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ABSTRACT
The building of large-scale Digital Elevation Models (DEMs) using various interpola-
tion algorithms is one of the key issues in geographic information science. Different
choices of interpolation algorithms may trigger significant differences in interpolation
accuracy and computational efficiency, and a proper interpolation algorithm needs
to be carefully used based on the specific characteristics of the scene of interpolation.
In this paper, we comparatively investigate the performance of parallel Radial Basis
Function (RBF)-based,Moving Least Square (MLS)-based, and Shepard’s interpolation
algorithms for building DEMs by evaluating the influence of terrain type, raw data
density, and distribution patterns on the interpolation accuracy and computational
efficiency. The drawn conclusions may help select a suitable interpolation algorithm in
a specific scene to build large-scale DEMs.

Subjects Distributed and Parallel Computing, Spatial and Geographic Information Systems
Keywords Digital elevation model (DEM), Spatial interpolation, Radial basis function (RBF),
Moving least square (MLS), Parallel algorithm, Graphics processing unit (GPU), Geographic
information system(GIS)

INTRODUCTION
Digital Elevation Model (DEM) is a numerical representation of topography made up of
equal-sized grid cells, each with a value of elevation. One of the most important scientific
challenges of digital elevation modeling is the inefficiency of most interpolation algorithms
in dealing with a large amount of data produced by large-scale DEM with a fine resolution.
To solve the problem, one of the common strategies is to parallelize interpolation algorithms
on various High Performance Computing (HPC) platforms.

For different large-scale DEM, different parallel spatial interpolation algorithms are
usually specifically selected, because a variety of spatial interpolation algorithms exist
that behave differently for different data configurations and landscape conditions.
Consequently, the accuracy of a DEM is sensitive to the interpolation technique, and
it is significant to understand how the various algorithms affect a DEM. Therefore, this
study is being conducted.

Spatial interpolation is a category of important algorithms in the field of geographic
information. Siu-Nganlam (1983) had a review of various interpolation algorithms,
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including most distance-weighting methods, Kriging, spline interpolation, interpolating
polynomials, finite-difference methods, power-series trend models, Fourier models,
distance-weighted least-squares, and least-squares fitting with splines. Many spatial
interpolation algorithms are used to build DEMs, for example, the Shepard’s method
(IDW) (Shepard, 1968), the Kriging method (Krige, 1953), the Discrete Smoothing
Interpolation (DSI) method (Mallet, 1997), the Radial Basis Function (RBF)-based
method (Powell, 1977), and the Moving Least Squares (MLS)-based method (Lancaster &
Salkauskas, 1981).

Much research work (Gumus & Sen, 2013; Chaplot et al., 2006; Aguilar et al., 2005;
Khairnar et al., 2015; Polat, Uysal & Toprak, 2015; Rishikeshan et al., 2014) has been
conducted to evaluate the effects of different interpolation methods on the precision
of DEM interpolation. In the comparative investigation of spatial interpolation algorithms
for buildingDEMs, quite a few studies specifically focused on the impact of data samples and
terrain types on interpolation accuracy; among them, Gumus & Sen (2013) compared the
accuracy of various interpolationmethods at different point distributions, the interpolation
performance of IDW is worse than other algorithms for the same data distribution. For
the same algorithm, in the case of using all points and grid, their experimental results
show that the best interpolation performances are Modified Shepard’s (MS) for random
distribution; Multiquadric Radial Basis Function (MRBF) for curvature distribution, and
Inverse Distance Weighted (IDW) for uniform distribution.

Chaplot et al. (2006) and Aguilar et al. (2005) evaluated the effects of landform types
and the density of the original data on the accuracy of DEM production, their results
show that interpolation algorithms perform well at higher sampling densities, and MRBF
provided significantly better interpolation than IDW in rough or non-uniform terrain. At
lower sampling densities, when the spatial structure of height was strong, Kriging yielded
better estimates. When the spatial structure of height was weak, IDW and Regularized
Spline with Tension (RST) performed better. On the other hand, MRBF performed
well in the mountainous areas and Ordinary Kriging (OK) was the best for multi-scales
interpolations in the smooth landscape. In addition, Zhang (2013) established a descriptive
model of local terrain features to study the correlation of surface roughness indicators
and spatial distribution indicators for DEM interpolation algorithms. (Chaplot et al.,
2006). Ghandehari, Buttenfield & Farmer (2019) illustrated that the Bi-quadratic and Bi-
cubic interpolation methods outperformWeighted Average, Linear, and Bi-linear methods
at coarse resolutions and in rough or non-uniform terrain. Aguilar et al. (2005) pointed out
that MRBF is better than Multilog function for low sample densities and steeper terrain.

With the increasing size of DEMs, it is increasingly necessary to design parallel solutions
for existing sequential algorithms to speed up processing. When adopting an interpolation
method to deal with a large DEM, the computational cost would be quite expensive, and
the computational efficiency would especially be unsatisfied.

The techniques in HPC are widely used to improve computational efficiency in various
science and engineering applications such as surface modeling (Yan et al., 2016), spatial
point pattern analysis (Zhang, Zhu & Huang, 2017), urban growth simulation (Guan
et al., 2016), Delaunay Triangulation (DT) for GIS (Coll & Guerrieri, 2017), spatial
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interpolation (Wang, Guan &Wu, 2017; Cheng, 2013; Mei, 2014; Mei, Xu & Xu, 2017;
Mei, 2014; Mei, Xu & Xu, 2016; Ding et al., 2018b), and image processing (Wasza et al.,
2011; Lei et al., 2011; Yin et al., 2014;Wu, Deng & Jeon, 2018).

One of the effective strategies to solve the problem is to perform the DEM interpolation
in parallel on various parallel computing platforms such as shared-memory computers,
distributed-memory computers, or even clusters. The parallelization of DEM interpolation
can be developed with the computational power of modern multicore Central Processing
Units (CPUs) and many-core Graphics Processing Units (GPUs). For example, Zhou et
al. (2017) proposed a parallel Open Multi-Processing (OpenMP)- and Message Passing
Interface (MPI)-based implementation of the Priority-Flood algorithm that identifies
and fills depressions in raster DEMs. Yan et al. (2015) accelerated high-accuracy surface
modeling (HASM) in constructing large-scale and fine resolution DEM surfaces by the
use of GPUs and applied this acceleration algorithm to simulations of both ideal Gaussian
synthetic surfaces and real topographic surfaces in the loess plateau of Gansu province. Tan
et al. (2017) presented a novel method to generate contour lines from grid DEM data,
based on the programmable GPU pipeline, that can be easily integrated into a 3D GIS
system. Chen et al. (2010) demonstrated a new algorithm for reconstructing contour maps
from raster DEM data for digital-earth and other terrain platforms in real-time entirely
based on modern GPUs and programmable pipelines.

The RBF, Kriging, MLS and Shepard’s interpolation algorithms are the most frequently
used spatial interpolation algorithms, among which, the Kriging method can be regarded as
an instance of RBF framework (Peng et al., 2019). Therefore, in this paper, we comparatively
investigate the performance of the RBF-based, MLS-based, and Shepard’s interpolation
algorithms for building DEMs by evaluating the influence of terrain type, raw data density,
and distribution patterns on the interpolation accuracy and computational efficiency.

The rest of the paper is organized as follows. ‘Background’ briefly introduces the basic
principles of eight interpolation methods. ‘Methods’ concentrates mainly on our parallel
implementations of the eight interpolation methods and creation of the testing data.
‘Results’ introduces some of the experimental tests performed on the CPU and GPU.
‘Discussion’ discusses the experimental results. Finally, ‘Conclusion’ states conclusions
from the work.

BACKGROUND
In this section, we briefly introduce eight spatial interpolation algorithms.

MLS-based Interpolation Algorithms
The MLS method obtains the fitting surface by solving the equation group derived from
minimizing the sum of the squares of the errors between the fitting data and the given
node data.

Original MLS Interpolation Algorithm
The MLS approximation is used to approximate field variables and their derivatives. In
a domain �, the MLS approximation f h(x) of the field variable f (x) in the vicinity of a
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point x̄ is given as

f h(x)=
m∑
j=1

pj (x) ·aj (x̄)= PT (x) ·a(x̄) (1)

where pj (x),j = 1 ,2,...,m is a complete basis function with coefficients aj (x̄). At each
point x̄ , aj (x̄) is chosen to minimize the weighted residual L2− norm (L2− norm refers to

‖x‖2, where x = [x1,x2,...,xn]T , and ‖x‖2=
√(
|x1|2+|x2|2+|x3|2+···+|xn|2

)
):

J =
N∑
I=1

w (x̄−xI )
[
PT (xI )a(x̄)− fI

]2
(2)

whereN is the number of nodes in the compact-supported neighborhood of x̄ and fI refers
to the nodal parameter of f at x = xI . Nodes refer to data points in the compact-supported
neighborhood of x̄ . Compact-supported, i.e., point x̄ is only related to the nodes of its
neighborhood, xI is one of the nodes in the compact-supported neighborhood. And
w (x−xk) is the compact-supported weight function. The most commonly used weight
functions are the spline functions, for example, the cubic spline weight function (Eq. (3)):

w (s̄)=


2
3
−4s̄2+4s̄3,

4
3
−4s̄+4s̄2−

4
3
s̄3,

0,

s̄≤
1
2

1
2
< s̄≤ 1

s̄> 1

(3)

where s̄= s
smax

and s= x̄−xI .
The minimum of J with respect to a(x̄) gives the standard form of MLS approximation:

f h(x)=
N∑
I=1

φI (x)fI =8(x)F . (4)

Orthogonal MLS interpolation algorithm
For a given polynomial basis function pi(x), i= 1 ,2,· · ·,m, there is an orthonormal basis
function qi(x,x̄) that satisfies:

q1(x,x̄)= p1(x)

qi(x,x̄)= pi(x)−
i−1∑
j=1

αij (x,x̄)qj (x,x̄),i= 2,3,· · ·,m (5)

where αij (x,x̄) is the coefficient that makes qi(x,x̄) perpendicular to qj (x,x̄).

αij (x̄)=
∑N

k=1wk (x̄)pi(xk)qj (xk,x̄)∑N
k=1wk (x̄)q2j (xk,x̄)

(6)
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Because the coefficient matrix is a diagonal matrix, the solution for ai(x) does not
require matrix inversion, i.e.,

ai(x̄)=
∑N

k=1wk (x̄)qi(xk,x̄)fk∑N
k=1wk (x̄)q2i (xk,x̄)

(7)

where ai and aj (x̄) (Eq. (1)) have the same definition. fk and fI (Eq. (2)) have the same
definition, i.e., the nodal parameter of f at x = xk . Finally, ai and the orthonormal basis
function qi(x,x̄) are fitted into Eq. (1) to obtain the orthogonal MLS approximation f h(x).

When the number or order of basis functions increases, only am+1 and αm+1 need to
be calculated in Gram–Schmidt orthogonalization (Steve, 2011); recalculation of all entries
in the coefficient matrix is not needed. This could reduce the computational cost and the
computational error.

Lancaster’s MLS interpolation algorithm
A singular weight function is adopted to make the approximation function f h(x)
constructed by the interpolation type MLS method satisfy the properties of the Kronecker
δ function:

ω(x,xk)=

{
‖(x−xk)/ρk‖-α,
0,

‖x−xk‖≤ ρk
‖x−xk‖>ρk

(8)

Let p0(x) ≡ 1,p1(x),...,pm̄(x) denote the basis function used to construct the
approximation function, where the number of basis functions is m̄+1. To implement
the interpolation properties, a new set of basis functions is constructed for a given basis
function. First, p0(x) are standardized, i.e.,

p̃0(x,x̄)=
1[∑N

k=1ω(x,xk)
]1/2 (9)

Then, we construct a new basis function of the following form:

p̃i(x,x̄)= pi(x̄)−
N∑
k=1

ω(x,xk)∑N
l=1ω(x,xl)

Pi(xk),i= 1,2,...,m̄. (10)

RBF-based interpolation algorithm
The RBF operates as a spline, essentially fitting a series of piecewise surfaces to approximate
a complex terrain.

Let X = {x1,x2,...,xN } be a set of pairwise distinct points in a domain �⊆ Rd with
associated data values fi, i= 1 ,2,...,N . We consider the problem of construction a
d-variety function F ∈Ck (Rd) that interpolates the known data. Specifically, we require
F (xi)= fi, i= 1,2,...,N . If we take F in the form.

F (x)=
N∑
j=1

wjϕ
(∥∥xi−xj∥∥2) (11)
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where ϕ : [0,∞]→ R is a suitable continuous function, the interpolation conditions
become:
N∑
j=1

wjϕ
(∥∥xi−xj∥∥2)= fi, i= 1,2,...,N . (12)

Shepard’s interpolation algorithms
Shepard (1968) proposed a series of interpolation algorithms on the basis of weighting
averages. These algorithms are termed Shepard’s method. The essential idea behind
Shepard’s method is to estimate expected values of the interpolation point by weighting
averages of the nearby discrete points as follows:

Let
(
xi,yi

)
, i= 1 ,2,...,N be the interpolation point and fi be the corresponding value

at interpolation point
(
xi,yi

)
. The expected value f at any point can be expressed as

f (x)=
N∑
i=1

wi(x)fi∑N
j=1wj (x)

(13)

where w (x) is a weight function.
The differences between the different variants of Shepard’s method are in the selection

of different weighting functions. In this subsection, four common variants of Shepard’s
method will be briefly introduced (Eqs. (14)–(19)).

Variant A of Shepard’s interpolation algorithm
First, select the influence radius R> 0 and let the weight function be

w (r)=


1
r
,

27
4

( r
R
−1
)2
,

0,

0< r ≤
R
3

R
3
< r ≤R

r >R

(14)

Then, a variation of Shepard’s interpolation will be obtained.

Variant B of Shepard’s Interpolation Algorithm
When employing the following weight function (Eq. (15)), a new variation of Shepard’s
interpolation will be obtained.

w (s̄)=


2
3
−4s̄2+4s̄3,

4
3
−4s̄+4s̄2−

4
3
s̄3,

0,

s̄≤
1
2

1
2
< s̄≤ 1

s̄> 1

(15)

Inverse Distance Weighted (IDW) interpolation algorithm
If the weight function is selected as

wi(x)=
1

d(x,xi)α
(16)

the IDW interpolation is obtained. Typically, α= 2 in the standard IDW. Where d (x,xi)
is the distance between the interpolation point xi and the nearby discrete point x .
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AIDW interpolation algorithm
The Adaptive Inverse Distance Weighted (AIDW) is an improved version of the standard
IDW (Shepard, 1968) originated by Lu &Wong (2008). The distance-decay parameter α is
no longer a prespecified constant value but is adaptively adjusted for a specific unknown
interpolated point according to the distribution of the nearest neighboring data points.

The parameter α is taken as

α(µR)=



α1,

α1[1−5(µR−0.1)]+5α2(µR−0.1),
5α3(µR−0.3)+α2[1−5(µR−0.3)],
α3[1−5(µR−0.5)]+5α4(µR−0.5),
5α5(µR−0.7)+α4[1−5(µR−0.7)],
α5,

0.0≤µR≤ 0.1
0.1≤µR≤ 0.3
0.3≤µR≤ 0.5
0.5≤µR≤ 0.7
0.7≤µR≤ 0.9
0.9≤µR≤ 1.0

(17)

µR=


0,
0.5−0.5cos[π (R(S0)−Rmin)/Rmax],
1,

R(S0)≤Rmin

Rmin≤R(S0)≤Rmax

R(S0)≥Rmax

(18)

where the α1, α2, α3, α4, α5 are the to-be-assigned five levels or categories of distance decay
value. Rmin or Rmax refer to a local nearest neighbor statistic value, and Rmin and Rmax can
generally be set to 0.0 and 2.0, respectively. Then,

R(S0)=
2
√
N/A
k

k∑
i=1

di (19)

where N is the number of points in the study area, A is the area of the study region, k is
the number of nearest neighbor points, di is the nearest neighbor distances and S0 is the
location of an interpolated point.

METHODS
Implementations of the spatial interpolation algorithms
We have implemented the spatial interpolation algorithms of RBF (Ding et al., 2018b), MLS
(Ding et al., 2018a), IDW (Mei, 2014), and AIDW (Mei, Xu & Xu, 2017) in our previous
work. To evaluate the computational performance of theGPU-accelerated interpolation, we
implement and compare (1) the sequential implementation, (2) the parallel implementation
developed on a multicore CPU, (3) the parallel implementation using a single GPU, and
(4) the parallel implementation using multiple GPUs.

There are two key ideas behind the presented spatial interpolation algorithm:
(1) We use an efficient k-Nearest Neighbor (kNN) search algorithm (Mei, Xu & Xu,

2016) to find the local set of data points for each interpolated point.
(2) We employ the local set of data points to compute the prediction value of the

interpolated point using different interpolation methods.
Mei & Tian (2016) evaluated the impact of different data layouts on the computational

efficiency of the GPU-accelerated IDW interpolation algorithm. They implemented three
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IDW versions of GPU implementations, based upon five data layouts, including the
Structure of Arrays (SoA), the Array of Structures (AoS), the Array of aligned Structures
(AoaS), the Structure of Arrays of aligned Structures (SoAoS), and a hybrid layout, then
they carried out several groups of experiments to evaluate the impact of different data
layouts on the interpolation efficiency. Based on their experimental results, the layout SoA
is shown in Listing 1.

struct Pt {
float x[N];
float y[N];
float z[N];

};
struct Pt myPts;

Listing 1: The layout SoA

The kNN (Cover & Hart, 1967) is a machine learning algorithm often used in
classification, the k-Nearest Neighbor means that each data point can be represented
by its k nearest neighbor points. In all of the presented interpolation algorithms, for each
interpolation point, a local set of data points is found by employing the kNN search
procedure and the found local sets of data points are then used to calculate the prediction
value of the interpolation point. For large size of DEM, the kNN search algorithm can
effectively improve the speed of interpolation by searching only the points near the
interpolation points (Mei, Xu & Xu, 2016).

Assuming there are m interpolated points and n data points, the process of the kNN
search algorithm is as follows:

Step 1: the k distances between the k data points and each of the interpolated points
are calculated; for example, if the k is set to 5, then there are 5 distances needed to be
calculated; see the row (A) in Fig. 1.

Step 2: The k distances are sorted in ascending order; see the row (B) in Fig. 1.
Step 3: For each of the rest (m-k) data points,
(1) The distance d is calculated, for example, the distance is 4.2 (d = 4.2);
(2) The d with the kth distance are compared: if d < the kth distance, then replace the

kth distance with the d (see row (C));
(3) Iteratively compare and swap the neighboring two distances from the kth distance

to the 1st distance until all the k distances are newly sorted in ascending order; see the rows
(C)–(E) in Fig. 1.

Creation of the testing data
Two sets of DEM data were downloaded from the Geospatial Data Cloud (http:
//www.gscloud.cn//). More specifically, two 30-m resolution DEMs for two 20 km ×
20 km regions in Hebei and Sichuan provinces were selected. The topography of Hebei
province is mainly plain, while the topography of Sichuan province is mainly mountainous.
Two sets of DEM data are derived from remote sensing satellites and compiled by the CNIC
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Figure 1 An illustration of the process of the kNN search algorithm.
Full-size DOI: 10.7717/peerjcs.263/fig-1

(Computer Network Information Center, Chinese Academy of Sciences). More details on
the selected DEMs are presented in Fig. 2.

Data points and interpolated points (listed in Tables 1 and 2) are produced as follows:
(1) The selected DEMs is imported into the software ArcGIS.
(2) A square region S is delimited in selected DEMs. For example, the two 20 km × 20

km regions shown in Fig. 2.
(3) Generating the x and y coordinates of randomly determined points by random

number generation algorithms in the square region S, and then accessing the corresponding
z coordinates from the DEM (the randomly determined points are the data points P1).
Evenly distributed (regularly distributed) data points are randomly extracted using the
Linear Congruential Random Number Method (Lehmer, 1949), and normally distribution
(irregularly distributed, mathematical expectation µ= 10,000, standard deviation σ =
3,333) data points are randomly extracted using the Box–Muller Method (Box & Muller,
1958). For example, we set Size 1, the extracted regularly distributed data points P1 =
249,990 (Table 1), and density is P1/S0 (S0 is the area of S, and S0 is a fixed value, where
S0 = 20 km × 20 km).

(4) The square region S is triangulated into a planar triangular mesh using the Del auney
algorithm (Watson, 1981), the mesh nodes are considered to be the interpolation points,
with known x and y coordinates and unknown z coordinates, the unknown z coordinates
is the estimated value to be obtained by interpolation. According to the randomly sampled
points obtained in Step 3, we use the interpolation method mentioned in ‘Background’ to
interpolate. Then, the corresponding exact elevation of the interpolation point is obtained
by accessing the z value of the DEM at the associated x and y coordinates. Finally, the z
values at the mesh points are used as control for testing the accuracy of the interpolated z
values.

To quantitatively determine regular and irregular point sampling, Average Nearest
Neighbor analysis (Ebdon, 1985) is applied. In the proposed method, Nearest Neighbor
Ratio (NNR) is used to evaluate the distribution pattern of sample points: if the NNR > 1,
the distribution pattern shows clustered; if the NNR < 1, the distribution pattern shows
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Figure 2 The selected Zone 1 and Zone 2. (A) 2.5D model of the Zone 1 study area and (B) 2.5D model
of the Zone 2 study area.

Full-size DOI: 10.7717/peerjcs.263/fig-2

dispersed. As listed in Table 3, the NNR of regularly-distributed, approximately 1.001, is
greater than 1, the distribution pattern is dispersed (Fig. 3A), that is regularly-distributed;
the NNR of irregularly-distributed, approximately 0.78, is less than 1, the distribution
pattern is clustered (Fig. 3B), that is irregularly-distributed.

Zone 1 (Flat Zone)
The first selected region is located in Hengshui City, Hebei Province. The DEM of this
region has the identifier ASTGTM_N37E115 and is derived from the Geospatial Data
Cloud (http://www.gscloud.cn/). The location and elevation of this region is illustrated in
Fig. 2. In the region, the highest elevation is 48 m and the lowest is 8 m. We translated the
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Table 1 Ten used groups of experimental testing data in the Flat zone.

Data set Number of
data points

Number of
interpolated points

Size 1 249,990 259,496
Size 2 499,975 529,080
Size 3 999,883 1,036,780
Size 4 1,499,750 1,540,373

Regularly-
distributed

Size 5 1,999,566 2,000,520
Size 1 249,920 259,496
Size 2 499,751 529,080
Size 3 998,840 1,036,780
Size 4 1,497,397 1,540,373

Irregularly-
distributed

Size 5 1,995,531 2,000,520

Table 2 Ten used groups of experimental testing data in the Rugged zone.

Data set Number of
data points

Number of
interpolated points

Size 1 249,994 259,496
Size 2 499,970 529,080
Size 3 999,884 1,036,780
Size 4 1,499,746 1,540,373

Regularly-
distributed

Size 5 1,999,544 2,000,520
Size 1 249,924 259,496
Size 2 499,728 529,080
Size 3 998,867 1,036,780
Size 4 1,497,444 154,0373

Irregularly-
distributed

Size 5 1,995,443 2,000,520

Table 3 The NNR of regular and irregular point sampling.

Data set Flat zone Rugged
zone

Size 1 1.001731 1.001170
Size 2 1.001219 1.001291
Size 3 1.001437 1.001173
Size 4 1.001987 1.001758

Regularly-
distributed

Size 5 1.002431 1.001869
Size 1 0.783242 0.781741
Size 2 0.782947 0.784534
Size 3 0.783653 0.784086
Size 4 0.784653 0.784056

Irregularly-
distributed

Size 5 0.783745 0.784888
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Figure 3 The distribution patterns determined by the Average Nearest Neighbor analysis. (A) Regu-
larly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-3

X coordinate by 348,000 and the Y coordinate by 4,130,000 to obtain a 20 km ×20 km
square area centered on the origin. Five sets of benchmark test data were generated in this
region; see Table 1.

Zone 2 (Rugged Zone)
The second selected region is located in Ganzi Tibetan Autonomous Prefecture, Sichuan
Province. The DEM of this region has the identifier ASTGTM_N29E099 and is derived
from the Geospatial Data Cloud (http://www.gscloud.cn/). The location and elevation
of this region is illustrated in Fig. 2. In the region, the highest elevation is 5,722 m and
the lowest is 3,498 m. We translated the X coordinate by 570,000 and the Y coordinate
by 3,300,000 to obtain a 20 km ×20 km square area centered on the origin. Five sets of
benchmark test data are generated in this region; see Table 2.

Criteria for comparison
In this paper, we evaluate the interpolation algorithms described in ‘Background’ by: (1)
comparing the interpolation accuracy and efficiency when the terrain is gentle and rugged,
and (2) comparing the interpolation accuracy and efficiency when data points are evenly
distributed and nonuniformly distributed.

The accuracy of each interpolation method is analyzed by comparing the elevation
values predicted by the interpolation algorithms with the real DEM elevation value. The
efficiency of each interpolation method is compared by benchmarking the running time of
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Table 4 Specifications of the workstation and the software used for the experimental tests.

Specifications Details

CPU Intel Xeon E5-2650 v3
CPU Frequency 2.30 GHz
CPU RAM 144 GB
CPU Core 40
GPU Quadro M5000
GPUMemory 8 GB
GPU Core 2048
OS Windows 7 Professional
Compiler Visual Studio 2010
CUDA Version v8.0

different implementations developed in sequence, on a multicore CPU, on a single GPU,
and on multiple GPUs.

RESULTS
Experimental environment
To evaluate the computational performance of the presented various parallel interpolations,
we conducted ten groups of experimental tests in both the flat zone and the rugged zone
on a powerful workstation equipped with two Quadro M5000 GPUs. The specifications of
the workstations are listed in Table 4.

Test results of interpolation accuracy for different interpolation
algorithms
In this paper, we adopt theNormalized Root-Mean-Square-Error (NRMSE) as themetric to
measure the interpolation accuracy of the different interpolation algorithms. The NRMSE
is defined in Eq. (20).

Normalized Root-Mean-Square-Error (NRMSE):

NRMSE =
1

max1≤i≤Ni

∣∣fa∣∣
√√√√ 1

Ni

Ni∑
i=1

∣∣fn− fa∣∣2 (20)

where Ni is the number of interpolated points, fa is the theoretically exact solution of the
ith interpolated point (the elevation of the DEM at this point), and fn is the predicted value
of the ith interpolated point.

The interpolation accuracy of the ten groups of experimental tests is listed in Table 5.
The numerical value shown in Table 5 is NRMSE, which means that the smaller the
numerical value, the higher the interpolation accuracy.

As listed in Table 5, the most accurate interpolation algorithm is the MLS interpolation
algorithm. For the small size (Size 1), compared with other two algorithms, the MLS
algorithm is 13.1%–49.4% more accurate than the RBF algorithm, and it is 2.1%–75.8%
more accurate than the Shepard’s algorithm. On the other hand, for the same algorithm,
when the distribution pattern is the same, its accuracy in the flat area is higher than that
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Table 5 Interpolation accuracy of the parallel interpolation algorithms implemented on a single GPU.

Data set Original
MLS

Orthogonal
MLS

Lancaster’s
MLS

kNN
RBF

kNN
AIDW

kNN
IDW

kNN
shepard1

kNN
shepard2

Size 1 7.49E−5 7.49E−5 7.50E−5 9.23E−5 1.06E−4 1.07E−4 1.05E−4 1.03E−4
Size 2 6.25E−5 6.25E−5 6.03E−5 6.85E−5 7.92E−5 7.98E−5 7.81E−5 7.80E−5
Size 3 5.52E−5 5.52E−5 5.23E−5 5.67E−5 6.17E−5 6.19E−5 6.15E−5 6.23E−5
Size 4 5.16E−5 5.16E−5 4.88E−5 5.24E−5 5.45E−5 5.46E−5 5.47E−5 5.58E−5

Regularly
dis-
tributed

Size 5 4.91E−5 4.91E−5 4.64E−5 4.99E−5 5.05E−5 5.05E−5 5.08E−5 5.20E−5
Size 1 1.96E−4 1.96E−4 1.86E−4 2.14E−4 1.90E−4 1.95E−4 1.98E−4 2.02E−4
Size 2 1.53E−4 1.53E−4 1.48E−4 1.71E−4 1.57E−4 1.60E−4 1.62E−4 1.65E−4
Size 3 1.20E−4 1.20E−4 1.15E−4 1.36E−4 1.28E−4 1.31E−4 1.32E−4 1.33E−4
Size 4 1.07E−4 1.07E−4 1.02E−4 1.21E−4 1.15E−4 1.17E−4 1.18E−4 1.19E−4

Flat
zone

Irregularly-
distributed

Size 5 9.50E−5 9.50E−5 9.14E−5 1.07E−4 1.05E−4 1.05E−4 1.06E−4 1.07E−4
Size 1 2.23E−4 2.23E−4 2.58E−4 4.41E−4 9.21E−4 9.26E−4 9.43E−4 9.69E−4
Size 2 1.23E−4 1.23E−4 1.35E−4 2.35E−4 6.13E−4 6.16E−4 6.35E−4 6.63E−4
Size 3 9.09E−5 9.09E−5 9.07E−5 1.37E−4 4.13E−4 4.12E−4 4.33E−4 4.58E−4
Size 4 8.13E−5 8.13E−5 7.99E−5 1.08E−4 3.31E−4 3.30E−4 3.50E−4 3.71E−4

Regularly-
distributed

Size 5 7.62E−5 7.62E−5 7.48E−5 9.39E−5 2.85E−4 2.83E−4 3.02E−4 3.21E−4
Size 1 3.37E−3 3.37E−3 3.02E−3 3.99E−3 4.06E−3 4.12E−3 4.11E−3 4.07E−3
Size 2 1.98E−3 1.98E−3 1.88E−3 2.96E−3 3.49E−3 3.55E−3 3.57E−3 3.52E−3
Size 3 1.03E−3 1.03E−3 1.10E−3 1.56E−3 2.02E−3 2.05E−3 2.04E−3 2.02E−3
Size 4 8.15E−4 8.15E−4 8.21E−4 1.16E−3 1.70E−3 1.70E−3 1.68E−3 1.67E−3

Rugged
zone

Irregularly-
distributed

Size 5 6.33E−4 6.33E−4 6.59E−4 9.78E−4 1.35E−3 1.36E−3 1.36E−3 1.37E−3

the rugged area. For example, for the MLS algorithm, when the distribution pattern is
nonuniformly distributed, the accuracy of the Lancaster’ MLS algorithm in the flat area is
approximately 90% higher than that of the Lancaster’ MLS algorithm in the rugged area.

As shown in Figs. 4 and 5, theNRMSEs of various interpolationmethods for the regularly
distributed are less than 50% of the NRMSEs of various interpolation methods for the
irregularly distributed. The above behavior becomes even more obvious in the rugged zone
than in the flat zone. Thus, the regular distribution provides a more accurate solution for
both the rugged and the flat areas.

Test results of computational efficiency for different interpolation
algorithms
In our experimental tests, the value of k is 20. Those twenty groups of experimental
tests were performed on the workstations mentioned above. The running times and
corresponding speedups of each group of experimental tests are presented in the following
section. The speedup is defined in Eq. (21).

speedup=
Tseq

Tpar
(21)

where Tseq is the running time of sequential implementation, and Tpar is the running time
of parallel implementation.
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Figure 4 Interpolation accuracy of GPU-accelerated interpolation algorithms in the Flat zone. (A)
Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-4

Figure 5 Interpolation accuracy of GPU-accelerated interpolation algorithms in the Rugged zone. (A)
Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-5

Computational efficiency of sequential implementations
As listed in Table 6, for the sequential version, when giving the same sets of data points
and interpolation points, the order of computational time from fastest to slowest is: the
Shepard’s interpolation method, the MLS interpolation, and the RBF interpolation. The
computational time of Shepard’s interpolation method is approximately 20% less than the
MLS interpolation method, and it is approximately 70% less than the computational time
of the computational time of RBF interpolation method.

Computational efficiency of parallel implementations
As shown in Figs. 6– 11, the parallel version developed on multi-GPUs has the highest
speedup in the three parallel versions. Except for the RBF interpolation method, the
maximum speedups of other interpolation algorithms are greater than 45.
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Table 6 Running time (ms) of sequential implementations.

Data set Original
MLS

Orthogonal
MLS

Lancaster’s
MLS

kNN
RBF

kNN
AIDW

kNN
IDW

kNN
shepard1

kNN
shepard2

Size 1 1,571.33 1,501.67 1,613.00 4,194.33 1,520.67 1,239.00 1,290.67 1,270.33
Size 2 3,253.33 3,238.33 3,330.33 8,547.33 3,100.67 2,475.67 2,618.33 2,583.00
Size 3 6,355.67 6,063.33 6,487.67 16,610.67 6,154.67 4,957.33 5,196.33 5,125.33
Size 4 9,462.00 9,036.67 9,670.33 24,856.67 9,161.33 7,359.00 7,754.67 7,674.00

Regularly-
distributed

Size 5 12,403.33 11,854.00 12,725.33 32,370.33 12,050.67 9,643.33 10,230.67 10,058.00
Size 1 1,458.33 1,392.00 1,500.00 4,028.67 1,409.00 1,104.33 1,177.33 1,157.67
Size 2 3,042.33 2,919.67 3,115.00 8,291.33 2,923.00 2,300.33 2,430.67 2,397.33
Size 3 6,067.00 5,738.00 6,129.00 16,299.33 5,783.67 4,559.00 4,834.67 4,776.33
Size 4 8,856.00 8,491.33 9,142.00 24,286.00 8,636.33 6,779.33 7,211.33 7,105.00

Flat
zone

Irregularly-
distributed

Size 5 11,706.00 11,214.00 12,031.33 31,744.00 11,354.00 8,922.00 9,498.00 9,372.67
Size 1 1,576.00 1,497.67 1,605.33 4,148.00 1,512.67 1,204.67 1,278.00 1,264.00
Size 2 3,211.33 3,131.00 3,285.33 8,452.33 3,117.33 2,620.33 2,695.33 2,582.67
Size 3 6,354.33 6,064.67 6,500.33 16,649.33 6,139.67 4,898.00 5,200.33 5,127.67
Size 4 9,444.67 9,026.67 9,662.33 24,811.67 9,187.00 7,293.33 7,710.33 7,660.33

Regularly-
distributed

Size 5 12,416.67 11,853.33 12,711.33 32,372.67 12,008.33 9,606.33 10,205.67 10,062.00
Size 1 1,503.00 1,408.00 1,516.00 4,060.33 1,424.00 1,117.33 1,191.67 1,214.67
Size 2 3,032.33 2,883.33 3,110.33 8,274.33 2,925.67 2,277.00 2,424.00 2,391.33
Size 3 5,943.33 5,704.67 6,089.33 16,226.67 5,746.33 4,534.00 4,800.33 4,735.67
Size 4 8,920.00 8,524.33 9,132.33 24,262.00 8,654.67 6,781.67 7,224.00 7,115.67

Rugged
zone

Irregularly-
distributed

Size 5 11,632.33 11,147.33 11,925.33 31,612.00 11,282.33 8,885.33 9,435.67 9,320.33

Figure 6 Comparison of the speedups of the parallel implementations developed on amulticore CPU
in the Flat zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-6
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Figure 7 Comparison of the speedups of the parallel implementations developed on amulticore CPU
in the Rugged zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-7

Figure 8 Comparison of the speedups of the parallel implementations developed on a single GPU in
the Flat zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-8

As shown in Figs. 12 and 13, for the parallel version developed on multi-GPUs, the
order of the computational time from fastest to slowest is: the Shepard’s interpolation, the
MLS interpolation, the RBF interpolation method. The computational time of Shepard’s
interpolationmethod is 3%–30% less than the computational time of theMLS interpolation
method, and it is 70%–85% less than the computational time of the RBF interpolation
method.
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Figure 9 Comparison of the speedups of the parallel implementations developed on a single GPU in
the Rugged zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-9

Figure 10 Comparison of the speedups of the parallel implementations developed onmulti-GPUs in
the Flat zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-10

DISCUSSION
The interpolation accuracy and computational efficiency are two critical issues that should
be considered first in any interpolation algorithms. The interpolation accuracy should first
be satisfied; otherwise, numerical analysis results would be inaccurate. In addition, the
computational efficiency should be practical.

More specifically, in the subsequent sectionwewill analyze (1) the interpolation accuracy
of the presented eight GPU-accelerated interpolation algorithms with different data sets
and (2) the computational efficiency of the presented eight interpolation algorithms.
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Figure 11 Comparison of the speedups of the parallel implementations developed onmulti-GPUs in
the Rugged zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-11

Figure 12 Comparison of the running time of the parallel implementations developed onmulti-GPUs
in the Flat zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-12

Comparison of interpolation accuracy
To better compare the accuracy of the described interpolation algorithms, in the case of
the highest sample density (Size 5) and the lowest sample density (Size 1), we listed those
algorithms with the highest accuracy (i.e., the minimum NRMSE) in Table 7.

As listed in Table 7, for lower sample density (Size 1), the Original MLS algorithm has
the best interpolation performance in regularly distributed. However, for higher sample
density (Size 5), in general, the improved MLS algorithm Lancaster’s MLS has higher
interpolation accuracy than the Original MLS. In particular, the Original MLS has best
accuracy in the rugged zone with irregularly distributed interpolation points.

On the other hand, for Shepard’s interpolation algorithms, the kNNAIDW is an
improved version of the IDW, which can adaptively determine the power parameter
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Figure 13 Comparison of the running time of the parallel implementations developed onmulti-GPUs
in the Rugged zone. (A) Regularly distributed and (B) irregularly distributed.

Full-size DOI: 10.7717/peerjcs.263/fig-13

Table 7 The algorithmwith the highest accuracy in congeneric algorithms and its corresponding NRMSE.

Data set MLS algorithm RBF
algorithm

Shepard’s
interpolation
algorithm

Regularly-
distributed

Size 1 Original MLS
(7.49E–5)

kNNRBF
(9.23E–5)

kNNShepard2
(1.03E–4)

Flat zone
Size 5 Lancaster’s

MLS (4.64E–5)
kNNRBF
(4.99E–5)

kNNAIDW
(5.05E–5)

Irregularly
distributed

Size 1 Lancaster’s
MLS (1.86E–4)

kNNRBF
(2.14E–4)

kNNAIDW
(1.90E–4)

Size 5 Lancaster’s
MLS (9.14E–5)

kNNRBF
(1.07E–4)

kNNAIDW
(1.05E–4)

Regularly-
distributed

Size 1 Original MLS
(2.23E–4)

kNNRBF
(4.41E–4)

kNNAIDW
(9.21E–4)Rugged

zone Size 5 Lancaster’s
MLS (7.48E–5)

kNNRBF
(9.39E–5)

kNNIDW
(2.83E–4)

Irregularly-
distributed

Size 1 Lancaster’s
MLS (3.02E–3)

kNNRBF
(3.99E–3)

kNNAIDW
(4.06E–3)

Size 5 Original
MLS (6.33E–4)

kNNRBF
(9.78E–4)

kNNAIDW
(1.35E–3)

according to the spatial points’ distribution pattern. Therefore, in Shepard’s interpolation
algorithms, the kNNAIDW has higher accuracy in most situations. Although under
some specific conditions, the kNNShepard2 and kNNIDW have higher accuracy than
kNNAIDW, the accuracy of kNNAIDW is quite similar to them.

As listed Table 7. For the same flat zone, when the data points are uniformly distributed,
the order of the interpolation accuracy fromhigh to low is: theMLS interpolation algorithm,
RBF, and Shepard’s interpolationmethod; when the data points are normal distribution, the
order of the interpolation accuracy from high to low is: the MLS interpolation algorithm,
Shepard’s interpolation method, and RBF. For the same rugged zone, regardless of the
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Figure 14 Frequency distribution of the Relative Error for the parallel implementation developed on
a single GPU in the Flat zone. (A) Regularly distributed and (B) irregularly distributed. The size of data
points: Size 1.

Full-size DOI: 10.7717/peerjcs.263/fig-14

density and distribution of the data points, the interpolation accuracy order from high to
low is: the MLS interpolation algorithm, RBF, and Shepard’s interpolation method.

To further verify the above conclusions obtained from NRMSE, we investigated the
relative error of the interpolated results for the same set of data points and interpolation
points (i.e., Size 1). The algorithm with the highest accuracy (i.e., the minimum NRMSE)
is used to represent the kind of algorithm.

As shown in Figs. 14 and 15, the Y axis is the lgN (N is the count of relative error), and
the X axis is the relative error e. The e is defined in Eq. (22).

ei=
∣∣∣∣ fn− fafa

∣∣∣∣×100% (22)

where fa is the theoretically exact solution of the ith interpolated point (the elevation of
the DEM at this point), fn is the predicted value of the ith interpolated point, and ei is the
relative error of the ith interpolated point.

As listed in Tables 8 and 9. For better evaluation of relative error, we also calculated the
mean relative error E . The E is defined in Eq. (23)

E =
∑Ni

i=1ei
Ni

(23)

where Ni is the number of interpolated points.

In the flat zone
As shown in Fig. 14, for the flat region, when the data points are evenly distributed, the
frequency statistical curve of the MLS is the highest when it is close to zero, the lowest
when it is far away from zero, and the relative error distribution range is smaller, which
means that the error of MLSmethod is small. The characteristics of the frequency statistical
curve of Shepard’s method are completely opposite to those of MLS, which means that the
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Figure 15 Frequency distribution of the Relative Error for the parallel implementation developed on a
single GPU in the Rugged zone. (A) Regularly distributed and (B) irregularly distributed. The size of data
points: Size 1.

Full-size DOI: 10.7717/peerjcs.263/fig-15

Table 8 The algorithmwith the highest accuracy in congeneric algorithms and its corresponding
mean relative error in the Flat zone.

Distribution Mean Relative Error E (%)

Original MLS kNNRBF kNNShepard bRegularly-
distributed 0.0069 0.0078 0.0084

Lancaster’s MLS kNNRBF kNNAIDWIrregularly-
distributed 0.0144 0.0162 0.0148

Table 9 The algorithmwith the highest accuracy in congeneric algorithms and its corresponding
mean relative error in the Rugged zone.

Distribution Mean Relative Error E (%)

Original MLS kNNRBF kNNAIDWRegularly-
distributed 0.0514 0.0582 0.0904

Lancaster’s MLS kNNRBF kNNAIDWIrregularly-
distributed 0.3078 0.3493 0.3703

error of MLS method is large. For the RBF interpolation algorithm, the characteristic of the
frequency statistics curve is a transitional phase between those for the MLS and those for
Shepard’s method. The above curve features and E (Table 8) illustrate that the interpolation
accuracy is from high to low in this condition: the MLS interpolation algorithm, RBF, and
Shepard’s interpolation method.

When the data points are normally distributed, the relative error distribution ranges of
all the interpolation methods are larger than that for the uniformly distributed data points.
As shown in Fig. 14, the characteristics of the frequency statistics curve of RBF are obvious,
the frequency statistical curve of RBF is above the frequency statistical curves of MLS and
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Shepard’s method, which means that the error of RBF method is larger. The characteristics
of frequency statistical curves of MLS and Shepard’s method are very similar, and the
relative error distribution range of MLS is the largest. As listed in Table 8, in the flat zone,
the accuracy of MLS is slightly higher than Shepard’s method when the data points are
normally distributed.

In the rugged zone
As shown in Fig. 15, for the rugged region, regardless of whether the data points are
uniformly distributed or normally distributed, the characteristics of frequency statistical
curves of MLS, RBF and Shepard’s method are similar to those illustrated in Fig. 14.
However, in Fig. 15B, it is a little different in that most of the frequency statistical curve of
Shepard’s method is higher than the RBF’s. As listed in Table 9, the interpolation accuracy
is from high to low: the MLS interpolation algorithm, RBF, and Shepard’s interpolation
method.

According to the above Figures and Tables, some summary conclusions are obtained as
follows:

For the same region, when the density of data points is almost the same, the interpolation
accuracy when the data points are evenly distributed is higher than the interpolation
accuracy when the data points are nonuniformly distributed.

As listed in Tables 5 and 7, when the data points are evenly distributed, the gap of the
accuracy between the three variations of theMLSmethod, RBF, and Shepard’s interpolation
methods increases with the decrease of point density.

As shown in Figs. 14 and 15, when the data points are nonuniformly distributed, the
maximum relative errors of MLS is larger than other algorithms’, however, MLS method
has lower NRMSE and E. A small number of larger relative errors has little effect on the
overall interpolation accuracy. A large number of small and medium relative errors are the
key to determine the interpolation accuracy of the algorithm.

As listed in Table 5, compared with the uniform distribution, when the points are
nonuniformly distributed the difference in the accuracy of the interpolation algorithms is
not as sensitive to the changes of point density.

Compared with the three variations of the MLS method and the RBF method, Shepard’s
interpolation method is quite suitable for cases where the data points have a smooth trend.
When interpolating for the data points with an undulating trend, the accuracy of Shepard’s
interpolation method will be poor. When the density of data points is small, this rule
becomes more obvious.

Comparison of computational efficiency
The parallel implementations developed on multi-GPUs is the most efficient, therefore,
the parallel implementations developed on multi-GPUs are discussed below.

In the flat zone
As illustrated in Fig. 12, for the flat region, except for the kNNRBF, when the number of
data points is not much different, the nonuniformly distributed data point set requires
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Figure 16 Comparison of the running time cost in the kNN search procedure. (A) Sequential version
on single CPU and (B) Parallel version on single GPU.

Full-size DOI: 10.7717/peerjcs.263/fig-16

significantly more interpolation time than the uniformly distributed data point set, and
with the increase of the number of points, interpolation time does increase as well.

As illustrated in Fig. 10, the speedups achieved by the RBF interpolation method is
generally small, and its speedups are not much different in various cases. However, when
the size of data point set is Size 1 and the data point set is nonuniformly distributed, the
speedup of the RBF interpolation method is larger than other methods, which means that
the benefits of parallelism are lower in this case.

As indicated above, the distribution pattern of data points strongly influences the
interpolation efficiency.

In the rugged zone
As illustrated in Figs. 11 and 13, the running time and the speedups in the rugged region
are almost the same as those in the flat region. In other words, the characteristics of the
terrain elevation of data points have a weak influence on computational efficiency.

Influence of kNN search on computational efficiency
According to ‘Methods’ , in the interpolation procedure, the kNN search may affect the
entire computational efficiency of interpolation.

To specifically evaluate the influence of the kNN search on the computational efficiency
of the entire interpolation procedure, we investigated the computational cost of the kNN
search for relatively large numbers of data points, i.e., for the dataset of Size 5 (listed in
Fig. 16).

Note that we employ four sets of data points with Size 5, including (1) the set of uniformly
distributed data points and the set of nonuniformly distributed data points in the flat region
and (2) the set of uniformly distributed data points and the set of nonuniformly distributed
data points in the rugged region.

As listed in Table 10, for the sequential version, regardless of whether the data points are
uniformly distributed or nonuniformly distributed, the kNN search costs approximately
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Table 10 Proportion of the kNN search time to the running time of the sequential implementations. The proportion is TkNN
Trun
× 100%, where

TkNN is the kNN search time, and Trun is the running time of the corresponding sequential implementations.

Data set Original
MLS

Orthogonal
MLS

Lancaster’s
MLS

kNN
RBF

kNN
AIDW

kNN
IDW

kNN
shepard1

kNN
shepard2

Regularly-distributed 74.9% 78.4% 73.0% 28.7% 77.1% 96.4% 90.8% 92.4%
Flat zone

Irregularly-distributed 72.8% 76.0% 70.8% 26.8% 75.1% 95.5% 89.7% 90.9%
Regularly-distributed 73.7% 77.2% 72.0% 28.3% 76.2% 95.3% 89.7% 91.0%Rugged

zone Irregularly-distributed 73.0% 76.2% 71.2% 26.9% 75.3% 95.6% 90.0% 91.1%

Table 11 Proportion of the kNN search time to the running time of the parallel implementations developed on a single GPU. The proportion is
TkNN
Trun
×100%, where TkNN is the kNN search time, and Trun is the running time of the corresponding parallel implementations.

Data set Original
MLS

Orthogonal
MLS

Lancaster’s
MLS

kNN
RBF

kNN
AIDW

kNN
IDW

kNN
shepard1

kNN
shepard2

Regularly-distributed 46.2% 41.3% 44.3% 6.3% 54.6% 65.0% 63.1% 62.0%
Flat zone

Irregularly-distributed 67.8% 66.8% 68.3% 23.1% 69.5% 71.0% 70.3% 70.4%
Regularly-distributed 45.8% 41.2% 44.4% 6.3% 54.6% 65.3% 62.5% 63.3%Rugged

zone Irregularly-distributed 68.7% 67.4% 69.0% 22.0% 70.5% 72.3% 71.4% 71.7%

75%of the computational time of the entire interpolation procedure for the three variations
of the MLS interpolation algorithm and the AIDW interpolation algorithm, whereas the
kNN search costs less than 30% of the computational time for the RBF interpolation
algorithm and approximately 90% in the other three variations of Shepard’s method. It
should also be noted that for the same size of data points, whether they are uniformly or
nonuniformly distributed, there is no significant difference in the computational cost of
the kNN search; that is, the distribution pattern of data points is of weak influence on the
computational efficiency of the kNN search in the sequential version.

As listed in Table 11, for the parallel version developed on a single GPU, when the sizes
of data points are almost the same, it would cost much more time in the kNN search when
the data points are nonuniformly distributed than when the data points are uniformly
distributed. Moreover, when the data points are nonuniformly distributed, the proportion
of the kNN search time to the total time is approximately 10% to 20% more than the
proportion when the data points are uniformly distributed under the same conditions.

On the GPU, for the same interpolation method and the same data size, the proportion
of the kNN search time relative to the total time when the data points are nonuniformly
distributed is larger than that when the data points are uniformly distributed, and the
achieved speedups are small.

However, on the CPU, the proportion of kNN search time when the data points are
nonuniformly distributed relative to the total time is similar to that when the data points
are uniformly distributed, and the achieved speedups are similar. This is because there are
a large number of logical operations, such as switches in the kNN search, and the GPU is
inherently not as suitable for performing logical operations as the CPU.

In the kNN search procedure, the number of points in the search range is slightly
smaller than k after determining a certain level. After the level is expanded, the number
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of points in the search range will be more than k. In this case, the k nearest neighbors
should be selected and the redundant neighbors should be ignored by first sorting and then
discarding. Unfortunately, there are a large number of logical operations in sorting.

In this procedure of sorting and discarding, when the point density is intensive in a
region, the number of found nearest neighbors would be far more than the expected k, and
much computational time would thus be required to sort the found neighbors.

For areas with sparse data points, it takesmore time to find enough k points by expanding
the region level. Therefore, in contrast to a uniform distribution, when the data point set
is nonuniformly distributed, the kNN search needs more computational time and its
proportion of the total time is also greater.

CONCLUSION
In this paper, we present the development of the sequential version, the parallel version
on a multicore CPU, the parallel version on a many-core GPU, and the parallel version on
multi-GPUs for each of the eight variations of the MLS, RBF, and Shepard’s interpolation
algorithms. We also evaluated the interpolation accuracy and computational efficiency
for the above four versions of each variation when building large-scale DEMs. We have
obtained the following observations.

(1) The distribution pattern of data points and the landscape conditions strongly
influences the interpolation accuracy. The distribution pattern of data points strongly
influences the interpolation efficiency, and the landscape conditions have a weak influence
on the interpolation efficiency.

(2) For the same flat region, when the density of points is large, there is no obvious
difference in terms of the interpolation accuracy for all interpolation methods. When the
data points are uniformly distributed and the density of points is small, the order of the
interpolation accuracy from high to low is: the MLS interpolation algorithm, RBF, and
Shepard’s interpolation method. When the data points are nonuniformly distributed and
the density of points is small, the order of the interpolation accuracy from high to low is:
the MLS interpolation algorithm, Shepard’s interpolation method, and RBF.

(3) For the same rugged region, regardless of the density and distribution of the data
points, the interpolation accuracy order from high to low is: the MLS interpolation
algorithm, RBF, and Shepard’s interpolation method. When the data points are uniformly
distributed, the above rules aremore obvious than thosewhen data points are nonuniformly
distributed.

(4) The Shepard’s interpolation method is only suitable for application in cases where
the data points have smooth trends. When the data points have uniformly rugged trends,
the accuracy of Shepard’s interpolation method is rather unsatisfactory, especially in the
case when the density of data points is small.

(5) For the same set of data points and interpolation points, the order of computational
expense from high to low is: the RBF interpolation method, the MLS algorithm, and
Shepard’s method Moreover, for the same size of data points and interpolation points, the
computational efficiency in the case when the data points are nonuniformly distributed is
worse than when the data points are uniformly distributed.
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(6) For the same interpolation method, the impact of kNN search on the computational
efficiency of the CPU versions and the GPU versions is different. Specifically, the percentage
of the computational time of kNN search relative to the computational time of the entire
interpolation procedure in the CPU versions is much smaller than in the GPU versions.
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