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ABSTRACT
Word vector representations are a crucial part of natural language processing (NLP)
and human computer interaction. In this paper, we propose a novel word vector
representation, Confusion2Vec, motivated from the human speech production and
perception that encodes representational ambiguity. Humans employ both acoustic
similarity cues and contextual cues to decode information and we focus on a
model that incorporates both sources of information. The representational ambiguity
of acoustics, which manifests itself in word confusions, is often resolved by both
humans and machines through contextual cues. A range of representational
ambiguities can emerge in various domains further to acoustic perception, such as
morphological transformations, word segmentation, paraphrasing for NLP tasks like
machine translation, etc. In this work, we present a case study in application to
automatic speech recognition (ASR) task, where the word representational
ambiguities/confusions are related to acoustic similarity. We present several
techniques to train an acoustic perceptual similarity representation ambiguity.
We term this Confusion2Vec and learn on unsupervised-generated data from ASR
confusion networks or lattice-like structures. Appropriate evaluations for the
Confusion2Vec are formulated for gauging acoustic similarity in addition to
semantic–syntactic and word similarity evaluations. The Confusion2Vec is able to
model word confusions efficiently, without compromising on the semantic-syntactic
word relations, thus effectively enriching the word vector space with extra task
relevant ambiguity information. We provide an intuitive exploration of the
two-dimensional Confusion2Vec space using principal component analysis of the
embedding and relate to semantic relationships, syntactic relationships, and
acoustic relationships. We show through this that the new space preserves the
semantic/syntactic relationships while robustly encoding acoustic similarities.
The potential of the new vector representation and its ability in the utilization of
uncertainty information associated with the lattice is demonstrated through small
examples relating to the task of ASR error correction.

Subjects Artificial Intelligence, Natural Language and Speech
Keywords Confusion2vec, Word2vec, Embeddings, Word representations, Confusion networks,
ASR output representations, Lexical representational ambiguity

INTRODUCTION
Decoding human language is challenging for machines. It involves estimation of efficient,
meaningful representation of words. Machines represent the words in the form of real
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vectors and the language as a vector space. Vector space representations of language
have applications spanning natural language processing (NLP) and human computer
interaction fields. More specifically, word embeddings can act as features for machine
translation, automatic speech recognition (ASR), document topic classification, information
retrieval, sentiment classification, emotion recognition, behavior recognition, question
answering, etc.

Early work employed words as the fundamental unit of feature representation. This
could be thought of as each word representing an orthogonal vector in a n-dimensional
vector space of language with n-words (often referred to as one-hot representation).
Such a representation, due to the inherent orthogonality, lacks crucial information
regarding inter–word relationships such as similarity. Several techniques found using
co-occurrence information of words are a better feature representation (Ex: n-gram
language modeling).

Subsequent studies introduced few matrix factorization based techniques to estimate
a more efficient, reduced dimensional vector space based on word co-occurrence
information. Latent semantic analysis (LSA) assumes an underlying vector space spanned
by orthogonal set of latent variables closely associated with the semantics/meanings of
the particular language. The dimension of this vector space is much smaller than the one-hot
representation (Deerwester et al., 1990). LSA was proposed initially for information
retrieval and indexing, but soon gained popularity for other NLP tasks. Hofmann (1999)
proposed probabilistic LSA replacing the co-occurrence information by a statistical class
based model leading to better vector space representations.

Another popular matrix factorization method, the latent dirichlet allocation assumes a
generative statistical model where the documents are characterized as a mixture of
latent variables representing topics which are described by word distributions (Blei, Ng &
Jordan, 2003).

Recently, neural networks have gained popularity. They often outperform the n-gram
models (Bengio et al., 2003; Mikolov et al., 2010) and enable estimation of more complex
models incorporating much larger data than before. Various neural network based
vector space estimation of words were proposed. Bengio et al. (2003) proposed feed-
forward neural network based language models which jointly learned the distributed word
representation along with the probability distribution associated with the representation.
Estimating a reduced dimension continuous word representation allows for efficient
probability modeling, thereby resulting in much lower perplexity compared to an n-gram
model. Recurrent neural network based language models, with inherent memory,
allowed for the exploitation of much longer context, providing further improvements
compared to feed forward neural networks (Mikolov et al., 2010).

Mikolov et al. (2013a) proposes a new technique of estimating vector representation
(popularly termed word2vec) which showed promising results in preserving the semantic
and syntactic relationships between words. Two novel architectures based on simple
log-linear modeling (i) continuous skip-gram and (ii) continuous bag-of-words are
introduced. Both the models are trained to model local context of word occurrences.
The continuous skip-gram model predicts surrounding words given the current word.
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Whereas, the continuous bag-of-words model predicts the current word given its
context. The task evaluation is based on answering various analogy questions testing
semantic and syntactic word relationships. Several training optimizations and tips
were proposed to further improve the estimation of the vector space by Mikolov et al.
(2013c) and Mnih & Kavukcuoglu (2013). Such efficient representation of words
directly influences the performance of NLP tasks like sentiment classification (Kim,
2014), part-of-speech tagging (Ling et al., 2015), text classification (Lilleberg, Zhu &
Zhang, 2015; Joulin et al., 2016), document categorization (Xing et al., 2014), and
many more.

Subsequent research efforts on extending word2vec involve expanding the word
representation to phrases (Mikolov et al., 2013c), sentences and documents (Le & Mikolov,
2014). Similarly, training for contexts derived from the syntactic dependencies of a word is
shown to produce useful representations (Levy & Goldberg, 2014). Using morphemes
for word representations can enrich the vector space and provide gains especially for
unknown, rarely occurring, complex words, and morphologically rich languages (Luong,
Socher & Manning, 2013; Botha & Blunsom, 2014; Qiu et al., 2014; Cotterell & Schütze,
2015; Soricut & Och, 2015). Likewise, incorporating sub-word representations of words
for the estimation of vector space is beneficial (Bojanowski et al., 2017). Similar
studies using characters of words have also been tried (Chen et al., 2015). Yin & Schütze
(2016) explored ensemble techniques for exploiting complementary information over
multiple word vector spaces. Studies by Mikolov, Le & Sutskever (2013b) and Faruqui &
Dyer (2014) demonstrate that vector space representations are extremely useful in
extending the model from one language to another (or multi-lingual extensions) since
the semantic relations between words are invariant across languages.

Some have tried to combine the advantages from both matrix factorization based
techniques and local-context word2vec models. Pennington, Socher & Manning (2014)
proposes global log-bilinear model for modeling global statistical information as in
the case of global matrix factorization techniques along with the local context information
as in the case of word2vec.

The goal of this study is to come up with a new vector space representation for words
which incorporates the uncertainty information in the form of word confusions present
in lattice like structures (e.g., confusion networks). Here, the word confusions refers
to any word level ambiguities resultant of perception confusability or any algorithms such
as machine translation, ASR etc. For example, acoustically confusable words in ASR
lattices: “two” and “to” (see Fig. 1). A word lattice is a compact representation (directed
acyclic weighted graphs) of different word sequences that are likely possible. A confusion
network is a special type of lattice, where each word sequence is made to pass through
each node of the graph. The lattices and confusion networks embed word confusion
information. The study takes motivation from human perception, that is, the ability of
humans to decode information based on two fairly independent information streams
(see section “Human Speech Production, Perception and Hearing” for examples):
(i) linguistic context (modeled by word2vec like word vector representations), and
(ii) acoustic confusability (relating to phonology).
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The present word vector representations like word2vec only incorporate the contextual
confusability during modeling. However, in order to handle confusability and to decode
human language/speech successfully, there is a need to model both the dimensions.
Although primarily, the motivation is derived from human speech and perception, the
confusions are not constrained to acoustics and can be extended to any confusions parallel
to the linguistic contexts, for example, confusions present in lattices. Most of the
machine learning algorithms output predictions as a probability measure. This uncertainty
information stream can be expressed in the form of a lattice or a confusion network
temporally, and is often found to contain useful information for subsequent processing
and analysis. The scope of this work is to introduce a complementary (ideally orthogonal)
subspace in addition to the underlying word vector space representation captured by
word2vec. This new subspace captures the word confusions orthogonal to the syntactic
and semantics of the language. We propose Confusion2Vec vector space operating on
lattice like structures, specifically word confusion networks. We introduce several training
configurations and evaluate their effectiveness. We also formulate appropriate evaluation
criterion to assess the performance of each orthogonal subspaces, first independently
and then jointly. Analysis of the proposed word vector space representation is carried out.

The rest of the paper is organized as follows. Motivation for Confusion2vec, that is, the
need to model word-confusions for word embeddings, is provided through means of human
speech and perception, machine learning, and through potential applications in the section
“Motivation”. A particular case study is chosen and the problem is formulated in the section
“Case Study: Application to Automatic Speech Recognition”. In the section “Proposed
Models”, different training configurations for efficient estimation of word embeddings are
proposed. Additional tuning schemes for the proposed Confusion2vec models are presented
in the section “Training Schemes”. Evaluation criterion formulation and evaluation
database creation is presented in the section “Evaluation Methods”. Experimental setup and
baseline system is described in the section “Data and Experimental Setup”. Results are
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Figure 1 An example confusion network for ground-truth utterance “I want to sit.”
Full-size DOI: 10.7717/peerj-cs.195/fig-1
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tabulated and discussed in the section “Results”. Word vector space analysis is performed and
findings are presented in the section “Vector Space Analysis”. Section “Discussion” discusses
with the help of few toy examples, the benefits of the Confusion2vec embeddings for the
task of ASR error correction. Section “Conclusion” draws the conclusion of the study and
finally the future research directions are discussed in the section “Future Work”.

MOTIVATION
One efficient way to represent words as vectors is to represent them in a space that
preserves the semantic and syntactic relations between the words in the language.
Word2vec describes a technique to achieve such a representation by trying to predict the
current word from its local context (or vice-versa) over a large text corpora. The estimated
word vectors are shown to encode efficient syntactic-semantic language information.
In this work, we propose a new vector space for word representation which incorporates
various forms of word confusion information in addition to the semantic and syntactic
information. The new vector space is inspired and motivated from the following factors
from human speech production and perception and machine learning.

Human speech production, perception, and hearing
In our everyday interactions, confusability can often result in the need for context to
decode the underlying words.

“Please_____ a seat.” (Example 1)

In Example 1, the missing word could be guessed from its context and narrowed down
to either “have” or “take.” This context information is modeled through language models.
More complex models such as word2vec also use the contextual information to model
word vector representations.

On the other hand, confusability can also originate from other sources such as acoustic
representations.

“I want to seat” (Example 2)

In Example 2, the underlined word is mispronounced/misheard, and grammatically
incorrect. In this case, considering the context there exists a lot of possible correct
substitutions for the word “seat” and hence the context is less useful. The acoustic
construct of the word “seat” can present additional information in terms of acoustic
alternatives/similarity, such as “sit” and “seed.”

“I want to s—” (Example 3)

Similarly in Example 3, the underlined word is incomplete. The acoustic confusability
information can be useful in the above case of broken words. Thus, since the confusability
is acoustic, purely lexical vector representations like word2vec fail to encode or capture
it. In this work, we propose to additionally encode the word (acoustic) confusability
information to learn a better word embedding. Although the motivation is specific to
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acoustics in this case, it could be extended to other inherent sources of word-confusions
spanning various machine learning applications.

Machine learning algorithms
Most of the machine learning algorithms output hypothesis as a probability measure.
Such a hypothesis could be represented in the form of a lattice, confusion network or
n-best lists. It is often useful to consider the uncertainty associated with the hypothesis for
subsequent processing and analysis (see section “Potential Applications”). The uncertainty
information is often, orthogonal to the contextual dimension and is specific to the
task attempted by the machine learning algorithms.

Along this direction, recently, there have been several efforts concentrated on
introducing lattice information into the neural network architecture. Initially, Tree-LSTM
was proposed enabling tree-structured network topologies to be inputted to the RNNs
(Tai, Socher & Manning, 2015), which could be adapted and applied to lattices
(Sperber et al., 2017). LatticeRNN was proposed for processing word level lattices for
ASR (Ladhak et al., 2016). Lattice based gated recurrent units (Su et al., 2017) and
lattice-to-sequence models (Tan et al., 2018) were proposed for reading word lattice as
input, specifically a lattice with tokenization alternatives for machine translation models.
LatticeLSTM was adopted for lattice-to-sequence model incorporating lattice scores for
the task of speech translation by Sperber et al. (2017). Buckman & Neubig (2018) proposed
Neural lattice language models which enables to incorporate many possible meanings for
words and phrases (paraphrase alternatives).

Thus, a vector space representation capable of embedding relevant uncertainty
information in the form of word confusions present in lattice-like structures or confusion
networks along with the semantic and syntactic can be potentially superior to word2vec
space.

CASE STUDY: APPLICATION TO AUTOMATIC SPEECH
RECOGNITION
In this work, we consider the ASR task as a case study to demonstrate the effectiveness of
the proposed Confusion2vec model in modeling acoustic word-confusability. However,
the technique can be adopted for a lattice or confusion network output from potentially
any algorithm to capture various patterns as discussed in the section “Potential
Applications,” in which case the confusion-subspace (vertical ambiguity in Fig. 1), is
no longer constrained to acoustic word-confusions.

An ASR lattice contains multiple paths over acoustically similar words. A lattice could
be transformed and represented as a linear graph forcing every path to pass through all
the nodes (Xue & Zhao, 2005;Mangu, Brill & Stolcke, 2000). Such a linear graph is referred
to as a confusion network. Figure 1 shows a sample confusion network output by ASR
for the ground truth “I want to sit.” The confusion network could be viewed along
two fundamental dimensions of information (see Fig. 1): (i) Contextual axis—sequential
structure of a sentence, (ii) Acoustic axis—similarly sounding word alternatives.
Traditional word vector representations such as word2vec only model the contextual
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information (the horizontal (red) direction in Fig. 1). The word confusions, for example,
the acoustic contextualization as in Fig. 1 (the vertical (green) direction in Fig. 1) is not
encoded. We propose to additionally capture the co-occurrence information along the
acoustic axis orthogonal to the word2vec. This is the main focus of our work, that is,
to jointly learn the vertical, word-confusion context and the horizontal, semantic
and syntactic context. In other words, we hypothesize to derive relationships between
the semantics and syntaxes of language and the word-confusions (acoustic-confusion).

Related work
Bengio & Heigold (2014) trained a continuous word embedding of acoustically alike words
(using n-gram feature representation of words) to replace the state space models (Hidden
Markov Models, HMMs), decision trees, and lexicons of an ASR. Through the use of
such an embedding and lattice re-scoring technique demonstrated improvements in word
error rates of ASR. The embeddings are also shown to be useful in application to the task
of ASR error detection by Ghannay et al. (2016). A few evaluation strategies are also
devised to evaluate phonetic and orthographic similarity of words. Additionally, there have
been studies concentrating on estimating word embeddings from acoustics (Kamper,
Wang & Livescu, 2016; Chung et al., 2016; Levin et al., 2013; He, Wang & Livescu, 2016)
with evaluations based on acoustic similarity measures. Parallely, word2vec like word
embeddings have been used successfully to improve ASR Error detection performance
(Ghannay, Estève & Camelin, 2015a; Ghannay et al., 2015b). We believe the proposed
exploitation of both information sources, that is, acoustic relations and linguistic relations
(semantics and syntaxes) will be beneficial in ASR and error detection, correction tasks.
The proposed confusion2vec operates on the lattice output of the ASR in contrast to
the work on acoustic word embeddings (Kamper, Wang & Livescu, 2016; Chung et al.,
2016; Levin et al., 2013; He, Wang & Livescu, 2016) which is directly trained on audio.
The proposed Confusion2vec differs from works by Bengio & Heigold (2014) and Ghannay
et al. (2016), which also utilize audio data with the hypothesis that the layer right
below softmax layer of a deep end-to-end ASR contains acoustic similarity information of
words. Confusion2vec can also be potentially trained without an ASR, on artificially
generated data, emulating an ASR (Tan et al., 2010; Sagae et al., 2012; Celebi et al., 2012;
Kurata, Itoh & Nishimura, 2011; Dikici, Celebi & Saraçlar, 2012; Xu, Roark & Khudanpur,
2012). Thus, Confusion2vec can potentially be trained in a completely unsupervised
manner and with appropriate model parameterization incorporate various degrees of
acoustic confusability, for example, stemming from noise or speaker conditions.

Further, in contrast to the prior works on lattice encoding RNNs (Tai, Socher &
Manning, 2015; Sperber et al., 2017; Ladhak et al., 2016; Su et al., 2017; Tan et al.,
2018; Buckman & Neubig, 2018), which concentrate on incorporating the uncertainty
information embedded in the word lattices by modifying the input architecture for
recurrent neural network, we propose to introduce the ambiguity information from the
lattices to the word embedding explicitly. We expect similar advantages as with lattice
encoding RNNs in using the pre-trained confusion2vec embedding toward various tasks
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like ASR, Machine translation etc. Moreover, our architecture doesn’t require memory
which has significant advantages in terms of training complexity. We propose to train the
embedding in a similar way to word2vec models (Mikolov et al., 2013a). All the well
studied previous efforts toward optimization of training such models (Mikolov et al., 2013c;
Mnih & Kavukcuoglu, 2013), should apply to our proposed model.

PROPOSED MODELS
In this section, we propose four training schemes for Confusion2Vec. The training schemes
are based on the word2vec model. Word2vec work (Mikolov et al., 2013a) proposed
log-linear models, that is, a neural network consisting of a single linear layer (projection
matrix) without non-linearity. These models have significant advantages in training
complexity. Mikolov et al. (2013a) found the skip-gram model to be superior to
the bag-of-word model in a semantic-syntactic analogy task. Hence, we only employ the
skip-gram configuration in this work. Appropriately, the skip-gram word2vec model is
also adopted as the baseline for this work. The choice of the skip-gram modeling in
this work is mainly based on its popularity, ease of implementation, low complexity,
and being a well-proven technique in the community. However, we strongly believe the
proposed concept (introducing word ambiguity information) is independent of the
modeling technique itself and should translate to relatively newer techniques like GloVe
Pennington, Socher & Manning (2014) and fastText Bojanowski et al. (2017).

Top-confusion training—C2V-1
We adapt the word2vec contextual modeling to operate on the confusion network (in our
case confusion network of an ASR). Figure 2 shows the training configuration of the
skip-gram word2vec model on the confusion network. The top-confusion model considers
the context of only the top hypothesis of the confusion network (single path) for training.
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Figure 2 Top-confusion2vec training scheme for confusion networks. C(t) is a unit word confusion in the confusion network at a time-stamp t,
that is, C(t) represents a set of arcs between two adjacent nodes of a confusion network, representing a set of confusable words. wt,i is the ith most
probable word in the confusion C(t). Word confusions are sorted in decreasing order of their posterior probability: P(wt,1) > P(wt,2) > P(wt,3) : : : .

Full-size DOI: 10.7717/peerj-cs.195/fig-2
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For clarity we call this the C2V-1 model since it’s using only the 1 top hypothesis.
The words wt-2,1, wt-1,1, wt+1,1, and wt+2,1 (i.e., the most probable words in the confusions
C(t-2), C(t-1), C(t+1), and C(t+2), respectively) are predicted from wt,1 (i.e., the most
probable word in C(t)) for a skip-window of 2 as depicted in Fig. 2. The top hypothesis
typically consists of noisy transformations of the reference ground-truth (Note: the
confusion network will inherently introduce additional paths to the lattice). In the case of
a confusion network of an ASR, the noisy transformations correspond to acoustic
word confusions. Thus, the top-confusion model implicitly captures word confusions
(co-occurring within the context of the skip-window).

Intra-confusion training—C2V-a
Next, we explore the direct adaptation of the skip-gram modeling but on the confusion
dimension (i.e., considering word confusions as contexts) rather than the traditional
sequential context. Figure 3 shows the training configuration over a confusion network.
In short, every word is linked with every other alternate word in the confusion dimension
(i.e., between set of confusable words) through the desired network (as opposed to the
temporal context dimension in the word2vec training). For clarity, since this is only using
acoustically alternate words, we call this the C2V-acoustics or C2V-a model for short.
Note, we disallow any word being predicted from itself (this constrain is indicated
with curved dotted lines in the figure). As depicted in the Fig. 3, the word wt,i
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Figure 3 Proposed intra-confusion training scheme for confusion networks. C(t) is a unit word confusion in the confusion network at a time-
stamp t, that is, C(t) represents a set of arcs between two adjacent nodes of a confusion network, representing a set of confusable words. wt,i is the ith
most probable word in the confusion C(t). Word confusions are sorted in decreasing order of their posterior probability: P(wt,1) > P(wt,2) >
P(wt,3) : : : . The dotted curved lines denote that the self-mapping is disallowed. Full-size DOI: 10.7717/peerj-cs.195/fig-3

Gurunath Shivakumar and Georgiou (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.195 9/49

http://dx.doi.org/10.7717/peerj-cs.195/fig-3
http://dx.doi.org/10.7717/peerj-cs.195
https://peerj.com/computer-science/


(confusion context) is predicted from wt,j (current word), where i = 1,2,3 : : : length(C(t))
and js i, for each j = 1,2,3 : : : length(C(t)) for confusion C(t) ∀t. We expect such a model
to capture inherent relations over the different word confusions. In the context of an
ASR lattice, we expect it to capture intrinsic relations between similarly sounding words
(acoustically similar). However, the model would fail to capture any semantic and syntactic
relations associated with the language. The embedding obtained from this configuration
can be fused (concatenated) with the traditional skip-gram word2vec embedding to form a
new subspace representing both the independently trained subspaces. The number of
training samples generated with this configuration is:

#Samples ¼
Xn

i¼1

Di � ðDi � 1Þ (1)

where n is the number of time steps, Di is the number of confusions at the ith
time step.

Inter-confusion training—C2V-c
In this configuration, we propose to model both the linguistic contexts and the word
confusion contexts simultaneously. Figure 4 illustrates the training configuration.
Each word in the current confusion is predicted from each word from the succeeding
and preceding confusions over a predefined local context. To elaborate, the words wt-t′,i

(context) are predicted from wt,j (current word) for i = 1,2,3 : : : length(C(t-t′)),
j = 1,2,3 : : : length(C(t)), t′ ∈ 1,2,-1,-2 for skip-window of 2 for current confusion C(t)∀t as
per Fig. 4. Since we assume the acoustic similarities for a word to be co-occurring,
we expect to jointly model the co-occurrence of both the context and confusions.
For clarity, since even the acoustic similarities are learned through context and not direct
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Figure 4 Proposed inter-confusion training scheme for confusion networks. C(t) is a unit word confusion in the confusion network at a time-
stamp t, that is, C(t) represents a set of arcs between two adjacent nodes of a confusion network, representing a set of confusable words. wt,i is the ith
most probable word in the confusion C(t). Word confusions are sorted in decreasing order of their posterior probability: P(wt,1) > P(wt,2) >
P(wt,3) : : : . Full-size DOI: 10.7717/peerj-cs.195/fig-4
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acoustic mapping, as in the Intra-confusion case, we call the inter-confusion training
C2V-context or C2V-c for short.

This also has the additional benefit of generating more training samples than the intra-
confusion training. The number of training samples generated is given by:

#Samples ¼
Xn

i¼1

XiþSw

j¼i�Sw
j6¼i

Di � Dj (2)

where n is the total number of time steps, Di is the number of word confusions at the ith

time step, Sw is the skip-window size (i.e., sample Sw words from history and Sw words
from the future context of current word). Inter-confusion training can be viewed as an
extension of top-confusion training where the skip-grammodeling is applied to all possible
paths through the confusion network.

Hybrid intra-inter confusion training—C2V-�

Finally, we merge both the intra-confusion and inter-confusion training. For clarity
we call this model the C2V-� since it combines all the previous cases. This can be
seen as a super-set of top-confusion, inter-confusion and intra-confusion training
configurations. Figure 5 illustrates the training configuration. The words wt-t′,i (context)
are predicted from wt,j (current word) for i = 1,2,3 : : : length(C(t-t′)), j = 1,2,3 : : : length
(C(t)), t′ ∈ 1,2,0,-1,-2 such that if t′ = 0 then i s j; for skip-window of 2 for current
confusion C(t)∀t as depicted in Fig. 5. We simply add the combination of training
samples from the above two proposed techniques (i.e., the number of samples is the sum
of Eqs. (1) and (2)).
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Figure 5 Proposed hybrid-confusion training scheme for confusion networks. C(t) is a unit word confusion in the confusion network at a time-
stamp t, that is, C(t) represents a set of arcs between two adjacent nodes of a confusion network, representing a set of confusable words. wt,i is the ith
most probable word in the confusion C(t). Word confusions are sorted in decreasing order of their posterior probability: P(wt,1) > P(wt,2) > P
(wt,3) : : : . The dotted curved lines denote that the self-mapping is disallowed. Full-size DOI: 10.7717/peerj-cs.195/fig-5
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TRAINING SCHEMES
Model initialization/pre-training
Very often, it has been found that better model initializations lead to better model
convergence (Erhan et al., 2010). This is more significant in the case of under-represented
words. Moreover, for training the word confusion mappings, it would benefit to build upon
the contextual word embeddings, since our final goal is in conjunction with both contextual
and confusion information. Hence, we experiment initializing all our models with the
original Google’s word2vec model (https://code.google.com/archive/p/word2vec/) trained
on Google News dataset with 100 billion words as described by Mikolov et al. (2013c).
Pre-training rules are explained in the flowchart in Fig. 6A. For the words present in the
Google’s word2vec vocabulary, we directly initialize the embeddings with word2vec. The
embeddings for rest of the words are randomly initialized following uniform distribution.

Model concatenation
The hypothesis with model concatenation is that the two subspaces, one representing
the contextual subspace (word2vec), and the other capturing the confusion subspace
can be both trained independently and concatenated to give a new vector space which
manifests both the information and hence a potentially useful vector word representation.
Flowchart for model concatenation is shown in Fig. 6B. The model concatenation can be
mathematically represented as:

NEWn�e1þe2 ¼ W2Vn�e1 C2Vn�e2½ � (3)

where NEW is the new concatenated vector space of dimensions n � e1 + e2, and n is
the vocabulary size, e1 and e2 are the embedding sizes of W2V and C2V subspaces,
respectively.
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(a) Flowchart for pre-training/initializing models (b) Flowchart for concatenating models
(c) Flowchart for joint optimization using unrestricted and 

Figure 6 Flowcharts for proposed training schemes. Full-size DOI: 10.7717/peerj-cs.195/fig-6
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Joint optimization
Further to the model concatenation scheme, one could fine-tune the new vector space
representation to better optimize to the task criterion (fine-tuning involves re-training
end-to-end with a relatively lower learning rate than usual). This could be viewed as
a case of relaxing the strict independence between two subspaces as in the case of model
concatenation. The fine-tuning itself could be either of the aforementioned proposed
techniques. We specifically try two configurations of joint optimization.

i. Fixed contextual subspace

In this configuration, we fix the contextual (word2vec) subspace and fine-tune only the
confusion subspace. Since the word2vec already provides robust contextual representation,
any fine-tuning on contextual space could possibly lead to sub-optimal state. Keeping
the word2vec subspace fixed also allows the model to concentrate more specifically toward
the confusion since the fixed subspace compensates for all the contextual mappings
during training. This allows us to constrain the updatable parameters during joint
optimization. It also allows for the possibility to directly use available word2vec models
without modifications. The flowchart for the fixed contextual subspace joint optimization
is displayed in Fig. 6C.

ii. Unrestricted
In this configuration, we optimize both the subspaces, that is, the contextual (word2vec)
and the confusion subspaces. The hypothesis is the fine-tuning allows the two subspaces
to interact to achieve the best possible representation. The flowchart for the unrestricted
joint optimization is displayed in Fig. 6C.

EVALUATION METHODS
Prior literature suggests, there are two prominent ways for evaluating the vector space
representation of words. One is based on semantic and syntactic analogy task as
introduced by Mikolov et al. (2013a). The other common approach has been to assess the
word similarities by computing the rank-correlation (Spearman’s correlation) on
human annotated word similarity databases (Schnabel et al., 2015) like WordSim-353
(Finkelstein et al., 2001). Although the two evaluations can judge the vector
representations of words efficiently for semantics and syntax of a language, we need
to device an evaluation criteria for the word confusions, specifically for our case
scenario—the acoustic confusions of words. For this, we formulate evaluations
for acoustic confusions parallel to the analogy task and the word similarity task.

Analogy tasks
Semantic and syntactic analogy task
Mikolov et al. (2013a) introduced an analogy task for evaluating the vector space
representation of words. The task was based on the intuition that the words, say “king” is
similar to “man” in the same sense as the “queen” is to “woman” and thus relies on
answering questions relating to such analogies by performing algebraic operations on word
representations. For example, the analogy is correct if the vector(“woman”) is most
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similar to vector(“king”) - vector(“man”) + vector(“queen”). The analogy question test set
is designed to test both syntactic and semantic word relationships. The test set contains
five types of semantic questions (8,869 questions) and nine types of syntactic questions
(10,675 questions). Finally, the efficiency of the vector representation is measured using
the accuracy achieved on the analogy test set. We employ this for testing the semantic
and syntactic (contextual axis as in terms of Fig. 1) relationship inherent in the
vector space.

Acoustic analogy task
The primary purpose of the acoustic analogy task is to independently gauge the acoustic
similarity information captured by the embedding model irrespective of the inherent
semantic and syntactic linguistic information. Adopting a similar idea and extending the
same for evaluation of word confusions, we formulate the acoustic confusion analogy task
(vertical context test as in terms of Fig. 1) as follows. For similar sounding word pairs,
“see” & “sea” and “red” & “read,” the word vector “see” is similar to “sea” in the same sense
as the word “red” is to “read.” We set up an acoustic analogy question set on acoustically
similar sounding words, more specifically homophones. Table 1 lists a few examples
from our data set. A detailed description of the creation of dataset is presented in the
section “Creation of evaluation datasets.”

Semantic and syntactic–acoustic analogy task
Further, rather than evaluating the semantic-syntactic tasks and the acoustic analogy tasks
independently, we could test for both together. Intuitively, the word vectors in each of
the two subspaces should interact together. We would expect for an analogy, “see”-
“saw”:“take”-“took,” the word “see” has a homophone alternative in “sea,” thus there is a
possibility of the word “see” being confused with “sea” in the new vector space. Thus
an algebraic operation such as vector(“see”) - vector(“saw”) + vector(“take”) should be
similar to vector(“took”) as before. Moreover, the vector(“sea”) - vector(“saw”) + vector
(“take”) should also be similar to vector(“took”). This is because we expect the vector
(“sea”) to be similar to vector(“see”) under the acoustic subspace. We also take into
account the more challenging possibility of more than one homophone word substitution.
For example, vector(“see”) - vector(“saw”) + vector(“allow”) is similar to vector(“allowed”),
vector(“aloud”), and vector(“sea”) - vector(“saw”) + vector(“allow”). The hypothesis is that
to come up with such a representation the system should jointly model both the language
semantic-syntactic relations and the acoustic word similarity relations between words. The
task is designed to test semantic–acoustic relations and the syntactic–acoustic relationships.
In other words, in terms of Fig. 1, the task evaluates both the horizontal and vertical context
together. A few examples of this task is listed in Table 2. In the section “Creation of
evaluation datasets” details the creation of the database.

Similarity ratings
Word similarity ratings
Along with the analogy task the word similarity task (Finkelstein et al., 2001) has been
popular to evaluate the quality of word vector representations in the NLP community
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(Pennington, Socher &Manning, 2014; Luong, Socher &Manning, 2013;Huang et al., 2012;
Schnabel et al., 2015). In this work, we employ the WordSim-353 dataset (Finkelstein et al.,
2001) for the word similarity task. The dataset has a set of 353 word pairs with a diverse
range of human annotated scores relating to the similarity/dissimilarity of the two words.
The rank-order correlation (Spearman correlation) between the human annotated
scores and the cosine similarity of word vectors is computed. Higher correlation
corresponds to better preservation of word similarity order represented by the word
vectors, and hence better quality of the embedding vector space.

Acoustic similarity ratings
Employing a similar analogous idea to word similarity ratings and extending it to reflect the
quality of word confusions, we formulate an acoustic word similarity task. The attempt is to
have word pairs scored similar to as in WordSim-353 database, but with the scores
reflecting the acoustic similarity. Table 3 lists a few randomly picked examples from our
dataset. The dataset generation is described in the section “Creation of evaluation datasets”.

DATA AND EXPERIMENTAL SETUP
Database
We employ Fisher English Training Part 1, Speech (LDC2004S13) and Fisher English
Training Part 2, Speech (LDC2005S13) corpora (Cieri, Miller & Walker, 2004) for training
the ASR. The corpora consists of approximately 1,915 h of telephone conversational
speech data sampled at 8 kHz. A total of 11,972 speakers were involved in the recordings.
The speech corpora is split into three speaker disjoint subsets for training, development and
testing for ASR modeling purposes. A subset of the speech data containing approximately
1,905 h were segmented into 1,871,731 utterances to train the ASR. Both the development set
and the test set consists of 5,000 utterances worth 5 h of speech data each. The transcripts
contain approximately 20.8 million word tokens with 42,150 unique entries.

Experimental setup
Automatic speech recognition
KALDI toolkit is employed for training the ASR (Povey et al., 2011). A hybrid DNN-HMM
based acoustic model is trained on high resolution (40 dimensional) mel frequency cepstral
coefficients along with i-vector features to provide speaker and channel information

Table 1 Few examples from acoustic analogy task test-set.

Word pair 1 Word pair 2

I’d Eyed Phi Fie

Seedar Cedar Rued Rude

Air Aire Spade Spayed

Scent Cent Vile Vial

Cirrus Cirrous Sold Soled

Curser Cursor Pendant Pendent

Sensor Censor Straight Strait
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for robust modeling. The Carnegie Mellon University (CMU) pronunciation dictionary
(Weide, 1998) is pruned to corpora’s vocabulary and is used as a lexicon for the ASR. A
trigram language model is trained on the transcripts of the training subset data. The ASR
system achieves a word error rates of 16.57% on the development and 18.12% on the test
datasets. The decoded lattice is used to generate confusion network based on minimum
Bayes risk criterion (Xu et al., 2011). The ASR output transcriptions resulted in a
vocabulary size of 41,274 unique word tokens.

Confusion2Vec
For training the Confusion2Vec, the training subset of the Fisher corpora is used. The total
number of tokens resulting from the multiple paths over the confusion network is
approximately 69.5 million words, that is, an average of 3.34 alternative word confusions
present for each word in the confusion network. Aminimum frequency threshold of 5 is set to
prune the rarely occurring tokens from the vocabulary, which resulted in the reduction of the
vocabulary size from 41,274 to 32,848. Further, we also subsample the word tokens as
suggested by Mikolov et al. (2013c) which was shown to be helpful. Both the frequency
thresholding and the downsampling resulted in a reduction of word tokens from 69.5 million
words to approximately 33.9 million words. The Confusion2Vec and Word2Vec are trained
using the Tensorflow toolkit (Abadi et al., 2016). Negative Sampling objective is used for
training as suggested for better efficiency (Mikolov et al., 2013c). For the skip-gram training,
the batch-size of 256 was chosen and 64 negative samples were used for computing the

Table 2 Few examples from Semantic&Syntactic—acoustic analogy task test set.

Type of relationship Word pair 1 Word pair 2

Currency India Rupee Korea One (Won)

Canada Dollar Denmark Krona (Krone)

Japan Yen Sweden Krone (Krona)

Family Buoy (Boy) Girl Brother Sister

Boy Girl King Quean (Queen)

Boy Girl Sun (Son) Daughter

Adjective-to-adverb Calm Calmly Sloe (Slow) Slowly

Opposite Aware Unaware Possible Impassible (Impossible)

Comparative Bad Worse High Hire (Higher)

Superlative Bad Worst Grate (Great) Greatest

Present participle Dance Dancing Rite (Write) Writing

Past tense Dancing Danced Flying Flu (Flew)

Plural Banana Bananas Burred (Bird) Birds

Plural verbs Decrease Decreases Fined (Find) Finds

Multiple homophone
substitutions

Wright (Write) Writes Sea (See) Sees

Rowed (Road) Roads I (Eye) Ayes (Eyes)

Si (See) Seize (Sees) Right (Write) Writes

Note:
The words in the parenthesis are the original ones as in the analogy test set (Mikolov et al., 2013a) which have been
replaced by their homophone alternatives.
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negative sampling loss. The skip-window was set to 4 and was trained for a total of 15 epochs.
The parameters were chosen to provide optimal performance with traditional word2vec
embeddings, evaluating for word analogy task, for the size of our database. During fine-
tuning, the model was trained with a reduced learning rate and with other parameters
unchanged. All the above parameters were fixed for consistent and fair comparison.

Creation of evaluation datasets
Acoustic analogy task

We collected a list of homophones in English (http://homophonelist.com/homophones-list/
Accessed: 2018-04-30), and created all possible combinations of pairs of acoustic
confusion analogies. For homophones with more than two words, we list all possible
confusion pairs. Few examples from the dataset are listed in Table 1. We emphasize that the
consideration of only homophones in the creation of the dataset is a strict and a difficult task
to solve, since the ASR lattice contains more relaxed word confusions.

Semantic and syntactic–acoustic analogy task
We construct an analogy question test set by substituting the words in the original
analogy question test set from Mikolov et al. (2013a) with their respective homophones.
Considering all the five types of semantic questions and nine types of syntactic
questions, for any words in the analogies with homophone alternatives, we swap with
the homophone. We prune all the original analogy questions having no words with
homophone alternatives. For analogies having more than one words with homophone
alternatives, we list all permutations. We found that the number of questions generating
by the above method, being exhaustive, was large and hence we randomly sample
from the list to retain 948 semantic questions and 6,586 syntactic questions. Table 2 lists
a few examples with single and multiple homophone substitutions for semantic and
syntactic–acoustic analogy task from our data set.

Acoustic similarity task
To create a set of word pairs scored by their acoustic similarity, we add all the homophone
word pairs with an acoustic similarity score of 1.0. To get a more diverse range of acoustic
similarity scores, we also utilize all the 353 word pairs from the WordSim-353 dataset

Table 3 Examples of acoustic similarity ratings.

Word1 Word2 Acoustic rating WordSim353

I Eye 1.0 –

Adolescence Adolescents 0.9 –

Allusion Illusion 0.83 –

Sewer Sower 0.66 –

Fighting Defeating 0.57 7.41

Day Dawn 0.33 7.53

Weather Forecast 0.0 8.34

Notes:
Acoustic rating: 1.0 = Identically sounding, 0.0 = Highly acoustically dissimilar.
WordSim353: 10.0 = High word similarity, 0.0 = Low word similarity.
Word pairs not present in WordSim353 is denoted by “–”.
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and compute the normalized phone edit distance using the CMU pronunciation dictionary
(Weide, 1998). The normalized phone edit distance is of the range between 0 and 1. The edit
distance of 1 refers to the word pair having almost 0 overlap between their respective
phonetic transcriptions and thus being completely acoustically dissimilar and vice-versa.
We use 1 – “phone_edit_distance” as the acoustic similarity score between the word pair.
Thus a score of 1.0 signifies that the two words are identically sounding, whereas a score of
0 refers to words sounding drastically dissimilar. In the case of a word having more than one
phonetic transcriptions (pronunciation alternatives), we use the minimum normalized
edit distance. Table 3 shows a few randomly picked examples from the generated dataset.

Finally, for evaluation, the respective corpora are pruned to match the in-domain
training dataset vocabulary. Table 4 lists the samples in each evaluation dataset before
and after pruning.

Performance evaluation criterion
In the original work by Mikolov et al. (2013a), the efficiency of the vector representation is
measured using the accuracy achieved on the analogy test set. But, in our case, note that the
semantic and syntactic analogy task and the semantic and syntactic–acoustic analogy task
are mutually exclusive of each other. In other words, the model can get only one, either one, of
the analogies correct, meaning any increments with one task will result in decrements over the
other task. Moreover, while jointly modeling two orthogonal information streams (i)
contextual co-occurrences, and (ii) acoustic word confusions, finding the nearest word vector
nearest to the specific analogy is no longer an optimal evaluation strategy. This is because the
word vector nearest to the analogy operation can either be along the contextual axis or the
confusion axis, that is, each analogy could possibly have two correct answers. For example, the
analogy “write”–“wrote”: “read” can be right when the nearest word vector is either “read”
(contextual dimension) or “red” (confusion dimension). To incorporate this, we provide the
accuracy over top-2 nearest vectors, that is, we count the analogy question as correct if any of
the top-2 nearest vectors satisfies the analogy. This also holds for the acoustic confusion
analogy tasks, especially for relations involving triplet homophones. For example, the analogy
“write”-“right”: “road” can be right when the nearest word vector is either “rode” or “rowed”
(for triplet homophones “road”/“rode”/“rowed”). Thus, we present evaluations by
comparing the top-1 (nearest vector) evaluation with baseline word2vec against the top-2
evaluation for the proposed confusion2vec models. To maintain consistency, we also provide
the top-2 evaluations for the baseline word2vec models in the appendix.

Moreover, since we have three different analogy tasks, we provide the average accuracy
among the three tasks in order to have an easy assessment of the performance of various
proposed models.

RESULTS
Table 5 lists the results for various models. We provide evaluations on three different
analogy tasks and two similarity tasks as discussed in the section “Evaluation Methods.”
Further, more thorough results with the semantic and syntactic accuracy splits are
provided under the appendix to gain deeper insights.
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Baseline Word2Vec model
We consider two variations of Word2Vec baseline model. First, we provide results with the
Google’s Word2Vec model (https://code.google.com/archive/p/word2vec) which is
trained with orders more training data, and is thus a high upper bound on the semantic
and syntactic task. The Google’s Word2Vec model was pruned to match the vocabulary of
our corpora to make the evaluation comparable. Second, we consider the Word2Vec
model trained on the in-domain ground truth transcripts. The two baseline models result in
good performance on Semantic&Syntactic analogy tasks and word similarity task as
expected. The Google’s model achieves an accuracy of 61.42% on the Semantic&Syntactic
analogy task.We note that the Syntactic accuracy (70.79%) is much higher than the Semantic
accuracy (28.98%) (see Table A1). This could be due to our pruned evaluation test set (see
Table 4). The in-domain model improves on the Semantic accuracy while losing on the
syntactic accuracy over the Google model (see Table A1). The shortcomings of the in-
domain model compared to the Google Word2Vec on the Semantic&Syntactic analogy task
can be attributed toward the amount of training data and its extensive vocabulary. The
in-domain model is trained on 20.8 million words vs. the 100 billion of Google’s News
dataset. Moreover, the vocabulary size of in-domain models is approximately 42,150 vs. the
three million of Google (Mikolov et al., 2013c) and thus unfair to compare with the rest of
the models. Further, evaluating the Acoustic analogy and Semantic&Syntactic–Acoustic
analogy tasks, all the baseline models perform poorly. An unusual thing we note is that the
Google Word2Vec model performs better comparatively to the in-domain baseline model in
the Semantic&Syntactic–Acoustic analogy task. A deeper examination revealed that the
model compensates well for homophone substitutions on Semantic&Syntactic analogies
which have very similar spellings. This suggests that the typographical errors present in
the training data of the Google model results in a small peak in performance for the
Semantic&Syntactic–Acoustic analogy task. On the evaluations of similarity tasks, all the
baseline models perform well on the word similarity tasks as expected. However, they exhibit
poor results on the acoustic similarity task. Overall, the results indicate that the baseline
models are largely inept of capturing any relationships over the acoustic word confusions
present in a confusion network or a lattice. In our specific case, the baseline models are poor
in capturing relationships between acoustically similar words.

Top-confusion—C2V-1
Comparing the top-confusion (C2V-1 for short), training scheme with the baseline
in-domain word2vec model, we observe the baseline model trained on clean data

Table 4 Statistics of evaluation datasets.

Task Total samples Retained samples

Semantic&Syntactic analogy 19,544 11,409

Acoustic analogy 20,000 2,678

Semantic&Syntactic–acoustic analogy 7,534 3,860

WordSim-353 353 330

Acoustic confusion ratings 1,372 943
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performs better on the Semantic&Syntactic analogy task as expected. Baseline in-domain
word2vec achieves 35.15% on the Semantic&Syntactic analogy task whereas the
top-confusion model achieves 34.27% (see Table A1). However, the performance difference is
minimal. This is encouraging because the top-confusion model is trained on the noisy
ASR transcripts. Moreover, we see the noisy transcripts negatively affect the semantic
accuracies while the syntactic accuracy remains identical which makes sense (see Table A1).
Similar to the baseline in-domain word2vec model, the top-confusion model falls short to
Google word2vec mainly due to the extensive amount of data employed in the latter case.

Evaluating for Acoustic analogies and Semantic&Syntactic–Acoustic analogies, the
top-confusion scheme improves slightly over the baseline word2vec model. This hints at
the ability of the top-confusion model to capture some acoustic word confusions
through context (e.g., “take a seat” is expected but sometimes we may see “take a sit”).
The improvements are small because in a good quality ASR the top confusion network
hypotheses contain few errors thus context learning is much stronger and acoustic-
confusion learning is minimal. Note that the top-confusion model would converge to
the baseline word2vec model in the case of a zero word error rate.

Further, inspecting the performance in the similarity task, the top-confusion model exhibits
statistically significant positive correlation in the word similarity task, although slightly smaller
correlation than the baseline word2vec and Google word2vec model. However, we observe a
positive (statistically significant) correlation on the acoustic similarity task, whereas both the
baseline word2vec and Google word2vec model exhibit a negative correlation. This further
validates the proposed top-confusion model’s capability to capture acoustic word confusions.

Intra-confusion, C2V-a
With intra-confusion training (C2V-acoustic or C2V-a for short) we expect the model to
capture acoustically similar word relationships, while completely ignoring any

Table 5 Results: different proposed models.

Model Analogy tasks Similarity tasks

S&S (%) Acoustic
(%)

S&S–acoustic
(%)

Average
accuracy (%)

Word
similarity

Acoustic
similarity

Google W2V 61.42 0.9 16.99 26.44 0.6893 -0.3489
In-domain W2V 35.15 0.3 7.86 14.44 0.5794 -0.2444
C2V-1 43.33 1.16 15.05 19.85 0.4992 0.1944

C2V-a 22.03 52.58 14.61 29.74 0.105* 0.8138

C2V-c 36.15 60.57 20.44 39.05 0.2937 0.8055

C2V-* 30.53 53.55 29.35 37.81 0.0963* 0.7858

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter; S&S, Semantic &
Syntactic analogy.
All the models are of 256 dimensions except Google’s W2V which is 300 dimensions. For the analogy tasks: the
accuracies of baseline word2vec models are for top-1 evaluations, whereas of the other models are for top-2 evaluations
(as discussed in the section “Analogy Tasks”). Detailed semantic analogy and syntactic analogy accuracies, the top-1
evaluations and top-2 evaluations for all the models are available under Appendix in Table A1. For the similarity tasks: all
the correlations (Spearman’s) are statistically significant with p < 0.001 except the ones with the asterisks. Detailed p-
values for the correlations are presented under Appendix in Table A2.
Bold entries correspond to the best results in their respective tasks.
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contextual relations. Hence, we expect the model to perform well on acoustic analogies
and acoustic similarity tasks and to perform poorly on Semantic&Syntactic analogies and
word similarity tasks. The Table 5 lists the results obtained using intra-confusion
training. The results are in conjunction with our expectations. The model gives the worst
results in Semantic&Syntactic analogy task. However, we observe that the syntactic analogy
accuracy to be a fair amount higher than the semantic accuracy (see Table A1). We think
this is mainly because of syntactically similar words appearing along the word confusion
dimension in the confusion networks, resultant of the constraints enforced on the confusion
network by the (ASR) language model—which are known to perform better for syntactic
tasks (Mikolov et al., 2013a). The model also gives the highest correlation on the acoustic
similarity task, while performing poorly on the word similarity task.

Inter-confusion, C2V-c
With inter-confusion training (C2V-contextual or C2V-c for short), we hypothesized that
the model is capable of jointly modeling both the contextual information as well as
confusions appearing contextually. Hence, we expect the model to perform well on both
the Semantic&Syntactic analogy and Acoustic analogy tasks and in doing so result in better
performance with Semantic&Syntactic–Acoustic analogy task. We also expect the
model to give high correlations for both word similarity and acoustic similarity tasks. From
Table 5, we observe that as hypothesized the inter-confusion training shows improvements
in the Semantic&Syntactic analogy task. Quite surprisingly, the inter-confusion training
shows better performance than the intra-confusion training for the Acoustic analogy task,
hinting that having good contextual representation could mutually be beneficial for
the confusion representation. However, we don’t observe any improvements in the
Semantic&Syntactic–Acoustic analogy task. Evaluating on the similarity tasks, the results
support the observations drawn from analogy tasks, that is, the model fares relatively
well in both word similarity and acoustic similarity.

Hybrid intra–inter confusion, C2V-�

The hybrid intra–inter confusion training (C2V-� for short) introduces all confusability
and allows learning directly confusable acoustic terms, such as in the C2V-a case,
and contextual information that incorporates confusable terms, as in the Inter or C2V-c case.
This model shows comparable performance in jointly modeling on both the
Semantic&Syntactic and Acoustic analogy tasks. One crucial observation is that it gives
significantly better performance with the Semantic&Syntactic–Acoustic analogy task.
This suggests that jointly modeling both the intra-confusion and inter-confusion
word mappings is useful. However, it achieves better results by compromising on
the semantic analogy (see Table A1) accuracy and hence also negatively affecting the word
similarity task. The model achieves good correlation on the acoustic similarity task.

Overall, our proposed Confusion2Vec models capture significantly more useful
information compared to the baseline models judging by the average accuracy over the
analogy tasks. One particular observation we see across all the proposed models is that the
performance remains fairly poor for the Semantic&Syntactic–Acoustic analogy task.
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This suggests that the Semantic&Syntactic–Acoustic analogy task is inherently hard to solve.
We believe that to achieve better results with Semantic&Syntactic–Acoustic analogies, it is
necessary to have a robust performance on one of the tasks (Semantic&Syntactic
analogies or Acoustic analogies) to begin with, that is, better model initialization could help.
Next, we experiment with model initializations/pre-training.

Model initialization/pre-training
Table 6 lists the results with model initialization/pre-training. The in-domain word2vec
baseline model and the top-confusion models are initialized from the Google Word2Vec
model. Pre-training the models provide improvements with Semantic&Syntactic analogy
results to be close and comparable to that of the Google’s Word2Vec model. Empirically, we
find the top-confusion model inherits approximately similar contextual information as the
baselinemodels, and in addition outperforms the baseline in average accuracy. Thus, for future
experiments we adopt the top-confusion model (rather than word2vec model) for
initialization, model concatenation, and joint-training. The remaining models (C2V-a, C2V-c,
and C2V-�) are initialized from the top-confusionmodel (i.e., C2V-1, the top-confusionmodel
initialized from Google Word2Vec), since this would enable full compatibility with the
vocabulary. Since the Google Word2Vec model is 300 dimensional, this forces all the pre-
trained models (Table 6) to be 300, as opposed to 256 dimensions (Table 5).

For intra-confusion model, the pre-training provides drastic improvements on
Semantic&Syntactic analogy task at the expense of the Acoustic analogy task. Even-though
the accuracy of Acoustic analogy task decreases comparatively to without pre-training,
it remains significantly better than the baseline model. More importantly, the
Semantic&Syntactic–Acoustic analogy task accuracy doubles. Inter-confusion model does
not compromise on the Semantic&Syntactic analogy tasks, in doing so gives comparable
performances to the baseline model. Additionally, it also does well on the Acoustic

Table 6 Results with pre-training/initialization.

Model Analogy tasks Similarity tasks

S&S (%) Acoustic
(%)

S&S–acoustic
(%)

Average
accuracy (%)

Word
similarity

Acoustic
similarity

Google W2V 61.42 0.9 16.99 26.44 0.6893 -0.3489
In-domain W2V 59.17 0.6 8.15 22.64 0.4417 -0.4377
C2V-1 61.13 0.9 16.66 26.23 0.6036 -0.4327
C2V-a 63.97 16.92 43.34 41.41 0.5228 0.62

C2V-c 65.45 27.33 38.29 43.69 0.5798 0.5825

C2V-* 65.19 20.35 42.18 42.57 0.5341 0.6237

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter; S&S, Semantic &
Syntactic Analogy.
All the models are of 300 dimensions. For the analogy tasks: the accuracies of baseline word2vec models are for top-1
evaluations, whereas of the other models are for top-2 evaluations (as discussed in the section “Analogy Tasks”). Detailed
semantic analogy and syntactic analogy accuracies, the top-1 evaluations and top-2 evaluations for all the models are
available under Appendix in Table A3. For the similarity tasks: all the correlations (Spearman’s) are statistically
significant. Detailed p-values for the correlations are presented under Appendix in Table A4.
Bold entries correspond to the best results in their respective tasks.
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and Semantic&Syntactic–Acoustic analogy task as was the case without pre-training.
In the case of hybrid intra-inter confusion model, similar trends are observed as was with
no pre-training, but with considerable improvements in accuracies. Pre-training also helps
in boosting the correlations for the word similarity tasks for all the models. Overall,
we find the pre-training to be extremely useful.

Model concatenation
Table 7 (rows 3-5) lists the results with model concatenation. We concatenate each of the
proposed models (Table 5) with the pre-trained top-confusion model (we use C2V-1
model instead of word2vec as hypothesized in Fig. 6B because empirically C2V-1 model
provided similar performance on Semantic&Syntactic tasks and overall better average
accuracy on analogy tasks compared to the baseline-in-domain W2V model). Thus the
resulting vector space is 556 dimensional (300 (pre-trained top-confusion model) + 256
(proposed models from Table 5)). In our case, we believe the dimension expansion of the
vector space is insignificant in terms of performance considering the relatively low amount
of training data compared to Google’s word2vec model. To be completely fair in judgment,
we create a new baseline model with 556 dimensional embedding space for comparison. To
train the new baseline model, the 556 dimension embedding was initialized with 300
dimensional Google’s word2vec embedding and the rest of the dimensions as zeros (null
space). Comparing the 556 dimension baseline from Table 7 with the previous 300
dimensional baseline from Table 6, the results are almost identical which confirms the
dimension expansion is insignificant with respect to performance.

With model concatenation, we see slightly better results (average analogy accuracy)
comparing with the pre-trained models from Table 6, an absolute increase of up-to
approximately 5% among the best results. The correlations with similarity tasks are similar
and comparable with the earlier results with the pre-trained models.

Joint optimization
Fixed contextual subspace
Rows 6–14 of Table 7 display the results of joint optimization with concatenated,
fixed top-confusion (C2V-1) embeddings and learn-able confusion2vec (C2V-a/c/�)
embeddings. As hypothesized with fixed subspace, the results indicate better accuracies
for the Semantic&Syntactic analogy task. Thereby, the improvements also reflect on
the overall average accuracy of the analogy tasks. This also confirms the need for joint
optimization which boosts the average accuracy up-to approximately 2% absolute over
the unoptimized concatenated model.

Unrestricted optimization

The last nine rows of Table 7 display the results obtained by jointly optimizing the
concatenated models without constraints. Both the subspaces are fine tuned to convergence
with various proposed training criteria. We consistently observe improvements with
the unrestricted optimization over the unoptimized model concatenations. In terms of
average accuracy we observe an increase in average accuracy by up-to 5% (absolute)
approximate over the unoptimized concatenated models. Moreover, we obtain
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improvements over the fixed contextual subspace joint-optimized models, up-to 2–3%
(absolute) in average accuracies. The best overall model in terms of average accuracies is
obtained by unrestricted joint optimization on the concatenated top-confusion and
inter-confusion models by fine-tuning with the intra-confusion training scheme.

Results summary
Firstly, comparing among the different training schemes (see Table 5), the inter-confusion
training consistently gives the best Acoustic analogy accuracies, whereas the hybrid

Table 7 Model concatenation and joint optimization results.

Model Fine-tuning
scheme

Analogy tasks Similarity tasks

S&S Acoustic S&S–acoustic Average Word Acoustic

Google W2V – 61.42% 0.9% 16.99% 26.44% 0.6893 -0.3489
In-domain W2V
(556 dim.)

– 63.6% 0.81% 14.54% 26.32% 0.6333 -0.4717

Model concatenation

C2V-1 (F) + C2V-a (F) – 67.03% 25.43% 40.36% 44.27% 0.5102 0.7231

C2V-1 (F) + inter-confusion (F) – 70.84% 35.25% 35.18% 47.09% 0.5609 0.6345

C2V-1 (F) + hybrid intra-inter (F) – 68.08% 11.39% 41.3% 40.26% 0.4142 0.5285

Fixed contextual subspace joint optimization

C2V-1 (F) + C2V-a (L) Inter 71.65% 20.54% 33.76% 41.98% 0.5676 0.4437

C2V-1 (F) + C2V-a (L) Intra 67.37% 28.64% 39.09% 45.03% 0.5211 0.6967

C2V-1 (F) + C2V-a (L) Hybrid 70.02% 25.84% 37.18% 44.35% 0.5384 0.6287

C2V-1 (F) + C2V-c (L) Inter 72.01% 35.25% 33.58% 46.95% 0.5266 0.5818

C2V-1 (F) + C2V-c (L) Intra 69.7% 39.32% 39.07% 49.36% 0.5156 0.7021

C2V-1 (F) + C2V-c (L) Hybrid 72.38% 37.75% 37.95% 49.36% 0.5220 0.6674

C2V-1 (F) + C2V-* (L) Inter 71.36% 8.55% 33.21% 37.71% 0.5587 0.302

C2V-1 (F) + C2V-* (L) Intra 66.85% 13.33% 40.1% 40.09% 0.4996 0.5691

C2V-1 (F) + C2V-* (L) Hybrid 68.32% 11.61% 38.19% 39.37% 0.5254 0.4945

Unrestricted joint optimization

C2V-1 (L) + C2V-a (L) Inter 62.12% 46.42% 36.4% 48.31% 0.5513 0.7926

C2V-1 (L) + C2V-a (L) Intra 64.85% 40.55% 42.38% 49.26% 0.5033 0.7949

C2V-1 (L) + C2V-a (L) Hybrid 31.65% 61.91% 23.55% 39.04% 0.1067* 0.8309

C2V-1 (L) + C2V-c (L) inter 64.98% 52.99% 34.79% 50.92% 0.5763 0.7725

C2V-1 (L) + C2V-c (L) Intra 65.88% 49.4% 41.51% 52.26% 0.5379 0.7717

C2V-1 (L) + C2V-c (L) Hybrid 37.86% 67.21% 25.96% 43.68% 0.2295 0.8294

C2V-1 (L) + C2V-* (L) Inter 65.54% 27.97% 36.87% 43.46% 0.5338 0.6953

C2V-1 (L) + C2V-* (L) Intra 64.42% 20.05% 42.56% 42.34% 0.4920 0.6942

C2V-1 (L) + C2V-* (L) Hybrid 65.79% 22.63% 41.3% 43.24% 0.4967 0.6986

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter.
All the models are of 556 (300 + 256) dimensions. Acronyms: (F):Fixed embedding, (L):Learn embedding during joint training, S&S: Semantic & Syntactic analogy. For
the analogy tasks: the accuracies of baseline word2vec models are for top-1 evaluations, whereas of the other models are for top-2 evaluations (as discussed in the section
“Analogy Tasks”). Detailed semantic analogy and syntactic analogy accuracies, the top-1 evaluations and top-2 evaluations for all the models are available under Appendix
in Table A5. For the similarity tasks: all the correlations (Spearman’s) are statistically significant with p < 0.001 except the ones with the asterisks. Detailed p-values for the
correlations are presented under Appendix in Table A6.
Bold entries correspond to the best results in their respective tasks.
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training scheme often gives the best Semantic&Syntactic–Acoustic analogy accuracies.
As far as the Semantic&Syntactic analogy task is concerned, the intra-confusion is often
found to give preference to syntactic relations, while the inter-confusion boosts the
semantic relations and the hybrid scheme balances both relations (see Table A1). Next,
pre-training/initializing the model gives drastic improvements in overall average accuracy
of analogy tasks. Concatenating the top-confusion model with the confusion2vec
(C2V-a/c/�) model gives slightly better results. More optimizations and fine-tuning
over the concatenated model gives considerably the best results.

Overall, the best results are obtained with unrestricted joint optimization of top-
confusion and inter-confusion model, that is, fine-tuning using intra-confusion training
mode. In terms of average analogy accuracies the confusion2vec model (C2V-a/c/�)
outperforms the baseline by up-to 26.06%. The best performing confusion2vec model
outperforms the word2vec model even on the Semantic&Syntactic analogy tasks (by a
relative 7.8%). Moreover, even the comparison between the top-2 evaluations of both the
word2vec and confusion2vec (C2V-1/a/c/�) suggests very similar performance on
Semantic&Syntactic-analogy tasks (see Table A5). This confirms and emphasizes that
the confusion2vec (C2V-1/a/c/�) doesn’t compromise on the information captured by
word2vec but succeeds in augmenting the space with word confusions. Another highlight
observation is that modeling the word confusions boost the semantic and syntactic scores of
the Semantic&Syntactic analogy task (compared to word2vec), suggesting inherent
information in word confusions which could be exploited for better semantic-syntactic word
relation modeling.

VECTOR SPACE ANALYSIS
In this section, we compare the vector space plots of the typical word2vec space and the
proposed confusion2vec vector space for a specifically chosen set of words. We choose a
subset of words representing three categories to reflect semantic relationships, syntactic
relationships and acoustic relationships. The vector space representations of the words are
then subjected to dimension reduction using principle component analysis (PCA) to
obtain 2D vectors which are used for plotting.

Semantic relationships
For analyzing the semantic relationships, we compile random word pairs (constrained
by the availability of these in our training data) representing Country–Cities
relationships. The 2D plot for baseline pre-trained word2vec model is shown in Fig. 7
and for the proposed confusion2vec model, specifically for the randomly selected,
jointly-optimized top-confusion + intra-confusion model (corresponding to row 7 in
Table 7) is displayed in Fig. 8. The following observations can be made comparing the
two PCA plots:

� Examining the baseline word2vec model, we find the Cities are clustered over the upper
half of the plot (highlighted with blue hue in Fig. 7) and Countries are clustered together
at the bottom half (highlighted with red hue in Fig. 7).
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� Similar trends are observed with the proposed confusion2vec model, where the cities are
clustered together over the right half of the plot (highlighted with blue hue in Fig. 8) and the
countries are grouped together toward the left half (highlighted with red hue in Fig. 8).

� In the Word2Vec space, the vectors of Country–City word pairs are roughly parallel,
pointing north-east (i.e., vectors are approximately similar).

� Similar to the word2vec space, with the Confusion2Vec, we observe the vectors of
Country–City word pairs are fairly parallel and point to the east (i.e., vectors are
highly similar).The four observations indicate that the Confusion2Vec preserves the
Semantic relationships between the words (similar to the Word2Vec space).

Syntactic relationships
To analyze the syntactic relationships, we create 30 pairs of words composed of Adjective-
Adverb, Opposites, Comparative, Superlative, Present-Participle, Past-tense, Plurals.
The PCA 2D plots for baseline pre-trained word2vec model and the proposed confusion2vec
model are illustrated in Figs. 9 and 10, respectively. The following inferences can be made
from the two plots:

� Inspecting the baseline word2vec model, we observe that the word pairs depicting
syntactic relations occur often close-by (highlighted with red ellipses in Fig. 9).

� Few semantic relations are also apparent and are highlighted with blue ellipses in Fig. 9.
For example, animals are clustered together.

� Similarly, with the Confusion2Vec model, we observe syntactic clusters of words
highlighted with red ellipses in Fig. 10.

� Semantic relations apparent in the case of word2vec is also evident with the
Confusion2Vec, which are highlighted with blue ellipses in Fig. 10.

� Additionally, with the Confusion2Vec model, we find clusters of acoustically similar
words (with similar phonetic transcriptions). These are highlighted using a green ellipse
in Fig. 10.

The above findings confirm that the confusion2vec models preserve the syntactic
relationships similar to word2vec models, supporting our hypothesis.

Acoustic relationships
In order to analyze the relationships of similar sounding words in the word vector spaces
under consideration, we compose 20 pairs of acoustically similar sounding words,
with similar phonetic transcriptions. The 2D plot obtained after PCA for the baseline
word2vec model is shown in Fig. 11 and the proposed confusion2vec model is shown in
Fig. 12. We make the following observations from the two figures:

� Observing the baseline Word2vec model, no apparent trends are found between
the acoustically similar words. For example, there is no trivial relationships
apparent from the plot in Fig. 11 between the word “no” and “know,” “try” and
“tri,” etc.
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Word2vec

Relationships of countries-cities

Figure 7 2D plot after PCA of word vector representation on baseline pre-trained word2vecF. Demonstration of semantic relationship on
randomly chosen pairs of countries and cities. Country-city vectors are almost parallel/similar. Countries are clustered together on the bottom half
(highlighted with red hue) and the cities on upper half (highlighted with blue hue). Full-size DOI: 10.7717/peerj-cs.195/fig-7
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Confusion2Vec (Joint training)

Relationships of countries-cities

Figure 8 2D plot after PCA of word vector representation on jointly optimized pre-trained C2V-1 + C2V-a models.Demonstration of semantic
relationship on randomly chosen pairs of countries and cities. Observe the semantic relationships are preserved as in the case of word2vec model:
country-city vectors are almost parallel/similar. Countries are clustered together on the left half (highlighted with red hue) and the cities on right half
(highlighted with blue hue). Full-size DOI: 10.7717/peerj-cs.195/fig-8
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Word2vec

Semantic/Syntactic illustration via PCA

Figure 9 2D plot after PCA of word vector representation on baseline pre-trained word2vec. Demonstration of syntactic relationship on
randomly chosen 30 pairs of adjective-adverb, opposites, comparative, superlative, present-participle, past-tense, plurals. Observe the clustering of
syntactically related words (Ex: highlighted with red ellipses). Few semantically related words are highlighted with blue ellipses (Ex: animals).

Full-size DOI: 10.7717/peerj-cs.195/fig-9
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Confusion2Vec (Joint training)

Semantic/Syntactic illustration via PCASemantic/Syntactic illustration via PCA

Acoustic and 
Syntactic/

Semantic Cluster

Figure 10 2D plot after PCA of word vector representation on jointly optimized pre-trained C2V-1 + C2V-a models. Demonstration of
syntactic relationship on randomly chosen 30 pairs of adjective-adverb, opposites, comparative, superlative, present-participle, past-tense, plurals.
Syntactic clustering is preserved by confusion2vec similar to word2vec. Red ellipses highlight few examples of syntactically related words. Similar to
word2vec, semantically related words (Ex: animals), highlighted with blue ellipses, are also clustered together. Additionally confusion2vec clusters
acoustically similar words together (indicated with green ellipse). Full-size DOI: 10.7717/peerj-cs.195/fig-10
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Word2vec

Acoustic siimilarity illustration via PCA - No obvious clustering

Figure 11 2D plot after PCA of word vector representation on baseline pre-trained word2vec.Demonstration of vector relationship on randomly
chosen 20 pairs of acoustically similar sounding words. No apparent relations between acoustically similar words are evident.

Full-size DOI: 10.7717/peerj-cs.195/fig-11
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Confusion2Vec (Joint training)

Acoustic siimilarity illustration via PCA - Clear clustering

Acoustic and 
Syntactic Cluster

Figure 12 2D plot after PCA of word vector representation on jointly optimized pre-trained C2V-1 + C2V-a models. Demonstration of vector
relationship on randomly chosen 20 pairs of acoustically similar sounding words. Confusion2Vec clusters acoustically similar words together
(highlighted with blue ellipses). Additionally, inter-relations between syntactically related words and acoustically related words are also evident
(highlighted with a green ellipse). Full-size DOI: 10.7717/peerj-cs.195/fig-12
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� However, inspecting the proposed confusion2vec model, there is an obvious trend
apparent, the acoustically similar words are grouped together in pairs and occur
roughly in similar distances. The word pairs are highlighted with blue ellipses
in Fig. 12.

� Additionally, in Fig. 12, as highlighted in a green ellipse, we observe the four words “no,”
“not,” “knot,” and “know” occur in close proximity. The word pair “no” and
“not” portray semantic/syntactic relation whereas the pairs “knot” & “not” and “no” &
“know” are acoustically related.

The above findings suggest that the word2vec baseline model fails to capture any
acoustic relationships whereas the proposed confusion2vec successfully models the
confusions present in the lattices, in our specific case the acoustic confusions from the
ASR lattices.

DISCUSSION
In this section, we demonstrate why the proposed embedding space is superior for
modeling word lattices with the support of toy examples. Let’s consider a simple task of
ASR error correction. As shown by Allauzen (2007), Ogata & Goto (2005) and Shivakumar
et al. (2018), often, the information needed to correct the errors are embedded in the
lattices. The toy examples in Figs. 13A and 13B depict the real scenarios encountered in
ASR. The lattice feature representation is a weighted vector sum of all words in the
confusion and its context present in the lattice (see Fig. 14). We compare the proposed
confusion2vec embeddings with the popular word2vec using cosine similarity as the
evaluation measure. Table 8 lists the evaluation for the following cases: (i) ASR output is
correct, (ii) ASR output is wrong and the correct candidate is present in the lattice, (iii)
ASR output is wrong and the correct candidate is absent from the lattice, and (iv) ASR
output is wrong and with no lattice available. The following observations are drawn
from the results:

(1) Confusion2vec shows higher similarity with the correct answers when the ASR output
is correct (see Table 8; Example 1.1, 2.1).

(2) Confusion2vec exhibits higher similarity with the correct answers when the ASR
output is wrong—meaning the representation is closer to the correct candidate and
therefore more likely to correct the errors (see Table 8; Example 1.2, 2.2, 1.3, 2.3).

(3) Confusion2vec yields high similarity even when the correct word candidate is not
present in the lattice—meaning confusion2vec leverages inherent word representation
knowledge to aid re-introduction of pruned or unseen words during error correction
(see Table 8; Example 1.4, 1.5, 1.6).

(4) The confusion2vec shows low similarity in the case of fake lattices with highly unlikely
word alternatives (see Table 8; Example 2.4, 2.5).

All the above observations are supportive of the proposed confusion2vec word
representation and is in line with the expectations for the task of ASR error correction.
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POTENTIAL APPLICATIONS
In addition to the above discussed ASR error correction task, other potential applications
include:

Machine Translation: In Machine Translation, word lattices are used to
provide multiple sources for generating a single translation (Schroeder, Cohn &
Koehn, 2009; Dyer, 2010). Word lattices derived from reordered hypotheses

0 1yes:yes/1 2write:write/0.75
right:right/0.25

3answer:answer/1

(a) Example 1

0 1she:she/0.4
shea:shea/0.6

2likes:likes/1 3sea:sea/0.45
see:see/0.55

(b) Example 2
Figure 13 Confusion network examples. Full-size DOI: 10.7717/peerj-cs.195/fig-13
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Figure 14 Computation of lattice feature vector. Full-size DOI: 10.7717/peerj-cs.195/fig-14

Table 8 Cosine similarity between the ASR ground-truth and ASR output in application to ASR
error correction for baseline pre-trained word2vec and the proposed confusion2vec: jointly
optimized intra-confusion + top-confusion models.

Example Ground-truth ASR output W2V similarity C2V similarity

1.1 “Yes right answer” “Yes (right/write) answer” 0.96190 0.96218

1.2 “Yes right answer” “Yes write answer” 0.93122 0.93194

1.3 “Yes write answer” “Yes (right/write) answer” 0.99538 0.99548

1.4 “Yes rite answer” “Yes (right/write) answer” 0.84216 0.88206

1.5 “Yes rite answer” “Yes right answer” 0.86003 0.87085

1.6 “Yes rite answer” “Yes write answer” 0.82073 0.87034

2.1 “She likes sea” “(She/shea) likes (see/sea)” 0.91086 0.92130

2.2 “She likes sea” “Shea likes see” 0.73295 0.77137

2.3 “Shea likes see” “(She/shea) likes (see/sea)” 0.94807 0.95787

2.4 “Shea likes see” “(She/shea) likes (see/rocket)” 0.93560 0.93080

2.5 “She likes sea” “(She/shea) likes (see/rocket)” 0.85853 0.85757

Note:
Examples 1.1–1.6 inherits structure as in Fig. 13A, that is, “yes (right/write) answer” assigns weight of 1.0 to yes and
answer, 0.75 to right, 0.25 to write. Similarly Examples 2.1–2.5 inherits structure as in Fig. 13B.
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(Costa-Jussà & Fonollosa, 2007; Niehues & Kolss, 2009; Hardmeier, Bisazza & Federico,
2010), morphological transformations (Dyer, 2007; Hardmeier, Bisazza & Federico,
2010), word segmentations (Dyer, 2009), paraphrases (Onishi, Utiyama & Sumita,
2011) are used to introduce ambiguity and alternatives for training machine translation
systems (Wuebker & Ney, 2012; Dyer, Muresan & Resnik, 2008; Dyer, 2010). Source
language alternatives can also be exploited by introducing ambiguity derived from the
combination of multiple machine translation systems (Matusov, Ueffing & Ney, 2006;
Rosti et al., 2007a; Rosti, Matsoukas & Schwartz, 2007b). In the case of Machine
Translation, the word-confusion subspace is associated with morphological
transformations, word segmentations, paraphrases, part-of-speech information, etc., or
a combination of them. Although the word-confusion subspace is not orthogonal, the
explicit modeling of such ambiguity relationships is beneficial.

NLP: Other NLP based applications like paraphrase generation (Quirk, Brockett &
Dolan, 2004), word segmentation (Kruengkrai et al., 2009), part-of-speech tagging
(Kruengkrai et al., 2009) also operate on lattices. As discussed in the section “Machine
Learning Algorithms,” confusion2vec can exploit the ambiguity present in the lattices
for the betterment of the tasks.

ASR: In ASR systems, word lattices and confusion networks are often re-scored using
various algorithms to improve their performances by exploiting ambiguity (Sundermeyer
et al., 2014; Mangu, Brill & Stolcke, 2000; Xiong et al., 2016; Liu et al., 2014). In the
case of ASR, the word-confusion subspace is associated with the acoustic similarity of
words which is often orthogonal to the semantic-syntactic subspace as discussed in the
section “Human Speech Production, Perception and Hearing.” Examples 1–3 are prime
cases supporting the need for jointly modeling acoustic word confusions and
semantic-syntactic subspace.

Spoken Language Understanding: Similarly, as in the case of ASR, Confusion2Vec
could exploit the inherent acoustic word-confusion information for keyword spotting
(Mangu, Brill & Stolcke, 2000), confidence score estimation (Mangu, Brill & Stolcke, 2000;
Seigel & Woodland, 2011; Kemp & Schaaf, 1997; Jiang, 2005), domain adaptation
(Shivakumar et al., 2018), lattice compression (Mangu, Brill & Stolcke, 2000), spoken
content retrieval (Chelba, Hazen & Saraclar, 2008; Hori et al., 2007), system combinations
(Mangu, Brill & Stolcke, 2000; Hoffmeister et al., 2007), and other spoken language
understanding tasks (Hakkani-Tür et al., 2006; Tur et al., 2002; Marin et al., 2012)
which operate on lattices.

Speech Translation: In speech translation systems, incorporating the word lattices
and confusion networks (instead of the single top hypothesis) is beneficial in better
integrating speech recognition system to the machine translation systems (Bertoldi,
Zens & Federico, 2007; Mathias & Byrne, 2006; Matusov, Kanthak & Ney, 2005;
Schultz et al., 2004). Similarly, exploiting uncertainty information between the “ASR
—Machine Translation—Speech synthesis” systems for speech-to-speech translation
is useful (Lavie et al., 1997; Wahlster, 2013). Since speech translation involves
combination of ASR and the Machine Translation systems, the word-confusion
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subspace is associated with a combination of acoustic word-similarity (for ASR) and
morphological-segmentation-paraphrases ambiguities (for Machine Translation).

“See son winter is here” / “voir fils hiver est ici” (Example 4)

“Season winter is here” / “saison hiver est ici” (Example 5)

Examples 4 and 5 demonstrate a case of speech translation of identically sounding
English phrases to French. Words “See son” and “Season” demonstrate ambiguity in
terms of word segmentation. Whereas, the phrases “See son” and “Season” also exhibit
ambiguity in terms of acoustic similarity. By modeling both word-segmentation and
acoustic-confusion through word vector representations, the confusion2vec can provide
crucial information that the French words “voir” and “saison” are confusable under speech
translation framework.

Optical Character Recognition: In optical character recognition (OCR) systems, the
confusion axis is related to pictorial structures of the characters/words. For example,
say the characters “a” and “o” are easily confusable thus leading to similar character
vectors in the embedding space. In the case of word level confusions leading to words
“ward” and “word” being similar with confusion2vec (word2vec would have the words
“word” and “ward” fairly dissimilar). Having this crucial optical confusion information is
useful during OCR decoding on sequence of words when used in conjunction with the
linguistic contextual information.

Image/Video Scene Summarization: The task of scene summarization involves
generating descriptive text summarizing the content in one or more images. Intuitively,
the task would benefit from linguistic contextual knowledge during the text generation.
However, with the confusion2vec, one can model and expect to capture two
additional information streams (i) pictorial confusion of image/object recognizer, and
(ii) pictorial context, that is, modeling objects occurring together (e.g., we can
expect oven to often appear nearby a stove or other kitchen appliances). The additional
streams of valuable information embedded in the lattices can contribute for better
decoding. In other words, for example, word2vec can exhibit high dissimilarity between
the words “lifebuoy” and “donuts”, however, the confusion2vec can capture their
pictorial similarity in a better word space representation and thus aiding in their end
application of scene summarization.

CONCLUSION
In this work, we proposed a new word vector representation motivated from human
speech and perception and aspects of machine learning for incorporating word
confusions from lattice like structures. The proposed confusion2vec model is meant to
capture additional word-confusion information and improve upon the popular
word2vec models without compromising the inherent information captured by the
word2vec models. Although the word confusions could be domain/task specific, we
present a case study on ASR lattices where the confusions are based on acoustic similarity
of words. Specifically, with respect to ASR related applications, the aim is to capture the
contextual statistics, as with word2vec, and additionally also capture the acoustic word
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confusion statistics. Several training configurations are proposed for confusion2vec
model, each utilizing different degrees of acoustic confusability vs. contextual
information, present in the noisy (confusion network) ASR output, for modeling the
word vector space. Further, techniques like pre-training/initializations, model
concatenation and joint optimization are proposed and evaluated for the confusion2vec
models. Appropriate evaluation schemes are formulated for the domain specific
application. The evaluation schemes are inspired from the popular analogy based
question test set and word similarity tasks. A new analogy task and word similarity tasks
are designed for the acoustic confusion/similarity scenario. A detailed tabulation of
results are presented for the confusion2vec model and compared to the baseline
word2vec models.

The results show that the confusion2vec can augment additional task-specific word
confusion information without compromising on the semantic and syntactic
relationships captured by the word2vec models. Next, detailed analysis is conducted on
the confusion2vec vector space through PCA reduced two-dimensional plots for three
independent word relations: (i) Semantic relations, (ii) Syntactic relations, and (iii)
Acoustic relations. The analysis further supports our aforementioned experimental
inferences. Few toy examples are presented toward the task of ASR error correction to
support the adequacy of the Confusion2vec over the word2vec word representations.
The study validates through various hypotheses and test results, the potential benefits of
the confusion2vec model.

FUTURE WORK
In the future, we plan to work on improving the confusion2vec model by incorporating
the sub-word and phonemic transcription of words during training. Sub-words and
character transcription information is shown to improve the word vector
representation (Bojanowski et al., 2017; Chen et al., 2015). We believe the sub-words
and phoneme transcriptions of words are even more relevant to confusion2vec. In
addition to the improvements expected toward the semantic and syntactic
representations (word2vec), since the sub-words and phoneme transcriptions of
acoustically similar words are similar, it should help in modeling the confusion2vec to a
much greater extent.

Apart from concentrating on improving the confusion2vec model, this work opens new
possible opportunities in incorporating the confusion2vec embeddings to a whole range
of full-fledged applications such as ASR error correction, speech translation tasks,
machine translation, discriminative language models, optical character recognition,
image/video scene summarization, etc.
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APPENDIX

Table A1 Analogy task results with Semantic&Syntactic splits: different proposed models.

Model Analogy tasks

Semantic&Syntactic analogy Acoustic
analogy

Semantic&Syntactic–acoustic analogy Average
accuracy

Semantic Syntactic Semantic&
Syntactic

Semantic–
acoustic

Syntactic–
acoustic

Semantic&
Syntactic–
acoustic

Google W2V 28.98%
(35.75%)

70.79%
(78.74%)

61.42%
(69.1%)

0.9%
(1.42%)

6.54%
(14.38%)

17.9%
(27.46%)

16.99%
(26.42%)

26.44%
(32.31%)

In-domain W2V 42.39%
(51.57%)

33.14%
(43.14%)

35.15%
(44.98%)

0.3%
(0.6%)

5.17%
(10.69%)

8.13%
(11.93%)

7.86%
(11.82%)

14.44%
(19.13%)

C2V-1 38.33%
(46.7%)

33.1%
(42.36%)

34.27%
(43.33%)

0.7%
(1.16%)

11.76%
(14.38%)

11.23%
(15.11%)

11.27%
(15.05%)

15.41%
(19.85%)

C2V-a 0.51%
(0.78%)

18.59%
(28.17%)

14.54%
(22.03%)

41.93%
(52.58%)

0.98%
(2.29%)

9.62%
(15.67%)

8.94%
(14.61%)

21.8%
(29.74%)

C2V-c 16.15%
(23.7%)

26.14%
(39.74%)

23.9%
(36.15%)

48.58%
(60.57%)

3.27%
(6.86%)

12.13%
(21.61%)

11.42%
(20.44%)

27.97%
(39.05%)

C2V-* 2.07%
(2.58%)

28.91%
(38.6%)

22.89%
(30.53%)

40.78%
(53.55%)

1.96%
(2.94%)

20.99%
(31.63%)

19.48%
(29.35%)

27.72%
(37.81%)

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*: hybrid intra-inter.
All the models are of 256 dimensions except GoogleW2V (300 dimensions). Numbers inside parenthesis indicate top-2 evaluation accuracy; Numbers outside parenthesis
represent top-1 evaluation accuracy. Google Word2Vec, Word2Vec Groundtruth (trained on in-domain) and Baseline Word2Vec (trained on ASR transcriptions)
perform better with the Semantic&Syntactic tasks, but fares poorly with acoustic analogy task. Intra-confusion performs well on acoustic analogy task while
compromising on Semantic&Syntactic task. Inter-confusion performs well on both the acoustic analogy and Semantic&Syntactic tasks. Hybrid intra-inter training
performs fairly well on all the three analogy tasks (acoustic, Semantic&Syntactic and Semantic&Syntactic–acoustic).

Table A2 Similarity task results: different proposed models.

Model Similarity tasks

Word similarity Acoustic similarity

Google W2V 0.6893 (7.9e-48) -0.3489 (2.2e-28)

In-domain W2V 0.5794 (4.2e-29) -0.2444 (1e-10)

C2V-1 0.4992 (3.3e-22) 0.1944 (1.7e-9)

C2V-a 0.105 (0.056) 0.8138 (5.1e-224)

C2V-c 0.2937 (5.4e-8) 0.8055 (5.1e-216)

C2V-* 0.0963 (0.08) 0.7858 (1.5e-198)

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter.
Similarity in terms of Spearman’s correlation. All the models are of 256 dimensions except Google W2V (300
dimensions). Numbers inside parenthesis indicate correlation p-value for similarity tasks Google Word2Vec, Baseline
Word2Vec, and Word2Vec Groundtruth, all show high correlations with word similarity, while showing poor
correlations on acoustic similarity. Google Word2Vec and Word2Vec Groundtruth models trained on clean data exhibit
negative acoustic similarity correlation. Baseline Word2Vec trained on noisy ASR shows a small positive acoustic
similarity correlation. Intra-confusion, inter-confusion, and hybrid intra-inter training show higher correlations on
acoustic similarity.
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Table A3 Analogy task results with Semantic&Syntactic splits: model pre-training/initialization.

Model Analogy tasks

Semantic&Syntactic analogy Acoustic
analogy

Semantic&Syntactic–acoustic analogy Average
accuracy

Semantic Syntactic Semantic&
Syntactic

Semantic–
acoustic

Syntactic–
acoustic

Semantic&
Syntactic–
acoustic

Google
W2V

28.98%
(35.75%)

70.79%
(78.74%)

61.42%
(69.1%)

0.9%
(1.42%)

6.54%
(14.38%)

17.9%
(27.46%)

16.99%
(26.42%)

26.44%
(32.31%)

In-domain
W2V

32.72%
(39.99%)

66.53%
(75.97%)

59.17%
(68.14%)

0.6%
(0.96%)

10.52%
(17.46%)

10.5%
(17.69%)

8.15%
(13.5%)

22.64%
(27.53%)

C2V-1 34.92%
(41.96%)

68.7%
(78.82%)

61.13%
(70.56%)

0.9%
(1.46%)

14.38%
(19.28%)

16.85%
(24.25%)

16.66%
(23.86%)

26.23%
(31.96%)

C2V-a 11.5%
(15.53%)

67.56%
(77.96%)

54.99%
(63.97%)

9.04%
(16.92%)

7.84%
(10.46%)

36.92%
(46.17%)

34.61%
(43.34%)

32.88%
(41.41%)

C2V-c 25.77%
(33.12%)

60.1%
(74.79%)

52.4%
(65.45%)

16.54%
(27.33%)

10.78%
(14.05%)

28.9%
(40.38%)

27.46%
(38.29%)

32.13%
(43.69%)

C2V-* 15.64%
(21.94%)

66.73%
(77.68%)

55.28%
(65.19%)

10.49%
(20.35%)

6.86%
(11.11%)

35.4%
(44.85%)

33.13%
(42.18%)

36.27%
(42.57%)

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter.
All the models are of 300 dimensions. Numbers inside parenthesis indicate top-2 evaluation accuracy; Numbers outside parenthesis represent top-1 evaluation accuracy.
Pre-training is helpful in all the cases. Pre-training boosts the Semantic&Syntactic analogy accuracy for all. For intra-confusion, inter-confusion and hybrid intra-inter
models, pre-training boosts the Semantic&Syntactic–acoustic analogy accuracies. A small dip in acoustic analogy accuracies is observed. However, overall average
accuracy is improved.

Table A4 Similarity task results: model pre-training/initialization.

Model Similarity tasks

Word similarity Acoustic similarity

Google W2V 0.6893 (7.9e-48) -0.3489 (2.2e-28)

In-domain W2V 0.4417 (3.5e-16) -0.4377 (3.6e-33)

C2V-1 0.6036 (3.8e-34) -0.4327 (2.5e-44)

C2V-a 0.5228 (1.4e-24) 0.62 (2.95e-101)

C2V-c 0.5798 (4.9e-31) 0.5825 (9.1e-87)

C2V-* 0.5341 (9.8e-26) 0.6237 (8.8e-103)

Notes:
C2V-1, top-confusion; C2V-a, intra-confusion; C2V-c, inter-confusion; C2V-*, hybrid intra-inter.
Similarity in terms of Spearman’s correlation. All the models are of 300 dimensions. Numbers inside parenthesis indicate
correlation p-value for similarity tasks. Pre-training boosts the word similarity correlation for all the models. The
correlation is improved considerably in the case of intra-confusion, inter-confusion, and hybrid intra-inter models while
maintaining good correlation on acoustic similarity.
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