
Submitted 25 May 2019
Accepted 8 March 2020
Published 6 April 2020

Corresponding author
Seyed Hossein Khasteh,
khasteh@kntu.ac.ir

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 23

DOI 10.7717/peerj-cs.269

Copyright
2020 Ghafouri and Khasteh

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A survey on exponential random graph
models: an application perspective
Saeid Ghafouri and Seyed Hossein Khasteh
School of computer engineering, K. N. Toosi University of Technology, Tehran, Iran

ABSTRACT
The uncertainty underlying real-world phenomena has attracted attention toward
statistical analysis approaches. In this regard, many problems can be modeled as
networks. Thus, the statistical analysis of networked problems has received special
attention from many researchers in recent years. Exponential Random Graph Models,
known as ERGMs, are one of the popular statistical methods for analyzing the graphs
of networked data. ERGM is a generative statistical network model whose ultimate
goal is to present a subset of networks with particular characteristics as a statistical
distribution. In the context of ERGMs, these graph’s characteristics are called statistics
or configurations. Most of the time they are the number of repeated subgraphs across
the graphs. Some examples include the number of triangles or the number of cycle of
an arbitrary length. Also, any other census of the graph, as with the edge density, can
be considered as one of the graph’s statistics. In this review paper, after explaining the
building blocks and classic methods of ERGMs, we have reviewed their newly presented
approaches and research papers. Further, we have conducted a comprehensive study on
the applications of ERGMs in many research areas which to the best of our knowledge
has not been done before. This review paper can be used as an introduction for scientists
from various disciplines whose aim is to use ERGMs in some networked data in their
field of expertise.

Subjects Artificial Intelligence, Computer Networks and Communications, Data Mining and
Machine Learning, Network Science and Online Social Networks, Social Computing
Keywords Exponential random graph models survey, Exponential random graphs, ERGM,
ERGMs’ survey, ERGMs’ applications

INTRODUCTION
Networks are an essential part of everyday life. From the World Wide Web to biological
networks, they all shape the connections of the world. There are many examples of the use
of networks in various fields and disciplines. Examples of them include social networks,
traffic systems, and disease spread networks. The most canonical way of representing a
network is a graph. Indeed, not all of the networks’ ties are presented with 100% certainty.
For example, in a friendship network, the level of friendship is not the same among
all individuals or there is always a chance that two friends stop their friendship in the
future Further, in some domains, the current snapshots of the network depend on its
timestamp where the network’s shape might be different if the snapshot has been taken
in another time. For example, in a blockchain network, the structure of the network
connections is constantly changing. Hence, the graph has a dynamic structure over time.
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All of these suggest some level of uncertainty in many real-world networks. Therefore,
simple graph theory will not suffice for examining these networks. These limitations have
led to proposing completely new statistical approaches for graph analysis. More specifically,
we want to build a statistical model based on the observed dataset. In these types of graph
analysis, a probability in the interval of [0,1] is assigned to each graph. If this probability is
close to zero, it indicates that the graph has no chance of existence, while one suggests that
this particular graph will undoubtedly exist in the generated data. Any other value between
zero and one indicates the existence probability of that graph. These probabilities have
different meanings depending on the domain of the network. However, the probability of
graph’s existence is the most fundamental definition, to which we will stick for the rest of
the article.

Statistical graphs (Frank, 1981; Robins et al., 2007a; Goldenberg et al., 2010) have
attracted scientists from different disciplines. There are different kinds of approaches
regarding their formulation and learning methods. People from mathematics, computer
science, physics, and of course statistics have proposed different algorithms andmethods for
designing the framework for statistically modeled graphs. In addition, statistical graphs are
also fundamental to generative models for generating new graphs with similar statistics and
attributes to the original graphs. These artificial generatedmodels have various applications,
e.g., data augmentation for learning systems where we have datasets with limited resources
or simulating and predicting other possible graphs with similar properties. Furthermore,
there are longitudinal (Holland & Leinhardt, 1977; Koskinen & Snijders, 2007; de la Haye et
al., 2017; Block et al., 2018) models which aim to observe a network over a time period and
predict the network’s future dynamics.

Although different approaches exist, in this work, we are going to review research
articles about a particular family of statistical graphs known as Exponential RandomGraph
Models, abbreviated as ERGM. Designing a statistical model consists of three steps: (1)
Designing a general formulation based on the context and statistical specification of the
dataset; (2) estimating the parameters of the designed model via some learning methods,
where sometimes this step is addressed as the phase of fitting the model to the data; and
(3) employing the model with learned parameters to predict the future or unseen part of
the data, generation of new data with similar properties, or any other possible tasks. The
model utilized for ERGMs (step 1) is almost similar across the entire literature. However,
the parameter estimation step (step 2) differs case by case. Figure S1 demonstrates the
mentioned steps’ flowchart.

The focus of the seminal works such as Erdös & Rényi (1959)was mostly on independent
tie formation between two nodes. In ERGMs, more complex structures with a reasonable
level of dependence have also been taken into account. This approach has led to more
complicated models which also require more sophisticated learning methods. Additionally,
due to the better accuracy of the models with dependent structures, they are applicable to
a more considerable extent of the problems. Therefore, there is a rising interest in using
ERGMs in multiple research areas.

Previous surveys (Anderson, Wasserman & Crouch, 1999; Pattison & Wasserman, 1999;
Robins, Pattison & Wasserman, 1999; Goodreau, 2007; Robins et al., 2007a; Robins et al.,
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2007b; Fienberg, 2010; Goldenberg et al., 2010; Chatterjee & Diaconis, 2013; Chatterjee,
2016) have introduced most of the articles up to 2016. There have also been two novel
surveys in 2018 (Amati, Lomi & Mira, 2018; Van der Pol, 2018) with a focus on the theory
and applications of ERGMs. However, there is a relative paucity of studies investigating
ERGMs seminal and new methods together. In addition, to the best of our knowledge, no
research has been found examining applications of ERGMs in different fields and contexts
in the way that we have done. We believe that this review paper can help the scholars of
different disciplines to better recognize the recent applications of ERGMs in their specific
field of interest. Certainly, here is still room for more applications of ERGMs in other fields
which are yet to be discovered.

There are also some other generative models for network generation such as the use
of the neural network for graph generation (Bojchevski et al., 2018; You et al., 2018) and
Stochastic Actor-Oriented Models (Snijders, 1996). However, to the best of our knowledge,
ERGMs are one of the oldest methods that have been extensively used in the literature up
to now.

Several statistical learning methods have been used for ERGMs parameter learning. In
this article, we have addressed the following:

• Importance sampling
• Stochastic approximation
• Some of the newly presented methods.

We have introduced some applications of random graphs in the following categories:

• Medical Imaging
• Healthcare applications
• Economics and management
• Political science
• Missing data and link prediction
• Scientific collaboration
• Wireless networks modelling
• Other applications.

Also, some useful tools and libraries have been introduced for the estimation of ERGMs:

• PNet
• R package Statnet
• Bergm.

‘Survey Methodology’ is a brief description of the methodology we used to find the
articles that we believed are related to the topic of this manuscript. In ‘Precise Definition
of ERGMs’ we are going to give a formal definition of ERGMs for the readers who are new
to this concept. For experienced researchers in the field, this can be used as a refreshment.

Hence, in ‘Methods for Estimation’, most of the state-of-the-art works for ERGMs
estimationmethods have been discussed. ‘Preliminaries’ is a review of ERGMs’ applications
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inmultiple fields. In ‘Applications of ERGMs’, we have introduced some of the state-of-the-
art new libraries and tools for ERGM estimation. Ultimately, in ‘Conclustion’, we conclude
what we had said and also give some ideas for future works in the world of ERGMs.

SURVEY METHODOLOGY
For the purpose of finding related research articles we used two different approach.
1. Searching related keyword in the google scholar search engine.
2. Starting from an initial pool of articles and then move back and forth between their

citations and references.
In the first approach we search related keywords like ‘‘ERGM’’, ‘‘Exponential Random

Graphs’’, ‘‘Exponential Random Graph Models’’ in the google scholar search engine and
extracted related articles by reading their abstracts.

In the second approach which was our main methodology throughout the work we
initiate with a number of seminal works which were found by one of the following ways.
1. Being introduced by experts in the field.
2. Extracted from the well-known surveys (Anderson, Wasserman & Crouch, 1999; Robins,

Pattison & Wasserman, 1999; Pattison & Wasserman, 1999; Goodreau, 2007; Robins et
al., 2007a; Robins et al., 2007b; Fienberg, 2010; Goldenberg et al., 2010; Chatterjee &
Diaconis, 2013; Chatterjee, 2016; Amati, Lomi & Mira, 2018; vander Pol, 2018) and the
well-known book (Lusher, Koskinen & Robins, 2012).

3. Papers extracted from the first approach which had a good citation count or were
published in journals with high impact.
After finding the initial seed of articles by one of the mentioned methods we checked

the related publications that they have referenced and the publications that they have been
cited from them. We continued until there were no more related articles. In situations
which there were too many related articles our selection criteria were mostly based on the
citation count and the journals’ impact factor.

PRECISE DEFINITION OF ERGMS
In this section, we give a brief overview of the overall ERGM scheme. According to Snijders
et al. (2006) and Robins et al. (2007a), the first work that categorized ERGMs as a separate
field of study was (Frank & Strauss, 1986). Although it was named as Markov graphs at that
time, basically it had the same characteristics. An interested reader can refer to Robins et
al. (2007a) and Lusher, Koskinen & Robins (2012) for more details on both the history and
mathematical background of this topic.

In an ERGM, each graph is associated with a probability. This probability indicates
the possibility of the presence of that particular graph in the probability distribution of
a class of graphs. There are also two other essential elements in ERGMs known as graph
configurations and their corresponding parameter. Each configuration or statistics (we
will use both names throughout the text) is composed of some nodes and ties repeated in
the graph. For example, a triangle consisting of three nodes and edges can be assumed as a
configuration. The authors of the seminal work (Frank & Strauss, 1986) were the first who
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Table 1 Notations used throughout this work.

Notation Meaning

X The set of all possible graphs with the same number of
nodes.

x The variable that indicates the presence of a particular
graph from the distribution.

P The probability distribution function of graphs.
S The set of all network statistics presented in the model.
s Some particular statistics of the network.
C The set of all count function of the network configurations.
c The count function of some particular statistics of the

network.
2 The set of all network statistics coefficients.
θ Some particular statistics’ coefficient of the network.
N The normalizing factor, the sum of all configurations.

argued that these configurations can be considered as sufficient statistics for a log-linear
mode. Sufficient statistics are features of a i.i.d dataset which are sufficient for modeling
the distribution probability of the data such that adding another feature does not add
any more insight to the model (RA Fisher, 1922). So, ERGMs are a representation of the
graphs by their configurations. A particular exponential function is defined to represent the
relationship between these configurations and the probability distribution of the graphs.
This formula is a variation of logistic regression which is extended so that it would handle
the dependent variable rather than only being applicable to independent variables which are
the case for logistic regression (Lusher, Koskinen & Robins, 2012). We will use the notations
presented in Table 1 throughout our work.

Note that throughout this work, the representation of the graphs is in the form of the
adjacency matrix. For example, in a matrix x if xij = 1 it indicates that there is an edge
between i and j, while if xij = 0 no edge exists between these two nodes.

Using the introduced notation of Table 1, the ERGM probability function can be
expressed as follows:

P (X = x|θ)=
1
N
exp
{
θ1c1(x)+θ2c2(x)+ ...+θpcp(x)

}
(1)

N is the normalizing factor which is the sum of the probability of all possible graphs
computed by Eq. (1), whose formula is as follows:

N =
∑
x∈X

exp
{
θ1c1(x)+θ2c2(x)+ ...+θpcp(x)

}
(2)

If we summarize the results, this leads to:

P (X = x|θ)=
1
N
exp
{
θTC (x)

}
(3)

N =
∑
x∈X

expθTC (x) (4)
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It can be seen in the Eq. (3) that the network configurations are the building blocks of
the ERGM formulation. Choosing the correct configurations with the right relation to the
network context is central for to the correct estimation of the graphs’ distribution. There
are two types of network statistics: (1) statistics based on the edge formations, (2) statistics
that are based on the node attributes. In the rest of this section, we are going to introduce
some basic network configurations (Snijders et al., 2006; Robins et al., 2007a) which have
been used in the literature.

Structural configuration refers to the statistics that depend solely on the structure of the
graph. Note that their usage is not dependent on the network context and can be applied
to any networks. These structures are different in undirected and directed networks.

Some structural configurations that are widely used for undirected and directed graphs
are presented in (Tables S1 and S2), respectively.

Although use of nodal configurations in our model will cause to be more dependent on
some specific context, sometimes it is still useful to leverage this kind of network attributes.
The reason is that, in many networks, there is a treasure of useful features in the node’s
metadata and it is not wise to ignore them as one of our model features.

Some descriptions of nodal configurations that are widely used for undirected and
directed graphs are reported in (Tables S4 and S5), respectively.

According to Morris, Handcock & Hunter (2008), there should not be a linear
dependence between the configurations that are used in a model. It is due to that fact
that the configurations with linear interdependence with each other cannot add any new
benefit to the model and only make the model more complicated.

Snijders et al. (2006) gave a generalization of ERGMs and also introduced some new
configurations. Since then, it has been extensively used in other works. Here we present a
brief description of each of them.

Geometrically Weighted Degree Counts (GWDC): this measure is an extension of the
nodes’ degree combined with geometrically degree discounts in the computation of the
statistics, which is expressed as the following expression:

GWDC (x)=
n−1∑
k=0

e−αkdk(x) (5)

In this equation, x is the matrix we want to compute its corresponding GWDC value
and n is the number of nodes in the graph. dk represents the number of nodes with degree
k. Also, α is a decaying factor which ensures that the nodes with higher degrees have higher
impacts.

Geometrically Weighted Stars Counts (GWSC): this measure is an extension of star
counts combined with a combination of geometrically degree discounts in computing the
statistics, which is expressed as the following expression:

GWSC (x)=
n−1∑
k=2

(−1)k
Sk
λk−2

(6)
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1(d)r = d (d+1)...(d+ r−1). In this equation Sk is the number of stars with the k number of edges (k-stars). Also, λ
denotes a decaying factor which ensures that the stars with a higher degree have a greater
impact.

Sum of Ascending Factorial Degrees (SAFD): first presented inHandcock & Jones (2004),
it is a variation of Yule distribution using the sum of ascending factorials of degree 1 :

SAFD(x)=
n∑

i=1

1(
yi++ c

)
r

(7)

Transitivity by Altering k-Triangles (TAT): this measure is an extension of triangle
counts combined with geometrically discounts in the computation of the statistics, which
is expressed as the following expression:

TAT (x)= 3T1−
T2

λ
−

T3

λ2
− ...+ (−1)n−3

Tn−2

λn−3
(8)

In this equation, Tk is the number of k-triangles. λ represents a decaying factor which
ensures that the triangles with a higher degree have a more substantial impact. Figure S2
displays a description of k-triangles.

Altering Independent Two-Path (AI2P): this measure is an extension of 2-path with
a combination of geometrically discounts in the computation of the statistics, which is
expressed as the following expression:

AI2P (x)=U1−
2
λ
U2+

n−2∑
k=3

(
−1
λ

)k−1

Uk (9)

In this equation,Uk is the number of star k-independent 2-paths. λ represents a decaying
factor which ensures that the triangles with higher degrees have higher impacts. In Figure S3,
you can see a description of k-independent 2-paths.

The authors ofWilson et al. (2017) addressed one of the significant drawbacks of ERGMs.
As can be seen in Tables S2 and S3, the weights of the graphs are missing. In other words,
they are only applicable to unweighted graphs, and if we want to use them in the context of
the weighted graphs, their weights should be omitted. However, much useful information
underlies the weight of the graphs and for most of the domains it is crucial to consider
them to accurately model the graph. Following this idea previously discussed in Desmarais
& Cranmer (2012) and Krivitsky (2012), they continued to design more flexible estimation
methods for the so-called Generalized ERGMs (GERGM). Their method can handle a wide
range of graphs’ statistics with continuous-valued edges.

The endogenous statistics need to be selected before implementing themodel. Therefore,
there must be several assumptions about choosing a particular statistic. Although the
process of finding the best statistics for the model is highly empirical, considerations
when making a hypothesis about the network’s configurations is important. The choice
of a specific statistic is highly dependent on the assumptions we have about network
phenomena. Simple structures like the number of edges and nodes take control of the size
and sparsity of the graph. In a friendship network, triangles can indicate the inclination
of mutual friends becoming friends with each other. In a citation network stars refers to
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a large number of central nodes (Van der Pol, 2018). The dyadic dependence assumption
between nodes should also be considered while choosing the proper statistics for the model.
Dyadic dependence is the dependent processes among two dyads. A dyad in this context
refers to a pair of nodes and their relation. The dyadic dependence among processes could
arise a number of problems like model degeneracy, for more information see Handcock
et al. (2008). New specifications like geometrically weighted degree counts and Altering
k-Triangles have been introduced to alleviate model degeneracies resulted from dyadic
dependence. This is achieved by increasing the stability of the model with weighting the
low density and reducing the weight for higher degrees to avoid the degeneracy (Snijders et
al., 2006; Van der Pol, 2018).

METHODS FOR ESTIMATION
One crucial step in the ERGMs models is to fit the coefficient of the model to the observed
data after designing the model with desired configurations. Multiple methods exist for this
purpose.Nevertheless, the overall approach in all of them is developing a likelihood function
based on the ERGMformulation and then solving it with someof themathematicalmethods
that exist for Maximum Likelihood Estimation (MLE). Note that all of the MLE solution
methods should be specialized for the ERGMmodeling. After introducing the general form
of the mentioned likelihood function, we are going to present a brief description of some
of the methods for solving it already presented in the literature.

A form of the likelihood function
We aim to find the best values of the θ vector in Eq. (3) whichmaximize the probability over
the observed data. In a more formal expression, we want to solve the following equation:

θML := argmaxθ∈RkP (X |θ) (10)

where, P is the same probability function as the Eq. (3) and, Rk represents all possible real
values over a k-dimentional space. Note that the θ is a vector of coefficients rather than
a single value; thus, its space value should be a vector space. Different methods exist for
solving such equations. Here, we are going to name a few of them which are mostly used in
the ERGM related works. Also, we intend to present a number of state-of-the-art methods
that have been presented after 2016.

PRELIMINARIES
Sampling methods
There are two important applications of sampling methods in the ERGMs parameter
estimation model:

• In all methods, there is a need to simulate graphs from the fittedmodel or simulate some
graphs to gain more insight into the distribution of the graphs and their configurations
(Lusher, Koskinen & Robins, 2012). This distribution is also used to test whether the
distribution of the fitted model is close to the observed data or not.
• Predicting the prior distribution of the graphs for Bayesian learning models
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So, there is a need for sampling methods to draw a sample from the given graph
distribution. In this section, we present some of the sampling methods that have been used
extensively in the literature.

Monte Carlo Markov Chain sampling method which is abbreviated to MCMC
(Metropolis et al., 1953) is a well-known sampling method which has been used in many
works. Here, we only discuss it in the context of graph generation. In this method, we start
with an initial graph which can also be an empty graph. Then, in each iteration, a new
graph is generated by making a small change to the graph from the last step. The form of
this ‘‘change’’ is different from work to work. The most straightforward change is adding
or removing a tie. The procedure is as follows: two nodes are chosen randomly. After
which the state of their connection is altered (if they are already connected, they become
disconnected while if they are not connected, they become connected.). In the next step,
the probability of the generated graph is computed according to Eq. (3). This probability is
compared to that of the graph generated in the previous step. Then, we accept or reject the
new graph based on the comparison of these two probabilities. If the new graph is more
probable, it is more likely to substitute the old graph in the next iteration. The probability
of whether the new graph is chosen for the next iteration or the graph from the last step is
re-chosen depends on which one of them has a higher probability score in Eq. (3). Note
that only having a higher probability score is not a guarantee that the graph gets chosen.
It only increases the chance of selection. All these outlined the scheme of all MCMC
methods. However, the details including how many of ties are altered in each iteration or
the probabilistic selection between the old graph and the new one are different in literature.
We intend to present a quick introduction to the Metropolis-Hasting sampling methods
which is mostly used in ERGM related literature. Figure 1 displays the overall procedure of
an MCMC method.

Metropolis-Hasting Metropolis et al. (1953) is the most widely used MCMC derivation
in ERGM studies. Metropolis Hasting in the context of graph generation is as follows.
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Initially, as we explained in the general MCMC scheme, we start with an empty or random
graph. Our goal is to generate N samples from the distribution of graphs, implying that we
want to generate a sequence of x1,x2,...,xN graphs. We choose two random nodes at each
step and change the tie situation between them. The probability of the newly generated
graph and the graph from the last step is then computed using the following formula:

min
{
1,

P (X = xnew |θ)
P (X = xN−1|θ)

}
. (11)

This formula computes the probability of whether to accept the new move or substitute
the last step graph as the new one.

Classic methods
So far, we have reviewed the necessary preliminaries. Now, we can review the most widely
used methods in the literature for estimating the value for statistical parameters (θ in
Eq. (4)) best representing the observed data. In other words, our aim is to solve Eq. (10).
Most of the methods use the following steps: initially, they start with an initial value for the
parameter vector. Then, the distribution of the graphs is generated by one of the sampling
methods. Next, the difference between the distribution and the observed data is computed
(Eθ (C (X))−C(Xobserved). If the difference is satisfactory, the learning process is halted
and the current vector of the parameter is considered as the final answer which best fits
the observed data; Otherwise, based on the learning method the algorithm moves to the
subsequent values of θ and goes back to step 2. Figure 2 demonstrates the finite automata
of this method.
The ultimate goal of all learning methods is to find a vector of θ values in Eq. (3) that
can also generate graphs which are similar to the observed graphs. To this end, different
learning methods exist and this section describes the most important of them namely
importance sampling and stochastic approximation. We used the description presented in
Lusher, Koskinen & Robins (2012).
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Importance sampling
The goal as we said is to minimize the expected value of θ which minimizes the expected
value between observed statistics and the ones generated by the ERGM model. The aim
is to use Maximum Likelihood that we discussed before to find the best value of vector θ
which maximize the right hand side of Eq. (10). One possible approach is to search over all
possible θ values in the search space and try them one by one. But since the search space
is very large and θ values are continuous this approach is not practical. Instead of such
brute force algorithm, one of the methods for ERGMs parameter estimation is the one
inspired by the general framework ML estimation method for dependent data introduced
by (Geyer & Thompson, 1992). The main idea is to instead of generating the whole possible
graphs of a particular θ vector, we can draw a large sample of the graphs and consider it as a
representation of the whole possible graphs at each iteration. This sample is generated from
the current value of the θ vector using the Eq. (3) and is used in the formula to compute
Eθ (C (X)) and then compute how much the value Eθ (C (X))−C(Xobserved) is close to zero.
At each iteration an average over the generated graphs statistics is computed to measure
Eθ (C (X)) and decide whether to continue the estimation or not based on how much the
Eθ (C (X))−C (Xobserved) is close to zero. Other than the mentioned halting situation we
need an algorithm to move from each θ vector to a new one (if the halting is not satisfied).
A Newton-Raphson formula is used to move from one statistic to another. For more detail
on the mathematical details of the sampling and the used Newton-Raphson based method
see (Lusher, Koskinen & Robins, 2012).

Stochastic approximation
The This model presented in Snijders (2002) can handle both bimodal and multimodal
and enhance the speed of convergence. They also used the Newton-Raphson method for
the learning step of the algorithm. As mentioned in Lusher, Koskinen & Robins (2012),
they used a three-step method. At phase one, a limited number of iterations is performed
to determine initial values of the algorithm. In the second step, the Newton-Raphson
algorithm is employed to optimize the answer. Finally, the convergence criteria are
checked.

Newly presented methods for ERGM estimation
In Byshkin et al. (2016), the authors improved the MCMC sampling part of the ERGM
estimation by adding an auxiliary parameter to the model. In their method, which they
called Improved Fixed Density (IFD)MCMC sampler, they tried to decrease the state space
of the network to reduce the time complexity of the algorithm. This new auxiliary variable
which was based on the number of ties helped the model to converge faster without the
need of making the MCMC overall model more complicated.

In some works like (Stivala et al., 2016), snowball sampling (Coleman, 1958; Goodman,
1961) was used to overcome the computational complexity of the MCMC method over
large network datasets.

Asmentioned earlier, the Bayesian estimation of the parameters requires prior knowledge
about the network posterior distribution. However, this posterior probability distribution
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is not always easily available. To overcome this issue, (Bouranis, Friel & Maire, 2017)
introduced a pseudo-likelihood estimation approach by replacing the posterior distribution
with a more achievable pseudo-distribution. Although this method resulted in faster
computation of the likelihood function, as mentioned in the (Schmid & Desmarais,
2017), its results are not still as precise as they should. To handle this problem, the
same mentioned article introduced another pseudo-likelihood estimator based on the
bootstrapping parameters which culminated in more accurate convergence.

In a recent work (Bouranis, Friel & Maire, 2018), the authors proposed yet another
heuristic model based on pseudo-likelihood estimation. They did so by performing three
adjustments to the pseudo-likelihood function: (1) mode corrections to overcome the bias
of the pseudo-likelihood function; (2) curvature adjustment, which is a modification in
the selection of the transformation matrix and the corresponding Hessian matrix; and (3)
magnitude adjustment, which is a linear transformation to scale the curvature-adjusted
pseudo likelihood to the right values.

Despite all the progress in the ERGMs parameter estimation and modeling, it is still
a hard task in large graphs. Thiemichen & Kauermann (2017) addressed two of the main
challenges of ERGMs, including the instability of the model especially in the models with
more straightforward statistics like triangles and the time-consuming nature of the ERGM
parameter estimation procedure due to large number of numerical simulations. For solving
the first problem, they proposed a technique to produce smooth stable statistics. Further,
to overcome the second issue, they employed a novel subsampling model which instead of
fitting the model to the whole network it only fit the model to subgraphs from the network
and then aggregated these sample estimates. The two mentioned ideas yielded a significant
improvement for modeling large graphs.

ERGMs variations
Apart from the basic definition of ERGMs there are also some other variations of ERGMs.
Each year a number of new extensions of the original ERGM definition are introduced. In
this chapter we introduce three of the most widely used ERGMs variations.

Evolution of networks in dynamic environment like social networks has attracted
scientist to make an extension of the ERGMs called Temporal ERGMs a.k.a. TERGMs
which is capable of capturing the information underlying dynamics of such networks
(Hanneke et al., 2010). A Markov assumption between snapshots of the network at each
timestep is taken. Then the model is created based upon the relation between each two
consecutive snapshots St and St−1.

P (X = St |St−1,θ)=
1

N (θ,St−1)
exp
{
θT ,ψ(St ,St−1)

}
. (12)

As it can be seen in Eq. (12) most parts of the formula for TERGM is similar to normal
ERGM. However, the time snapshots are now considered and each new time snapshot St
is dependent to its previous one St−1. Also, the normal count of the networks statistics
has been substituted with temporal potential count ψ over two consecutive snapshots.
For more information see Hanneke et al. (2010) and for the information about the btergm
which is a library for temporal ERGMs see Leifeld, Cranmer & Desmarais (2017).

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 12/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.269


Most of the real-world network are associated with a value on their edges which are
referred to as weighted graphs in graph theory. A plethora of researches have been done
to consider these types of networks into the ERGM general schema. GERGM (Desmarais
& Cranmer, 2012) and the model proposed by Krivitsky (2012) are the two most well-
known models which have incorporated the networks’ edges’ weights into the model. The
normalizing factor in Eq. (3) which is the denominator of Eq. (4) is not assured to be
convergent when the network statistics (C(x) in the Eq. (4)) are infinite set like continuous
valued edges. GERGM is a model aimed to overcome this issue by using a probability
model for such continuous values. They build a transformed version of the original ERGM
formula that no longer suffers from the mentioned problem. The Krivitsky (2012) have also
extended the previous binary version of ERGM which only models edges existence rather
than their value into a model which is capable of capturing the information of weighted
graphs. However, his method is restricted to natural valued weights on the edges.

In network science there is a special kind of networks called multiplex or multilayer
networks. These are networks which their nodes are connected in the context of more than
one attribute. For example, in a social relation network, actors might have several relations
between them like friendship network or co-working network. Each of these relations can
be abstracted as a layer in a network model. Also, in some situations, there is a hierarchical
structure in the data like modeling the relations inside a university. There are schools,
which are divided into groups and lecturers and students. An extension of ERGM which is
applicable to model such scenarios in multilevel networks is proposed for these networks
(Wang et al., 2013). They considered relation between the nodes in each level and also the
inter-level relations into the model. For example, consider a two layer network with layers
A, B and an imaginary layer between them called x which is for the purpose of modelling
inter-level relations between A and B. Then the Eq. (1) is re-written as:

P(A= a,X = x,B= b|θ)=
1
N
exp{θTa Ca(a)+θTb Cb(b)+θTx Cx(x)+

θTa,xCa,x(a,x)+θTb,xCb,x(b,x)+θTa,b,xCa,b,x(a,b,x)} (13)

Which the θTa ,θ
T
b ,θ

T
x ,θ

T
b,x ,θ

T
a,x ,θ

T
a,b,x are the parameters for statistics which are extracted

from layers a,b and the inter-level relations a,x and b,x and the inter-level relation of
layers a,b. The same is true for the count functions of the statistics. θ is the set of all types
of statistics.

APPLICATIONS OF ERGMS
As mentioned previously, ERGMs are a useful tool for scientists from various disciplines.
Networks are everywhere, and anywhere that they exist they can be analyzed using ERGMs
and other statistical models. Note that here we have mostly reviewed the works since 2016.

Medical imaging
In order to take care of the limitations of the descriptive analysis of brain neural networks,
the author of Sinke et al. (2016) used ERGMs to be able to model the observed network
using the joint contribution of network structure. They also compared the changes in brain
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networks statistics across different ages. This study was conducted to examine the effects
of aging during lifetime in the brain global and local structures. Graphs where extracted
from brain images obtained from diffusion tensor imaging (DTI). Four network statistics
were used to model these networks:

• The number of edges
• The geometrically weighted edgewise shared partner (Hunter, 2007)
• The geometrically weighted non-edgewise shared partner (Hunter, 2007)
• The hemispheric node match: a binary indicator which shows whether two nodes are
in the same hemisphere of the brain.

The Bayesian learning schema from Caimo & Friel (2011) was used to fit the model.
In a recent work, (Dellitalia et al., 2018) employed ERGMs to study the structure of

neural networks of the brain. They aimed to increase the chance of unconscious and
injured patients to recover by analyzing brain functional data. In their work, they overcame
four shortcomings of previous methods by incorporating ERGMs into their study. For
example, one of them was the ability to assess the dynamics of the network over time.They
used the Separable Temporal ERGMs (TERGM) (Krivitsky & Handcock, 2014) for their
modeling. One of the aspects of their work that successfully handled with ERGMs was
that the network structures they chose should have not been necessarily independent. This
restriction was one of the main drawbacks of previous methods.

Functional Magnetic Resonance Imaging or fMRI is a method for observing brain
activities and their changes over time. There are components in the fMRI images which
can be explained using network analysis methods. Nodal signals, network architecture,
and network function are the three essential network properties in building fMRI-based
networks (Solo et al., 2018). ERGMs are one the main important network analysis methods
which have been used to explain such networks. The authors of a review paper (Solo et al.,
2018) introduced the most critical efforts with the aim to explain these brain networks.
Note that there are plenty of works which used ERGM as their method (Simpson, Hayasaka
& Laurienti, 2011; Simpson, Moussa & Laurienti, 2012).

Healthcare applications
Having a healthy life is one the central concerns of human life. If we look at this issue from
a macro perspective, we can see that many health-related problems can be alleviated by
analyzing their corresponding inter-related actors. For example, in epidemiology, there
is a direct connection between the patient relationships and the extent that the disease
can spread. In most cases, these relations between the actors will result in the formation
of a network. This network can be analyzed using ERGMs to answer different questions
underpinning its formation and dynamics. This kind of analysis is something that has
already been done extensively by researchers in the healthcare community.

Analyzing inter-hospital patient referral network is a significant problem which (Caimo,
Pallotti & Lomi, 2017) has recently investigated using ERMGs. They used a combination
of the edges and nodes of the network and utilized the Bayesian approach introduced in
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Caimo & Friel (2011) to fit their model. This task was done using BERGM (Caimo & Friel,
2014) R language package for their implementation.

Another work (Baggio, Luisier & Vladescu, 2017) shed light on the relationship between
social isolation and mental health. The connection between these two subjects was
investigated by analyzing the network of Romanian adolescents using ERGM modeling.
They concluded that there is a strong link between the two mentioned concepts.

Application of statistical network in epidemiology and disease spreading is another
interesting topicwhich has attracted from the attention of the biological science community.
(Silk et al., 2017) provided an important opportunity to advance the understanding of the
pattern and evolution of infections in static and dynamic environments. They also used
ERGMs for their models. In their ERGM model, they employed a fair number of both
structural and node-based attributes. The ERGM (Hunter et al., 2008) R language package
was used for the tests.

Social ties can reveal a wide range of aspects of human life. The networks formed by
such ties and edges among individuals can transfer life habits and behaviors in a society.
For example, in many kinds of literature, the relationship between social tie and analysis
of obesity has been investigated. Zhang et al. (2018b) thoroughly studied the articles
related to applications of social network analysis to obesity. In another work related to
eating disorders, (Becker et al., 2018) have presented some findings using ERGM network
analysis about the relationship between the eating disorders and human relationships. They
conducted their study on members of a sorority at Southeastern University.

Economics and management
Marketing organizations that are responsible for promoting tourist destination have also
been analyzed using ERGMs. (Williams & Hristov, 2018) intended to study the networks
underpinning DestinationMarketing Organizations (DMOs). They developed four models
with the most complex one consisting of the following statistics:

• Number of edges
• The geometrically weighted edgewise shared partner (Hunter, 2007)
• Properties of membership and industry background.

Global migration and different attributes of immigrants can be considered as a network.
There are many theories on how these networks shape and evolve and how they depend
on immigrants and country backgrounds. ethnicity, wealth, religion). (Windzio, 2018)
applied ERGM in order to examine theories and hypotheses about creation and evolution
of these networks. He used both the graph structure and node attributes in a large number
of statistics.

Global tourism and its corresponding network, Global Tourism Network (GTN), is yet
another field of study, given the tremendous financial importance of tourism market. As
mentioned in Lozano & Gutiérrez (2018), it is essential to gain insight into the connections
between its components. In the same article, an ERGM approach was used to find the
critical local substructures of the GTNs.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 15/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.269


Handling the budget and resources during crises is always a challenging task for
humanitarian organizations. There is a need for a tradeoff between the use of asset supplies
for the current crises and the usual ongoing projects. This problem has been formulated in
the form of asset supply networks. Stauffer et al. (2018) used ERGMs as an empirical model
to understand the asset flows during a crisis.

The applications of ERGMs have even been extended to the analysis of online drug
distribution networks. In a recent work, (Duxbury & Haynie, 2018) conducted the
mentioned research on a dataset of an online drugstore on the dark web. They studied such
networks concerning their topological dynamics, suppliers, and customer demand as well
as the resistance of such networks to disruptions.

Does economic partnership between professionals will result in further trust and
solidarity? This is the central question of Bianchi, Casnici & Squazzoni (2018). They
developed an ERGM multiplex network model collaboration network and a number
of other attributes and then analyzed it using multivariate ERGMs to examine social
support and trust for each of the network statistics.

Political science
A large number of articles in the political science community have used ERGMs for their
modeling. This enthusiasm toward ERGMs among political science scholars well suggests
that it is among the most famous mathematical modeling in the field. Here we introduce a
handful of these articles.

Sustainable development policy is a major concern both for the government and the
private sector. It is only achievable by interaction among individuals. In particular, the role
of the connection between funding sectors and those in need of money is important for
carrying out their projects. This is the central problem ofGallemore & Jespersen (2016). The
dataset consisted of 91 donor organizations. The role of ERGM in this work was modeling
the donor agent relationship networks.

Anothermajor issue that has been addressed through ERGMs is collaborative governance
between different sectors and individuals of multiple organizations. In Ulibarri & Scott
(2016), the authors used ERGM to test their hypothesis about what should be observed in
low-collaboration vs. high-collaboration networks. Four simple ERGMs’ configurations
were used, including:

• The number of networks ties
• The number of nonzero ties
• The number of reciprocity relations in the network
• The number of transitivity relations in the network.

In a more recent work, (Scott & Thomas, 2017) addressed the same problem. However,
they used different datasets and network statistics. Hamilton & Lubell (2018) also took the
same ERGM modeling approach in discussing the collaborative governance, in the special
domain of climate change adoption.

In an exciting work, Li et al. (2017) investigated the effectiveness of military alliances in
making peace between states. They used temporal random graph models for longitudinal
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network data of alliance. They employed two different sets of network statistics and
developed two models upon them.

Communications via internet social networks have helped the human to take a huge
step further. People from multiple backgrounds and societies are engaged in conversations
that have never been possible before the widespread popularity of online social networks.
In the case of political conversations in social networks, there is always the dilemma
whether this freedom has resulted in more communications between people with different
ideologies or adversely it will cause people with same viewpoints tend to dominate most
of the conversation thereby self-reinforcing the same way of thinking. (Song, Cho &
Benefield, 2018) addressed this issue by studying the network of message selection of users
during a presidential election and then analyzed the mentioned network by a Temporal
ERGM (TERMG) to answer the questions above. The world trade network has also been
investigated via TERGMs. Pan (2018) studied these networks to answer the underlying
questions about them and their effects on related subjects.

Even further, some works such as Chen (2019) took the use of ERGM networks in
modeling political networks a step further by incorporating multilayer networks properties
into their models. He proved with experimental results that this multilayer approach
toward ERGMs could better fit the model to the observed data.

The analysis and challenges of power transition in a personalized authoritarian system
is a problem that has been discussed in Osei (2018) using ERGM modeling. In addition
to qualitative methods, the author employed ERGM as a quantitative method to answer
questions about the regime survival of the regime under the mentioned situations. The
network in this context consisted of elite interactions network in authoritarian countries.
They found that many of the important people in the past ruler administration still play a
crucial role in the current government.

Environmental treaties among governments play a vital rule in solving environmental
issues. However, coming to an agreement in such commitments is not straightforward. The
aim of Campbell et al. (2019) is to study the model of ratification in such treaties among
different parties or states. The main contribution of this research is to find out how the
influence network between countries can affect the interdependency of countries decisions
on environmental politics. To this end, they have used Bipartite Longitudinal Influence
Network (BLIN) model to extract two latent influence network using which show negative
and positive influence among different countries. Later these two networks have been
analyzed using ERGMs to find the effective contextual and structural network statistics on
the shaping of influence (negative or positive) networks (Marrsetal, 2018).

Network of international arm trade is yet another subject that has been studied using
ERGM simulations (Thurner et al., 2019). The structure of weapon exchanges network
between countries and alias is very complicated. A plethora of effective factors are effective
in the formation of the network. Economic enhancement of the seller and the desire to
strengthen they allay in different regions of the words are two important considerations
from the dealers. Their datasets are extracted from available data of arm deals after world
war II. Temporal ERGMs were used for during the analysis. They have used a number
of statistics based on their hypothesis about importer and exporter effects, size of the
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countries’ domestic economic markets, national material capabilities, conflict involvement
joint membership in defense agreement, geographic distance between two countries. Most
of the statistics used in this work were exogenous statistics.

Missing data and link prediction
Link prediction is the problem of finding missing links in a network. As we explained,
ERGM deals with estimating graph distribution and generating a new graph based on
them. Graph generation part is the exact process of finding missing links. However, in link
prediction, we do not want to estimate the whole graph distribution, and we desire to find
the probability of link formation between two nodes based on the current structure of the
graph.

Smith (2012) used ERGMs to create a global view of networks with missing data based
on sampled data. In their approach, they took sampled ego networks and tried to estimate
features of the whole network. The interesting fact about this work was that not both the
structure of the network and its size were unknown. A three-step algorithm was used, and
in the last step, the aim was to predict the global structure of the network from the fitted
model. Two real-world network data were used in the tests including addition of health
network and sociology co-authorship network.

Koskinen et al. (2013) used the same approach of leveraging ERGM for data
augmentation in graphs with missing tie variable. In an empirical test, they were able
to estimate the missing tie variable of a network with 74% missing tie with fair precision.
As the article name suggests, they used a Bayesian estimation method for fitting the
parameters of their model.

Zhang, Zhai & Wu (2013) applied ERGMs for predicting links in microblogs. They used
five kinds of graph statistics with four of them (2–5) introduced in Hunter (2007):

• Number of edges
• Gwidegree (Geometrically weighted indegree): the weighting indegree of the network.
• Gwidegree (Geometrically weighted outdegree): the weighting outdegree of the network.
• Gwodegree (Geometrically weighted dyadwise shared partner): the number of shared
nodes of all node pairs in the network.
• Gwesp (Geometrically weighted edgewise shared partner): similar with Gwdsp, it is the
number of shared nodes for linked node pairs in the network.

The link prediction based on the ERGMmethod introduced in this article is an iterative
approach. At each step, they compute the conditional probability of adding an edge between
two arbitrary nodes having the observed part of the network. This process is performed
several times through an MCMC simulation, and at last the average of all these steps is
computed:

P
(
Xij = 1|X c

= xc
)
=

1
N
exp
(
θTC

(
xij = 1,xc

))
(14)

In Eq. (14), Xij is the probability of presence of an edge between nodes i and j. X c is also
the state of all other edges in the time predicting Xij .

Five datasets have been used:
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• Sina Microblog dataset community of ‘‘Beijing badminton community.’’
• Sina Microblog dataset community of ‘‘Beijing bicycle community.’’
• Sina Microblog dataset community of ‘‘Data mining community.’’
• Scientist co-authorship dataset GR (General Category).

The authors of Krause & Caimo (2019) have presented a new estimation algorithm
for Bayesian Exponential Random Multi-graphs model which is an imputation model
applicable to such multi-layer networks. This work is an extension of the Koskinen, Robins
& Pattison (2010) to multi-layer networks.

An interested reader can refer to a recent survey on different imputation method
on network missing data (Krause et al., 2018). One of the advantages of this methods is
that it is solely about missing data in the context of networks. Different missing data
treatment methods have been tested on different missing data in a complete benchmarking
framework.

Scientific collaboration
Finding the best colleagues or best-related research papers and topics is always a significant
issue for anyone in the scientific community. Co-author and citation networks analyses
are two important topics that have been extensively studied in research related to analysis
of networks addressing these issues.

The researchers in Zhang et al. (2018a) addressed the effect of three major network
properties in scientific collaboration networks including Homophily, Transitivity, and
Preferential attachment. Performing an ERGM study on these networks, they argued
that incorporating the mentioned properties we can provide more insight into how
collaborations form. The data for this study were collected using the metadata of papers’
citations from the Web of Science from 1956 to 2014.

As we approach more complex scientific phenomena, we more feel the need for
collaboration between different scientific communities. Fagan et al. (2018) also studied
a co-authorship network to evaluate the changes in inter-disciplinary scientific articles.
More precisely, they applied a special form of ERGMs called the Separable Temporal
ERGMs (STERGM) Krivitsky & Handcock (2014) to evaluate the co-authorship network
over time and make prediction ties in the network. They employed some structural and
nodal attributes. Structural attributes refer to a number of edges, degree, and triadic closure,
while some nodal attributes capture whether two individuals have the same professor rank,
gender, and college.

ERGMs are widely used for citation networks analysis. An & Ding (2018) performed the
same study in the special case of publications on causal inference. They argued that some
technical and social processes are underpinning citation networks. Their ultimate goal was
to explain the essential factors in forming a citation network and predicting the citation
patterns.

An in-depth study of polarization among researchers of the field of social science was
performed in a recent work (Leifeld, 2018). He used both qualitative and quantitative
methods to address the most compelling reasons and strategies causing the polarization.
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He applied ERGM as his qualitative method over two co-authorship networks in the field
of social science in two separate countries.

Other than the studies on co-authorships and citation networks there are other aspects
of scientific collaboration that have been widely studied. One of such studies is the study on
how the recruitment of new members of scientific collaborators in scientific organizations
takes place. In a study (Leifeld & Fisher, 2017) the dynamics underlying the membership
procedure of new scientist in international scientific assessments has been evaluated. The
authors have used a dataset extracted from an international well-known research program
on world’s ecosystem called Millennium Ecosystem Assessment (MA). Their method
is based on analyzing the pattern of the network formation by ERGM using a number
of exogenous and endogenous network’s statistics. The analysis approved the authors
hypothesis which suggests that factors like having the same nationality to the previous
researcher in the research group or being in the same institution with them have a high
impact on the recruitment of new researchers. This could result in lack of diversity of
opinions in the final outcomes of the assessments conducted by the research group.

Wireless networks modelling
Random Geometric Graphs also known as RGGs are defined as the group of graphs which
are obtained by placing a number of nodes randomly in a geometrical space and draw
vertices between those nodes which their distance is less than a threshold d in a given norm
(Penrose et al., 2003). One issue in the wireless sensor networks is that there is not a fixed
placement for the nodes inmost of times. The nodes are randomly distributed and therefore
the shape of connecting graph tend to be very volatile (Raghavendra, Sivalingam & Znati,
2006). Studying these graphs formation and the statistical dynamic behind their formation
has been extensively investigated in the literature related to RGGs (Iyer & Manjunath,
2006). For example, exponential RGGs which are the RGGs that the distribution of their
nodes is also exponential (Gupta, Iyer & Manjunath, 2008). These graphs have been used
for modeling wireless sensor networks Shang (2009) abd Kenniche & Ravelomananana
(2010). In the Shang (2009) the wireless sensors are assumed to be on a line and to evolve
over time with respect to a dynamic RGG process. The effect of statistical properties for a
particular time snapshot has also been considered in this paper. Such analysis with using
one-dimensional RGG has also been done in the past in Karamchandani et al. (2006).
Vehicular Ad Hoc Network are yet another use case for RGGs (Zhang et al., 2014). Due to
themovement of the vehicles and the rapid changes in the graph they havemany similarities
to previous applications of RGGs.

Other applications
The applications of ERGMs are so extensive that some works cannot be organized in a
particular category. In this section, we introduce some of them.

The concept of social networks is not limited only to human relationships. There are
some complex interactions in animal behaviors which can be modeled as graphs. ERGMs
are also a useful tool for analyzing these kinds of networks. In a recent work, (Silk & Fisher,
2017) reviewed the use of ERGMs in such studies. Also, more specifically, other recent

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 20/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.269


works have leveraged ERGMs capabilities in their specific context. Hellmann & Hamilton
(2018) is a work in which the authors investigated the effect of neighbors’ mediation in
cooperative fish breeding by analyzing their interactions with an ERGMmodel. In another
work (Silk et al., 2018), the same approach was used to investigate sex-related disease
spreading through animal contact networks in three sorts of animal networks.

In a novel work, Müller, Grund & Koskinen (2018) studied the social inequalities in
Sweden by analyzing an immigrant movement flow network on both the micro and macro
levels. Their network was a directed binary graph with Stockholm’s neighborhoods as the
nodes and ties as the representative of the movement flow across neighborhoods. Only
structural features (statistics) were used in ERGMs.

How do networks respond to a sudden change? Which sort of disruptions is most
influential in the network upcoming status? How the network will react to a change or
what is the best reaction? These are all questions that can be summarized as ‘‘forecasting
social network reaction to disruption.’’ In a recent article,Mellon & Evans (2018) reviewed
state-of-the-art research articles concerning these topics in various fields. According to
them and by mentioning one of their previous works (Mellon, Yoder & Evans, 2016),
ERGMs can play a crucial role in this issue. In the mentioned work, they used ERGMs to
examine the network formation mechanism before and after the intervention. According
to their findings, networks tend to preserve these mechanisms following the disruptions.

TOOLS AND LIBRARIES
There are a number of useful tools and libraries that facilitate use of ERGMs in different
domains. PNet and its extension for multilevel networks (MPnet) and bivariate analysis
(XPnet) were introduced byWang, Robins & Pattison (2006). It is a stand-alone software, it
has both windows .NET and Java versions. Because of the Java version, it can be considered
as a cross-platform application. Also, since it is not a library of some other languages and
thanks to its user-friendly environment, it is the most suitable choice for people with less
computer programming background. It is also a free software application and can easily
be downloaded through its website (http://www.melnet.org.au/pnet/).

Statnet (Handcock et al., 2003;Handcock et al., 2008) is an R language package which can
implement most state-of-the-art ERGM methods and algorithms. It also has a variety of
capabilities via other R libraries. For example, some visualization options are available
through libraries such as dynamic network and rSoNIA. A wide range of network
configurations has been implemented in this package. It has an active community, and it
seems that it is the de facto standard library for ERGMs. Thanks to its open source and well-
documented codebase, it can be used as a template for implementation of new methods.
However, because it is a programming language library and not standalone software, it
requires minimum knowledge of programming. Goodreau et al. (2008) have presented a
detailed explanation for its installation and usage. There are also other extensions for the
Statnet; for example, Caimo & Friel (2012) has incorporated the Bayesian ERGMs into the
library.
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CONCLUSIONS
This study offered an explanation of Exponential Random Graph Models aka ERGMs. We
also reviewed some state-of-the-art methods published after 2016. These articles either
presented new methods for fitting the ERGMs parameters or studied the possibility of
using new network configurations. Further, we did a comprehensive study of the research
articles published by scientists of multiple disciplines which have leveraged the applications
of ERGMs in their fields of interest. Multiple variation of the ERGM networks have been
reviewed. We classified research articles in seven plus one (other applications) categories.
These included research works in medical imaging, healthcare applications, economics and
management, political science, missing data and link prediction, scientific collaboration,
Wireless Networks Modelling, and other applications. Altogether, these studies provided
valuable insight into the potential use of ERGMs in interdisciplinary research. We also
presented a brief description of the ERGMs tools and libraries which can be used by
scientists to conduct research like the research papers we presented. The objective of this
study was to develop an understanding of the ERGMs methods and applications for those
with limited knowledge about them. However, more in depth study for applications of
ERGMs in each special area of study is still needed. These domain specific studies can do
further analysis on the technical side of the ERGM modelling which was not a concern of
our work. Some potential future directions for future research are:

• There are many good papers investigated the applications of Exponential Random
Graphs from social science research community. However, there is a lack of interest
among engineering community in these methods. Investigating the possibilities of using
ERGMs in networked data in various field of engineering studies is a research path
should be considered in the future. Some examples are studies on computer network
topology, internet measurement which this statistical tool might be used for prediction
of missing links or for the purpose of data, etc.
• Multilayer networks are now widely studied in different disciplines e.g., transport and
economical networks. Despite some good works using state of the art ERGMs methods
for multi-layer networks there is still a lack of interest in using statistical tools like
ERGMs for them comparing to other methods.
• The hype of deep learning (LeCun, Bengio & Hinton, 2015) has made many new
possibilists for combining them with traditional methods to achieve better estimation.
To the best of our knowledge no work has been done to this date trying to leverage graph
based deep learning methods alongside ERGMs.
• Despite the existence of comprehensive libraries for ERGMs like statnet, there is still no
library for it written in Python. Since Python is the most used programming language
in data science it is worthwhile to implement a powerful library for ERGMs modelling
in Python. One possible way is to extend current widely used libraries like NetworkX
(Hagberg, Swart & Chult, 2008) to include ERGMs in them.
• To the best of our knowledge there is no comprehensive research on comparison of
ERGMs with newly presented generative graph models like NetGAN (Bojchevski et al.,
2018).

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 22/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.269


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Saeid Ghafouri conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, and approved the final draft.
• Seyed Hossein Khasteh analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Our paper is a review paper and there is no code or raw data associated with it.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.269#supplemental-information.

REFERENCES
Amati V, Lomi A, Mira A. 2018. Social network modeling. Annual Review of Statistics and

Its Application 5:343–369 DOI 10.1146/annurev-statistics-031017-100746.
AnW, Ding Y. 2018. The landscape of causal inference: perspective from citation

network analysis. The American Statistician 72:265–277
DOI 10.1080/00031305.2017.1360794.

Anderson CJ, Wasserman S, Crouch B. 1999. A p* primer: logit models for social
networks. Social Networks 21:37–66 DOI 10.1016/S0378-8733(98)00012-4.

Baggio S, Luisier V, Vladescu C. 2017. Relationships between social networks and
mental health: an exponential random graph model approach among Romanian
adolescents. Swiss Journal of Psychology 76(1):5.

Becker KR, StojekMM, Clifton A, Miller JD. 2018. Disordered eating in college sorority
women: a social network analysis of a subset of members from a single sorority
chapter. Appetite.

Bianchi F, Casnici N, Squazzoni F. 2018. Solidarity as a byproduct of professional
collaboration: social support and trust in a coworking space. Social Networks
54:61–72 DOI 10.1016/j.socnet.2017.12.002.

Block P, Koskinen J, Hollway J, Steglich C, Stadtfeld C. 2018. Change we can believe
in: comparing longitudinal network models on consistency, interpretability and
predictive power. Social Networks 52:180–191 DOI 10.1016/j.socnet.2017.08.001.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 23/30

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.269#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.269#supplemental-information
http://dx.doi.org/10.1146/annurev-statistics-031017-100746
http://dx.doi.org/10.1080/00031305.2017.1360794
http://dx.doi.org/10.1016/S0378-8733(98)00012-4
http://dx.doi.org/10.1016/j.socnet.2017.12.002
http://dx.doi.org/10.1016/j.socnet.2017.08.001
http://dx.doi.org/10.7717/peerj-cs.269


Bojchevski A, Shchur O, Zügner D, Günnemann S. 2018. NetGAN: generating Graphs
via RandomWalks. ArXiv preprint. arXiv:1803.00816.

Bouranis L, Friel N, Maire F. 2017. Efficient Bayesian inference for exponential random
graph models by correcting the pseudo-posterior distribution. Social Networks
50:98–108 DOI 10.1016/j.socnet.2017.03.013.

Bouranis L, Friel N, Maire F. 2018. Bayesian model selection for exponential random
graph models via adjusted pseudolikelihoods. Journal of Computational and Graphi-
cal Statistics 1–13.

ByshkinM, Stivala A, Mira A, Krause R, Robins G, Lomi A. 2016. Auxiliary param-
eter MCMC for exponential random graph models. Journal of Statistical Physics
165:740–754 DOI 10.1007/s10955-016-1650-5.

Caimo A, Friel N. 2011. Bayesian inference for exponential random graph models. Social
Networks 33:41–55 DOI 10.1016/j.socnet.2010.09.004.

Caimo A, Friel N. 2012. Bergm: Bayesian exponential random graphs in R. ArXiv
preprint. arXiv:1201.2770.

Caimo A, Friel N. 2014. Bergm: Bayesian exponential random graphs in R. Journal of
Statistical Software 61:1–25.

Caimo A, Pallotti F, Lomi A. 2017. Bayesian exponential random graph modelling
of interhospital patient referral networks. Statistics in Medicine 36:2902–2920
DOI 10.1002/sim.7301.

Campbell BW,Marrs FW, Böhmelt T, Fosdick BK, Cranmer SJ. 2019. Latent in-
fluence networks in global environmental politics. PLOS ONE 14:e0213284
DOI 10.1371/journal.pone.0213284.

Chatterjee S. 2016. An introduction to large deviations for random graphs. Bulletin of the
American Mathematical Society 53:617–642 DOI 10.1090/bull/1539.

Chatterjee S, Diaconis P. 2013. Estimating and understanding exponential random
graph models. The Annals of Statistics 41:2428–2461 DOI 10.1214/13-AOS1155.

Chen THY. 2019. Statistical inference for multilayer networks in political science.
Political Science Research and Methods 1–18.

Coleman JS. 1958. Relational analysis: the study of social organizations with survey
methods. Human Organization 17:28–36
DOI 10.17730/humo.17.4.q5604m676260q8n7.

De la Haye K, Embree J, PunkayM, Espelage DL, Tucker JS, Green Jr HD. 2017.
Analytic strategies for longitudinal networks with missing data. Social Networks
50:17–25 DOI 10.1016/j.socnet.2017.02.001.

Dellitalia J, JohnsonMA, Vespa PM,Monti MM. 2018. Network analysis in disorders
of consciousness: four problems and one proposed solution (Exponential Random
Graph Models). Frontiers in Neurology 9:439–460 DOI 10.3389/fneur.2018.00439.

Desmarais BA, Cranmer SJ. 2012. Statistical inference for valued-edge networks:
the generalized exponential random graph model. PLOS ONE 7:e30136
DOI 10.1371/journal.pone.0030136.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 24/30

https://peerj.com
http://arXiv.org/abs/1803.00816
http://dx.doi.org/10.1016/j.socnet.2017.03.013
http://dx.doi.org/10.1007/s10955-016-1650-5
http://dx.doi.org/10.1016/j.socnet.2010.09.004
http://arXiv.org/abs/1201.2770
http://dx.doi.org/10.1002/sim.7301
http://dx.doi.org/10.1371/journal.pone.0213284
http://dx.doi.org/10.1090/bull/1539
http://dx.doi.org/10.1214/13-AOS1155
http://dx.doi.org/10.17730/humo.17.4.q5604m676260q8n7
http://dx.doi.org/10.1016/j.socnet.2017.02.001
http://dx.doi.org/10.3389/fneur.2018.00439
http://dx.doi.org/10.1371/journal.pone.0030136
http://dx.doi.org/10.7717/peerj-cs.269


Duxbury SW, Haynie DL. 2018. Building them up, breaking them down: topology,
vendor selection patterns, and a digital drug market’s robustness to disruption. Social
Networks 52:238–250 DOI 10.1016/j.socnet.2017.09.002.

Erdös P, Rényi A. 1959. On random graphs I. Publicationes Mathematicae (Debrecen)
6:290–297.

Fagan J, Eddens KS, Dolly J, Vanderford NL,Weiss H, Levens JS. Research Collabora-
tion, xx. 2018. Assessing through co-authorship network analysis. Journal of Research
Administration 49:76–99.

Fienberg SE. 2010. Introduction to papers on the modeling and analysis of network data.
The Annals of Applied Statistics 4:1–4.

Frank O. 1981. A survey of statistical methods for graph analysis. Sociological Methodol-
ogy 12:110–155 DOI 10.2307/270740.

Frank O, Strauss D. 1986.Markov graphs. Journal of the American Statistical Association
81:832–842 DOI 10.1080/01621459.1986.10478342.

Gallemore C, Jespersen K. 2016. Transnational markets for sustainable development
governance: the case of REDD+.World Development 86:79–94
DOI 10.1016/j.worlddev.2016.06.009.

Geyer CJ, Thompson EA. 1992. Constrained Monte Carlo maximum likelihood for
dependent data. Journal of the Royal Statistical Society. Series B (Methodological)
54:657–699.

Goldenberg A, Zheng AX, Fienberg SE, Airoldi EM. 2010. A survey of statistical network
models. Foundations and Trends R©in Machine Learning 2:129–233.

Goodman LA. 1961. Snowball sampling. The Annals of Mathematical Statistics
32:148–170.

Goodreau SM. 2007. Advances in exponential random graph (p*) models applied to a
large social network. Social Networks 29:231–248 DOI 10.1016/j.socnet.2006.08.001.

Goodreau SM, HandcockMS, Hunter DR, Butts CT, Morris M. 2008. A statnet tutorial.
Journal of Statistical Software 24(9):1.

Gupta B, Iyer SK, Manjunath D. 2008. Topological properties of the one dimensional
exponential random geometric graph. Random Structures & Algorithms 32:181–204
DOI 10.1002/rsa.20174.

Hagberg A, Swart P, Chult DS. 2008. Exploring network structure, dynamics, and function
using NetworkX. Los Alamos: Los Alamos National Lab.(LANL).

HamiltonM, Lubell M. 2018. Collaborative governance of climate change adapta-
tion across spatial and institutional scales. Policy Studies Journal 46:222–247
DOI 10.1111/psj.12224.

HandcockMS, Hunter DR, Butts CT, Goodreau SM,Morris M. 2003. Statnet: software
tools for the statistical modeling of network data. Seattle. Available at http://
statnetproject.org .

HandcockMS, Hunter DR, Butts CT, Goodreau SM,Morris M. 2008. statnet: software
tools for the representation, visualization, analysis and simulation of network data.
Journal of Statistical Software 24:1548.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 25/30

https://peerj.com
http://dx.doi.org/10.1016/j.socnet.2017.09.002
http://dx.doi.org/10.2307/270740
http://dx.doi.org/10.1080/01621459.1986.10478342
http://dx.doi.org/10.1016/j.worlddev.2016.06.009
http://dx.doi.org/10.1016/j.socnet.2006.08.001
http://dx.doi.org/10.1002/rsa.20174
http://dx.doi.org/10.1111/psj.12224
http://statnetproject.org
http://statnetproject.org
http://dx.doi.org/10.7717/peerj-cs.269


HandcockMS, Jones JH. 2004. Likelihood-based inference for stochastic mod-
els of sexual network formation. TheoretIcal Population Biology 65:413–422
DOI 10.1016/j.tpb.2003.09.006.

Hanneke S, FuW, Xing EP. 2010. Discrete temporal models of social networks. Electronic
Journal of Statistics 4:585–605 DOI 10.1214/09-EJS548.

Hellmann JK, Hamilton IM. 2018. Intragroup social dynamics vary with the presence of
neighbors in a cooperatively breeding fish. Current Zoology 65(1):21–31.

Holland PW, Leinhardt S. 1977. A dynamic model for social networks. Journal of
Mathematical Sociology 5:5–20 DOI 10.1080/0022250X.1977.9989862.

Hunter DR. 2007. Curved exponential family models for social networks. Social Networks
29:216–230 DOI 10.1016/j.socnet.2006.08.005.

Hunter DR, HandcockMS, Butts CT, Goodreau SM,Morris M. 2008. ergm: A package
to fit, simulate and diagnose exponential-family models for networks. Journal of
Statistical Software 24(3):nihpa54860.

Iyer SK, Manjunath D. 2006. Topological properties of random wireless networks.
Sadhana 31:117–139 DOI 10.1007/BF02719777.

Karamchandani N, Manjunath D, Yogeshwaran D, Iyer SK. 2006. Evolving random ge-
ometric graph models for mobile wireless networks. In: 4th international symposium
on modeling and optimization in mobile, ad hoc and wireless networks. 1–7.

Kenniche H, Ravelomananana V. 2010. Random geometric graphs as model of wireless
sensor networks. In: 2010 The 2nd international conference on computer and automa-
tion engineering (ICCAE). 103–107.

Koskinen JH, Robins GL, Pattison PE. 2010. Analysing exponential random graph
(p-star) models with missing data using Bayesian data augmentation. Statistical
Methodology 7:366–384 DOI 10.1016/j.stamet.2009.09.007.

Koskinen JH, Robins GL,Wang P, Pattison PE. 2013. Bayesian analysis for partially ob-
served network data, missing ties, attributes and actors. Social Networks 35:514–527
DOI 10.1016/j.socnet.2013.07.003.

Koskinen JH, Snijders TAB. 2007. Bayesian inference for dynamic social network data.
Journal of Statistical Planning and Inference 137:3930–3938
DOI 10.1016/j.jspi.2007.04.011.

Krause RW, Caimo A. 2019.Missing data augmentation for Bayesian exponential
random multi-graph models. In: International workshop on complex networks. 63–72.

Krause RW, HuismanM, Steglich C, Sniiders TAB. 2018.Missing network data a
comparison of different imputation methods. In: 2018. IEEE/ACM international
conference on advances in social networks analysis and mining (ASONAM). 159–163.

Krivitsky PN. 2012. Exponential-family random graph models for valued networks.
Electronic Journal of Statistics 6:1100–1128 DOI 10.1214/12-EJS696.

Krivitsky PN, HandcockMS. 2014. A separable model for dynamic networks. Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology) 76:29–46
DOI 10.1111/rssb.12014.

LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature 521:436–444.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 26/30

https://peerj.com
http://dx.doi.org/10.1016/j.tpb.2003.09.006
http://dx.doi.org/10.1214/09-EJS548
http://dx.doi.org/10.1080/0022250X.1977.9989862
http://dx.doi.org/10.1016/j.socnet.2006.08.005
http://dx.doi.org/10.1007/BF02719777
http://dx.doi.org/10.1016/j.stamet.2009.09.007
http://dx.doi.org/10.1016/j.socnet.2013.07.003
http://dx.doi.org/10.1016/j.jspi.2007.04.011
http://dx.doi.org/10.1214/12-EJS696
http://dx.doi.org/10.1111/rssb.12014
http://dx.doi.org/10.7717/peerj-cs.269


Leifeld P, Cranmer SJ, Desmarais BA. 2017. Temporal exponential random graph
models with btergm: estimation and bootstrap confidence intervals. Journal of
Statistical Software 83(6):1–36.

Leifeld P, Fisher DR. 2017.Membership nominations in international scientific assess-
ments. Nature Climate Change 7:730–735.

Leifeld P. 2018. Polarization in the social sciences: assortative mixing in social science
collaboration networks is resilient to interventions. Physica A: Statistical Mechanics
and its Applications 507:510–523 DOI 10.1016/j.physa.2018.05.109.

LiW, Bradshaw AE, Clary CB, Cranmer SJ. 2017. A three-degree horizon of peace in the
military alliance network. Science Advances 3:e160189.

Lozano S, Gutiérrez E. 2018. A complex network analysis of global tourism flows.
International Journal of Tourism Research 20(5):588–604.

Lusher D, Koskinen J, Robins G. 2012. Exponential random graph models for social
networks: theory, methods, and applications. New York: Cambridge University Press.

Marrs FW, Campbell BW, Fosdick BK, Cranmer SJ, Böhmelt T. 2018. Inferring
influence networks from longitudinal bipartite relational data. ArXiv preprint.
arXiv:1809.03439.

Mellon J, Evans D. 2018. Forecasting social network reaction to disruption: current practices
and new directions. Elsevier.

Mellon J, Yoder J, Evans D. 2016. Undermining and strengthening social networks
through network modification. Scientific Reports 6:34613 DOI 10.1038/srep34613.

Metropolis N, Rosenbluth AW, RosenbluthMN, Teller AH, Teller E. 1953. Equation
of state calculations by fast computing machines. The Journal of Chemical Physics
21:1087–1092 DOI 10.1063/1.1699114.

Morris M, HandcockMS, Hunter DR. 2008. Specification of exponential-family random
graph models: terms and computational aspects. Journal of Statistical Software
24(4):1548.

Müller TS, Grund TU, Koskinen JH. 2018. Residential segregation and ‘Ethnic
Flight’vs.‘Ethnic Avoidance’in Sweden. European Sociological Review 34:268–285
DOI 10.1093/esr/jcy010.

Osei A. 2018. Like father, like son? Power and influence across two Gnassingbé presiden-
cies in Togo. Democratization 25:1–21.

Pan Z. 2018. Varieties of intergovernmental organization memberships and structural
effects in the world trade network. Advances in Complex Systems 21:1850001.

Pattison P,Wasserman S. 1999. Logit models and logistic regressions for social net-
works: II. Multivariate relations. British Journal of Mathematical and Statistical
Psychology 52:169–193 DOI 10.1348/000711099159053.

Penrose M. 2003. Random geometric graphs. Oxford: Oxford University Press.
RA Fisher MA. 1922. On the mathematical foundations of theoretical statistics. Philo-

sophical Transactions of the Royal Society of London Series A, Containing Papers of a
Mathematical or Physical Character 222:309–368 DOI 10.1098/rsta.1922.0009.

Raghavendra CS, Sivalingam KM, Znati T. 2006.Wireless sensor networks. Springer
Netherlands: Springer.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 27/30

https://peerj.com
http://dx.doi.org/10.1016/j.physa.2018.05.109
http://arXiv.org/abs/1809.03439
http://dx.doi.org/10.1038/srep34613
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1093/esr/jcy010
http://dx.doi.org/10.1348/000711099159053
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.7717/peerj-cs.269


Robins G, Pattison P, Kalish Y, Lusher D. 2007a. An introduction to exponential
random graph (p*) models for social networks. Social Networks 29:173–191
DOI 10.1016/j.socnet.2006.08.002.

Robins G, Pattison P,Wasserman S. 1999. Logit models and logistic regres-
sions for social networks: III. Valued relations. Psychometrika 64:371–394
DOI 10.1007/BF02294302.

Robins G, Snijders T,Wang P, HandcockM, Pattison P. 2007b. Recent developments
in exponential random graph (p*) models for social networks. Social Networks
29:192–215 DOI 10.1016/j.socnet.2006.08.003.

Schmid CS, Desmarais BA. 2017. Exponential random graph models with big networks:
maximum pseudolikelihood estimation and the parametric bootstrap. In: Big Data
(Big Data), 2017 IEEE International Conference on. IEEE, 116–121.

Scott TA, Thomas CW. 2017.Winners and losers in the ecology of games: network po-
sition, connectivity, and the benefits of collaborative governance regimes. Journal of
Public Administration Research and Theory 27:647–660 DOI 10.1093/jopart/mux009.

Shang Y. 2009. Exponential random geometric graph process models for mobile wireless
networks. In: 2009 International conference on cyber-enabled distributed computing
and knowledge discovery. 6–61.

Silk MJ, Croft DP, Delahay RJ, Hodgson DJ, Weber N, Boots M, McDonald RA. 2017.
The application of statistical network models in disease research.Methods in Ecology
and Evolution 8:1026–1041 DOI 10.1111/2041-210X.12770.

Silk MJ, Fisher DN. 2017. Understanding animal social structure: exponential random
graph models in animal behaviour research. Animal Behaviour 132:137–146
DOI 10.1016/j.anbehav.2017.08.005.

Silk MJ,Weber NL, Steward LC, Hodgson DJ, Boots M, Croft DP, Delahay RJ,
McDonald RA. 2018. Contact networks structured by sex underpin sex-specific
epidemiology of infection. Ecology Letters 21:309–318 DOI 10.1111/ele.12898.

Simpson SL, Hayasaka S, Laurienti PJ. 2011. Exponential random graph modeling for
complex brain networks. PLOS ONE 6:e20039 DOI 10.1371/journal.pone.0020039.

Simpson SL, Moussa MN, Laurienti PJ. 2012. An exponential random graph modeling
approach to creating group-based representative whole-brain connectivity networks.
NeuroImage 60:1117–1126 DOI 10.1016/j.neuroimage.2012.01.071.

SinkeMRT, Dijkhuizen RM, Caimo A, Stam CJ, OtteWM. 2016. Bayesian exponential
random graph modeling of whole-brain structural networks across lifespan.
NeuroImage 135:79–91 DOI 10.1016/j.neuroimage.2016.04.066.

Smith JA. 2012.Macrostructure from microstructure: generating whole systems from ego
networks. Sociological Methodology 42:155–205 DOI 10.1177/0081175012455628.

Snijders TAB. 1996. Stochastic actor-oriented models for network change. Journal of
Mathematical Sociology 21:149–172 DOI 10.1080/0022250X.1996.9990178.

Snijders TAB. 2002.Markov chain Monte Carlo estimation of exponential random graph
models. Journal of Social Structure 3:1–40.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 28/30

https://peerj.com
http://dx.doi.org/10.1016/j.socnet.2006.08.002
http://dx.doi.org/10.1007/BF02294302
http://dx.doi.org/10.1016/j.socnet.2006.08.003
http://dx.doi.org/10.1093/jopart/mux009
http://dx.doi.org/10.1111/2041-210X.12770
http://dx.doi.org/10.1016/j.anbehav.2017.08.005
http://dx.doi.org/10.1111/ele.12898
http://dx.doi.org/10.1371/journal.pone.0020039
http://dx.doi.org/10.1016/j.neuroimage.2012.01.071
http://dx.doi.org/10.1016/j.neuroimage.2016.04.066
http://dx.doi.org/10.1177/0081175012455628
http://dx.doi.org/10.1080/0022250X.1996.9990178
http://dx.doi.org/10.7717/peerj-cs.269


Snijders TAB, Pattison PE, Robins GL, HandcockMS. 2006. New specifications
for exponential random graph models. Sociological Methodology 36:99–153
DOI 10.1111/j.1467-9531.2006.00176.x.

Solo V, Poline J-B, Lindquist MA, Simpson SL, Bowman FD, ChungMK, Cassidy B.
2018. Connectivity in fMRI: blind spots and breakthroughs. IEEE Transactions on
Medical Imaging 37:1537–1550 DOI 10.1109/TMI.2018.2831261.

Song H, Cho J, Benefield GA. 2018. The dynamics of message selection in online political
discussion forums: self-segregation or diverse exposure? Communication Research
47:0093650218790144.

Stauffer J, Pedraza Martinez A, Yan LL, VanWassenhove LN. 2018. Asset supply
networks in humanitarian operations: a combined empirical-simulation approach.
Journal of Operations Management.

Stivala AD, Koskinen JH, Rolls DA,Wang P, Robins GL. 2016. Snowball sampling for
estimating exponential random graph models for large networks. Social Networks
47:167–188 DOI 10.1016/j.socnet.2015.11.003.

Thiemichen S, Kauermann G. 2017. Stable exponential random graph models with
non-parametric components for large dense networks. Social Networks 49:67–80
DOI 10.1016/j.socnet.2016.12.002.

Thurner PW, Schmid CS, Cranmer SJ, Kauermann G. 2019. Network interdependencies
and the evolution of the international arms trade. Journal of Conflict Resolution
63:1736–1764 DOI 10.1177/0022002718801965.

Ulibarri N, Scott TA. 2016. Linking network structure to collaborative governance.
Journal of Public Administration Research and Theory 27:163–181.

Van der Pol J. 2018. Introduction to network modeling using exponential random graph
models (ergm): theory and an application using R-project. Computational Economics
54:1–31.

Wang P, Robins G, Pattison P, Lazega E. 2013. Exponential random graph models for
multilevel networks. Social Networks 35:96–115 DOI 10.1016/j.socnet.2013.01.004.

Wang P, Robins G, Pattison P. 2006. PNet: a program for the simulation and estimation of
exponential random graph models. Melbourne: University of Melbourne.

Williams NL, Hristov D. 2018. An examination of DMO network identity us-
ing exponential random graph models. Tourism Management 68:177–186
DOI 10.1016/j.tourman.2018.03.014.

Wilson JD, DennyMJ, Bhamidi S, Cranmer SJ, Desmarais BA. 2017. Stochastic
weighted graphs: flexible model specification and simulation. Social Networks
49:37–47 DOI 10.1016/j.socnet.2016.11.002.

WindzioM. 2018. The network of global migration 1990–2013: using ERGMs
to test theories of migration between countries. Social Networks 53:20–29
DOI 10.1016/j.socnet.2017.08.006.

You J, Ying R, Ren X, HamiltonW, Leskovec J. 2018. GraphRNN: generating realistic
graphs with deep auto-regressive models. In: International conference on machine
learning. 5694–5703.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 29/30

https://peerj.com
http://dx.doi.org/10.1111/j.1467-9531.2006.00176.x
http://dx.doi.org/10.1109/TMI.2018.2831261
http://dx.doi.org/10.1016/j.socnet.2015.11.003
http://dx.doi.org/10.1016/j.socnet.2016.12.002
http://dx.doi.org/10.1177/0022002718801965
http://dx.doi.org/10.1016/j.socnet.2013.01.004
http://dx.doi.org/10.1016/j.tourman.2018.03.014
http://dx.doi.org/10.1016/j.socnet.2016.11.002
http://dx.doi.org/10.1016/j.socnet.2017.08.006
http://dx.doi.org/10.7717/peerj-cs.269


Zhang C, Bu Y, Ding Y, Xu J. 2018a. Understanding scientific collaboration: homophily,
transitivity, and preferential attachment. Journal of the Association for Information
Science and Technology 69:72–86 DOI 10.1002/asi.23916.

Zhang C, Zhai BY,WuM. 2013. Link prediction of community in microblog based on
exponential random graph model. In: Wireless personal multimedia communications
(WPMC), 2013 16th international symposium on. IEEE, 1–6.

Zhang S, De La Haye K, Ji M, An R. 2018b. Applications of social network analysis to
obesity: a systematic review. Obesity Reviews 19:976–988 DOI 10.1111/obr.12684.

Zhang Y, Zhang H, SunW, Pan C. 2014. Connectivity analysis for vehicular ad hoc
network based on the exponential random geometric graphs. 993–998.

Ghafouri and Khasteh (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.269 30/30

https://peerj.com
http://dx.doi.org/10.1002/asi.23916
http://dx.doi.org/10.1111/obr.12684
http://dx.doi.org/10.7717/peerj-cs.269

