adaptable means of communication and as humans we routinely vary

our usage of it to match our environment. Changes in language from one setting to another

can include large differences in topic, register, politeness, etc. depending on a host of vari-

ables such as the social context, the medium of communication, the time and location, and

the task at hand. If statistical language models can be made to mimic this contextual adapt-

ability, then they will be useful in a wider range of applications, including speech recognition,

machine translation, abstractive summarization, text generation, and more.

Without context awareness, static models are incredibly brittle, meaning they are “ex-

tremely sensitive to changes in the style, topic, or genre” (Rosenfeld, 2000). Performance

drastically degrades when a model is used in a context other than the one for which it was

trained. An early study looked at incorporating text from the Associated Press for modeling

contemporaneous articles from the Wall Street Journal (Rosenfeld, 1996). Even though the

difference in style between two American news organizations is relatively minor compared to

the variations in language that are likely to be observed in other applications, the Associated

Press text was practically useless for this task.

Unfortunately, it is often the case that there is a limited amount of text available for

learning a language model to characterize a particular context. Therefore, researchers have

long sought ways to more effectively use different sources of data. This area of research is

often referred to as domain adaptation, characterized by making use of data from multiple

contexts to target a particular context. Domain adaptation has been explored for a wide

variety of contexts, as shown in Table 1.1. As an illustration of the importance of context,
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Figure 1.1: Usage of the terms “Black Friday” and “Super Bowl” on Reddit during an eight
year time period.

Figure 1.1 shows the bursty variation of the frequency of two terms in eight years of text from

Reddit. Mentions of these two events increase in likelihood by several orders of magnitude

during predictable but narrow windows of time. This illustrates both why models that ignore

context are brittle and why there is so much to be gained from adaptation.

Context is often represented by partitioning data into in-domain and out-of-domain sets.

The in-domain data is considered to be sampled from the same or a similar distribution

as the evaluation data and the out-of-domain data is everything else. A simple adaptation

method is to build separate models for the in-domain corpus and out-of-domain corpora and

then choose the interpolation weights to give the best performance on the in-domain data.

There can be multiple out-of-domain corpora that are treated separately but typically no

attempt is made to model the similarities or differences between domains/contexts. The

problem with this adaptation approach is that the notions of discrete domains are much

too crude when the goal is to mimic the fine-grained contextual adaptations that humans

typically employ.
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Category Purpose

Topic Adjust to variations in topic across documents or in speech. This is

the most popular use case for adaptation techniques.

Temporal Changing language usage patterns over time (Rosenfeld, 1995; Os-

borne et al., 2014; Yogatama et al., 2014)

Geographic Variations in speaking style in different geographic regions (Eisenstein

et al., 2010; Chelba et al., 2015; Halpern et al., 2016)

Modality Adapt a model trained on written text for use in conversational speech

(Bulyko et al., 2003; Jaech and Ostendorf, 2015; Mendels et al., 2015)

Language Share information between similar languages (Ragni et al., 2016;

Östling and Tiedemann, 2017)

TV Programs &

Youtube Channels

Adapt to styles and topics of different television shows (Chen et al.,

2015; Deena et al., 2016)

Lectures, Talks, &

Meetings

Use text from slides, lecture titles, and other written materials to bias

language model in speech recognition (Schwarm et al., 2004; Glass

et al., 2007; Hsu and Glass, 2008; Hoang et al., 2016)

Dialog State Generate an appropriate response given the dialog state (Riccardi and

Gorin, 2000; Liu and Lane, 2017)

Personalization Match the model predictions to the style of each individual from a

large group (Tseng et al., 2015; Li et al., 2016)

Table 1.1: Example use cases for language model adaptation
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In the newspaper example, instead of relying solely on a single binary variable indicating

domain membership (AP vs. WSJ), additional contextual variables could have been used.

For example, we could have a variable to indicate which section of the paper the article

appeared in, or who the author was, or the date of publication. In general, the context

representation can leverage multiple discrete and continuous variables—the more expressive

the contextual representation, the greater the ability of the model to adapt to it. Ideally,

a context-aware language model could model text using the style of one newspaper and the

topic of a different publication. While researchers have tried to do this with class language

models, equating word class sequences with style, many real-world applications are best

characterized by interacting combinations of several contextual factors. Therefore, this thesis

investigates models that can use rich context representations.

Language is often produced in association with some information about its context. For

example, in speech recognition, if a user is speaking to a personal assistant then the system

might know the time of day or the identity of the task that the user is trying to accomplish. If

the user takes a picture of a sign to translate it with their smart phone, the system would have

contextual information related to the geographic location and the user’s preferred language.

The probability of certain terms and phrases appearing can change dramatically with respect

to geographic location (Chelba and Shazeer, 2015).

When adapting to context information, the language model conditions on both the con-

text and the previous words in the sequence. It is computing P (w1:n|context). The mech-

anism for computing P (w1:n) impacts the approach for accounting for context. Recurrent

neural networks (RNNs) have been shown to be very effective language models compared

to previous approaches such as n-gram models or maximum entropy models (Mikolov et al.,

2010), in part because they are able to make use of arbitrarily long word histories. RNN

based language models are the focus of this thesis due to their recent successes and current

widespread use. Improvements in adapting RNNs are likely to have a positive impact on

multiple tasks. In addition, the continuous-space approach is well-suited to characterizing

multiple contextual variables.



5

The standard method of adapting RNN language models is due to Mikolov and Zweig

(2012) and involves learning an embedding to represent the context (originally the output of a

topic model but any type of learned embedding will work) and including it via concatenation

as an additional input to the model. We refer to this method of adapting the recurrent layer as

the ConcatCell because of its reliance on concatenation of the context embedding. As we will

show later on, when using this adaptation method most of the parameters of the model are

static with respect to context. We propose a more powerful mechanism for using a context

vector, which we call the FactorCell. Rather than simply using context as an additional

input, it is used to control a factored (low-rank) transformation of the recurrent layer weight

matrix. The motivation is that allowing a greater fraction of the model parameters to be

adjusted in response to the input context will produce a model that is more adaptable and

responsive to that context. In addition, we introduce a mechanism for handling new contexts

that emerge after the model has been trained and deployed, showing how adaptation can be

effective in these scenarios as well.

1.2 Key Contributions

The primary goal of this work is to increase the adaptability of recurrent neural network

language models. Our main contribution is to propose a novel mechanism, which we call

the FactorCell, for using a context embedding vector to transform the weights of the recur-

rent layer. This is a fundamentally different way of adapting the recurrent layer. Instead

of viewing context as an additional input to the RNN, we create a function that uses con-

text information to output the weights of a custom RNN that matches the given context.

Moreover, by using precomputation and caching techniques, the FactorCell delivers superior

adaptation at little to no extra computational cost.

We demonstrate the superiority of the FactorCell model over commonly used methods for

RNN adaptation, including several recent approaches that do not adapt at the recurrent layer,

preferring to focus on the output bias vector. Experiments on nine datasets with varying

domains, contexts, and model and vocabulary sizes confirms that adapting the recurrent layer
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always helps. We also show that our model beats the current standard method of adapting

the recurrent layer. The extensive experimentation leads to some useful observations for

predicting when context conditioning will be more or less successful for a given dataset.

The many prior use cases for adaptation mentioned in Section 1.1 all have in common the

requirement that all contexts be known during training. Another contribution is to introduce

an online learning method for adapting to contexts that emerge after the model has been

deployed. Online learning improves the quality of the adaptation and also widens the set

of possible applications. We use a personalized query auto-completion task to demonstrate

how this method can be successfully used. Again, our FactorCell model beats the standard

approach to adaptation and the performance gap widens as more data becomes available

over time.

Adaptation is vital for language models to work in real world applications. We show

how the FactorCell model impacts multiple applications and discuss potential implications

for many more. The first application is the just mentioned personalized query completion.

Another important application is context-specific or controllable text generation. We show

how the FactorCell model is significantly more controllable than the standard adaptation

methods. The gap between our model and the standard approach is not easily closed even

when we give the baseline an advantage by doubling the dimensionality of its recurrent

layer. Automatic evaluation of context-specific text generation can be difficult. We propose

a metric based on text classification that is predictive of human ratings for text generation

performance and avoids many of the headaches of prior evaluation techniques. For both

the query completion and text generation applications we show through analysis that the

FactorCell model has qualitative benefits that are not fully captured by perplexity as an

evaluation criterion.

1.3 Thesis Overview

The remainder of the thesis proceeds as follows.

In Chapter 2, we provide background information on language modeling and adaptation.
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We review relevant prior work in these areas including the ConcatCell and SoftmaxBias

models from Mikolov and Zweig (2012) that serve as the principal baselines for the rest of

the thesis.

In Chapter 3, we show that the ConcatCell model is effectively a constant additive bias

in the recurrent layer. We then explore trade-offs of different architectures for adapting at

the recurrent layer and the output layer. We make some observations about what factors

make a dataset more or less amenable to adaptation.

In Chapter 4, we introduce the FactorCell, a more powerful model for RNN adaptation.

By controlling the rank of a low-rank context-dependent weight transformation, the Fac-

torCell can be adjusted to allow for more or less sharing of information between contexts

depending on the situation. This model remedies the prominent weakness of the Concat-

Cell, namely, that it often does not allow its predictions to be changed enough in response

to context. We show that the FactorCell beats the ConcatCell in terms of perplexity and

that it also does better at capturing the relationship between context and language in text

classification experiments.

In Chapter 5, we introduce an approach for adapting to new contexts that emerge after

the model has been trained and deployed, and apply the FactorCell model to the task of

personalized query auto-completion. The key result is that stronger adaptability at the

recurrent layer enables the model to better take advantage of information from new users’

query histories to personalize their predictions.

Chapter 6 deals with the use of language model adaptation for context-specific text

generation. We measure context-specificity by checking if the text sampled from or generated

by the model matches the properties of the specified context. We show that when the

adaptation is weaker (as in the ConcatCell) then context-specificity suffers; the FactorCell

model gives clear wins for context-specificity. We propose a metric based on text classification

that is predictive of human ratings for text generation performance and avoids many of the

headaches of prior evaluation techniques.

Finally, Chapter 7 concludes the thesis by summarizing the contributions and suggesting
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future directions for additional research.
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Chapter 2

BACKGROUND

This chapter gives the necessary background information on language modeling and prior

literature on adaptation. The contributions of the thesis build on these ideas.

2.1 General Language Modeling Background

Language models compute a probability distribution over word sequences w1:n where each

wi is drawn from a vocabulary V . Typically, the probability is factored using the chain rule:

P (w1:n) = P (w1)
∏n

i=2 P (wi|w1:i−1). The w1:i−1 term is often referred to as the history.

Dealing with data sparseness is fundamental to language modeling because there will

always be many valid word sequences that are not observed in the training data. One way to

categorize language models is to look at how they deal with the sparseness or generalization

problem: n-gram models use a back-off strategy, maximum entropy models rely regularization

techniques, and the different classes of neural networks generalize by finding low dimensional

continuous space representations of language.

In the basic n-gram language model only the most recent n−1 words from the history are

considered (Bahl et al., 1978). In the common case that n = 3, known as a trigram model,

P (wi|w1:i−1) is approximated as P (wi|wi−1, wi−2). Even with this simplifying assumption,

sparseness is a problem. Estimating the parameters of an n-gram language model using

maximum likelihood fails to assign proper estimates to the n-grams that are unobserved in

the training data, and there will be many such n-grams. The remedy is to borrow from the

probability mass given to some of the observed n-grams and distribute it to unobserved ones

(Katz, 1987). The redistribution is done recursively, reducing the size of the n-gram history

in each step. The methods used for the back-off smoothing has been improved over time
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(Kneser and Ney, 1995; ?), but the basic idea has remained the same.

One improvement was to add skip-grams, which are like n-grams except they can skip

over some words to look farther back in the history (Siu and Ostendorf, 2000; Shazeer et al.,

2015). A variant of skip-grams is to identify long range triggers such as by using information

from a syntactic parse (Bellegarda, 2000).

The class language model is an extension of the standard n-gram model that operates

on a set of word equivalence classes (Brown et al., 1992). For a trigram, the probabilities

are factored as P (wi|wi−1, wi−2) = P (wi|ci)P (ci|ci−1, ci−2). The use of classes reduces the

effective size of the vocabulary when estimating P (ci|ci−1, ci−2) and thereby improves the

reliability of those estimates and possibly allowing for use of a higher n-gram order. This

is the advantage of the class language model formulation. However the gain in reliability is

associated with a loss of detail that can lead to mixed results.

The difficulty, for several decades, in finding a practical improvement over n-gram lan-

guage models, despite their obvious weaknesses, was described as being a “source of consid-

erable irritation” to researchers in the field (Jelinek, 1991). A decade later, Rosenfeld (2000)

calls it ironic that “the most popular language models (n-grams) take no advantage of the

fact that what’s being modeled is language.” And yet, even now with many alternatives to

choose from, n-gram models continue to be heavily used. Their strengths are that they make

few assumptions other than the Markov property, training the models is as fast as counting

n-grams, and they use a vast number of parameters to memorize idiomatic and exceptional

expressions.

2.1.1 Vocabulary & Input Representation

An important design choice in language modeling is to define the vocabulary. Typically, the

vocabulary is set by taking the set of all words that appear at least k times in the training

corpus for some small k. Over time, as more powerful computers and bigger text corpora

became available, the typical vocabulary size used in applications has likewise increased.

Figure 2.1 shows the change in vocabulary size for large vocabulary continuous speech recog-
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nition systems over time with a doubling in vocabulary size approximately every four years.

Similar increases are observed for other applications.

Figure 2.1: Vocabulary size in large vocabulary continuous speech recognition systems over
time.

Exploding vocabulary sizes lead to exponential growth in model size and exponential

increases in the time required for speech decoding. This trend is obviously not sustainable.

Dealing with the exponential growth is a challenge but also an opportunity for considerable

amounts on innovation.

Research is proceeding into neural systems that can decode audio directly into text one

character at a time (Graves and Jaitly, 2014; Chan et al., 2015; Bahdanau et al., 2016; Maas

et al., 2015). The language model can be a character n-gram model trained separately or an

LSTM that is part of the larger neural network and trained end-to-end. When training end-

to-end, the objective is to minimize the error rate instead of aiming to minimize perplexity.

Machine translation is also moving away from using word-based language models (Lee et al.,
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2017; Chung et al., 2016). Google’s machine translation system uses a small vocabulary of

around 30,000 tokens that are a mix of words and subwords (Wu et al., 2016).

Character-based models are far from a new concept. Subword models have found use

before especially when working with highly inflected or low-resource languages (Tucker et al.,

1994; Creutz et al., 2007; Saraçlar et al., 2010); however, there has been a recent surge of

interest in character- and subword-based models. This thesis makes a point of testing on

both word- and character-level models so as to have maximum impact on future applications.

2.1.2 Evaluation & Metrics

Language model evaluation is often done on a held-out test set using perplexity as a metric:

perplexity = exp(− 1

N

N∑
i=1

log p(wi)). (2.1)

See Equation 2.1. Perplexity was always recognized as a “crude” metric (Jelinek, 1990, 1991)

but is still widely used because it offers a quick and easy task-independent way of evaluating

a language model.

Perplexity is not the only factor that matters when comparing models, however. Models

can be interesting for other reasons such as speed (Brants et al., 2007). In some cases, the

models are evaluated using downstream metrics like word error rate in speech recognition

or BLEU score in machine translation (Kirchhoff and Yang, 2005) instead of using perplex-

ity. For text generation, human evaluations can be high quality but are costly to perform.

Perplexity will be the main evaluation metric used in this thesis due to the desire to be

task-independent and the need to control costs, but some experiments with other metrics

are included.

Recently, some language modeling papers have used “dynamic evaluation”, whereby the

model is allowed to continue to train on the test data after making predictions for each

segment (Krause et al., 2017). This is a form of online updating and it helps to adapt to

shifts between the training and the test data. Dynamic evaluation makes less sense for certain

applications such as speech recognition because it can reinforce errors in the transcription.
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Language models can be fairly compared without the use of dynamic evaluation. Thus, we

do not make use of it in this thesis except that we do use a form of online updating for one

of our experiments that will be introduced in Chapter 5, where the application makes sense.

2.2 Neural Language Modeling

Continuous-space language models such as the neural probabilistic language model (Ben-

gio et al., 2003a) obtain an advantage over n-gram models because they share information

between n-grams by projecting to a low-dimensional continuous space. Recurrent neural

network (RNN) language models (Mikolov et al., 2010) extend that advantage by permitting

the incorporation of information from arbitrarily long word histories. The RNN language

model in its basic form has three layers: an input layer, a recurrent layer, and an output

layer.

The input layer learns a word embedding matrix E ∈ Rp×|V | that consists of a p-

dimensional vector for each word in the vocabulary V . If the input w1, w2, . . . wn is rep-

resented as one-hot encoded vectors then multiplying by E gives a sequence of word em-

beddings, ew1 , ew2 , . . . ewn = Ew1,Ew2, . . .Ewn. The recurrent layer uses a weight matrix

W ∈ Rq×(p+q) and a bias vector b1 ∈ Rq to transform the word embedding for the current

step ewt and its own output from the previous step ht−1 into a hidden state vector ht that

summarizes the sequence up to that point. The formula is given by Equation 2.2 where σ is

the activation function, typically the hyperbolic tangent or a restricted linear unit (ReLU):

ht = σ(W[ewt , ht−1] + b1). (2.2)

The output layer uses the hidden state vector ht to estimate a probability distribution yt

over the vocabulary for wt+1:

yt = softmax(ETht + b2). (2.3)

The bias vector b2 ∈ R|V | acts as a prior on the unigram distribution and is a crucial part

of the output layer. If the word embedding size p is not the same as the recurrent layer
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dimensionality q then a linear projection can be inserted and the word embedding matrix E

from the input layer can be reused in the output layer to save on parameters and increase

generalizability (Press and Wolf, 2017; Inan et al., 2016). In this case, the equation for the

output layer would be yt = Softmax(ETPht + b2). The parameters of the model, E, W, b1,

and b2, can all be learned jointly via backpropagation through time towards the objective of

maximizing the likelihood of the data.

One limitation of neural language models, as originally proposed, is that the training

time scales poorly with the size of the vocabulary. A variety of techniques were developed

as workarounds. Neural models were trained to predict only the words from a subset of the

vocabulary known as a shortlist (Schwenk, 2004), and the predictions from the neural model

were interpolated with an n-gram model that could handle a full-sized vocabulary. Shortly

thereafter, hierarchical neural models were developed. These train faster with only a small

decrease in perplexity (Morin and Bengio, 2005). Techniques such as importance sampling

(Bengio et al., 2003b) and noise contrastive estimation (Mnih and Kavukcuoglu, 2013) make

it possible to quickly train full size vocabulary models without a hierarchy. The method

used for training large vocabulary models in this thesis is the sampled softmax from Jean

et al. (2014). The sampled softmax constrains the vocabulary to a small random subset

when computing the loss for each sequence avoiding the need to backpropagate to the full

vocabulary for every weight update. For a thorough review of methods for training large

vocabulary neural language models, see (Chen et al., 2016).

The basic RNN has a flaw known as the vanishing/exploding gradient problem that pre-

vents it from learning to use information from far back in the history (Pascanu et al., 2013).

In practice, this is mitigated by using alternate architectures such as long short-term memory

(LSTM) or the gated recurrent unit (GRU) (Sundermeyer et al., 2012). These architectures

use gating mechanisms to control the flow of information and importantly they permit the

preservation of information from the hidden state over time. Our experiments make exten-

sive use of these RNN variants. Other techniques have been developed to further increase

the stability of the RNN. In some of our experiments, we make use of layer normalization
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which involves normalizing the first and second moments of the W[ewt , ht−1] + b1 term in

Equation 2.2 (Ba et al., 2016).

In the early 1990s it was noted that n-gram language models benefit from boosting the

probability of words observed in previous utterances or in earlier parts of a document because

word usage is “bursty” (Jelinek et al., 1991). Once a word is observed in a given document,

the probability of seeing it again is greatly increased. Models that boost the probability of

recently seen words are called cache language models (Kuhn and De Mori, 1990). These

techniques have been extended to RNN language models by allowing the model to look back

at the previous hidden states from the same sentence or document (Merity et al., 2017b;

Grave et al., 2017a). Usually, state-of-the-art language modeling results are reported both

with and without the inclusion of a cache, e.g. Merity et al. (2017a), because the gain from

a cache is considered to be orthogonal to other modeling improvements. The experiments in

this thesis are reported without the inclusion of a cache in order to focus on our contributions

to adaptation.

2.3 Language Model Adaptation

There is a long history of adapting n-gram language models starting from early work on

mixture modeling (DeMori and Federico, 1999; Bellegarda, 2004). Since this thesis builds on

neural models, the review of prior work will only cover these methods. The long-established

mixture techniques also apply to neural network models (Irie et al., 2018), but our focus is

on techniques that are specific to neural network adaptation.

We are most interested in cases with explicit representations of context, however, one

adaptation method, model fine-tuning, does not require the use of a context embedding.

The language model is first trained on general background data and then learning is briefly

continued on smaller in-domain data to “fine-tune” the weights (Gangireddy et al., 2016;

Zhang et al., 2017). Fine-tuning suffers from the possibility of catastrophic forgetting, where

the model loses access to the information it learned from training on the background data

(Goodfellow et al., 2013). One way of dealing with catastrophic forgetting is to freeze portions
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of the model during fine-tuning. Some approaches combine fine-tuning with the addition of

a new linear transformation in between the hidden and output layers (Deena et al., 2016), or

occasionally a non-linear transformation is used instead (Ma et al., 2017). This is motivated

in part by similar approaches for adapting acoustic models in speech recognition (Gemello

et al., 2007).

Adaptation of neural language models has two parts: representing context information

and using the context representation to alter the model predictions. We discuss these next.

2.3.1 Context Representations

For neural language model adaptation, context information is typically represented as an

embedding vector. Neural networks have the advantage in that they are quite versatile in

the types of inputs that they can accept. Another advantage is that the network can learn

the context representations as part of the end-to-end language modeling task. Some of the

types of context that could be or have been used are

1. Topic model vectors that summarize the topic of long documents (Mikolov and Zweig,

2012).

2. Context is the title of a TED talk and it is represented as an embedding using either

bag-of-words features or using an RNN or CNN (Hoang et al., 2016).

3. Context is a one-hot encoded vector indicating an Amazon product identifier and an-

other one-hot vector indicating the sentiment of a review of that product (Tang et al.,

2016).

The context information can be categorical, numeric, textual information, or a combina-

tion of these. It could even be composed of attributes that are predicted using a machine

learning system based on other features. The majority of experiments in this thesis use

categorical context variables but the methods all apply to other cases.
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We assume the availability of contextual information (metadata or other side information)

that is represented as a set of context variables f1:n = f1, f2, . . . fn, from which we produce

a k-dimensional representation in the form of an embedding, c ∈ Rk. Each of the context

variables, fi, represents some type of information or metadata about the sequence and can

be either categorical or numerical.

We adopt the strategy from Tang et al. (2016) of combining information from multiple

context variables using a simple neural network. This strategy is well-suited for the types of

context variables that we will see in our experiments, particularly high dimensional contexts

such as hotel identity in a review or user identity in a query completion task. For each

context variable fi, we learn an associated embedding matrix Fi, i = 1, . . . , n. If n = 1 then

the embedding can directly be used as the context representation. Otherwise, a single layer

neural network is used to combine the embeddings from the individual variables.

c = tanh(
∑
i

MiFifi + b0) (2.4)

In some cases the tanh activation function is replaced with the ReLU function instead. Mi

and b0 are parameters learned by the model. The context embedding, c, is used for adapting

both the hidden and the output layer of the RNN.

2.3.2 Adaptation Mechanisms

Mikolov and Zweig (2012) were the first to propose a method for adapting RNN language

models by augmenting both Equations 2.2 and 2.3 with an extra term. The adaptation

depends on having a summary of the context information contained in an embedding vector

c ∈ Rk. To adapt the recurrent layer they concatenate the context embedding c with the

word embedding at every step of the input, which we show in the next chapter is equivalent

to an additive context-dependent bias. We refer to this form of adaptation as the ConcatCell.

ht = σ(W[ewt , ht−1, c] + b1). (2.5)
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To adapt the output layer, an adaptation term Gc is added,

yt = softmax(ETht + Gc+ b2), (2.6)

which has the effect of altering the softmax bias in a context dependent way. We refer to

models that use this form of adaptation as the SoftmaxBias model. SoftmaxBias adaptation

appears to be a reasonable approach in cases where the context concerns topic, since we

know that the unigram distribution is often sufficient to capture topical information. As we

will show later on, SoftmaxBias adaptation alone is not sufficient to get the best results.

This is particularly obvious when dealing with character-level models, where the unigram

distribution carries little information about topic or style.

In the special case where the context variable is discrete and of low cardinality then the

bias vector can be adapted by directly learning independent bias vectors for each context,

i.e. replacing the context embedding c with a one-hot encoded vector. When the cardinality

of the context variables is high then learning independent bias vectors carries a high memory

cost. Although it is not often framed in this way, the Gc term acts as a low-rank approxi-

mation to the strategy of learning independent bias vectors. We will use both strategies in

this thesis, as the situation warrants.

These two adaptation strategies have been adopted for a variety of tasks, including per-

sonalization, adapting to television show genres (Chen et al., 2015), adapting to long range

dependencies in a document (Ji et al., 2015), etc. See Table 2.1 for a listing of more prior

work, showing which of these methods were employed. As shown in the table, a variety of

contexts have been used. Topic based adaptation is popular but categorical variables are

also used like product identity or sentiment level. When doing personalization, the context

can be an identifier for the person (Li et al., 2016), or alternatively the information can

be given as a bag-of-words representation of the persons prior utterances or writings (Wen

et al., 2013).

Few studies have tested the relative merits of adapting at the recurrent layer versus the

output layer. Ji et al. (2015) compares the two approaches, which they refer to as ccDCLM
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and coDCLM. They find that both give similar perplexities. SoftmaxBias wins by 3% on one

dataset and by less than 1% on the other. However, adapting the recurrent layer does better

at an auxiliary sentence ordering task. Differences between models that are more prominent

in other metrics besides perplexity is a theme that we will return to later on in the thesis.

They do not test any models that adapt both the recurrent and output layers. Hoang et al.

(2016) also consider adapting at the hidden layer vs. at the softmax layer. They report a

small advantage towards adapting the output layer but the comparison is only made on a

single dataset.

It should be noted that not all models fit cleanly into the above framework, although

it is the dominant paradigm. The (Hoang et al., 2016) model differs from the SoftmaxBias

approach because it use an extra perceptron layer in the output. Luan et al. (2016) use the

recurrent layer bias approach plus an extra context-dependent linear projection in between

the recurrent and the output layer. Wen et al. (2015) uses a custom gating architecture to

adapt to dialogue states.
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Chapter 3

EXPLORING CONTEXT-AWARE RNNS

In this chapter1, we show that the popular RNN hidden layer adaptation strategy de-

scribed in the previous chapter corresponds to a static additive bias term. Then, we study

the impact of adapting RNNs at the recurrent layer versus the output layer using different

architectures and techniques. Starting with the unadapted RNN that makes no use of con-

text information, we consider two mechanisms each of adapting the recurrent layer and the

output layer respectively. One of the methods for adapting the recurrent layer is a novel mul-

tiplicative rescaling of the hidden state dimensions. Using experiments on three datasets, we

make some observations about what factors make a dataset more or less amenable to adap-

tation. These studies provided the groundwork that led to the proposal of the FactorCell

model.

3.1 Additive Bias Adaptation

As described in Section 2.3.2, the standard approach to recurrent layer adaptation is to

include (via concatenation) the context embedding as an additional input to the recurrent

layer. When the context embedding is constant across the whole sequence, it is easy to show

that this concatenation is equivalent to using a context-dependent bias at the recurrent layer:

ht = σ(Ŵ[ewt , ht−1, c] + b1)

= σ(W[ewt , ht−1] + Qc+ b1)

= σ(W[ewt , ht−1] + b′1),

(3.1)

1The content of this chapter draws from our previously published work (Jaech and Ostendorf, 2017)
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where Ŵ = [W Q] and b′ = Qc+ b is the context-dependent bias, formed by adding a linear

projection of the context embedding. Thus, for this scenario where the context only changes

sporadically, concatenating the context embedding with the input to the recurrent layer is

the same as using a context-dependent bias vector. Some people perform the concatenation

explicitly despite its inefficiencies compared to directly learning the context-dependent bias

because modern deep learning libraries do not always make it easy to alter the internal

workings of the RNN or LSTM.

3.2 Models

We consider two methods each for adapting the recurrent and output layers respectively.

In total there are 24 = 16 total possible models that can be constructed by enabling or

disabling each of the four adaptations. All of the models with adaptation incorporate a

context embedding c using the method described in Section 2.3.1.

3.2.1 Adapting the recurrent layer

We consider two methods for adapting the recurrent layer. The first is the ConcatCell from

Equation 3.1. It can be implemented by simply concatenating the context vector c with the

word embedding ewt at each timestep at the input to the recurrent layer, but the effect of

this adaptation is to apply a linear additive shift to the recurrent layer bias.

To increase the adaptability of the hidden layer, we introduce a context-dependent multi-

plicative rescaling of the hidden layer weights. The method is inspired from Ha et al. (2017),

where a similar multiplicative scaling is used to dynamically adjusting the parameters of a

language model in response to the previous words in the sentence. Using this row rescaling

technique on top of the additive adaptation from Equation 2.4, the equation becomes

ht = σ(Cc�W[ewt , ht−1] + Qc+ b1) (3.2)

where C ∈ Rq×k is a new model parameter and � is the elementwise multiplication operator.

The element-wise multiplication is a low-cost operation and can even be pre-calculated so
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that model evaluation can happen with no extra computation compared to a vanilla RNN.

3.2.2 Adapting the output layer

One way of adapting the output layer is to let each context have its own bias vector. This

requires the use of a matrix of size |V | × |C|, where |V | is the size of the vocabulary and

|C| is the total number of possible contexts. This may be intractable when both |V | and |C|

are large. Mikolov and Zweig (2012) use a low-rank factorization of the adaptation matrix,

replacing the |V | × |C| matrix with the product of a matrix G of size |V | × k and a context

embedding c of size k.

yt = softmax(ETht + Gc+ b2) (3.3)

The total number of parameters is now a much more manageable O(|V | +
∑

i |Ci|) instead

of O(
∑

i |V ||Ci|), where Ci is the cardinality of the i-th context variable. The advantage

of a low-rank adaptation is that it forces the model to share information between similar

contexts. The disadvantage, is that important differences between similar contexts can be

lost.

We employ feature hashing to reduce the memory requirements but retain some of the

benefits of having an individual bias term for each context-word pair. The context-word

pairs are hashed into buckets and individual bias terms are learned for each bucket. The

hashing technique relies on having direct access to the context variables f1:n. Representing

context as a latent topic distribution precludes the use of this hashing adaptation.

The choice of hashing function is motivated by what is easy and fast to perform inside

the Tensorflow computation graph framework2. If w is a word identifier (ID) and f1:n are

context variable ID’s, then the hash table index is computed as

hi(w, fi) = wr0 + firi mod l (3.4)

where l is the size of the hash table and r0 and the ri’s are all fixed random integers. The

2Newer versions of Tensorflow make it easier to do feature hashing than what we describe here.
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value of l is usually set to a large prime number. The function H : Z→ R maps hash indices

to hash values and is implemented as a simple array.

Since l is much smaller than the total number of inputs, there will be many hash collisions.

Hash collisions are known to negatively effect the perplexity (Mikolov et al., 2011). To deal

with this issue, we restrict the hash table to context-word pairs that are observed in the

training data. A Bloom filter data structure records which context-word pairs are eligible

to have entries in the hash table. The design of this data structure trades off a compact

representation of set membership against a small probability of false positives (Bloom, 1970;

Talbot and Brants, 2008; Xu et al., 2011). A small amount of false positives is relatively

harmless in this application, because they do not impair the ability of the Bloom filter to

eliminate almost all of the hash collisions.

The function β : Z → [0, 1] is used by the Bloom filter to map hash indices to binary

values.

B(w, fi) =
16∏
j=1

β(hi,j(w, fi))

The hash functions hi,j are defined in the same way as the hi’s above except that they use

distinct random integers and the size of the table, l, can be different. Because β is a binary

function, the product B(w, fi) will always be zero or one. Thus, any word-context pairs not

found in the Bloom filter will have their hash values set to zero.

The final expression for the hashed adaptation term is given by

Hash(w, f1:n) =
n∑

i=1

H(hi(w, fi))B(w, fi) (3.5)

yt = softmax(ETht + Gc+ b2 +Hash(wt, f1:n)) (3.6)

3.3 Data

The experiments make use of three corpora chosen to give a diverse perspective on adaptation

in language modeling. Summary information on the training set for each source (Reddit,

Twitter, and SCOTUS) is provided in Table 3.1 and each source is discussed individually
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Source Size Vocabulary Context (Dimensions)

Reddit 8,000K 68,000 words Subreddit (5800)

Twitter 77K 194 chars Language (9)

SCOTUS 864K 18,000 words Case (1765), Speaker (2276), Role (3)

Table 3.1: Number of sentences, vocabulary size and context variables for the three corpora.

below. The Reddit and SCOTUS data are tokenized and lower-cased using the standard

NLTK tokenizer (Bird et al., 2009).

Reddit Reddit is the world’s largest online discussion forum and is comprised of thousands

of active subcommunities dedicated to a wide variety of themes. Our training data is 8 million

sentences (100 million words) from Reddit comments during the month of April 2015. Only

the first sentence from each comment was used. The 68,000 word vocabulary is selected by

taking all tokens that occur at least 20 times in the training data. The remaining tokens

are mapped to a special UNK token leaving us with an out of vocabulary rate of 2.3%. The

validation data and test data are each contain one eighth the number of sentences as the

training data.

The context variable is the identity of the subreddit, i.e. community, that the comment

came from. There are 5,800 subreddits with at least 50 training sentences. The remaining

ones are grouped together in an UNK category. The largest subreddit occupies just 4.5%

of the data. By using a large number of subreddits, we highlight an advantage of model

adaptation which is to be able to use a single unified model instead of training thousands of

separate models for each individual community. Similarly, using context dependent bias vec-

tors for this data instead of the hash adaptation would require learning 400 million additional

parameters.
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Twitter The Twitter training data has 77,000 Tweets (848,000 words) each annotated

with one of nine languages: English, German, Italian, Spanish, Portuguese, Basque, Catalan,

Galician, and French. The corpus was collected by combining resources from published data

for language identification tasks during the past few years. Tweets labeled as unknown,

ambiguous, or containing code-switching were not included. The data is unbalanced across

languages with more than 32% of the Tweets being Spanish and the smallest four languages

(Italian, German, Basque, and Galician) each representing less than 1.5% of the total. There

are 194 unique character tokens in the vocabulary. Graphemes that are surrogate-pairs in the

UTF-16 encoding, such as emoji, are split into multiple vocabulary tokens. No preprocessing

or tokenization is performed on this data except that newlines were replaced with spaces for

convenience. The validation and test data have 12,000 and 15,000 Tweets respectively.

SCOTUS Approximately 864,000 utterances (16 million words) of training data spanning

arguments from 1990-2011. These are speech transcripts from arguments before the United

States Supreme Court. Utterances are labeled with the case being argued (n=1,765), the

speaker ID (n=2,276), and the speaker role (justice, advocate, or unidentified). These three

context variables are defined in the same way as in Hutchinson et al. (2013), where a small

portion of this data was used in language modeling experiments. The vocabulary size is

around 18,000 words. Utterances longer than 45 words (90th percentile) were split into

smaller utterances.3 The validation and test data were each one eighth the size of the

training data.

3.4 Experiments

We used an LSTM with coupled input and forget gates for a 20% reduction in computation

time (Greff et al., 2016). Dropout was used as a regularizer on the input and outputs of the

recurrent layer as described in Zaremba et al. (2014). For the large vocabulary experiments,

3Occasionally, the advocates go on for hundreds of words without interruption. Including these utterances
would slow down the training.
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Parameter Reddit SCOTUS Twitter

Batch Size 400 300 200

Word Embed. 200 200 30

LSTM Size 240 240 200

Dropout 0% 15% 10%

Neg. Samples 100 100 NA

Total Params. 14M 4M 300K

Table 3.2: Summary of Key Hyperparamters

we used a sampled softmax loss to speed up training.

A summary of the key hyperparameters for each class of experiments is given in Table

3.2. We conducted some preliminary experiments to tune the different hyperparameters

for each dataset. Then, we fixed the values of these hyperparameters and only varied the

adaptation method in each experiment. The total parameter column in this table is based

on the unadapted model. Adapted models will have more parameters depending on the type

of adaptation. When using hash adaptation of the output layer, the size of the Bloom filter

is 100 million and the size of the hash table is 80 million. The model is implemented using

the Tensorflow library. Optimization is done using Adam with a learning rate of 0.001. Each

model trained in under three days using 8 CPU threads.

Although the model is trained as a language model, it can be used as a generative text

classifier. The classification rule is given by argmaxfi
∑

j log p(wj|w1:j−1, ck 6=i, fi). When

there are multiple context variables, we treat all but one of them as known values and

attempt to identify the unknown one. It is not necessary to compute the probabilities over

the full vocabulary to do text classification. The sampled softmax criteria can be used to

greatly speed up evaluation of the classifier provided that a) the same negative samples are

reused for each class and b) the number of negative samples is increased to around 10% of

the vocabulary.
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Hidd. Output

× + LR Hash PPL ∆PPL AUC

N N N N 75.2 – –

N N N Y 69.6 7.3% 76.5

N N Y N 68.0 9.5% 75.5

N N Y Y 66.9 11.0% 78.4

N Y N N 68.4 9.0% 76.1

N Y N Y 66.9 11.0% 78.9

N Y Y N 68.0 9.6% 75.3

N Y Y Y 66.5 11.5% 78.4

Y N N N 69.4 7.7% 75.9

Y N Y N 68.8 8.5% 75.9

Y N Y Y 67.2 10.6% 78.9

Y Y N N 69.0 8.2% 76.7

Y Y N Y 67.5 10.2% 79.0

Y Y Y N 68.3 9.1% 75.7

Y Y Y Y 67.1 10.7% 79.2

Table 3.3: Perplexities and Classification Avg. AUCs for Reddit Models

3.4.1 Reddit Experiments

The size of the subreddit embeddings was set to 25. Table 3.3 gives the perplexities and

average AUCs for subreddit detection for different adapted models. The evaluation data

contains 60,000 sentences. For comparison, an unadapted 4-gram Kneser-Ney model trained

on the same data has a perplexity of 119. The models with the best perplexity do not use

multiplicative adaptation of the hidden layer, but it is useful in the detection experiments.

We can inspect the context embeddings learned by the model to see if it is exploiting sim-
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Pittsburgh Python NBA

Atlanta CSharp Warriors

Montana JavaScript Rockets

MadisonWI CPP Questions Mavericks

Baltimore CPP NBASpurs

Table 3.4: Nearest neighbors to selected subreddits in the context embedding space.

ilarities between subreddits in the way that we expect. Table 3.4 lists the nearest neighbors

by Euclidean distance to three selected subreddits. The nearest neighbors are intuitively

reasonable. For example, the closest subreddits to Pittsburgh are communities created for

other big cities and states. The Python subreddit is close to other programming language

communities, and the NBA subreddit is close to the communities for individual NBA teams.

The number of subreddits is large enough that apply a generative classifier to the full set

is impractical. We used a smaller subset of subreddit and to avoid bias picked the same ones

used in another study (Tran and Ostendorf, 2016). This caused the classification task to

turn into a detection one and therefore the decision rule is slightly different from what was

described above. The subreddit detection involves predicting the subreddit a given comment

came from with eight subreddits to choose from (AskMen, AskScience, AskWomen, Atheism,

ChangeMyView, Fitness, Politics, and Worldnews) and nine distractors (Books, Chicago,

NYC, Seattle, ExplainLikeImFive, Science, Running, NFL, and TodayILearned). To make

a classification decision we evaluate the perplexity of each comment under the assumption

that it belongs to each of the eight subreddits. We use z-score normalization across the eight

perplexities to create a score for each class. The predictions are evaluated by averaging the

AUC of the eight individual ROC curves. The best model for the classification task uses all

four types of adaptation. The multiplicative adaptation of the hidden layer is clearly useful

for classification even though it does not help with perplexity.

The perplexities for selected large subreddits are listed in Table 3.5. It can be seen that
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the relative gain from adaptation is largest when the topic of the subreddit is more narrowly

focused. The biggest gains were achieved for subreddits dedicated to specific sports, TV

shows, or video games. Whereas, the gains were smallest for subreddits like Videos or Funny

for which the content tends to be more diverse. The knowledge that a sentence came from

a pro-wrestling subreddit effectively provides more information about the text than the

analogous piece of knowledge for the Pics or Videos subreddit. This would seem to indicate

that further gains could be possible if additional contextual information could be provided.

An alternative explanation, that subreddits with fewer sentences in the training data receive

more benefit from adaptation, is not supported by the data.

3.4.2 Twitter experiments

The Twitter evaluation was done on a set of 14,960 Tweets. The language context embedding

vector dimensionality was set to 8. When both the vocabulary and the number of contexts

are small, as in this case, there is no danger of hash collisions. We disable the Bloom filter

making the hash adaptation essentially equivalent to having context-dependent bias vectors.

Table 3.6 reports the results of the experiments on the Twitter corpus. We compute both

the perplexity and measure the performance of the models on a language identification task.

In terms of perplexity, the best models do not make use of the multiplicative hidden layer

adaptation, consistent with the results from the Reddit corpus. In general, the improvement

in perplexity from adaptation is small (less than 5%) on this corpus compared to our other

experiments where we saw relative improvements two to four times as big. This is likely

because the LSTM can figure out by itself which language it is modeling early on in the

sequence, capture that in the hidden state, and adjust its predictions accordingly.

Our best model, using multiplicative adaptation of the hidden layer, achieves an accuracy

of 94.2% on this task. That is a 19% relative reduction in the error rate from the best model

without multiplicative adaptation.

Sometimes there can be little to no perplexity improvement between the unadapted and

adapted models. This can be explained if the provided context variables are mostly redundant
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Subreddit
Base.

PPL

Adapt.

PPL
∆PPL Description

FlashTV 90.5 68.2 24.6% A popular TV show

shield 99.4 77.3 22.2% A tv show

GlobalOffensive 97.1 79.3 18.3% A PC video game

nba 103.3 86.4 16.3% National Basketball Association

SquaredCircle 85.7 71.7 16.3% Professional Wrestling

Fitness 50.1 42.3 15.5% Exercise and fitness

hockey 85.5 72.4 15.2% Professional hockey

leagueoflegends 71.1 61.0 14.3% A PC video game

pcmasterrace 71.7 62.0 13.5% PC gaming

nfl 84.2 74.0 12.2% National Football League

AskWomen 62.1 55.3 10.9% Questions for women

news 70.8 65.0 8.2% General news stories and discussion

worldnews 85.7 79.7 7.1% Global news discussion

AskMen 69.4 66.7 3.9% Questions for men

gaming 79.0 76.1 3.7% General video games interest group

pics 74.0 71.8 3.0% Funny or interesting pictures

videos 62.9 61.1 2.9% Funny or interesting videos

funny 72.6 70.8 2.5% Sharing humorous content

Table 3.5: Comparison of perplexities per subreddit
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Hidden Output

× + LR Hash PPL Acc. F1

N N N N 6.44 – –

N N N Y 6.43 56.1 44.0

N N Y N 6.37 49.7 36.6

N N Y Y 6.34 57.0 44.5

N Y N N 6.23 91.6 84.2

N Y N Y 6.25 92.5 84.4

N Y Y N 6.21 91.4 82.9

N Y Y Y 6.15 92.8 85.2

Y N N N 6.90 93.9 85.6

Y N N Y 6.39 93.6 85.9

Y N Y N 6.28 93.2 85.1

Y N Y Y 6.31 93.7 86.1

Y Y N N 6.28 92.5 84.7

Y Y N Y 6.30 93.7 86.3

Y Y Y N 6.54 94.2 86.3

Y Y Y Y 6.35 93.3 85.9

Table 3.6: Results on Twitter data.
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given the previous tokens in the sequence. To investigate this further, we trained a logistic

regression classifier to predict the language using the state from the LSTM at the last time

step on the unadapted model as a feature vector. Using just 30 labeled examples per class it is

possible to get 74.6% accuracy. Furthermore, we find that a single dimension in the hidden

state of the unadapted model is often enough to distinguish between different languages

even though the model was not given any supervision signal. This finding is consistent with

previous work that showed that individual dimensions of LSTM hidden states can be strong

indicators of concepts like sentiment (Karpathy et al., 2015; Radford et al., 2017).

Figure 3.1 visualizes the value of the dimension of the hidden layer that is the strongest

indicator of Spanish on three different code-switched tweets. Code-switching is not a part of

the training data but it provides a compelling visualization of the ability of the unsupervised

model to quickly recognize the language. The fact that it is so easy for the unadapted model

to pick-up on the identity of the contextual variable fits with our explanation for the small

relative gain in perplexity from the adapted models in these two tasks.

Figure 3.1: The value of the dimension of the LSTM hidden state in an unadapted model
that is the strongest indicator for Spanish text for three different code-switched Tweets.
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3.4.3 SCOTUS experiments

Table 3.7 lists the results for the experiments on the SCOTUS corpus. The size of the

context embeddings are 9, 15, and 8 for the case, speaker, and role variables respectively.

For calculating perplexity we use a 60,000 sentence evaluation set. For the classification

experiment we selected 4,000 sentences from the test data from eleven different justices and

attempted to classify the identity of the justice. The perplexity of the distribution of judges

over those sentences is 8.9 (11.0 would be uniform). So, the data is roughly balanced. When

classifying justices, the model is given the case context variable, but we do not make any

special effort to filter candidates based on who was serving on the court during that time,

i.e. all eleven justices are considered for every case.

For both the perplexity and classification metrics, the hash adaptation makes a big dif-

ference. The model that uses only hash adaptation and no hidden layer adaptation has

a better perplexity than any of the model variants that use both hidden adaptation and

low-rank adaptation of the output layer.

To ascertain which of the context variables have the most impact, we trained additional

models with using different combinations of context variables. The model architecture is the

one that uses all four forms of adaptation. Results are listed in Table 3.8. The most useful

variable is the indicator for the case. The role variable is highly redundant—almost every

speaker only appears in a single role. Therefore, it is not surprising that the speaker variable

is more useful to the model than the role.

In Table 3.9 we list sentences generated from the fully adapted model (same one as the

last line in Table 3.7) using beam search. The value of the context variable for the Case is

held fixed while we explore different values for the Speaker and Role variables. Anecdotally,

we see that the model captures some information about John Roberts role as chief justice.

The model learns that Justice Breyer tends to start his questions with the phrase “I mean”

while Justice Kagan tends to start with “Well”. Roberts and Kagan appear in our data both

as justices and earlier as advocates.
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Hidden Output

× + LR Hash PPL ∆PPL ACC

N N N N 37.3 – –

N N N Y 31.2 16.5% 29.6

N N Y N 32.9 12.0% 26.2

N N Y Y 30.0 19.6% 28.4

N Y N N 33.2 11.0% 20.0

N Y N Y 29.9 19.8% 26.8

N Y Y N 32.7 12.4% 25.4

N Y Y Y 29.8 20.3% 31.1

Y N N N 33.3 10.7% 17.1

Y N N Y 29.8 20.1% 28.4

Y N Y N 32.3 13.4% 24.5

Y N Y Y 29.2 21.7% 32.4

Y Y N N 33.2 11.0% 18.9

Y Y N Y 29.8 20.1% 29.6

Y Y Y N 32.2 13.7% 26.1

Y Y Y Y 29.4 21.1% 31.9

Table 3.7: Results on the SCOTUS data in terms of perplexity and classification accuracy
(ACC) for the justice identification task.
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Case Spkr. Role PPL

N N N 37.3

N N Y 36.5

N Y N 33.6

N Y Y 33.3

Y N N 31.5

Y N Y 30.3

Y Y N 29.6

Y Y Y 29.4

Table 3.8: Perplexities for different combinations of context variables on the SCOTUS corpus.

Spkr. Role Sentence

Roberts J. We’ll hear argument first this morning in Ayers.

Breyer J. I mean, I don’t think that’s right.

Kagan J. Well, I don’t think that’s right.

Kagan A. Mr. Chief Justice, and may it please the court:

Bork A. --No, I don’t think so, your honor.

Table 3.9: Sentences generated from the adapted model using beam search under different
assumptions for speaker and role contexts.
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3.5 Comparison to Related Work

The multiplicative rescaling of the recurrent layer weights is used in the Hypernetwork model

(Ha et al., 2017). The focus of this model is to allow the LSTM to adjust automatically

depending on the context of the previous words. This is different from our work in that we

are adapting based on contextual information external to the word sequence. Gangireddy

et al. (2016) also use a rescaling of the hidden layer for adaptation but it is done as a

fine-tuning step and not during training like our model.

The RNNME model from Mikolov et al. (2011) uses feature hashing to train a maximum

entropy model alongside an RNN language model. The setup is similar to our method of

using hashing to learn context-dependent biases. However, there are a number of differences.

The motivation for the RNNME model was to speedup training of the RNN, not to compen-

sate for the inadequacy of low-rank output layer adaptation, which had yet to be invented.

Furthermore, Mikolov et al. (2011) do not use context dependent features in the max-ent

component of the RNNME model, nor do they have a method for dealing with hash collisions

such as our use of Bloom filters.

The idea of having one part of a language model be low-rank and another part to be an

additive correction to the low-rank model has been investigated in other work (Eisenstein

et al., 2011b; Hutchinson et al., 2013; Parikh et al., 2014). In both of these cases, the

correction term is encouraged to be sparse by including an L1 penalty. Our implementation

did not promote sparsity in the hash adaptation features but this idea is worth further

consideration.4 The hybrid LSTM and count based language model is an alternative way of

correcting for a low-rank approximation (Neubig and Dyer, 2016).

3.6 Summary

While our results suggest that there is not a one-size-fits-all approach to language model

adaptation, it is clear that we improve over the standard adaptation approach. The model

4See Appendix A for a deeper look at this idea.
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from Mikolov and Zweig (2012), equivalent to using just additive adaptation on the hidden

layer and low-rank adaptation of the output layer, is outperformed for all three datasets

at both the language modeling and classification tasks. The combined low-rank and hash

adaptation of the output layer were consistently required to get the best perplexity. For

the classification tasks, the multiplicative hidden layer adaptation is clearly useful, as is the

combined low-rank and hash adaptation of the output layer. Importantly, there is not always

a strong relationship between perplexity and classification scores.

Our results may have implications for work on text generation where it can be more

desirable to have more control over the generation rather than the lowest perplexity model.

This issue is explored further in Chapter 6.

Our investigation of the language context in the Twitter experiments gives a useful take-

away: context variables that are easily predictable from the text alone are unlikely to be

helpful. More studies are needed to get a more complete understanding about what types of

context variables will provide the most benefit. To that end, additional contexts are explored

in subsequent chapters.

Based on the results from the SCOTUS experiments, we know that an additive transfor-

mation of the bias by itself is not always the best way to adapt the recurrent layer. This

motivated us to look for a new approach that would give more consistent perplexity gains so

that we could be confident recommending its use in most situations. Further investigation

led us to develop the FactorCell model, which is the subject of the next chapter.
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Chapter 4

FACTOR CELL MODEL

In this chapter we introduce the FactorCell model for adapting the recurrent layer of an

RNN language model.1 This is a major contribution of the thesis. Instead of taking context

as an additional input to the model, we conceive of adaptation in a totally new way where

the model generates a custom recurrent layer for any context. This is accomplished using a

low-rank decomposition in order to control the extent of parameter sharing between contexts,

which is important for handling high-dimensional, sparse contexts. The experiments in this

chapter will show that the FactorCell improves perplexity and that it also has qualitative

differences that set it apart from other models.

The FactorCell model generalizes the ConcatCell and remedies one of its major weak-

nesses. When there is a large amount of data available per context then there is less need

to share information between contexts. Likewise, where there are many contexts and less

training data per context it is better to do more parameter sharing. The ConcatCell is not

able to trade-off between these scenarios. It always shares almost all of its parameters across

contexts. In contrast, the FactorCell rank hyperparameter allows complete control over how

much sharing there is between contexts.

Aside from perplexity, computation cost is always a consideration. A reliable and easy

way to reduce perplexity is to increase the recurrent layer dimension. In latency-constrained

applications (most industry speech recognition systems have strict latency constraints), the

recurrent state dimension is limited. By design, the FactorCell permits pre-computation

and caching so that its overall computational cost is negligibly more than the much simpler

ConcatCell. All of the benefits of more adaptation are delivered with no extra latency.

1This chapter draws on content from some of our previously published work (Jaech and Ostendorf, 2018a).
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The FactorCell is an alternative to the multiplicative transform explored in Chapter 3,

which has the advantage of dedicating more parameters to the adaptation and affecting a

bigger change on the recurrent layer weights. Unlike the multiplicative transform, we find

that the FactorCell model consistently improves perplexity.

4.1 FactorCell Model

Our model uses adaptation in both the recurrent layer and in the bias vector of the output

layer. In this section we describe methods for adapting the recurrent layer and the softmax

layer, showing that our proposed model is a generalization of most prior methods.

4.1.1 Adapting the recurrent layer

Our proposed model extends the ConcatCell by using a context-dependent weight matrix

W′ = W + A, in place of the generic weight matrix W. (We refer to W as generic because

it is shared across all context settings.) The adaptation matrix, A, is generated by taking

the product of the context embedding vector against a set of left and right basis tensors to

produce a rank r matrix. The left and right adaptation basis tensors are given as ZL ∈

Rk×(p+q)×r and ZR ∈ Rr×q×k. The two basis tensors together can be thought of as holding k

different rank r matrices, Aj = ZL,jZR,j, each the size of W. By taking the product between

c and the corresponding tensor modes of ZL and ZR (using ×i to denote the mode-i tensor

product, i.e., the product with the i-th dimension of the tensor), the context determines the

weighted combination of the k matrices:

A = (c×1 ZL)(ZR ×3 c
ᵀ). (4.1)

(Figure 4.1 is a visualization of the FactorCell architecture.) The number of degrees of

freedom of A is controlled by the dimension k of the context vector and the rank r of the k

weight matrices. The rank is treated as a hyperparameter and controls the extent to which

the model relies on the generic weight matrix W versus behaves in a more context-specific

manner.
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Figure 4.1: Illustration of the FactorCell architecture.

We call this model the FactorCell because the weight matrix has been adapted by adding

a factored component. The ConcatCell model is a special case of the FactorCell where ZL

and ZR are set to zero. In summary, the proposed model is given by:

ht = σ(W′[ewt , ht−1] + b′1)

W′ = W + (c×1 ZL)(ZR ×3 c)

b′1 = Qc+ b1.

(4.2)

If the context is known in advance, W′ can be precomputed, in which case applying the

RNN at test time requires no more computation than using an unadapted RNN of the same

size. This means that for a fixed sized recurrent layer, the FactorCell model can have many

more parameters than the ConcatCell model but hardly any increase in computational cost.

When adapting with the FactorCell method, we find it necessary to also include the shift

of the bias in the softmax output as described in Equation 2.6.

4.1.2 LSTM FactorCell Equations

Only trivial changes are needed to use the FactorCell method on an LSTM instead of a

vanilla RNN. Here, we list the equations for an LSTM with coupled input and forget gates,

which is what was used in our experiments.

The weight matrix W from Equation 2.2 is now size 3q × (p + q) and b is dimension

3q, where 3 is the number of gates. Likewise, ZR from Equation 4.1 is made to be of size
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r × 3q × k. The weight matrix W′ is as defined in Equation 4.2 and after computing its

product with the input [wt, ht−1], the result is split into three vectors of equal size: it, ft,

and ot

[it, ft, ot] = W′[ewt , ht−1] + b1, (4.3)

which are used in the input gate, the forget gate, and the output gate, respectively.

Using these three vectors we perform the gating operations to compute ht using the

memory cell mt as follows:

ft ← sigmoid(ft + 1.0)

mt = mt−1 � ft + (1.0− ft)� tanh(it)

ht = tanh(mt)� sigmoid(ot)

(4.4)

Note that Equation 3.1, which shows that a context vector concatenated with input is

equivalent to an additive bias term, extends to equation 4.3. In other words, in the LSTM

version of the ConcatCell model, the context vector effectively introduces an extra bias term

for each of the three gates.

4.2 Data

Name Train Dev Test Vocab Docs. Context

AGNews 4.6M 0.2M 0.3M 54,492 115K 4 Newspaper sections

DBPedia 28.7M 0.3M 3.6M 84,341 555K 14 Entity categories

TripAdvisor 127.2M 2.6M 2.6M 88,347 843K 3.5K Hotels/5 Sentiment

Yelp 91.5M 0.7M 7.1M 57,794 645K 5 Sentiment

EuroTwitter∗ 5.3M 0.8M 1.0M 194 80K 9 Languages

GeoTwitter∗ 51.7M 2.2M 2.2M 203 604K Latitude & Longitude

Table 4.1: Dataset statistics: Dataset size in words (* or characters) of Train, Dev and Test
sets, vocabulary size, number of training documents, and context variables.
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The experiments make use of six datasets: four targeting word-level sequences, and two

targeting character sequences. The character studies are motivated by the growing interest

in character-level models in both speech recognition and machine translation (Hannun et al.,

2014; Chung et al., 2016). By using multiple datasets with different types of context, we

hope to learn more about what makes a dataset amenable to adaptation. The datasets

range in size from over 100 million words of training data to 5 million characters of training

data for the smallest one. When using a word-based vocabulary, we preprocess the data

by lowercasing, tokenizing and removing most punctuation. We also truncate sentences to

be shorter than a maximum length of 60 words for AGNews and DBPedia and 150 to 200

tokens for the remaining datasets. Summary information is provided in Table 4.1, including

the training, development, and test data sizes in terms of number of tokens, vocabulary size,

number of training documents (i.e. context samples), and the context variables (f1:n). The

largest dataset, TripAdvisor, has over 800 thousand hotel review documents, which adds up

to over 125 million words of training data.

The first three datasets (AGNews, DBPedia, and Yelp) have previously been used for

text classification (Zhang et al., 2015). These consist of newspaper headlines, encyclopedia

entries, and restaurant and business reviews, respectively. The context variables associated

with these correspond to the newspaper section (world, sports, business, sci & tech) for each

headline, the page category on DBPedia (out of 14 options such as actor, athlete, building,

etc.), and the star rating on Yelp (from one to five). For AgNews, DBPedia, and Yelp we

use the same test data as in previous work. Our fourth dataset, from TripAdvisor, was

previously used for language modeling and consists of two relevant context variables: an

identifier for the hotel and a sentiment score from one to five stars (Tang et al., 2016). Some

of the reviews are written in French or German but most are in English. There are 4,333

different hotels but we group all the ones that do not occur at least 50 times in the training

data into a single entity, leaving us with around 3,500. These four datasets use word-based

vocabularies.

We also experiment on two Twitter datasets: EuroTwitter and GeoTwitter. EuroTwitter
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is the same as the Twitter data used in the previous chapter and consists of 80 thousand

Tweets labeled with one of nine languages: (English, Spanish, Galician, Catalan, Basque,

Portuguese, French, German, and Italian). The corpus was created by combining portions

of multiple published datasets for language identification including Twitter70 (Jaech et al.,

2016), TweetLID (Zubiaga et al., 2014), and the monolingual portion of Tweets from a code-

switching detection workshop (Molina et al., 2016). The GeoTwitter data contains Tweets

with latitude and longitude information from England, Spain, and the United States.2 The

latitude and longitude coordinates are given as numerical inputs. This is different from the

other five datasets that all use categorical context variables.

4.3 Experiments with Different Contexts

The goal of the experiments is to show that the FactorCell model can deliver improved

performance over current approaches for multiple language model applications and a variety

of types of contexts. Specifically, results are reported for context-conditioned perplexity

and generative model text classification accuracy, using contexts that capture a range of

phenomena and dimensionalities.

Test set perplexity is the most widely accepted method for evaluating language models,

both for use in recognition/translation applications and generation. It has the advantage

that it is easy to measure and is widely used as a criterion for model fit, but the limitation

that it is not directly matched to most tasks that language models are directly used for. Text

classification using the model in a generative classifier is a simple application of Bayes rule:

ω̂ = arg max
ω

p(w1:T |ω)p(ω) (4.5)

where w1:T is the text sequence, p(ω) is the class prior, which we assume to be uniform.

Classification accuracy provides additional information about the power of a model, even

if it is not being designed explicitly for text classification. Further, it allows us to be able

to directly compare our model performance against previously published text classification

2Data was accessed from http://followthehashtag.com.
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benchmarks. Although the most effective models for text classification have generally been

discriminative, generative models can be competitive when the available training data is

small or text samples are short (Yogatama et al., 2017), and we find that the FactorCell

makes the generative model more competitive.

Note that the use of classification accuracy for evaluation here involves counting errors

associated with applying the generative model to independent test samples. This differs

from the accuracy criterion used for evaluating context-sensitive language models for text

generation based on a separate discriminative classifier trained on generated text (Ficler and

Goldberg, 2017; Hu et al., 2017). We discuss this further in Section 4.5 and Chapter 6.

The experiments compare the FactorCell model (equations 4.2 and 2.6) to two popular

alternatives, which we refer to as ConcatCell (equations 2.5 and 2.6) and SoftmaxBias (equa-

tion 2.6). As noted earlier, the SoftmaxBias method is a simplification of the ConcatCell

model, which is in turn a simplification of the FactorCell model. The SoftmaxBias method

impacts only the output layer and thus only unigram statistics. Since bag-of-word models

provide strong baselines in many text classification tasks, we hypothesize that the Soft-

maxBias model will capture much of the relative improvement over the unadapted model for

word-based tasks. However, in small vocabulary character-based models, the unigram dis-

tribution is unlikely to carry much information about the context, so adapting the recurrent

layer should become more important in character-level models. We expect that performance

gains will be greatest for the FactorCell model for sources that have sufficient structure and

data to support learning the extra degrees of freedom.

Another possible baseline would use models independently trained on the subset of data

for each context. This is the “independent component” case in (Yogatama et al., 2017).

This will fail when a context variable takes on many values (or continuous values) or when

training data is limited, because it makes poor use of the training data, as shown in that

study. While we do have some datasets where this approach is plausible, we feel that its

limitations have been clearly established.
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4.3.1 Implementation Details

The RNN variant that we use is an LSTM with coupled input and forget gates (Melis et al.,

2018). The different model variants are implemented3 using the Tensorflow library. The

model is trained with the standard negative log likelihood loss function, i.e. minimizing cross

entropy. Dropout was used as a regularizer in the recurrent connections (Semeniuta et al.,

2016). Training is done using the Adam optimizer with a learning rate of 0.001. For the

models with word-based vocabularies, a sampled softmax loss is used with a unigram proposal

distribution and sampling 150 words at each time-step (Jean et al., 2014). The classification

experiments use a sampled softmax loss with a sample size of 8,000 words. This is an order

of magnitude faster to compute with a minimal effect on accuracy.

AgNews DBPedia EuroTwtr GeoTwtr Trip Yelp

Word Embed 150 114-120 35-40 42-50 100 200

LSTM dim 110 167-180 250 250 200 200

Steps 4.1-5.5K 7.5-8.0K 6.0-8.0K 6.0-11.1K 8.4-9.9K 7.2-8.8K

Dropout 0.5 1.00 0.95-1.00 0.99-1.00 0.97-1.00 1.00

Ctx. Embed 2 12 3-5 8-24 20-30 2-3

Rank 12 19 2 20 12 9

Table 4.2: Selected hyperparameters for each dataset. When a range is listed it means that
a different values were selected for the FactorCell, ConcatCell, SoftmaxBias or Unadapted
models.

Hyperparameter tuning was done based on minimizing perplexity on the development

set and using a random search. Hyperparameters included word embedding size e, recurrent

state size d, context embedding size k, and weight adaptation matrix rank r, the number of

training steps, recurrent dropout probability, and random initialization seed. We conducted

more than 700 tuning experiments with iterative refinements. The number of experiments

3Code available at http://github.com/ajaech/calm.
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per dataset vaires between 74 and 190. The selected hyperparameter values are listed in

Table 4.2. For any fixed LSTM size, the FactorCell has a higher count of learned parameters

compared to the ConcatCell. However, during evaluation both models use approximately

the same number of floating-point operations because W′ only needs to be computed once

per sentence. Because of this, we believe limiting the recurrent layer cell size is a fair way to

compare between the FactorCell and the ConcatCell.

4.3.2 Word-based Models

AGNews DBPedia TripAdvisor Yelp

Model PPL ACC PPL ACC PPL ACC PPL ACC

Unadapted 96.2 – 44.1 – 51.6 – 67.1 –

SoftmaxBias 95.1 90.6 40.4 95.5 48.8 51.9 66.9 51.6

ConcatCell 93.8 89.7 39.5 97.8 48.3 56.0 66.8 56.9

FactorCell 92.3 90.6 37.7 98.2 48.2 58.2 66.2 58.8

Table 4.3: Perplexity and classification accuracy on the test set for the four word-based
datasets.

Perplexities and classification accuracies for the four word-based datasets are presented

in Table 4.3. In each of the four datasets, the FactorCell model gives the best perplexity. For

classification accuracy, there is a bigger difference between the models, and the FactorCell

model is the most accurate on three out of four datasets and tied with the SoftmaxBias

model on AgNews. For DBPedia and TripAdvisor, most of the improvement in perplexity

relative to the unadapted case is achieved by the SoftmaxBias model with smaller relative

improvements coming from the increased power of the ConcatCell and FactorCell models.

For Yelp, the perplexity improvements are small; the FactorCell model is just 1.3% better

than the unadapted model.

From (Yogatama et al., 2017), we see that for AGNews, much more so than for other
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datasets, the unigram statistics capture the discriminating information, and it is the only

dataset in that work where a naive Bayes classifier is competitive with the generative LSTM

for the full range of training data. The fact that the SoftmaxBias model gets the same

accuracy as the FactorCell model on this task suggests that topic context may benefit less

from adapting the recurrent layer.

For the DBPedia and Yelp datasets, the FactorCell model beats previously reported

classification accuracies for generative models (Yogatama et al., 2017). However, it is not

competitive with state-of-the-art discriminative models on these tasks with the full training

set. With less training data, it probably would be, based on the results in (Yogatama et al.,

2017).

The numbers in Table 4.3 do not adequately convey the fact that there are hyperparame-

ters with an effect on perplexity that is greater than the sometimes small relative differences

between models. Even the seed for the random weight initialization can have a “major im-

pact” on the final performance of an LSTM (Reimers and Gurevych, 2017). We use Figure

4.2 to show how the three classes of models perform across a range of hyperparameters.

The figure compares perplexity on the x-axis with accuracy on the y-axis with both metrics

computed on the development set. Each point in this figure represents a different instance

of the model trained with random hyperparameter settings and the best results are in the

upper right corner of each plot. The color/shape differences of the points correspond to the

three classes of models: FactorCell, ConcatCell, and SoftmaxBias.

Within the same model class but across different hyperparameter settings, there is much

more variation in perplexity than in accuracy. The LSTM cell size is mainly responsible for

this; it has a much bigger impact on perplexity than on accuracy. It is also apparent that

the models with the lowest perplexity are not always the ones with the highest accuracy.

Notably, improvements in perplexity are associated with a decrease in accuracy for the

SoftmaxBias models on the DBPedia, TripAdvisor, and Yelp datasets. In Bowman et al.

(2016), it was observed that the more powerful the decoder of a variational auto-encoder was

the more likely it was to ignore the prior information given by the encoder. A similar effect
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Figure 4.2: Accuracy vs. perplexity for different classes of models on the four word-based
datasets.

is happening here where when the recurrent layer size is increased then the model relies less

on the unigram prior provided by the adapted softmax bias vector. See Section 4.3.4 for

further hyperparameter analysis.

Figure 4.3 is a visualization of the per-word log likelihood ratios between a model as-

suming a 5 star review and the same model assuming a 1 star review. Likelihoods were

computed using an ensemble of three models to reduce variance. The analysis is repeated

for each class of model. Words highlighted in blue are given a higher likelihood under the 5

star assumption.

Unigrams with strong sentiment such as “lovely” and “friendly” are well-represented by

all three models. The reader may not consider the tokens “craziness” or “5-8pm” to be strong

indicators of a positive review but the way they are used in this review is representative of
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how they are typically used across the corpus.

As expected, the ConcatCell and FactorCell model capture the sentiment of multi-token

phrases. As an example, the unigram “enough” is 3% more likely to occur in a 5 star review

than in a 1 star review. However, “do enough” is 30 times more likely to appear in a 5 star

review than in a 1 star review. In this example, the FactorCell model does a better job of

handling the word “enough.”

4.3.3 Character-based Models

Next, we evaluate the EuroTwitter and GeoTwitter models using both perplexity and a

classification task. For EuroTwitter, the classification task is to identify the language. With

GeoTwitter, it is less obvious what the classification task should be because the context

values are continuous and not categorical. We selected six cities and then assigned each

sentence the label of the closest city in that list while still retaining the exact coordinates of

the Tweet. There are two cities from each country: Manchester, London, Madrid, Barcelona,

New York City, and Los Angeles. Tweets from locations further than 300 km from the nearest

city in the list were discarded when evaluating the classification accuracy. The classification

task is sufficient to investigate the properties of the language model but, unlike some prior

work, it is not designed to capture geographic lexical variations in an easily interpretable

manner (Eisenstein et al., 2010) nor is it designed to be efficient at geolocation (Han et al.,

2014).

Perplexities and classification accuracies are presented in Table 4.4. The FactorCell model

has the lowest perplexity and the highest accuracy for both datasets. Again, the FactorCell

model clearly improves on the ConcatCell as measured by classification accuracy. Consistent

with our hypothesis, adapting the softmax bias is not effective for these small vocabulary

character-based tasks. The SoftmaxBias model has small perplexity improvements (< 1%)

and low classification accuracies.

Figure 4.4 compares perplexity and classification accuracy for different hyperparameter

settings of the character-based models. Again, we see that it is possible to trade-off some
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SoftmaxBias

ConcatCell

FactorCell

Figure 4.3: Log likelihood ratio between a model that assumes a 5 star review and the same
model that assumes a 1 star review. Blue indicates a higher 5 star likelihood and red is a
higher likelihood for the 1 star condition.
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EuroTwitter GeoTwitter

Model PPL ACC PPL ACC

Unadapted 6.35 – 4.64 –

SoftmaxBias 6.29 43.0 4.63 29.9

ConcatCell 6.17 91.5 4.54 42.2

FactorCell 6.07 93.3 4.52 63.5

Table 4.4: Perplexity and classification accuracies for the EuroTwitter and GeoTwitter
datasets.

perplexity for gains in classification accuracy. For EuroTwitter, if tuning is done on accuracy

rather than perplexity then the accuracy of the best model is as high as 95%.

4.3.4 Hyperparameter Analysis

The hyperparameter with the strongest effect on perplexity is the size of the LSTM. This was

consistent across all six datasets. The effect on classification accuracy of increasing the LSTM

size was mixed. Increasing the context embedding size generally helped with accuracy on all

datasets, but it had a more neutral effect on TripAdvisor and Yelp and increased perplexity

on the two character-based datasets. For the FactorCell model, increasing the rank of the

adaptation matrix tended to lead to increased classification accuracy on all datasets and

seemed to help with perplexity on AGNews, DBPedia, and TripAdvisor.

Figure 4.5 compares the effect on perplexity of the LSTM parameter count and the Fac-

torCell rank hyperparameters. Each point in those plots represents a separate instance of the

model with varied hyperparameters. In the right subplot of Figure 4.5, we see that increasing

the rank hyperparameter improves perplexity. This is consistent with our hypothesis that

increasing the rank can let the model adapt more. The variance is large because differences

in other hyperparameters (such as hidden state size) also have an impact.

In the left subplot we compare the performance of the FactorCell with the ConcatCell as
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Figure 4.4: Accuracy vs. Perplexity for different classes of models on the two character-based
datasets.

the size of the word embeddings and recurrent state change. The x-axis is the size of the W

recurrent weight matrix, specifically 3(e+ d)d for an LSTM with 3 gates. Since the adapted

weights can be precomputed, the computational cost is roughly the same for points with the

same x-value. For a fixed-size hidden state, the FactorCell model has a better perplexity

than the ConcatCell.

Since performance can be improved both by increasing the recurrent state dimension

and/or by increasing rank, we examined the relative benefits of each. The perplexity of a

FactorCell model with an LSTM size of 120K will improve by 5% when the rank is increased

from 0 to 20. To get the same decrease in perplexity by changing the size of the hidden state

would require 160K parameters, resulting in a significant computational advantage for the

FactorCell model.

Using a one-hot vector for adapting the softmax bias layer in place of the context em-

bedding when adapting the softmax bias vector tended to have a large positive effect on

accuracy leaving perplexity mostly unchanged. Recall from Section 2.3 that if the number

of values that a context variable can take on is small then we can allow the model to choose

between using the low-dimensional context embedding or a one-hot vector. This option is
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Figure 4.5: Comparison of the effect of LSTM parameter count and FactorCell rank hyper-
parameters on perplexity for DBPedia.

not available for the TripAdvisor and the GeoTwitter datasets because the dimensionality

of their one-hot vectors would be too large.4 The method of adapting the softmax bias is

the main explanation for why some ConcatCell models performed significantly above/below

the trendline for DBPedia in Figure 4.2.

We experimented with an additional hyperparameter on the Yelp dataset, namely the

inclusion of layer normalization (Ba et al., 2016). (We had ruled-out using layer normaliza-

tion in preliminary work on the AGNews data before we understood that AGNews is not

representative, so only one task was explored here.) Layer normalization significantly helped

the perplexity on Yelp (≈ 2% relative improvement) and all of the top-performing models

on the held-out development data had it enabled.

4.4 Analysis for Sparse Contexts

The TripAdvisor data is an interesting case because the original context space is high di-

mensional (3500 hotels × 5 user ratings) and sparse. Since the model applies end-to-end

learning, we can investigate what the context embeddings learn. In particular, we looked at

location (hotels are from 25 cities in the United States) and class of hotel, neither of which

4Another option for the TripAdvisor data is to use the hashing method from Section 3.2.2.
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are input to the model. All of what it learns about these concepts come from extracting

information from the text of the reviews.

To visualize the embedding, we used a 2-dimensional principal component analysis (PCA)

projection of the embeddings of the 3500 hotels. We found that the model learns to group the

hotels based on geographic region; the projected embeddings for the largest cities are shown

in Figure 4.6, plotting the 1.5σ ellipsoid of the Gaussian distribution of the points. (Actual

points are not shown to avoid clutter.) Not only are hotels from the same city grouped

together, cities that are close geographically appear close to each other in the embedding

space. Cities in the Southwest appear on the left of the figure, the West coast is on top and

the East coast and Midwest is on the right side. This is likely due in part to the impact of

the region on activities that guests may mention, but there also appears to be a geographic

sampling bias in the hotel class that may impact language use.

Figure 4.7 shows the projected hotel embeddings in the same space as Figure 4.6 except

that the points are now colored based on the hotel class. Class is a rating from an independent

agency that indicates the level of service and amenities that customers can expect to receive

at a hotel. Whereas, the star rating is the average score given to each establishment by

the customers who reviewed it. Hotel class does not determine star rating although they

are correlated (r = 0.54). The dataset does not contain a uniform sample of hotel classes

from each city. The hotels included from Boston, Chicago, and Philly are almost exclusively

high class and the ones from L.A. and San Diego happen to be low class, so the embedding

distributions also reflect hotel class: lower class hotels towards the top left and higher class

hotels towards the bottom right. The visualization for the ConcatCell and SoftmaxBias

models are similar.

Another way of understanding what the context embeddings represent is to compute the

softmax bias projection Gc and examine the words that experience the biggest increase in

probability. We show three examples in Table 4.5. In each case, the top words are strongly

related to geography and include names of neighborhoods, local attractions, and other hotels

in the same city. The top boosted words are relatively unaffected by changing the rating.
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Figure 4.6: Distribution of a PCA projection of hotel embeddings from the TripAdvisor
FactorCell model showing the grouping of the hotels by city.



57

Figure 4.7: Distribution of a PCA projection of the hotel embeddings from the TripAdvisor
FactorCell model showing the grouping of hotels by class.
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(Recall that the hotel identifier and the user rating are the only two inputs used to create

the context embedding.) This table combined with the other visualizations indicates that

location effects tend to dominate in the output layer, which may explain why the two models

adapting the recurrent network seem to have a bigger impact on classification performance.

Hotel City Class Rating Top Boosted Words

Amalfi Chicago 4.0 5 amalfi, chicago, allegro, burnham,

sable, michigan, acme, conrad, tal-

bott, wrigley

BLVD Hotel Suites Los Angeles 2.5 3 hollywood, kodak, highland, univer-

sal, reseda, griffith, grauman’s, bev-

erly, ventura

Four Points Sheraton Seattle 3.0 1 seattle, pike, watertown, deca, nee-

dle, pikes, pike’s monorail, uw,

safeco

Table 4.5: The top boosted words in the Softmax bias layer for different context settings in
a FactorCell model.

4.5 Comparison to Related Work

The studies that most directly relate to our work are neural models that correspond to special

cases of the more general FactorCell model, including those that leverage what we call the

SoftmaxBias model (Dieng et al., 2016; Tang et al., 2016; Yogatama et al., 2017; Ficler and

Goldberg, 2017) and others that use the ConcatCell approach (Mikolov and Zweig, 2012;

Wen et al., 2013; Chen et al., 2015; Ghosh et al., 2016).

The FactorCell model is distinguished by having an additive (factored) context-dependent

transformation of the recurrent layer weight matrix. A related additive context-dependent

transformation has been proposed for log-bilinear sequence models (Eisenstein et al., 2011a;
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Hutchinson et al., 2015), but these are less powerful than the RNN. Factored tensors have

been successfully used in other NLP applications such as dependency parsing (Lei et al.,

2014). A somewhat different use of low-rank factorization has previously been used to

reduce the parameter count in an LSTM LM (Kuchaiev and Ginsburg, 2017), finding that

the reduced number of parameters leads to faster training.

Much of the work on context-adaptive neural language models has focused on incorpo-

rating document or topic information (Mikolov and Zweig, 2012; Ji et al., 2015; Ghosh et al.,

2016; Dieng et al., 2016), where context is defined in terms of word or n-gram statistics.

Our work differs from these studies in that the context is defined by a variety of sources,

including discrete and/or continuous metadata, which is mapped to a context vector in

end-to-end training. Context-sensitive language models for text generation tend to involve

other forms of context similar to the objective of our work, including speaker characteristics

(Luan et al., 2016; Li et al., 2016), dialog act (Wen et al., 2015), sentiment and other fac-

tors (Tang et al., 2016; Hu et al., 2017), and style (Ficler and Goldberg, 2017). Our work is

distinctive in assessing performance over a broad variety of context variables.

4.6 Summary

In summary, this chapter has introduced a new model for adapting (or controlling) a lan-

guage model depending on contextual metadata. The FactorCell model extends prior work

with context-dependent RNNs by using the context vector to generate a low-rank, factored,

additive transformation of the recurrent cell weight matrix. Experiments with six tasks show

that the FactorCell model matches or exceeds performance of alternative methods in both

perplexity and text classification accuracy. Findings hold for a variety of types of context,

including high-dimensional contexts, and the adaptation of the recurrent layer is particularly

important for character-level models. For many contexts, the benefit of the FactorCell model

comes with essentially no additional computational cost at test time, since the transforma-

tions can be pre-computed. Analyses of a dataset with a high-dimensional sparse context

vector show that the model learns context similarities to facilitate parameter sharing.
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An adapted language model needs to memorize information about the unique language

patterns of each context. One way of thinking about the difference between the ConcatCell

and the FactorCell models is to ask where in the model is that information encoded. The

context embedding c has too few bits to hold much information by itself. The same is true

for the ConcatCell’s Q matrix from Equation 3.1. The information must be held inside the

shared weight matrix W. This exposes a weakness of the ConcatCell model. If only one

context is being used at a time why should the weights for all the contexts be active all the

time? The FactorCell model has many extra parameters stored in the ZL and ZR tensors.

It is able to offload context specific information to these locations and only use it when it is

needed.

The models evaluated here were tuned to minimize perplexity, as is typical for language

modeling. In analyses of performance with different hyperparameter settings, we find that

perplexity is not always positively correlated with accuracy, but the criteria are more often

correlated for approaches that adapt the recurrent layer. While not surprising, the results

raise concerns about using perplexity as the sole evaluation metric for context-aware lan-

guage models. More work is needed to understand the relative utility of these objectives for

language model design, which we address in Chapter 6.

In real applications, it is possible for the meaning of the contexts to shift over time and

the adapted model becomes out-of-date. To fix this, the model needs to be replenished

by re-training with new data or it can be updated continuously using online learning. We

address the latter of these two strategies in the next chapter.
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Chapter 5

PERSONALIZED QUERY AUTO-COMPLETION

5.1 Background

This chapter demonstrates the benefits of the FactorCell model on the real-world task of

query auto-completion (QAC).1 QAC is a feature used by search engines that provides a list

of suggested queries for the user as they are typing. For instance, if the user types the prefix

“mete” then the system might suggest “meters” or “meteorite” as completions. This feature

can save the user time and reduce cognitive load (Cai et al., 2016).

Most approaches to QAC are extensions of the Most Popular Completion (MPC) algo-

rithm (Bar-Yossef and Kraus, 2011). MPC suggests completions based on the most popular

queries in the training data that match the specified prefix. One way to improve MPC is

to consider additional signals such as temporal information (Shokouhi and Radinsky, 2012;

Whiting and Jose, 2014) or information gleaned from a users’ past queries (Shokouhi, 2013).

This chapter deals with the latter of those two signals, i.e. personalization. Personaliza-

tion relies on the fact that query likelihoods are drastically different among different people

depending on their needs and interests.

Recently, (Park and Chiba, 2017) suggested a significantly different approach to QAC.

In their work, completions are generated from a character LSTM language model instead of

by ranking completions retrieved from a database, as in the MPC algorithm. This approach

is able to complete queries whose prefixes were not seen during training and has significant

memory savings over having to store a large query database.

Building on this work, we consider the task of personalized QAC using an LSTM language

model, combining the obvious advantages of personalization with the effectiveness of the

1The content of this chapter draws from our previously published work (Jaech and Ostendorf, 2018b).



62

language model in handling rare and previously unseen prefixes. The model must learn

how to extract information from a user’s past queries and use it to adapt the generative

model for that person’s future queries. User information is held in the form of a low-

dimensional embedding that represents the person’s interests and latent demographic factors.

The experiments demonstrate that by allowing a greater fraction of the parameters to change

in response to the user embeddings, the FactorCell has an advantage over the traditional

approach to RNN language model adaptation that increases as more examples from the user

are seen.

This task is different from the experiments described in Chapter 4 because new contexts

(users) can emerge after the model has been trained and deployed. We introduce a mechanism

to do online learning of the user embeddings, something that has not been addressed in

prior work on language model adaptation. Table 5.1 provides an anecdotal example from

the trained FactorCell model to demonstrate the intended behavior. The table shows the

top five completions for the prefix “ba” in a cold start scenario and again after the user

has completed five sports related queries. In the warm start scenario, the “baby names”

and “babiesrus” completions no longer appear in the top five and have been replaced with

“basketball” and “baseball”. In the online learning scenario, the FactorCell model makes

efficient use of the user query history to quickly improve the quality of the auto-completions.

While the standard implementation of MPC can not handle unseen prefixes, there are

variants which do have that ability. Park and Chiba (2017) find that the neural LM out-

performs MPC even when MPC has been augmented with the approach from Mitra and

Craswell (2015) for handling rare prefixes. There has also been work on personalizing MPC

(Shokouhi, 2013; Cai et al., 2014). We did not compare against these specific models because

our goal was to show how personalization can improve the already-proven generative neural

model approach. RNN’s have also previously been used for the related task of next query

suggestion (Sordoni et al., 2015).

Wang et al. (2018) show how spelling correction can be integrated into an RNN language

model query auto-completion system and how the completions can be generated in real
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Cold Start Warm Start

1 bank of america bank of america

2 barnes and noble basketball

3 babiesrus baseball

4 baby names barnes and noble

5 bank one baltimore

Table 5.1: Top five completions for the prefix ba for a cold start model with no previous
queries from that user and a warm model that has seen the queries espn, sports news,
nascar, yankees, and nba.

time using a GPU. Our method of updating the model during evaluation resembles work

on dynamic evaluation for language modeling (Krause et al., 2017), but differs in that only

the user embeddings (latent demographic factors) are updated. If the rest of the model is

allowed to update then either some user embedding can become stale or there will be a large

memory cost to hold different versions of the model for each person. One possibility would

be to allow the full model to update and also implement a policy to invalidate stale user

embeddings but that is beyond the scope of this work.

5.2 Model

Adaptation depends on learning an embedding for each user, which we discuss in Section

5.2.1, and then using that embedding to adjust the weights of the recurrent layer, discussed

in Section 5.2.2.

5.2.1 Learning User Embeddings

During training, we learn an embedding for each of the users. We think of these embeddings

as holding latent demographic factors for each user. Users who have less than 15 queries

in the training data (around half the users but less than 13% of the queries) are grouped
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together as a single entity, user1, leaving k users. The user embeddings matrix Uk×m, where

m is the user embedding size, is learned via back-propagation as part of the end-to-end

model. The embedding for an individual user is the ith row of U and is denoted by ui.

The user embedding plays the same role as the context embedding from Section 2.3.1 that

elsewhere is denoted by c.

It is important to be able to apply the model to users that are not seen during training.

This is done by online updating of the user embeddings during evaluation. When a new

person, userk+1 is seen, a new row is added to U and initialized to u1. Each person’s user

embedding is updated via back-propagation every time they select a query. When doing

online updating of the user embeddings, the rest of the model parameters (everything except

U) are frozen.

The learning rate for the online updating should be different than the one used for

training the rest of the model. When training the full model, the goal is to converge to a

global minimum. During online updating the user embeddings do not converge to a fixed

point but continue to track the query history. The optimal learning rate must be found using

validation data.

5.2.2 Recurrent Layer Adaptation

We consider three model architectures which differ only in the method for adapting the

recurrent layer. First is the unadapted LM, analogous to the model from Park and Chiba

(2017), which does no personalization. The second architecture is the ConcatCell, which

concatenates a user embedding to the character embedding at every step of the input to

the recurrent layer. For the third model, we test the FactorCell’s ability to let the user

embedding transform the weights of the recurrent layer. Unlike the previous chapter, we

do not incorporate the ConcatCell adaptation of the recurrent layer bias when using the

FactorCell model. We found that this was unnecessary in preliminary experiments.

When operating at the character-level, the unigram distribution is not particularly in-

formative of the differences between users. This is unlike the word-level models, where the
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unigram distribution can carry topic information. For this reason, we do not employ any of

the techniques from Chapter 4 for adapting the softmax bias vector.

5.3 Data

The experiments make use of the AOL Query data collected over three months in 2006 (Pass

et al., 2006). The first six of the ten files were used for training. This contains approximately

12 million queries from 173,000 users for an average of 70 queries per user (median 15). A

set of 240,000 queries from those same users (2% of the data) was reserved for tuning and

validation. From the remaining files, one million queries from 20,000 users are used to test

the models on a disjoint set of users. The chronological ordering of the queries is ignored

during training but respected during testing.

Our results are not directly comparable to Park and Chiba (2017) or Mitra and Craswell

(2015) due to differences in the partitioning of the data and the method for selecting random

prefixes. Prior work partitions the data by time instead of by user. Splitting by users is

necessary in order to properly test personalization over longer time ranges.

5.4 Experiments

5.4.1 Experiment Details

The vocabulary consists of 79 characters including special start and stop tokens. Models

were trained for six epochs. The Adam optimizer is used during training with a learning

rate of 10−3 (Kingma and Ba, 2014). The language model is a single-layer character-level

LSTM with coupled input and forget gates and layer normalization (Melis et al., 2018; Ba

et al., 2016). We do experiments on two model configurations: small and large. The small

models use an LSTM hidden state size of 300 and 20 dimensional user embeddings. The

large models use a hidden state size of 600 and 40 dimensional user embeddings. Both sizes

use 24 dimensional character embeddings. For the small sized models, we experimented

with different values of the FactorCell rank hyperparameter between 30 and 50 dimensions
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finding that bigger rank is better. The large sized models used a fixed value of 60 for the rank

hyperparemeter. During training only and due to limited computational resources, queries

are truncated to a length of 40 characters. The model2 is implemented using Tensorflow.

When updating the user embeddings during evaluation, we found that it is easier to

use an optimizer without momentum. We use Adadelta (Zeiler, 2012) and tune the online

learning rate to give the best perplexity on a held-out set of 12,000 queries, having previously

verified (See Figure 5.1) that perplexity is a good indicator of performance on the QAC task.

The learning rate is the only parameter that needs to be tuned for online learning.

Prefixes are selected uniformly at random with the constraint that they contain at least

two characters in the prefix and that there is at least one character in the completion. To

generate completions using beam search, we use a beam width of 100 and a branching factor

of 4. Results are reported using mean reciprocal rank (MRR), the standard method of

evaluating QAC systems. It is the mean of the reciprocal rank of the true completion in the

top ten proposed completions. The reciprocal rank is zero if the true completion is not in

the top ten.

Neural models are compared against an MPC baseline. Following (Park and Chiba, 2017),

we remove queries seen less than three times from the MPC training data to avoid excessive

memory usage.

5.4.2 Results

The training objective, minimizing perplexity, differs from the evaluation metric, maximizing

the mean reciprocal rank of the query completion. Fortunately, the mismatch between met-

rics is not large. As shown in Figure 5.1, perplexity correlates with MRR on the development

data.

Table 5.2 compares the performance of the different models against the MPC baseline on

a test set of one million queries from a user population that is disjoint with the training set.

2Code is available at http://github.com/ajaech/query completion.
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Figure 5.1: Perplexity versus MRR on the development data for different classes of models.

Results are presented separately for prefixes that are seen or unseen in the training data. If

the prefix was not seen in the training data then the query is guaranteed to be relatively

rare. Consistent with prior work, the neural models do better than the MPC baseline. The

personalized models are better than the unadapted one, and the FactorCell model is the best

overall in both the big and small sized experiments.

Figure 5.2 shows the relative improvement in MRR over an unpersonalized model versus

the number of queries seen per user. Both the FactorCell and the ConcatCell show continued

improvement as more queries from each user are seen, and the FactorCell outperforms the

ConcatCell by an increasing margin over time. In the long run, we expect that the system

will have seen many queries from most users. Therefore, the right side of Figure 5.2, where

the FactorCell is up to 2% better than the ConcatCell, is more representative of the relative

performance of the two systems. Since the data was collected over a limited time frame and

half of all users have fifteen or fewer queries, the results in Table 5.2 do not reflect the full

benefit of personalization.

Figure 5.3 shows the MRR for different prefix and query lengths. We find that longer
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Size Model Seen Unseen All

MPC .292 .000 .203

Unadapted .292 .256 .267

(S) ConcatCell .296 .263 .273

FactorCell .300 .264 .275

Unadapted .324 .286 .297

(B) ConcatCell .330 .298 .308

FactorCell .335 .298 .309

Table 5.2: MRR reported for seen and unseen prefixes for small (S) and big (B) models.

Figure 5.2: Relative improvement in MRR over the unpersonalized model versus queries seen
using the large size models. Plot uses a moving average of width 9 to reduce noise.
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Figure 5.3: MRR by prefix and query lengths for the large FactorCell and unadapted models
with the first 50 queries per user excluded.

prefixes help the model make longer completions and (as expected) shorter completions have

higher MRR. Comparing the personalized model against the unpersonalized baseline, we see

that the biggest gains are for short queries and prefixes of length one or two.

We found that one reason why the FactorCell outperforms the ConcatCell is that it is able

to pick up sooner on the repetitive search behaviors that some users have. This commonly

happens for navigational queries like when someone searches for the name of their favorite

website once or more per day. At the extreme tail there are users who search for nothing but

free online poker. Both models do well on these highly predictable users but the FactorCell

is generally a bit quicker.

We conducted an analysis to better understand what information is represented in the

user embeddings and what makes the FactorCell different from the ConcatCell. From a

cold start user embedding we ran two queries and allowed the model to update the user

embedding. Then, we ranked the most frequent 1,500 queries based on the ratio of their

likelihood from before and after updating the user embeddings.

Tables 5.3, 5.4, and 5.5 show the queries with the highest relative likelihood of the

adapted vs. unadapted models after two related search queries: “high school softball” and
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FactorCell ConcatCell

1 high school musical horoscope

2 chris brown high school musical

3 funnyjunk.com homes for sale

4 funbrain.com modular homes

5 chat room hair styles

Table 5.3: The five queries that have the greatest adapted vs. unadapted likelihood ratio
after searching for “high school softball” and “math homework help”.

“math homework help” for Table 5.3, “Prada handbags” and “Versace eyewear” for Table 5.4,

and “discount flights” and “Yellowstone vacation packages” for Table 5.5. In all cases, the

FactorCell model examples are more semantically coherent than the ConcatCell examples. In

the first case, the FactorCell model identifies queries that a high school student might make,

including entertainment sources and a celebrity entertainer popular with that demographic.

In the second case, the FactorCell model chooses retailers that carry woman’s apparel and

those that sell home goods. While these companies’ brands are not as luxurious as Prada

or Versace, most of the top luxury brand names do not appear in the top 1,500 queries

and our model may not be capable of being that specific. There is no obvious semantic

connection between the highest likelihood ratio phrases for the ConcatCell; it seems to be

focusing more on orthography than semantics (e.g. “home” in the first example). In the last

case, the FactorCell suggests a map and four different airlines and the ConcatCell suggests

a flight tracker (unlikely to be useful to someone looking to buy a ticket), a bank, and three

reformulations of the original “discount flights” query. Not shown are the queries which

experienced the greatest decrease in likelihood. For the “high school” case, these included

searches for travel agencies and airline tickets—websites not targeted towards the high school

age demographic.



71

FactorCell ConcatCell

1 neiman marcus craigslist nyc

2 pottery barn myspace layouts

3 jc penney verizon wireless

4 verizon wireless jensen ackles

5 bed bath and beyond webster dictionary

Table 5.4: The five queries that have the greatest adapted vs. unadapted likelihood ratio
after searching for “prada handbags” and “versace eyewear”.

FactorCell ConcatCell

1 yahoo maps flight tracker

2 delta airlines suntrust bank

3 alaska airlines cheap tickets

4 us airways airline tickets

5 southwest airlines cheap flights

Table 5.5: The five queries that have the greatest adapted vs. unadapted likelihood ratio
after searching for “discount flights” and “yellowstone vacation packages”.
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5.5 Summary

Our experiments show that the LSTM model can be improved using personalization. The

method of adapting the recurrent layer clearly matters and we obtained an advantage by using

the FactorCell model. The reason the FactorCell does better is in part attributable to having

two to three times as many parameters in the recurrent layer as either the ConcatCell or the

unadapted models. By design, the adapted weight matrix W′ only needs to be computed

at most once per query and is reused many thousands of times during beam search. As a

result, for a given number of floating point operations, the FactorCell model outperforms the

ConcatCell model for LSTM adaptation.

The cost for updating the user embeddings is similar to the cost of the forward pass and

depends on the size of the user embedding, hidden state size, FactorCell rank, and query

length. In addition, we note that updates can be less frequent to reduce costs and in most

cases there will be time between queries for updates.

We showed that language model personalization can be effective even on users who are not

seen during training. The benefits of personalization are immediate and increase over time

as the system continues to leverage the incoming data to build better user representations.

The approach can easily be extended to include time as an additional conditioning factor.

We leave the question of whether the results can be improved by combining the language

model with MPC for future work.
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Chapter 6

CONTEXT-SPECIFIC TEXT GENERATION

Context-specific generation is when a generative model is designed such that stylistic,

topical, or other properties of the text can be specified when sampling from the model. One

of the weaknesses of RNN language models is that it is difficult to control the content or

the style of the text that they produce. It is natural to expect that if a language model

is conditioned on a particular context then it will produce text that is appropriate for that

context. Conditioning, or adapting to, context is one way of controlling generation (Ficler

and Goldberg, 2017) and that is the application that we explore in this chapter.

We conduct experiments and analysis using the Yelp restaurant review and the TripAd-

visor hotel review datasets from Section 4.2. These experiments reuse the models that were

trained for the experiments in Section 4.3, including models adapted using the SoftmaxBias,

ConcatCell, and FactorCell strategies. The focus of the experiments in this chapter is to

highlight differences in context-specificity between these models by generating reviews from

the models and checking if the text is appropriate for the given context. The generated

reviews are judged using a classifier that has been trained for that purpose. The automatic

judgments are supplemented by human ratings to confirm the reliability of the classifier.

There are ways of producing context-specific text without generating it from a language

model such as by retrieving examples with matching context from the training data or

combining retrieval with a neural edit model (Li et al., 2018). Our context-specificity metric

will highly reward these types of models or any model that produces easy to classify content

even if that content is unnatural or an outlier. Retrieval-based methods may work well in

certain applications but others require the use of a language model. This chapter focuses

specifically on language models. We emphasize that a context-specificity metric by itself
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is not enough to judge the quality of a language model. Low perplexity is important for

good generation. However, a language model that has low perplexity and is also capable of

context-specific generation will have more applications than a non-context-specific model.

6.1 Text Generation

To generate text from an RNN, we use the model to predict the probability of observing

each possible word as the next token in the sequence starting by inputting a special start

of sentence token for w1. The next token probabilities are given by the yt vector from

Equation 2.3. One option is to take the next word as the highest probability entry in yt,

known as greedy decoding. Making greedy decisions can lead us down a path that is globally

suboptimal and may not result in finding the sequence with the highest overall likelihood.

Instead, using an algorithm known as beam search, several possibilities are considered for

the next word and are placed in a queue that holds the most likely word sequences found so

far. Beam search can find many high probability sentences but oftentimes it suffers from a

lack of diversity. The highest probability sequences will all have considerable overlap with

each other. This is not desirable in text generation because we generally want multiple texts

with non-trivial differences to pick from and also because excessive repetition is tedious for

human readers. A simple tweak that leads to more diverse generation is to stochastically

expand the beam by sampling l items from the multinomial distribution given by yt instead

of deterministically picking the top l words. When we use this technique we refer to it as a

stochastic beam search.

We can trade-off between the stochastic and deterministic versions of beam search by

using a temperature parameter T in the softmax function as follows:

softmax(xi) =
exp(−xi

T
)∑

j exp(−xj

T
)
. (6.1)

Lowering the temperature T increases the concentration of probability mass at the head of

the distribution. If the temperature is too high then the generated text can be nonsensical.

If it is too low then the generation lacks diversity. In the limit when T goes to zero, it
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becomes equivalent to greedy decoding. So, finding the right balance is important.

Stochastic beam search deals with repetition between sampled texts. RNN language

models also tend to use the same phrase repetitively within a single sentence or document,

e.g. a restaurant review that says “The food was good and the service was great and the

food was good and...”. To deal with this we use a heuristic that does not consider any

beam expansion that would create a repeated trigram. Several sophisticated techniques

and heuristics exist (such as adding random penalties to subsets of the vocabulary (Juuti

et al., 2018) or having special models trained to enforce relevance and avoid contradiction

and repetition (Holtzman et al., 2018)) but banning repeated trigrams is sufficient for our

purpose of making a comparison between adaptation methods.

6.2 Illustrative Examples

To start, we provide anecdotal examples in Tables 6.1, 6.2, and 6.3 illustrating the behavior

of each adaptation technique when generating Yelp restaurant reviews given a star rating.

In each case, a sentence template was selected and beam search decoding was used to find

the highest probability word sequence that fits the gap in the template. This was repeated

once for each of the possible star ratings from one to five. The sentence completions from the

FactorCell model are better matched to the specified star ratings. Table 6.2 is probably the

best example for the intensity of the selected adjectives to match with the corresponding star

ratings. On the other hand, when using the ConcatCell model there is not a clear distinction

between ratings. The ConcatCell picks the same completion for multiple star ratings (“loved

it” in Table 6.1 and “great!” in Table 6.2) and in Table 6.3 it gets the wrong polarity for

the 5 star rating completion.
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Context FactorCell ConcatCell SoftmaxBias

5 stars it was amazing loved it ! it was amazing !

4 stars loved it ! loved it ! it was delicious

3 stars it was great ! loved it ! had a blast

2 stars it was horrible ! had a blast was disappointed

1 star it was horrible ! it was horrible ! was disappointed

Table 6.1: Top completions for the sentence “My boyfriend and I ate here and !”
after conditioning on each star rating.

Context FactorCell ConcatCell SoftmaxBias

5 stars amazing ! great ! delicious

4 stars great ! great ! delicious

3 stars good ! great ! delicious

2 stars just meh mediocre mediocre

1 star awful mediocre mediocre

Table 6.2: Top completions for the sentence “This was my first time coming here and

the food was ” after conditioning on each star rating.

Context FactorCell ConcatCell SoftmaxBias

5 stars be back never go here never go here

4 stars be back go never go here

3 stars go back go never go here

2 stars never go here never never go here

1 star never go here never never go

Table 6.3: Top completions for the sentence “I will again” after conditioning on
each star rating.
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6.3 Experiments and Analysis

6.3.1 Yelp Restaurant Reviews

To quantify the differences between models, we sampled 2,000 Yelp reviews from 36 different

models. The models differ in their adaptation method but also in their LSTM size and other

hyperparameters including random word embedding sizes, epochs, context embedding size

and FactorCell rank. Having variation in the hyperparameter settings allows us to analyze the

relationship between perplexity and context-specificity, among other things. The generation

used stochastic beam search with a temperature of 1.0, a beam width of 8 and a total

beam size of 120. Only the first 70 words of the review were generated and the beam was

constrained to not allow repeated trigrams as a heuristic to avoid excessive repetition. A

discriminative classifier was trained to predict star rating on the same data that was used

to train the language models. We used the fastText model because it is near state-of-the-art

and it can be efficiently trained and evaluated (Grave et al., 2017b). This classifier was used

to judge the generated reviews to see if they conform to their given ratings. This strategy

was used by Hu et al. (2017) to evaluate “controllable” text generation. It is also similar

to the text generation evaluation used by Ficler and Goldberg (2017) except that for some

attributes they used hand-crafted decision rules instead of a statistical classifier and for other

attributes deemed too difficult to classify they used human evaluation.

There are multiple ways to report the judgment of the discriminative classifier. The most

straightforward is accuracy, which is the percentage of times where the most probable rating

according to the classifier matched the context given to the language model. In addition

to this metric, we report results in terms of mean absolute deviation (the average absolute

difference between the desired rating and the predicted rating). Achieving perfect accuracy

is not realistic for this task because there is some natural ambiguity between adjacent star

ratings. The fastText classifier has an accuracy of 63% and a median absolute deviation

(MAD) of 0.44 stars on the Yelp test data.

Figure 6.1 plots the context classification metric from Chapter 4 (accuracy of classifying
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Figure 6.1: Context classification accuracy versus generation context-specificity for each type
of adaptation on the Yelp data.

actual reviews using the language model as a classifier) against the generation context-

specificity metric (accuracy of classifying automatically generated text with a classifier

trained on actual reviews). Each point in this plot is an independent model trained with

random hyperparameters. The context classification accuracy is highly predictive of the

generation context-specificity. Thus, it is not surprising that the FactorCell models are the

most controllable followed by the ConcatCell models and then the SoftmaxBias models.

As shown in Figure 6.2, there is a strong correlation between FactorCell rank and context-

specificity (r = 0.8) but no relationship (r = 0.00) with perplexity. Having low perplexity

is obviously important for high-quality generation but low perplexity by itself is not an

indicator that the generated text will match the specified conditions. We included some

additional models here that were no used in the experiments in Chapter 4 and were trained

with bigger (up to double the size) LSTM hidden states. This is to address the question of

whether the gap between models is reduced simply by training a bigger model. The bigger

LSTM states do help with perplexity, but we find little to no impact on context-specificity.

Table 6.4 lists the perplexity, automatically assessed generation accuracy, and the mean
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Figure 6.2: Plot of FactorCell rank and perplexity against generation context-specificity
accuracy for 14 FactorCell models on the Yelp restaurant data.

Model ACC MAD PPL

Unadapted 21.3 1.63 67.9

SoftmaxBias 41.1 .88 68.1

ConcatCell 59.6 .44 66.8

FactorCell 69.5 .33 68.1

Table 6.4: Automatically judged generation accuracy, mean absolute deviation (MAD), and
perplexity for the three methods of adaptation compared to the unadapted baseline using
the models learned from the Yelp data.



80

absolute deviation for each of the four classes of models. Using human raters on a subset of

the generated reviews, we confirm that the automatic judgments are correlated with human

judgments with r = 0.823. Nine raters judged a set of 145 reviews for this analysis. The

raters were able to guess the intended star rating 64% of the time for the FactorCell compared

to only 59% of the time for the ConcatCell.

6.3.2 TripAdvisor Hotel Reviews

We conduct a similar analysis using the TripAdvisor hotel review data and models from

Chapter 4 and check that the hotel class property matches with the generated text. Hotel

class is a rating that is reflective of the quality of the service and amenities offered by the

hotel and is measured in half integer increments. Only the identity of the hotels and the star

rating (sentiment) of each review is provided during training and any information the model

learns about class must be derived from the text of the review. Hotel reviews are sampled

using a temperature of 1.0, a beam width of 4 and a beam size of 50. Only the first 72 to 100

words of each review were generated and 1,000 samples were collected from 54 independent

models. When generating the hotel reviews we pick a random hotel identifier for each one

and fix the sentiment at five stars. Like before, these models use a range of hyperparameters

in order to study the relationship between the capacity of the model and its performance.

The fastText classifier predicts hotel class with an accuracy of 53% and a mean absolute

deviation of 0.36 on the TripAdvisor test data. Using this classifiers to judge the generated

reviews, we find that the FactorCell is the the most specific for the hotel class. The complete

metrics are in Table 6.5.

Besides their lack of context-specificity, the unadapted models also suffer from lack of

diversity. The unadapted models tend to default to generating reviews that match the

largest region in the data, New York City. Up to 35% of the generated reviews from the

unadapted models mention the Empire State Building (compared to 2% to 3% for the adapted

models) even though only 30% of the training data are from hotels in New York City and

only 1.6% of that 30% even mention the Empire State Building. Conditioning on context
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Model ACC MAD PPL

Unadapted 21.3 .77 51.9

SoftmaxBias 30.1 .61 48.7

ConcatCell 30.4 .57 48.8

FactorCell 32.2 .53 48.9

Table 6.5: Automatically judged generation accuracy, mean absolute deviation (MAD), and
perplexity for the three methods of adaptation compared to the unadapted baseline using
the models learned from the TripAdvisor data.

information makes it easier to guide the generation away from the mode and towards more

diverse samples.

As shown in Figure 6.3, increasing the FactorCell rank helps with context-specificity of

the hotel class just as it did with controlling the star rating of the Yelp reviews in Figure

6.2. However, instead of a lack of correlation with perplexity, we see that models with better

perplexity also do better at context-specificity. Same as for the Hotel reviews, the accuracy

of the models when used as generative text classifiers is predictive of their performance for

context-specific generation. We show this relationship in Figure 6.4.

We used the TripAdvisor models to test if the difference in context-specificity between

the models was due to the quality of the representation learned in the hotel embeddings. We

trained a gradient boosted decision tree to predict the hotel class using the hotel embedding

as features. As we saw in Figure 4.7, the hotel embeddings naturally group together by class

even though they hotel class labels were not available during training. Using five-fold cross

validation on the 2,254 embeddings, we found little to no difference between models with

both the ConcatCell and FactorCell correctly predicting the class in 67.1% of cases versus

65.3% for the SoftmaxBias model.
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Figure 6.3: Context-specificity of hotel class versus FactorCell rank and perplexity in gener-
ated reviews using the models learned on the TripAdvisor data.

Figure 6.4: Context classification accuracy versus generation context-specificity for each type
of adaptation on the TripAdvisor data.
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6.4 Summary

Recall that the ConcatCell model only adapts the recurrent layer bias vector. Assuming

200-dimensional word embeddings and a 400 dimensional LSTM, only 1,200 or 0.17% of the

recurrent layer parameters change depending on the context. In contrast, a FactorCell model

with the same embedding size and recurrent layer dimension and a rank of 25 has 6.25% of

its recurrent layer parameters changing depending on context. That’s more than 37 times as

many as the ConcatCell. When so few of the parameters are adapted, the result is a blurring

of the distinctions between different contexts. We saw this qualitatively in the restaurant

review sentence completions and quantitatively when measuring the context-specificity of

the restaurant review star rating and the hotel review class.

In Chapter 4, we used a context classification metric whereby the language model was

used as a generative text classifier on held-out data in order to test its ability to understand

the relationship between context and language. The experiments in this chapter show that

the context classification metric is a useful predictor of text generation context-specificity.

This means that we can assess the relative context-specificity of models independently of

the generation hyperparameters (beam size, temperature, etc.) and without the need to

construct a classifier or use human ratings to do judgments. This is useful because there are

cases where a high quality classifier may not be readily available. For human ratings, not

only are they expensive and time-consuming to collect, but there are also certain contexts

where humans may be poor judges without special experience or training.

Our method of evaluating context-specificity of the generated text has some limitations.

Because the fastText classifier is trained on the same data as the language model, it has

the potential to reward the language model for memorizing portions of the training data

instead of generating novel sentences. Additionally, as we mentioned in the introduction to

this chapter, context-specificity alone is not enough to evaluate a language model because

it does not measure the ability of the model to generate well-formed text that is free from

excessive repetitions and self-contradictions. We know from Chapter 4 that the FactorCell
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model does have a perplexity that is comparable or better than baseline methods. However,

a more comprehensive assessment is needed to take into account all of the desired attributes.
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Chapter 7

CONCLUSIONS AND FUTURE DIRECTIONS

The fact that language changes so dramatically from one situation to the next is both a

challenge and an opportunity. It is a challenge because changes in context that may seem

trivial to us as humans are enough to break a language model. It is an opportunity because

dramatic changes means that large benefits can be accrued through adaptation. As an illus-

tration, the 2017 Amazon Alexa prize encouraged people to speak to their device using an

open-ended conversational style. This was a change from the task-oriented style that peo-

ple normally used to speak with their home assistants. Initially, a generic language model

was used for the conversational interactions. When a language model targeting conversa-

tional speech was introduced the recognition word error rate dropped by one third (Ram

et al., 2018). Adjusting the language model was crucial to enabling people to have long

conversations with Alexa.

Adaptation is vital to the success of language modeling in real applications and is the

reason why this work can have high impact. In this chapter we summarize the contributions

of the thesis and suggest possible directions for future work.

7.1 Summary of Contributions

Our main contribution is the introduction of the FactorCell model, a new way of thinking

about how to adapt the recurrent layer. The FactorCell model moves beyond the paradigm

set by Mikolov and Zweig (2012) and used many times since then. The benefits of the

FactorCell model include:

• A re-conception of the mechanism for recurrent layer adaptation (using context to

transform the model rather than as an additional input);
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• Permitting context to affect a greater change in the model parameters (and therefore

its predictions) than what is possible using prior methods;

• Including a rank hyperparameter that smoothly trades off between the case where most

information is shared between contexts and the opposite situation where the contexts

are mostly modeled independently;

• Maintaining the property of the ConcatCell approach that the adapted weights can be

precomputed and cached resulting in negligible computational overhead compared to

an unadapted baseline; and

• Off-loading of context specific information from the main recurrent weight matrix to

special adaptation tensors, which helps prevent the blurring of the boundary between

related contexts.

We presented experimental results on nine distinct datasets. Three of them used character-

level vocabularies and the other six operated at the word level. One dataset comprised tran-

scripts of spoken language; some involved informal written language; and some were more

formal. The biggest dataset had over 100 million words of text for training and the smallest

was just 5 million characters. In every situation where it was tested, the FactorCell model

gave the best perplexity. However the benefits are greater for some contexts. The diversity

of data helped to increase the robustness of our conclusions and led us to make some guide-

lines about when different aspects of adaptation become more or less important. Specifically,

adapting the softmax bias is most effective for topic-based contexts and potentially less ef-

fective when the recurrent layer dimensionality is large. Also, the contexts that are most

amenable to adaptation are specific and are not easily predicted from a short window of text.

An idea that we encountered more than once is that there are differences between models

that are not captured by perplexity. In Chapters 3 and 4, we saw that a more flexible adap-

tation of the recurrent layer helped the models better distinguish contexts in classification
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experiments and Chapter 6 showed how models that are better at distinguishing contexts

can be used for context-specific generation.

There were two places where we saw clear qualitative differences between the FactorCell

and the ConcatCell. In Chapter 5, the FactorCell discovered semantic associations between

search queries whereas the ConcatCell failed to find such associations and sometimes seemed

to focus more on orthography. In Chapter 6, the ConcatCell blurred the boundary between

star rating levels (associated with sentiment) and the FactorCell was able to make cleaner

distinctions. Taken together, these indicate the FactorCell provides a greater benefit than

the improvement in perplexity would suggest. This is likely because the gains are on less

frequently used words, and perplexity is dominated by frequent words.

We showed how online learning lets the adapted model take advantage of contexts that

emerge after training. The method of online adaptation that we introduced in Chapter 5 is

generic; it will work for multiple adaptation strategies, including the ConcatCell. However,

the FactorCell makes better use of the data stream to continue to increase the quality of its

predictions over time.

We made some observations about what factors make a dataset more or less amenable to

adaptation. These include, from Chapter 3, that context variables that are easily predictable

from the text alone are unlikely to be helpful and, from Chapter 4, that for topic related

contexts adapting the softmax bias may be more successful. We also found that having a

larger sized recurrent layer can lessen the impact of adapting the softmax bias.

7.2 Future Directions

There are several promising future directions that build on the work in this thesis.

In all six tasks that are explored in Chapter 4, all context factors are available for all

training and testing samples. In some scenarios, it may be possible for some context factors

to be missing. A simple solution for handling this is to use the expected value for the

missing variable(s), since this is equivalent to using a weighted combination of the adaptation

matrices for the different possible values of the missing variables.
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The experiment scenarios all used metadata to specify context, since this type of context

can be more sensitive to data sparsity and has been less studied. In contrast, in many prior

studies of language model adaptation, context is specified in terms of text samples, such

as prior user queries, prior sentences in a dialog, other documents related in terms of topic

or style, etc. The FactorCell framework introduced here is also applicable to this type of

context, but the best encoding of the text into an embedding (e.g. using bag of words,

sequence models, etc.) is likely to vary with the application and remains an area of study

for future work.

The generation experiments that we conducted were generating text from scratch with

no objective other than to obey the constraints imposed by conditioning on the context. In

applications, such as machine translation, the generation is conditioned on a source sequence

in an encoder-decoder model (also called sequence-to-sequence, or seq2seq) (Cho et al., 2014).

The FactorCell model is applicable in these situations as well and one future direction is to

test how it performs in that setting. Prior work has already shown that a simple language

model that incorporates contextual data can provide gains in machine translation (Drexler

et al., 2014).

The data we used consisted of one or two context variables such as latitude and longitude

or a hotel identifier and star rating. In these cases, it was reasonable to expect the context

embedding to summarize the relevant information from both variables. If there were many

more context variables then that assumption may no longer hold. More work is needed to

find an appropriate dataset that has multiple context variables and to investigate appropriate

methods of providing the context information to the FactorCell model.

In Chapter 3, we showed that using hashing to adapt the output layer bias benefits per-

plexity for high dimensional contexts. This indicates that the low-rank adaptation of the

bias does not fully model the context-dependent language. We suggested that the model

could benefit from a sparse correction to the low-rank adaptation and that could be accom-

plished by including an L1 penalty term to the adaptation parameters. This idea is partially

explored in Appendix A, but more work is needed to investigate the benefits of sparsity in
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language model adaptation.

Our focus was on language modeling, but RNNs are widely used in many other natural

language processing tasks and in other domains that have little or nothing to do with language

such as acoustic modeling (Graves et al., 2006), time-series analysis, music generation (Goel

et al., 2014), and more. For example, some work on other natural language processing

tasks, such as spoken language understanding, have already made use of the ConcatCell

style adaptation (Mesnil et al., 2015). Personalization would be of high utility in these

applications.

This thesis looked at query completion, but there are often text prediction applications

that this work is relevant to, including next word prediction for mobile text input and

augmentative communication for people with disabilities. For augmentative communications,

the method would also apply to icon-based communication, which relies on a language model

with icons instead of words or characters (Dudy and Bedrick, 2018).

It is difficult to predict what future state-of-the-art language models will look like. Re-

current neural networks have been reliable winners for the past few years. There is active

work on alternate architectures that remedy some of the perceived weaknesses (mostly lack

of easy parallelism) of the RNN, such as the Quasi-Recurrent Neural Network (Bradbury

et al., 2017) and the Transformer Network (Vaswani et al., 2017). It seems likely that the

adaptation techniques from this thesis will apply to those architectures as well, but it remains

to be tested.
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Gábor Melis, Chris Dyer, and Phil Blunsom. 2018. On the state of the art of evaluation in

neural language models. In Proc. ICLR.

Gideon Mendels, Erica Cooper, Victor Soto, Julia Hirschberg, Mark Gales, Kate Knill, Anton

Ragni, and Haipeng Wang. 2015. Improving speech recognition and keyword search for

low resource languages using web data. In Proc. INTERSPEECH.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. 2017a. Regularizing and opti-

mizing LSTM language models. arXiv preprint arXiv:1708.02182.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2017b. Pointer sen-

tinel mixture models. In Proc. ICLR.



99
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Appendix A

SPARSE CORRECTIONS FOR OUTPUT LAYER
ADAPTATION

In Chapter 3, we saw that adapting the output layer using a low rank term combined

with a hash table that stored coefficients for individual words was helpful. The low rank term

exploits similarities between contexts to boost the probability of words when appropriate.

We hypothesized that there may be certain words that are unique to a particular context and

are not well modeled by a low rank adaptation. The purpose of the hashed coefficients was

to serve as a correction term to the low rank adaptation. In this appendix, we investigate

a sparse correction term, where sparsity is achieved by using an L1 penalty during training,

as an alternate method of modeling exceptions to the low rank adaptation.

A.1 Sparse plus low-rank softmax bias adaptation

We test two methods of forming embeddings for low rank adaptation of the output layer. One

is to use a neural network as in Equation 2.4 to make a single embedding that summarizes

all context variables. The second method is to learn individual embedding matrices for each

of the n context variables. In this case Equation 2.6 is replaced with

yt = softmax(ETht +
n∑

i=1

Gici + b2), (A.1)

which has individual adaptation terms for each context variable.

The sparse correction to the low rank adaptation bias has a similar form except that the

low-dimensional context embeddings, ci are replaced by one-hot encoded vectors, oi.

yt = softmax(ETht +
n∑

i=1

Gici +
n∑

i=1

Aioi + b2), (A.2)
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The Ai matrices will have a rank equal to the cardinality of the i-th context variable and

therefore are much larger than the Gi matrices whose rank is set by the dimensionality of

ci. To encourage sparsity in the Ai matrices we apply a soft threshold operator:

u(s, λ) =


s+ λ s < −λ

0 −λ ≤ s ≤ λ

s− λ λ < s

(A.3)

This has the identical effect as introducing an L1 penalty term in the objective except that it

sets coefficients to be exactly zero if they are within a certain range. During tuning we search

for the optimal penalty term λi for each of the four context variables. The soft thresholding

operation u(Aioi, λi) is applied (the function is applied element-wise to each entry in Aioi).

We make use of the same TripAdvisor data from Chapter 4 except that instead of using

two context variables (hotel identifier and review sentiment), we have four: hotel identifier,

month of stay, year of stay, and region. There are 2,918 hotels, 14 years (from 1999 to

2012), 12 months, and 25 regions (major cities in the United States). We hypothesized that

the more detailed context would have more specialized language, which might have more

potential to benefit from sparse correction.

Because of the success with the hash table, we hypothesized that sparse terms would be

most useful at the output layer. Thus, we use no adaptation at the recurrent layer for the

following experiments. The vocabulary size is fixed to 10,000 words (11% the size of the one

used on the same data in Chapter 4) so that the model can be trained quickly using a full

softmax loss. Using a sampled softmax loss may interfere with the application of the added

regularization term on the softmax bias vector.

We trained 59 models using a random search strategy for hyperparameter tuning. All

models used a fixed word embedding and GRU dimension of 72 and a batch size of 64. Using

a smaller GRU dimension, as we did here, places more importance on the softmax layer and

gives the adaptation a better chance of having an impact. The hyperparameters that varied

between models were the dimensionality of the embeddings of the four context variables,
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LR Sparse PPL

No No 44.0

Yes No 41.0

No Yes 41.4

Yes Yes 41.2

Table A.1: Perplexity on the validation set of models with no adaptation and varying soft-
max adaptation strategies. Results are not comparable to those in Chapter 4 because of a
difference in vocabulary size.

the λ’s for each context variable, and whether to use or disable each of the two forms of

adaptation. For a model that uses no low-rank adaptation, the sparse matrix used to adapt

the bias for the region variable contains 29 million parameters, 96% of the total. This is

intended to be over-parameterized so that the regularization will be useful.

All of our results are on the validation set and not the test set. As seen in Table A.1, the

best model used a low rank adaptation and no sparse correction. In theory, including the

sparse correction should be no worse than without it as long as the λ’s are properly tuned.

The fact that performance was worse for the low-rank case indicates that more experiments

are needed for proper tuning. Among the models that did use a sparse correction term,

we found that the models that worked best had λ’s equal to or so close to zero that the

regularization had no effect. There was no apparent benefit to having an L1 penalty on this

data set with this size of model and vocabulary.

A second finding is that using separate embeddings for each context variable as in Equa-

tion A.1 is better for adapting the softmax layer than combining them using a neural network

hidden layer as in Equations 2.4 and 2.6. The difference was small (perplexities of 41.0 ver-

sus 41.3) but consistent. This indicates that the optimization of the context embedding

parameters could be improved.

In predictive text applications, language models are used to suggest the next words
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that someone might want to type in order to speed-up the process of typing on a mobile

device. The top-3 next word prediction accuracy as a metric is a better fit to this task

than perplexity. We computed the top-3 accuracy for the language models used in these

experiments and found that using the “sparse”1 adaptation strategy had a bigger impact on

the accuracy than perplexity. The best model had a top-3 accuracy of 46.35% and used both

low-rank and sparse adaptation compared to 46.27% for the best model using only low rank

adaptation. The difference is small but significant (p < 0.001).

A.2 L1 Penalty for Bias Layer Fine-Tuning

We mentioned model fine-tuning as a type of adaptation in Section 2.3.1. In this section

we test if including an L1 penalty on the bias term is helpful when fine-tuning a pre-trained

language model to match the style of a small set of data from another domain. We created

small datasets for fine-tuning by selecting the subset of TripAdvisor reviews that mention

the word “Hilton” and those that are for hotels in Boston. A third dataset was created by

selecting a random subset of (mostly restaurant) reviews from the Yelp dataset and then a

fourth used only the reviews from the Yelp dataset that were for a dentist office.

For the pre-trained model, we used the best unadapted TripAdvisor model from Section

A.1. The fine-tuning was done by continuing training of that model on the new smaller

dataset until it began to over-fit. In a realistic scenario there would not be a large validation

set available to check for over-fitting but in this experiment we are just aiming for a proof-

of-concept. We tried selectively freezing layers of the pre-trained model and also varied the

size of the training data and the scale of the L1 penalty. In each case the best result was

obtained by using zero penalty and early stopping as the only regularizer.

1It is not actually sparse because the weight on the L1 regularization term was near zero.
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A.3 Summary

After conducting these experiments we were unable to find a benefit from using an L1 penalty

term to learn a sparse correction to a low-rank model in adapting the softmax bias. There

are multiple possible explanations for this negative result.

• It is possible that the data we used is not the right one for this technique. If we had

used another dataset where the size or vocabulary was different then it is possible that

having a sparse correction would be helpful.

• Our use of random search for tuning the regularization penalties could be improved.

We might have seen a different result with better tuning.

• We purposefully created a model that was over-parameterized. Over-parameterization

can lead to over-fitting unless regularization is used. Using the L1 penalty is equivalent

to setting a Laplacian prior distribution on the parameters. The regularization encour-

ages the parameters to not be too far from zero on average. However, even without

regularization, the parameter values do not grow too large during any practical length

of time. The training data constrains the parameter values in the bias from becom-

ing too large in the positive direction and. For the negative direction, the bias terms

for words that are never used for particular contexts do not reach negative infinity in

because their gradients decrease exponentially faster than the parameters themselves.

It turns out that stopping gradient descent after a finite amount of time is a more

effective means of regularizing the parameters than applying an L1 penalty.

• We hypothesized that sparse corrections would be most useful at the softmax layer,

but it is possible that they are helpful at the recurrent layer or for adapting the word

embeddings.

• We assumed that not adapting the recurrent layer would give the sparse softmax bias

adaptation a better chance of success. It is possible this assumption is incorrect and
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that having a sparse correction is only helpful after the low-rank component has been

accounted for by adapting the recurrent layer.

In summary, we did not find a use for L1 regularization for adapting the softmax bias

vector. More work is needed to confirm these experiments and to understand why.


