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ABSTRACT

Conferences with contributed talks grouped into multiple concurrent sessions pose an
interesting scheduling problem. From an attendee’s perspective, choosing which talks
to visit when there are many concurrent sessions is challenging since an individual
may be interested in topics that are discussed in different sessions simultaneously.
The frequency of topically similar talks in different concurrent sessions is, in fact,
a common cause for complaint in post-conference surveys. Here, we introduce a
practical solution to the conference scheduling problem by heuristic optimization of
an objective function that weighs the occurrence of both topically similar talks in one
session and topically different talks in concurrent sessions. Rather than clustering talks
based on a limited number of preconceived topics, we employ a topic model to allow
the topics to naturally emerge from the corpus of contributed talk titles and abstracts.
We then measure the topical distance between all pairs of talks. Heuristic optimization
of preliminary schedules seeks to balance the topical similarity of talks within a session
and the dissimilarity between concurrent sessions. Using an ecology conference as a test
case, we find that stochastic optimization dramatically improves the objective function
relative to the schedule manually produced by the program committee. Approximate
Integer Linear Programming can be used to provide a partially-optimized starting
schedule, but the final value of the discrimination ratio (an objective function used
to estimate coherence within a session and disparity between concurrent sessions) is
surprisingly insensitive to the starting schedule. Furthermore, we show that, in contrast
to the manual process, arbitrary scheduling constraints are straightforward to include.
We applied our method to a second biology conference with over 1,000 contributed
talks plus scheduling constraints. In a randomized experiment, biologists responded
similarly to a machine-optimized schedule and a highly modified schedule produced
by domain experts on the conference program committee.
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Figure 1 Two steps in the process of manually assigning talks to sessions for the 2017 American Physi-
cal Society March Meeting. Photos courtesy of Dr. Karen Daniels. Photo credit to Dr. Daphne Klotsa.
Full-size &l DOI: 10.7717/peerjcs.234/fig-1

INTRODUCTION

Researchers and educators depend upon professional conferences to showcase their work
and stay current on the work of their peers. Thousands of such conferences are held each
year worldwide, and conferences that feature of hundreds of oral presentations are not
unusual. Such large conferences often schedule oral presentations in concurrent sessions so
that each presentation can be allocated adequate time while keeping the overall conference
duration to only a few days.

Conference scheduling is typically done manually by program organizers who review
the large volume of talk submissions, decide which talks are similar to each other, and
group similar talks into sessions accordingly (Fig. 1). They do this based on the information
provided by prospective presenters, which invariably includes a title but may also include
keywords, topic categories and/or an abstract. This is a tedious and often error-prone
process, done in some cases under considerable time pressure, that is not easily scaled and
can lead to sub-optimal conference schedules (Hillis, 2013). Since conference attendees
typically aim to attend those talks most relevant to their interests, the ideal conference
schedule will not only ensure similarity of topics within a session, but also avoid topical
conflict among concurrent sessions.

In practice, identifying similarity among talks is a highly subjective process. Research
talks often have several dimensions; a talk presenting an efficient key distribution scheme
for asymmetric cryptography is related to key distribution algorithms, network security,
and cryptographic algorithms. Talk A might be more similar to talk B on one dimension
but more similar to talk C on a different dimension. Depending on their areas of expertise,
different organizers might weight those dimensions differently, and the weights of the
organizers may or may not be representative of the conference attendees.

Even if the measure of similarity were not subjective, ensuring a high level of dissimilarity
among concurrent sessions, each with multiple talks, is a challenging task for humans,
as it requires perception of the distribution of many points in a highly multidimensional
space. This can lead to schedules with conflict between concurrent sessions even when the
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talks within each individual session appear similar. Ensuring a high level of dissimilarity
among concurrent sessions is important to minimize participants having to move between
sessions, or having to choose between co-occurring talks of equal interest. Vangerven et al.
(2018) also note that dissimilarity between concurrent sessions is important for enabling
participants to attend the talks of most interest to them without encountering scheduling
conflicts, as might happen when talks of a similar topical nature are scheduled in concurrent
sessions.

Adding to the complexity of the conference scheduling task is the fact that organizers
typically have to accommodate idiosyncratic scheduling constraints due to the travel
schedules and other obligations of individual presenters. Efficient and automated data-
driven solutions to overcome the problems would be desirable.

The conference scheduling problem

Imagine a conference with Q talks scheduled across W days with a maximum of N
timeslots per day, each with a maximum of C,x concurrent sessions. A session is defined
as a sequence of talks scheduled during one timeslot in one room. The maximum number
of talks in a session is predefined by the organizers and does not vary across the schedule.
Sessions are considered concurrent when they are scheduled in the same timeslot. Timeslots
are non-overlapping.

We define the conference scheduling problem as the task of assigning talks to timeslots
and concurrent sessions so as to maximize coherence within a session and minimize
similarity between concurrent sessions (i.e., those within the same timeslot). In this
work, we describe a heuristic solution to the conference scheduling problem that creates
optimized conference schedules with multiple concurrent sessions in a fully automated
fashion.

First, we propose the use of a data-driven machine-learning approach, topic modeling
(Wallach, 2006), to infer similarity between talks. We use topic modeling to identify a set
of latent topics relevant to the full set of talks being presented at a conference. Each talk
can then be represented as a weighted vector of these different topics, and we can compare
these vectors as a measure of similarity. Thus, topic modeling provides a principled way
to decide upon which dimensions to consider, and how to weigh those dimensions, in
measuring similarity (between talks, between sessions, or between talks and sessions).

Second, we present a suite of heuristic schedule creation approaches designed to
maximize an objective function that quantifies session coherence and dissimilarity
between concurrent sessions in a single metric. We explore different strategies to create
initial schedules, including a greedy heuristic, random assignment, and Integer Linear
Programming. We then explore different stochastic optimization strategies to further
improve upon the initial schedules (Spall, 2012), and investigate how the optimality of the
initial schedule impacts the final result.

We selected a high-performing combination of approaches that improved upon a
manually produced schedule for a recently held ecology conference. Using this combination
of approaches, we then created an automated schedule for a large evolutionary biology
conference that had not yet been held, in collaboration with the conference organizing
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committee. The organizing committee made major, manual modifications to produce the
final schedule that was used.

After the evolutionary biology conference was held, we conducted an experiment where
biologists with expertise in that field were presented with samples of the concurrent sessions
from both the machine-generated and manually-modified schedules in order to elicit their
subjective opinions about session coherence and conflict among concurrent sessions. This
provided an evaluation of how well the discrimination ratio captured the topic dimensions
that mattered to experts in the field who would be representative of conference attendees.

Related work

Surprisingly, given the pervasive exposure of academics to the challenges of conference
scheduling, there is a relatively small literature on the problem (reviewed in Vangerven et al.
(2018)). Bhardwaj et al. (2014) and André et al. (2013) incorporate attendee preferences for
talk and session placement in a Community-Informed Conference Scheduling approach
(Sampson, 2009; Kim et al., 2013; Chilton et al., 2014). In Sampson (2009), conference
attendees submit time preferences for their talk. The scheduling algorithm, a modification
of the simulated annealing heuristic, then attempts to accommodate participant preferences
using the number of preferences accommodated as the objective function. Similarly, Kim et
al. (2013) and Chilton et al. (2014) use community sourced preferences for talk and session
placement to guide the scheduling process. Conference attendees are asked to submit their
preferences as to which talks should be scheduled with their own talk and which talks
belonged in similarly themed sessions that should not be scheduled concurrently to one
another. These preferences are encoded into a scheduling interface that is then used by
organizers to create and schedule sessions with the aim of maximizing the number of
preferences accommodated while resolving author, talk, and session conflicts. In contrast
to our approach, the actual scheduling process is manual.

Edis & Edis (2013) approach the scheduling problem using an Integer Programming
(IP) formulation in which each talk is assigned a topic and talks are assigned to a session
so that all talks in the session have the same topic. Houlding ¢ Haslett (2013) describe a
clustering algorithm to group similar talks into fixed size clusters (or sessions), using a
local objective function that maximizes the similarity of talk pairs assigned to a cluster
at each step. To measure similarity between talks, participants are asked to select three
relevant sessions for their talk. The co-occurrence frequency of session topics is then
used to determine similarity between talks and sessions. Gulati ¢ Sengupta (2004) use an
augmented objective function that incorporates a prediction of a talk’s popularity based
on reviewer comments and participant preferences of time slots. The goal of the schedule
is to maximize session attendance. The work uses a greedy scheduling algorithm, but no
empirical results or computational analysis are presented. Ibrahim, Ramli ¢ Hassan (2008)
focus on assigning talks to time slots across a number of days in 3 concurrent sessions.
Each talk belongs to a field or topic and the goal is avoid scheduling talks of the same topic
concurrently. The study presents methods based on combinatorial design theory for three
conferences used as case-studies. The study does not address how talks are grouped into
sessions. Quesnelle & Steffy (2015) consider an optimization problem that assigns talks to
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timeslots and rooms such that scheduling conflicts are minimized while accounting for
presenter and room availabilities.

Potthoff & Munger (2003) apply Integer Programming to assign sessions to time periods
in a way that sessions for each subject area are spread evenly across time slots. Similarly,
Nicholls (2007) assign sessions to rooms and time periods to avoid presenters being
scheduled in two concurrent sessions while trying to maximize presenter preferences in
the schedule. Both of the above assume that the clustering of similar talks into sessions
has already been accomplished. Nicholls (2007) and Eglese ¢» Rand (1987) aim to optimize
participant satisfaction by collecting participant preferred sessions. In Eglese ¢ Rand
(1987), a simulated annealing algorithm assigns sessions to time periods with the aim
of minimizing the sum of the weighted violations of session preferences. Le Page (1996)
requires participants to provide the number of sessions they would like to attend. They
build a conflict matrix containing the number of people that wish to attend both session
i and j. The goal is to assign sessions to timeslots such that the sum of conflicts between
simultaneous sessions is minimized. Sessions with the same topic must be assigned to the
same room. The authors propose a semi-automated heuristic consisting of four steps that
was used to schedule a meeting of the American Crystallographic Association.

Among the few studies to address the problem of grouping similar talks into sessions
were Tanaka, Mori & Bargiela (2002) and Tanaka ¢ Mori (2002). They use a set of user
assigned keywords for each talk and use an objective function that is a nonlinear utility
function of common keywords. The intuition behind the approach is that papers in the
same session have as much overlap in keywords as possible. They use Kohonen’s self
organizing maps (Tanaka, Mori ¢ Bargiela, 2002) and a hybrid grouping genetic algorithm
(Tanaka e Mori, 2002). Vangerven et al. (2018) present a method that approaches the
conference scheduling problem in three phases. The first phase aims to maximize total
attendance, based on the participants’ preferences. The second phase tries to minimize
the total number of session hops or minimizing the amount of topical overlap between
concurrent sessions. The third phase aims to accommodate presenter preferences and
availabilities by minimizing the total number of preferences violated.

Stidsen, Pisinger ¢» Vigo (2018) approach conference scheduling using a number of
optimization models each with a specific objective. Research fields are assigned to buildings
with the aim of assigning related areas to buildings physically close to each other. Each
session is assigned to one room. Finally, the solution optimizes assignment of sessions to
room sizes.

Despite these research contributions, the practice of manual scheduling is still
widespread, and not all factors that would allow for a practical automated solution
have been considered by researchers.

Compared to previous work, our approach is novel in its use of topic modeling to
measure talk similarity in multiple dimensions, stochastic optimization of a global objective
function that ensures both similarity within a session and disparity between concurrent

sessions, and the lack of a need for human intervention.
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METHODS

We first provide a description of the different parameters and variables (‘Preliminaries’)
used through ‘Methods’. Then, we present details about creating the corpus of documents
(‘Creating the corpus for topic modeling) for topic modeling along with topic modeling
algorithms used (“Topic modeling’). Next, we describe how similarity between talks and
sessions will be computed using outputs from the topic model (‘Computing similarity
between talks and sessions). An objective function called the Discrimination Ratio

to quantify the similarity of talks within a session vs. disparity between concurrent
sessions will be presented (‘An objective function for conference scheduling ’An objective
function for conference scheduling’). Finally, we outline heuristic approaches for creating
initial schedules (‘Creation of initial schedules’) and for optimizing the initial schedules
(‘Stochastic optimization’).

Preliminaries

A conference schedule is composed of W days, each with N timeslots, with a total of Q
talks. Each timeslot is further divided into a maximum of Cp,,x concurrent sessions. Two
sessions are considered to be concurrent if the starting and ending time of the sessions
are the same. The number of concurrent sessions in any given timeslot 7 is represented
by C;. Each session can contain a maximum of T, talks. A session is a sequence of talks
scheduled during one timeslot in one room. For a given session j, the number of talks in
the session is represented by T;. Talks in a particular timeslot and a particular session can
be referred to in the order in which they’re scheduled. #; ; x represents the kth talk in session
j of timeslot i.

The topic modeling algorithm takes as input the number of topics (G) to be generated
from the corpus of Q talks. The algorithm outputs a vector representation (\71-) of each
talk as a weighted vector over the G topics. The vector contains the probabilistic relevance
of each topic to a talk. For example, V; | is the probabilistic relevance of topic 1 to talk #
(the ith talk in a session). A pairwise similarity matrix (M) is computed from the above
vector representation that contains the cosine similarity (S) between vectors (\71, \72) of
every pair of talks in the corpus. The cosine similarity, S, of two vectors has a minimum of
-1 and a maximum of 1. An objective function, Discrimination Ratio (D), is defined as the
ratio of the mean talk similarity within a session (S,,) to the mean talk similarity between
concurrent sessions (Sy) across the full schedule.

Initial schedules can be created using the Random, Greedy, or ILP approaches (‘Creation
of initial schedules’). These approaches take the number of days in the conference (W),
number of timeslots per day (N'), maximum number of concurrent sessions in a timeslot
(Cmax)> maximum number of talks in each concurrent session (Tpax), and the pairwise talk
similarity matrix (M).

We present two variants each of a Hill Climbing (HC) and a Simulated Annealing (SA)
algorithm that further optimize the initial schedules. For the HC and SA approaches,
we experiment with a version (HCy4, SA4) that optimizes the objective function directly
and another (HCy4, SA4) that splits the optimization into two stages - first maximizing
within-session similarity and then minimizing between-session similarity. All four variants
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Table 1 Parameters and variables used in the topic modeling, schedule creation, and optimization ap-

proaches.
Parameter Description
I Input starting schedule created using the Random, Greedy,
or Integer Linear Programming (ILP) approaches.
D Discrimination ratio
N Number of timeslots in a schedule
N; Timeslot i
Crnax Maximum number of concurrent sessions in a timeslot
C Number of concurrent sessions
C; Number of concurrent sessions in timeslot 7
Tinax Maximum number of talks in a session
T Number of talks
T; Number of talks in session j
Q Number of talks in a schedule
tijk kth talk in session j of timeslot i
S(\?l, \72) Cosine similarity between the vector representations of two
talks
Sw Mean intra-session similarity of a schedule
Sp Mean inter-session similarity of a schedule
M Pairwise talk similarity matrix
Y Number of seed talks for the Greedy algorithm
X Number of clusters created by the Kruskal’s algorithm
X; ith Kruskal’s cluster
Tx, Number of talks in cluster X;
Ay, Attractor talk for cluster i
zZ Initial temperature
Z; Temperature at the ith swap. Z, = 50,000.
o Constant set to 0.99
R Number of parallel optimizations runs for an optimization
algorithm
e Number of maximum swaps for an optimization algorithm
w Number of days in a conference
L Dictionary of scheduling constraints
G Number of topics in the topic model
Vi Probabilistic relevance of topic j to talk #;

(HC4, HCg, SAy, SAp) take a starting schedule (I), the number of parallel optimization
runs (R), the maximum number of swaps (e), and a pairwise talk similarity matrix (M).
The approaches can optionally take a list of scheduling constraints encoded as a dictionary
(L). In addition, the SA versions (SA4 SAp) take an initial temperature (Z) and a constant
(¢ =0.99). These parameters are further defined in ‘Simulated annealing’.

For ease of reference, the parameters and variables are listed in Table 1.
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Creating the corpus for topic modeling
The corpus of documents that is input to the topic model is the set of talks for a conference.
In our implementation, each document included the title and abstract for a single talk. To
ensure that the corpus only contained meaningful words that reflect the semantic content
of talks, stemming and stop word removal were applied. Stemming reduces variants of
words to their base or root form (Lovins, 1968; Porter, 2001; Porter, 1980), making it easier
for the topic modeling algorithm to recognize words with the same meaning. Stop words
are commonly used words (such as ‘and’, ‘it’, and ‘the’) that have little value with respect
to the meaning of the text (Fox, 1989). Python’s Natural Language Toolkit (NLTK -
https://www.nltk.org) provides a set of 179 commonly used english words that was used as
the initial stop word list.

For the second conference, Evolution 2014, domain experts on the conference organizing
committee added additional stop words, leading to a total of 952 stop words.

Topic modeling

We used Latent Dirichlet Allocation (LDA), a generative probabilistic model often used
to describe collections of text corpora and one of the most widely used topic modeling
algorithms (Blei, Ng ¢ Jordan, 2003). LDA models each document as a finite mixture over
an underlying set of latent topics, and each latent topic as a probabilistic mixture over
relevant words. The model assumes Dirichlet priors over the latent topics in a document
and relevant words within a topic.

One of the input parameters to the LDA algorithm is the number of topics to identify
from the corpus. Several preliminary topic models were created using different numbers.
We developed a metric, the Match Percentage, to compare the fit of different models. For
each model, the top two words from each of the top three topics of a talk were used to
create a set of six keywords. The fraction of keywords found within the title and abstract
was computed for each talk and the Match Percentage was computed as the mean of this
fraction across all talks, expressed as a percentage. The topic model with the highest Match
Percentage was chosen for subsequent analyses.

While there are automated metrics, such as perplexity (Blei ¢ Lafferty, 2005), to evaluate
topic models, studies that have tested these metrics of evaluating topic models have
reported that inferences based on these measures were negatively correlated with human
perception (Chang et al., 2009; Chang ¢ Blei, 2009). These studies also suggest that topic
models should be chosen by human analysis of coherence of topics inferred by a model,
words in topics etc. instead of trying to optimize likelihood based measures (Chang ¢ Blei,
2009).

Computing similarity between talks and sessions
LDA outputs a representation of each talk in the corpus as a weighted vector over all the
latent topics. In a model with G topics, the vector V; of talk #; is defined as

\Z:(Vi,l,Vi,z,..-,Vi,G) W
where

11s the talk number
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Vi1 is the probabilistic relevance of topic 1 to talk ¢;

From this, a pairwise similarity matrix, M, is computed by calculating the cosine
similarity (S) of the two vectors, V| and V), for every pair of talks in the corpus.

G
2 it ViiVa

\/Zf:1 (Vl,j)z\/Zle(Vz,j)z '

S(V1,Vy) = (2)

An objective function for conference scheduling
We introduce an objective function called the Discrimination Ratio, D, to quantify in
one measure the similarity of talks within each session and the disparity between talks
in concurrent sessions. D is defined as the ratio of the mean within-session similarity to
the mean between-session similarity across the full schedule. D is higher (>1) when the
mean within-session similarity is higher as compared to mean between-session similarity
in a schedule. Lower D values (<1) indicate that the mean within-session similarity is
lower as compared to mean between-session similarity in a schedule. D is 1 when the mean
within-session similarity is same as the mean between-session similarity.

The mean within-session similarity, S,,, is the mean of the pairwise similarities between
all the talks within each session.
S Sl Sl Stk )

ZN Ci T;
i=1 j=1\ 2

where N is the number of timeslots in the schedule, C; is number of concurrent sessions in

S, = (3)

timeslot i, T is number of talks in session j, and S(t; j k.t j,;) (from Eq. (3)) is the cosine
similarity between talk k in timeslot i, session j and talk / in timeslot i, session j.
The mean between-session similarity, Sy, is the mean of the pairwise similarities between
all the talks in different concurrent sessions.
5= Pl jilZl?:lZ;%j+l22=1S(ti,j,k,ti,l,m) "
Zil ]C=11 >kl ZZC:in Zz;l:l 1

The Discrimination Ratio is defined as D = §,, /Sp. D is inspired by other commonly used

metrics used to evaluate the quality of clusters generated by clustering algorithms, such
as k-means. Such commonly used metrics include the Error Sum of Squares (SSE)—the
sum of the squared differences between each observation and its cluster’s mean (Celebi,
Kingravi & Vela, 2013), Intercluster Distance (Gonzalez, 1985)—the sum of the squared
distances between each cluster’s centroid, or Intracluster Distance—the sum of the squared
distances between an item and its cluster’s centroid.

Creation of initial schedules
We consider three approaches for the creation of initial schedules: random, Greedy, and
Integer Linear Programming (ILP).
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Random

The Random assignment algorithm provides a baseline against which to compare the
performance of approaches that explicitly optimize the objective function. Given a set of
talks and scheduling parameters as in ‘Preliminaries’, this algorithm assigns talks to sessions
through sampling with replacement with no consideration of talk similarities or the value
of the objective function.

Greedy

The Greedy assignment algorithm generates a semi-optimal schedule for further stochastic
optimization. In addition to the parameters in ‘Preliminaries’, the algorithm requires a set
of Y seed talks that are selected based on an input threshold of minimum dissimilarity
between each other. First, the algorithm finds a session for each seed talk such as to
maximize the objective function. Next, the rest of the talks are assigned to sessions by
choosing the most locally optimal solution at each step.

Integer linear programming

We cast the problem of scheduling the conference as an Integer Linear Program (ILP) using
a variable reduction technique that was solved using AMPL (Gay ¢ Kernighan, 2002) with
the CPLEX solver (http://www.cplex.com).

An Integer Linear Program (ILP) consists of variables, constraints, and an objective
function where some or all of the variables take on integer values (Bosch ¢ Trick, 2005).
Non-integer variables have numeric values that are limited to a feasible region by the
constraints. The objective function determines the assignment of values to the variables
that results in an optimal solution. Both the constraints and the objective function must
be linear in the variables.

In our implementation, a heuristic pre-processing step first groups the talks into X
clusters of similar talks using a modified version of Kruskal’s algorithm (Kruskal, 1956),
a greedy algorithm that is used to find a minimum spanning tree from a weighted graph
of nodes. In this work, nodes represent talks while edge weights represent pairwise talk
similarity. We use a modification of Kruskal’s algorithm to find a number of disjoint
maximum-weight spanning trees from the graph. Each disjoint spanning tree is a cluster
that groups similar talks while the spanning trees are sufficiently distant from each other.
At the beginning of the algorithm, each talk forms its own cluster. At each iteration of
the algorithm, the pair of talks with the highest edge weight (similarity score) is selected.
If the two talks are in separate clusters, the clusters are merged to form a bigger cluster.
The algorithm is terminated as soon as X disjoint and distant clusters of similar talks are
created.

A representative talk called the attractor (Ay;), is then chosen from each of the X clusters.
The aim is to produce a set of initial input talks for the ILP that are highly different from
each other, while ensuring that each attractor has many other talks similar to it. We choose
as the attractor the talk that has the highest similarity to all other talks in its cluster. If
there are multiple talks that qualify as attractors, one of those talks is chosen randomly.
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We calculate a fit score (F) for each talk ¢ in cluster X; as follows.
Ty, .
F(5,X;) = max, " S(t, 1) :j £k (5)
where
T, is the number of talks in cluster X;

The talk ¢; with the maximum value of F is chosen as the attractor for cluster X;.

This list of attractors is then input to the ILP, which optimally assigns one attractor to
each concurrent session in the schedule and assigns talks to sessions so as to maximize the
sum of similarities between the attractor and all the other talks in that session.

In addition, the ILP requires the following constraints: each session i is assigned no
more than T}, talks, exactly C; attractors must be assigned to each timeslot Nj, and each
talk must be assigned to only one session.

We made no effort to ensure distinctness of the initial schedules either within or between
the three approaches.

Stochastic optimization
We developed two variants each of a Hill Climbing algorithm and a Simulated Annealing
algorithm to further improve upon the initial schedules (obtained from the Random,
Greedy, and ILP approaches) by iteratively proposing swaps in the positions of talks in the
schedule. The Hill Climbing (HC) approaches accept solutions from a swap only when
they increase the discrimination ratio, and are thus susceptible to being trapped in local
optima. By contrast, the simulated annealing (SA) approaches will accept solutions that
decrease D with a certain probability, and thus have the potential/possibility to escape local
optima (Kirkpatrick, Gelatt ¢ Vecchi, 1983).

Each optimization algorithm takes one or more initial schedules as input and spawns
R parallel optimization runs to produce R optimized schedules at the end of execution. If
the input schedule is Random, each parallel run starts with an independently generated
schedule, while if the input schedule is a Greedy or an ILP schedule, all parallel runs
operate on the same input. The schedule with the highest discrimination ratio among the
R optimized schedules is chosen as the output of the algorithm.

The input parameters to the optimization approaches are given in ‘Preliminaries’.

Simulated annealing

For simulated annealing, we used the Kirkpatrick acceptance probability function (Eq. (6))
to determine the probability of accepting a solution resulting from a swap (Kirkpatrick,
Gelatt & Vecchi, 1983).

1 lfD] < D,‘T’

K(Dj.Di) =1 —v,-py/z, (6)

otherwise
where D; and D; are the discrimination ratios of the schedule under the proposed swap
and after the last accepted swap, respectively; Z is the initial “temperature”, and Z; is the
current temperature at timestep i defined as Z; = Z;_ .
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The decreasing temperature values reduce the probability of accepting worse solutions as
the number of swaps increases. Since the algorithm might accept worse solutions, the best
solution encountered at any point of time is stored to be reported at the end of execution.

Sequential optimization

In working with the organizing committee for the evolution conference, we observed
that users were more sensitive to maximizing coherence within a session than disparity
between concurrent sessions. In order to emulate this aspect of human scheduling, we
developed variants of the HC and SA approaches that split the optimization algorithm
into two sequential regimes, the first optimizing for within-session similarity alone and
the second for between-session disparity alone. Between-session disparity is optimized by
proposing a swap of two randomly selected sessions in each iteration. This has no effect
on within-session similarity since swapping is conducted on sessions and not talks. The
sequential optimization regimes are stopped when further swapping does not result in
improvement.

We refer to the versions of the HC and SA approaches in which D is optimized directly
throughout as HC4 and SA,, respectively, and the approaches in which the schedule is first
optimized for within-session similarity as HCg and SAp, respectively. See Algorithms 1-4
for pseudocode describing the four optimization approaches.

Scheduling constraints

In practice, a conference will typically have constraints that restrict the sessions or timeslots
atalk can be placed in. Reasons may include talks competing for awards that must scheduled
early in the conference in order to allow time for judging; presenters with multiple talks
that cannot be scheduled in concurrent sessions within the same timeslot; presenters who
are scheduled to arrive at the conference after it begins or before it is finished; or requests
for complementary talks to be scheduled in the same session.

These constraints can be accommodated by the optimization approaches described
above by requiring them to be satisfied in any solution obtained. In our implementation,
such scheduling constraints were encoded as a dictionary (L) that maps each talk to a set
of sessions in which the talk can be placed without violating any scheduling constraints.
For example, in a schedule with five sessions (labeled 1 through 5), if a constraint prevents
talk #; from being scheduled in session 5, the constraint would be encoded in the dictionary
as L[#;]=1{1,2,3,4}. Each proposed swap was checked for constraint violations before being
accepted. If there is no feasible solution due to conflicting constraints, no solution is
returned.

RESULTS

The datasets for the two conferences used in this work, Ecology 2013 and Evolution 2014,
are summarized in Table 2. We first tested our topic modeling, schedule creation and
optimization approaches on select concurrent sessions from Ecology 2013. The manually
created schedule for this conference gave us a point of comparison for the automated
schedules we generated. Although our ultimate goal was to apply our methods to the
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Table 2 Parameters for the Ecology 2013 and Evolution 2014 conferences.

Parameter Ecology 2013 Evolution 2014
Number of days (W) 5 4

Number of talks to be scheduled (Q) 324 1,014

Number of timeslots (N) 8 16

Maximum number of concurrent sessions per timeslot 5 14 (W, W5, Ws5), 9 (W,)
(Cinax)

Maximum number of talks per session ( Tyayx) 10 5

Scheduling constraints to be accommodated None 244

Evolution 2014 conference, previous Evolution conferences could not be used for testing

since talk abstracts were not a part of submissions in previous years. The main structural

difference between the two datasets is that no scheduling constraints were available for

Ecology 2013.

Algorithm 1: Hill Climbing optimization algorithm (HCj,)

Input: Initial schedule

Output: Optimized schedule

set current schedule to input schedule;
set e to maximum number of swaps;

while discrimination ratio (D) increases or e > 0 do

end

else

end

e=e—1;

end

return current schedule;

swap the two talks;
compute D of updated schedule;

if updated D > current D then
accept changes;

‘ discard changes;

select two talks from the current schedule at random;

if updated schedule does not violate constraints then

set current schedule to updated schedule;
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Algorithm 2: Hill Climbing optimization algorithm (HCp)

Input: Initial schedule
Output: Intra-session optimized schedule
set current schedule to input schedule;
set e to maximum number of swaps;
while mean intra-session similarity (S,,) increases or e > 0 do
select two talks from the current schedule at random;
swap the two talks;
if updated schedule does not violate constraints then
compute S,, of updated schedule;
if updated S,, > current S,, then
accept changes;
set current schedule to updated schedule;

end

else
‘ discard changes;
end

e=e—1;
end
set Intra-session optimized schedule to current schedule;
Input: Intra-session optimized schedule
Output: Optimized schedule
set e to maximum number of swaps;
set current schedule to input schedule;
while mean inter-session similarity (Sp) decreases or e > 0 do
select two sessions from the input schedule at random;
swap the two sessions;
if updated schedule does not violate constraints then
compute Sy, of updated schedule;
if updated Sy < current Sy then

accept changes;

set current schedule to updated schedule;

end

else
‘ discard changes;
end

e=e—1;
end
return current schedule ;
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Ecology 2013

Topic models were created using the LDA algorithm for 60, 80, 100, and 120 topics on
the corpus of 324 talks. Each topic model was evaluated based on two criteria: (1) Match
Percentage and (2) manual examination of the topics and topic words associated with each
talk. We obtained Match Percentages of 70.5% (for 60 topics), 74.6% (80), 75.2% (100)
and 75% (120). The topic model with 100 topics was judged to be the best model for the
data. Subsequently, this topic model was used to compute a talk similarity matrix that
contained a similarity score for all pairs of talks in the dataset. The talk similarity matrix
was computed using cosine similarity between the topic relevance vectors of any two talks

(Eq. (2)).

Algorithm 3: Simulated Annealing optimization algorithm (SA4)
Input: Initial schedule
Output: Optimized schedule

set e to maximum number of swaps;

set best D to D of input schedule;

set current schedule, best schedule to input schedule;

while discrimination ratio (D) increases or e > 0 do

select two talks from the input schedule at random;

swap the two talks;

if updated schedule does not violate constraints then

compute D of updated schedule;

compute probability of accepting updated schedule using Kirkpatrick accep-
tance probability function;

r=random number between 0 and 1;

if acceptance probability > r then

accept changes;

set current schedule to updated schedule;

compute D of updated schedule;

if updated D > current D then
| set best schedule to updated schedule

end

else
‘ discard changes;
end

else
‘ discard changes;
end

e=e—1;

end
return best schedule;
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Algorithm 4: Simulated Annealing optimization algorithm (SAp)

Input: Initial schedule
Output: Optimized schedule
set e to maximum number of swaps;
set best S, to S,, of input schedule;
set current schedule, best schedule to input schedule;
while mean inter-session similarity (S,,) increases or e > 0 do
select two talks from the current schedule at random;
swap the two talks;
if updated schedule does not violate constraints then
compute S,, of updated schedule;
compute probability of accepting updated schedule using Kirkpatrick acceptance probability
function;

r=random number between 0 and 1;
if acceptance probability > r then

accept changes;

set current schedule to updated schedule;

if updated S, > best S,, then

best S,, = updated S,;
best schedule = updated schedule;

end

else
‘ discard changes;

end

else

‘ discard changes;
end
e=e—1;

end
set Intra-session optimized schedule = best schedule;
Input: Intra-session optimized schedule
Output: Optimized schedule
set e to maximum number of swaps;
set current schedule, best schedule to input schedule;
set best Sy, to Sp, of input schedule;
while mean inter-session similarity (Sp) decreases or e > 0 do
select two talks from the current schedule at random;
swap the two talks;
if updated schedule does not violate constraints then
compute S of updated schedule;
compute probability of accepting updated schedule using Kirkpatrick acceptance probability
function;

r=1-(random number between 0 and 1);
if acceptance probability > r then

accept changes;

set current schedule to updated schedule;

if updated S, < best S, then

best S = updated Sp;
best schedule = updated schedule;

end

else
| discard changes;

end

else

| discard changes;
end
e=e—1;

end
return best schedule;
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Figure 2 Mean discrimination ratio of the starting and final Ecology 2013 schedules for the four opti-

mization approaches applied to each of the Random, Manual, Greedy, and ILP initial schedules. Error

bars show two standard errors of the mean discrimination ratio among the 50 starting or final schedules.
Full-size &l DOL: 10.7717/peerjcs.234/fig-2

Fifty each of Random, Greedy, and ILP schedules were created in addition to the
manually created Ecology 2013 schedule. The schedule with the highest discrimination
ratio among the 50 runs was taken to be the solution for each combination of starting
schedule and stochastic optimization algorithm.

The discrimination ratios of the initial and final optimized schedules are shown in
Fig. 2. Both the Greedy and ILP initial schedules outperformed the Manual schedule
while the Random schedule did not. All four optimization approaches improved upon the
initial schedules. The highest relative improvement was seen on the Random schedules
(about eight-fold) while a two-fold improvement was seen relative to the other three initial
schedules, yet the final schedules had very similar discrimination ratios irrespective of the
initial schedule. Among the optimization approaches, the overall best results were obtained
with SAy, closely followed by HCy, on all initial schedules. Thus, the two approaches
optimizing directly and continuously for D outperformed those that sequentially optimized
for within-session similarity followed by between-session disparity.

We compared the D distributions using a Student’s ¢-test across 50 final schedules
created HC and SA approaches with different initial schedules to investigate if there are
any significant differences in performances. We found statistically significant differences
between SA and HC versions for the majority of starting schedules at the Bonferroni-
corrected threshold of @ = 0.002 (Table 3, rows 2-9). No significant differences were found
between HC4 and SA4 with a Random starting schedule and between HCp and SAp with
an ILP starting schedule (Table 3, rows 2,9).

We also compared the performance of A and B versions of the HC and SA approaches
with the four initial schedules. Statistically significant differences were found between A
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Table 3 Comparison of HC and SA approaches, and, A and B variants of HC and SA with four differ-
ent initial schedules. Comparisons are made on the distributions of D for the 50 final Ecology 2013 opti-
mized schedules produced by each approach. Shown are p-values from two-sided un-paired ¢-tests at the
Bonferroni-corrected threshold of & = 0.002 (experiment-wide o = 0.05 for n = 24).

Initial Schedule Comparison P

Comparing HC with SA versions

Random HC, vs. SA, 0.32
Manual HC, vs. SA, 4.56e—07
Greedy HC, vs. SA, 1.01e—05
ILP HC, vs. SA,4 0.0002
Random HCjy vs. SAp 7.28e—43
Manual HCpg vs. SAg 2.77e—50
Greedy HCp vs. SAg 6.12e—38
ILP HCp vs. SAg 0.084
Comparing A with B variants

Random HC, vs. HCy 9.03e—55
Manual HC, vs. HCy 2.09e—58
Greedy HC, vs. HCy 1.30e—52
ILP HC, vs. HCy 2.36e—54
Random SA, vs. SAp 4.18e—23
Manual SA, vs. SAg 4.07e—23
Greedy SA, vs. SAg 5.90e—23
ILP SA, vs. SAp 2.36e—54

and B versions for both HC and SA approaches across all four starting schedules (Table 3,
rows 11-18).

Evolution 2014

Topic models were created from the corpus of 1,014 talks using the LDA algorithm for 50,
100, 150, and 250 topics. We obtained Match Percentages of 72.4% (for 50 topics), 76.8%
(100), 79.3% (150) and 77.2% (250). Based on the match percentage of the four models
and manual inspection of the generated topics, the model with 150 topics was chosen to
compute talk similarity for the Evolution 2014 corpus.

During the test runs conducted on the Ecology dataset, we observed that there was little
variation between different parallel runs within the same algorithm (Fig. 2). Knowing this,
and considering the larger size of the Evolution 2014 dataset, we reduced the number of
parallel runs for each optimization algorithm to 10. Since the Ecology 2013 results showed
that the initial schedule had no discernible affect on the final optimized schedule, we
only report the results of optimization on Random starting schedules with and without
constraints.

The results are shown in Fig. 3. The relative ordering of the approaches is identical
to Ecology 2013, with the highest performance shown by SA, followed closely by HCj,.
Interestingly, the inclusion of constraints did not lead to a reduction in the discrimination
ratios; in fact, the highest discrimination ratio (6.7) was obtained in the presence of
constraints.
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Table 4 Comparison of HC and SA approaches, and, A and B variants of HC and SA with four dif-
ferent initial schedules. Comparisons are made on the distributions of D for 10 final Evolution opti-
mized schedules produced by each approach. Shown are p-values from two-sided un-paired ¢-tests at the
Bonferroni-corrected threshold of & = 0.002 (experiment-wide alpha = 0.05 with n = 24).

Initial Schedule Comparison P

Comparing HC with SA versions

Random HC, vs. SA, 1.95e—08
Random HCg vs. SAg 8.44e—35
Random with Constraints HC, vs. SA, 1.54e—08
Random with Constraints HCpg vs. SAg 4.06e—23
Comparing A with B variants

Random HC, vs. HCy 3.23e—41
Random with Constraints HC, vs. HCy 8.52e—27
Random SA, vs. SAg 1.29e—21
Random with Constraints SA, vs. SAp 9.44e—23

We compared the D distributions using a Student’s ¢-test across 10 final schedules
created HC and SA approaches with a Random initial schedule. Statistically significant
differences were found between SA and HC versions with a Random initial schedule both
with and without additional scheduling constraints (Table 4, rows 2-5).

We also compared the performance of A and B variants of the HC and SA approaches.
Statistically significant differences were found between A and B versions for both HC and
SA approaches both with and without scheduling constraints (Table 4, rows 7-10).

Preliminary labels can be generated for the automated sessions using information from
the topic model. For example, for each talk in a session, we can determine the top two
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words from the top two relevant topics that describe the talk the best. This would result in a
set of four words (assuming no redundancies) that represent each talk. The most frequently
occurring words among the talks can be used to create a preliminary label, which can then
be used to construct a session name by program organizers.

Manual modification of Evolution 2014 schedule

The SA,4 schedule with constraints, reported above, was then given to the Evolution
2014 program committee as a starting point. The program committee consisted of ten
evolutionary biologists. Based on their subjective judgments, and following manual
procedures that elude easy description, the committee members made a large number
of changes to the placement of talks and sessions before finalizing the schedule for the
conference. In addition, the program committee added extra sessions for special symposia
that were not part of the pool of contributed talks.

The changes made by the program committee were substantial; 0.50% of talk pairs that
shared a session in the automated schedule were retained within the same session in the
modified schedule, while 4.40% of talk pairs placed in concurrent sessions in the modified
schedule had originally been placed together in the automated schedule. The value of D
for the original automated schedule was 6.7, while that for the manually modified schedule
was 3.2.

Expert evaluation

The differences between the automated and manually modified Evolution 2014 schedule
provided an opportunity to conduct a human evaluation. We were particularly interested
in comparing how tempted users would be to hop between sessions in each case. To
that end, we presented a set of 29 volunteers with expertise in evolutionary biology,
none of whom served on the program committee, with faux schedules compiled from
the two different sources. Responses were captured via an online survey (University of
North Carolina at Chapel Hill Institutional Review Board 15-0379). The respondents,
recruited individually, included twenty-four early career researchers (graduate students
and postdoctoral associates) and five faculty.

Respondents were presented with one of eight faux schedules. Each schedule consisted
of two timeslots. First, two timeslots each were randomly selected from the automated
schedule and the manually modified schedule. These were then combined to produce all
eight possible schedules consisting of one timeslot from the automated schedule and one
from the modified schedule (Fig. 4). Each timeslot contained 14 concurrent sessions, and
each session had a maximum of five talks. Each respondent was randomly assigned one of
the faux conference schedules and a corresponding book of abstracts. Testing was blind in
the sense that respondents were aware of the purpose of the study but not of which timeslot
originated from which source (automated or manual).

The survey contained two groups of questions. First, we asked respondents to select the
five talks they would like to attend within each timeslot, irregardless of whether they were
assigned to the same session. We could then compare the automated or modified timeslots
with respect to how the selected talk pairs were grouped into common sessions.
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of the automated and modified timeslots.
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Secondly, we asked respondents to choose one session to attend in its entirety in each
timeslot and report on the difficulty of finding a session where all the talks interested them.
Responses were scored on a Likert scale of one to five with one being “very difficult”,
and five being “very easy”. These responses could then be used to compare the topical
coherence of the sessions from the automated and modified schedules.

If either of the schedules (automated or modified) were more effective than the other at
capturing the topics of relevance to our sample of mock conference attendees, we would
expect to see respondents (a) select more talks in the same session(s) and (b) select higher
values on the Likert scale for timeslots from that schedule. With respect to (a), we found
no significant difference in the number of same-session talk pairs between the automated
and manual timeslots (unpaired ¢-test t = —0.720, p = 0.474, n = 29). With respect to
(b), the responses for the automated and manually modified timeslots were quite similar
in distribution (Fig. 5). The mode for the automated timeslots was four while that for
the modified timeslots was three. Two respondents rated the selection “very easy” for the
modified timeslot while none did for the automated one. While the expert evaluation does
not reveal substantial differences between the automated and manually modified schedule
in terms of preference by the survey takers, the limited size of the survey should be noted.

DISCUSSION

Manual scheduling of conferences is complicated, time intensive, and may often result in
a suboptimal schedule with sessions that could be more topically coherent and timeslots
in which sessions could be more topically disparate. Here, we have proposed and tested a
strategy for automating the conference scheduling problem. In our approach, we first
use topic modeling to identify latent topics and use the resulting weight vectors to
measure similarity among talks and sessions. Stochastic optimization is then used to
generate schedules according to the discrimination ratio, which simultaneously quantifies
within-session coherence and between-session disparity.

In a comparison of different approaches for generating starting schedules and improving
upon them, we found that Integer Linear Programming produced the best starting schedule,
but that further stochastic optimization greatly improved upon the solution found by ILP.
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We attribute the inability of ILP to maximize the discrimination ratio to the heuristic
compromise of splitting the problem into smaller sub-problems, which was necessitated by
the size of the real-world problem instances. We also found that the initial schedule had little
to no effect on the discrimination ratio of the final schedule. Thus, we recommend using a
random or greedy algorithm to generate the starting schedule, since these approaches are
less computationally expensive and easier to implement.

We found that Simulated Annealing performed better than naive Hill Climbing as a
stochastic optimization strategy. If the results we obtained for the Ecology 2013 dataset are
representative, and we accept the discrimination ratio is a reasonable objective function,
then it appears that manually generated schedules can be far from optimal. This could be
due to a number of reasons, apart from the obvious explanation that the combinatorial
space of possible schedules is too large for humans to effectively search and evaluate. We
cannot exclude that human conference organizers weigh additional factors (e.g., aiming
for presenters within a session to represent a mix of different career stages). We would
expect some difference between human perception of talk similarity and the inference of
the same based on a topic model. And we would also expect a difference in how humans
weigh coherence within sessions and disparity between sessions.

In fact, we did receive feedback from Evolution 2014 organizers that we should consider
coherence first and disparity second. However, we saw that schedules produced in this
way were inferior as judged by the discrimination ratio, although we do not know if
they would be judged inferior by humans. This might be due to the way the algorithm
operates—optimizing coherence within sessions first without regard to disparity between
concurrent sessions. Once the coherence with sessions has been optimized, the algorithm is
not allowed to change the placement of talks in sessions to maximize disparity but can only
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change the placement of the concurrent sessions with respect to each other. This results in
a smaller search space for increasing disparity between concurrent sessions which might
lead to lower D scores for schedules produced using these approaches.

Scheduling constraints are a regular feature of conferences, and initially we anticipated
that they would be more troublesome than they ultimately proved to be. We found no
decrease in discrimination ratio when incorporating constraints in the Evolution 2014
schedule. We hypothesize that the applied scheduling constraints were not restrictive
enough to substantially limit the search space. For context, while approximately 24% of the
talks had scheduling constraints, the majority could still be placed in 91% of sessions. In
cases where constraints are more restrictive, one could modify the approach here to accept
solutions that minimize the number of constraints violated, or weight the constraints such
that solutions aim to minimize the total weight of violated constraints.

With the Evolution 2014 schedule, we took advantage of the opportunity to conduct a
preliminary investigation into how much session-hopping users felt would be necessary in
the automated schedule versus the manually modified one. By the two measures we looked
at, prospective conference goers with expertise in the field found the two schedules to be
comparable. Given the substantial changes made to the automated schedule, it was perhaps
surprising that results did not show greater differences.

One possible interpretation of this result is that while the conference organizers may have
modified the schedule in an effort to optimize their own subjective similarity and disparity
measures, they did not improve upon the automated schedule from the perspective of a
community of conference attendees with diverse interests. This also suggests that it would
be reasonable for future conference organizers to use an automated schedule as is, without
expending additional human effort vainly trying to improve upon it. However, a number
of limitations with this experiment should be noted. The sample size was small and a
limited array of schedules were presented for evaluation. While all survey participants had
expertise in some area of evolutionary biology, we might have been asking them to evaluate
sessions outside of their specific interests. And they were tested in an artificial setting; their
behavior in navigating a real conference schedule may differ.

Taken together, we believe this work makes a number of contributions. First, topic
modeling provides a reasonable input for automated clustering of conference abstracts.
The scalability of this approach is attractive for large conferences. Secondly, D is a reasonable
objective function, though a difficult one for humans to manually optimize. It’s value lies
in capturing both similarity within and dissimilarity between sessions, the latter of which
has been previously neglected. Third, we have identified fast heuristics for optimizing D.

FUTURE WORK

Would it be possible to improve upon this approach such that an automated schedule

would be preferred by a future organizing committee to a manually generated, or manually
modified, schedule? One area for potential improvement would be to customize the weights
given to topics based on the perceived importance of conference attendees. In the approach
described here, each topic received equal weight. However, a community of scientists may
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consider some topics more important than others. Values for the weights could be gathered
by means of a survey or other user-contributed data. If topics were mapped to an ontology,
weights related to the information content of topics could provide an indirect measure of
importance (Resnik, 1995) without the need for a survey.

Given the comparable performance of the automated and manually modified Evolution
2014 schedules, it would be of interest to further examine how well statistical measures of
topic similarity between talks match human perception. For similarity measures that do
match well, it would then be of interest to see how sensitive humans are to schedules with
very different levels of D, or to independently varying levels of similarity within sessions
and dissimilarity between sessions.

Another pair of factors not considered was co-author and co-citation networks.
Intuitively, talks that are closely linked in either kind of network may be similar in ways
that are somewhat independent of how they are related by the topic model (Yan & Ding,
2012). Use of such network information could also help ensure that talks by individuals
with strong intellectual ties are assigned to the same session or at least not assigned to
different concurrent sessions.

Our implementation limits concurrent sessions to those that overlap fully. Conferences
sometimes schedule sessions of differing lengths that partially overlap with one another,
and accommodating this in future versions could allow for greater flexibility.

The heuristic approaches presented here have not been evaluated with respect to an
exact approach with an optimality guarantee. Future work may consider developing
exact approaches, such as Mixed-Integer Linear Programming, to better understand the
computational bounds of these approaches and investigate if the heuristics proposed
here are substantially faster as compared to exact approaches and if the solutions are
comparable.

CONCLUSIONS

Automated scheduling of large conferences is a problem of great interest and utility to
scientists across various domains. Here, we presented heuristic algorithms for the creation
and optimization of conference schedules with concurrent sessions based on an objective
function. The methods presented here are capable of “reading” conference talks, assessing
similarities between the talks, and using those similarities to populate conference sessions.
While these methods are a step forward in the field of automated conference scheduling,
further work is needed to develop objective functions that accurately reflect user perception
of “good” conference schedules.

DATA AND SOFTWARE AVAILABILITY

Data and software for this work are available at https://doi.org/10.5281/zenod0.2860367.
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