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ABSTRACT
Conceptors are a recent development in the field of reservoir computing; they can
be used to influence the dynamics of recurrent neural networks (RNNs), enabling
generation of arbitrary patterns based on training data. Conceptors allow interpolation
and extrapolation between patterns, and also provide a system of boolean logic for
combining patterns together. Generation and manipulation of arbitrary patterns using
conceptors has significant potential as a sound synthesis method for applications
in computer music but has yet to be explored. Conceptors are untested with the
generation ofmulti-timbre audio patterns, and little testing has been done on scalability
to longer patterns required for audio. A novel method of sound synthesis based
on conceptors is introduced. Conceptular Synthesis is based on granular synthesis;
sets of conceptors are trained to recall varying patterns from a single RNN, then
a runtime mechanism switches between them, generating short patterns which are
recombined into a longer sound. The quality of sound resynthesis using this technique
is experimentally evaluated. Conceptor models are shown to resynthesise audio with
a comparable quality to a close equivalent technique using echo state networks with
stored patterns and output feedback. Conceptor models are also shown to excel in
their malleability and potential for creative sound manipulation, in comparison to
echo state network models which tend to fail when the samemanipulations are applied.
Examples are given demonstrating creative sonic possibilities, by exploiting conceptor
pattern morphing, boolean conceptor logic and manipulation of RNN dynamics.
Limitations of conceptor models are revealed with regards to reproduction quality,
and pragmatic limitations are also shown, where rises in computation and memory
requirements preclude the use of these models for training with longer sound samples.
The techniques presented here represent an initial exploration of the sound synthesis
potential of conceptors, demonstrating possible creative applications in sound design;
future possibilities and research questions are outlined.

Subjects Artificial Intelligence, Multimedia
Keywords Sound synthesis, Machine learning, Reservoir computing, Conceptors, Dynamical
systems, Echo state networks

INTRODUCTION
Machine Learning and Sound Synthesis
Current intersections between sound synthesis and machine learning are evolving
quickly. We have seen significant progress in symbolic note generation (e.g., RL Tuner
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(Jaques et al., 2016), Flow Machines (Ghedini, Pachet & Roy, 2016)), parametric
control of sound synthesis models (e.g Wekinator (Fiebrink, 2011), automatic VST
programming (Yee-King, Fedden & d’Inverno, 2018)) and also with current state of the art
raw audio generation techniques. These recent advances in raw audio synthesis principally
use deep architectures, for exampleWaveNet (Oord et al., 2016), SampleRNN (Mehri et al.,
2016), NSynth (Engel et al., 2017), GANSynth (Engel et al., 2019) andWaveGAN (Donahue,
McAuley & Puckette, 2018), to generate low-level audio representations (sample or spectral
level) without using a synthesis engine, working as self-contained models that merge sound
generation and control into one.

There is also significant interest from the computermusic community in sound synthesis
with dynamical and chaotic systems, with strong connections to RNN techniques being
used in contemporary deep architectures. This goes back to the earlier work of composers
such as Roland Kayn who composed with electronic cybernetic systems, and is reflected in
more recent work from, for example, Sanfilippo & Valle (2013) on feedback systems, Ianigro
& Bown (2018) on sound synthesis with continuous-time recurrent neural networks,Wyse
(2018) on sound synthesis with RNNs andMudd (2017) on nonlinear dynamical processes
in musical tools.

The work presented here draws on overlapping research in both machine learning and
dynamical systems techniques, in the context of sound synthesis.

Reservoir computing
While many contemporary developments in machine learning and sound synthesis are
based on deep neural network paradigms, pioneering work has also been taking place
within the bio-inspired field of reservoir computing (RC) (Schrauwen, Verstraeten & Van
Campenhout, 2007). Within the RC paradigm, computation is performed using a structure
that groups an untrained reservoir with a fixed input layer and a trainable output layer. The
reservoir is a complex dynamical systemwhich is perturbed by input signals and transforms
these signals into a high-dimensional state space, the current state being dependent on both
the current input and on a fading history of previous inputs. The output layer performs
a linear transformation of the current reservoir state, and can be trained using supervised
methods. RC systems can learn nonlinear and temporal mappings between the input and
output signals. A reservoir can be created using both physical systems (e.g bacteria (Jones
et al., 2007), a bucket of water (Fernando & Sojakka, 2003) or optics (Duport et al., 2016))
and digital systems. The latter usually take the form of liquid-state machines (Maass,
Natschläger & Markram, 2002) or echo state networks (ESNs) (Jaeger, 2010).

Echo state networks
ESNs have so far been the primary technique employed for sound and music applications
within the RC field. An ESN (see Fig. 1) uses a randomly generated recurrent neural network
(RNN) as a reservoir. This reservoir is connected to inputs and output via single layers of
weights. The output layer weights can be trained using linear optimisation algorithms such
as ridge regression (Lukoševičius, 2012, p. 10).

ESNs are inherently suited to audio applications due to their temporal dynamics.
Jaeger’s original work with ESNs included examples of models being trained to output
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Figure 1 An example of an Echo State Network with ten sparsely connected nodes, single inputs and
outputs, and fully connected input and output layers.

Full-size DOI: 10.7717/peerjcs.205/fig-1

discrete-periodic sequences and learning to behave as sine wave oscillators (Jaeger, 2010).
Subsequently, ESNs have been applied to a range of creative sound and music tasks.
These include symbolic sound generation tasks such as melody generation (Jaeger &
Eck, 2006) and generative human-feel drumming (Tidemann & Demiris, 2008); direct
audio manipulation and synthesis applications bear examples of amplifier modelling,
audio prediction and polyphonic transcription (Holzmann, 2009b; Holzmann, 2009a;
Keuninckx, Danckaert & Van der Sande, 2017); they have also been used for modelling
complex mappings in interactive music systems (Kiefer, 2014).

Under the classical ESN approach, as applied to the task of sound synthesis, ESNs are
trained as audio rate pattern generators. A limitation of the classical ESN approach is that
it is challenging to learn multiple attractors, corresponding to the generation of multiple
patterns on different timescales with a single reservoir, althoughHolzmann (2009a) offered
a solution by decoupling the reservoir with IIR filter neurons.

A recent development of the ESN paradigm comes in the form of conceptors, an
addition to the basic architecture of ESNs that enables the behaviour of the reservoir to be
manipulated.

Conceptors
Conceptors (Jaeger, 2014a), offer a highly flexible method for generating and manipulating
multiple patterns within single reservoirs. Conceptors are a mechanism for performing
a variety of neuro-computational functions, the ones most relevant to sound synthesis
being incremental learning and generation of patterns, morphing and extrapolation of
patterns, cued pattern recall, and the use of boolean logic to combine patterns (Jaeger,
2014a). They work by learning the subset of state space visited by an RNN when driven by
a particular input. They can then be used to restrict the RNN to operate with this subspace,
functioning like an attractor (Gast et al., 2017). The separation of an RNN’s state space
in this manner allows multiple attractors to be learned using the same network, and for
combinations of these subspaces to be used to manipulate the dynamics and output of
the RNN. The potential for combination of conceptors is a very powerful feature of this
technique, and Jaeger describes boolean logic rules for achieving this (Jaeger, 2014b p.50).
Their strong potential for pattern generation, extrapolation and manipulation, and the
combination of continuous and discrete-boolean methods of manipulation are compelling
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reasons to believe they will have strong applications in the field of audio and creative sound
production. Sound generation with conceptors has, however, yet to be explored. Jaeger’s
original work focuses on generation of short patterns of 20 samples of less, where much
longer patterns are required for sound generation. Questions are unanswered concerning
whether conceptors will (a) effectively generate longer patterns needed to synthesise audio
signals at reasonable sample rates, (b) allow generation and combination of patterns with
varied timbres within a single model and (c) produce signals effectively when evaluated
with perceptually realistic audio comparison measurements. This paper approaches these
questions through the application of conceptor models to a standard sound synthesis
technique. It evaluates the effectiveness of conceptors at resynthesising sampled sound,
and demonstrates conceptor-based sound synthesis techniques within a granular synthesis
paradigm.

New sound synthesis methods
A new method of conceptor-based sound synthesis is demonstrated, named conceptular
synthesis. This is a synthesis method based on granular synthesis. Granular synthesis (Roads,
2004) is based on the sequencing, combination and manipulation of short (typically 20
ms–100 ms) windowed segments (grains) of sampled sound. It is a powerful technique
for creating and coherently manipulating sound; applications include time and pitch
independent stretching of pre-recorded audio. In conceptular synthesis, an RNN model
is trained to generate grains, which are recalled by conceptors. The use of conceptor
based RNN models allows flexible sound manipulation through creative combinations
of conceptors to influence reservoir behaviour. This method is described below; to begin
with, a mathematical description of the RNN and conceptor models is presented.

BASIC MODELS
This section summarises the fundamental methods used in the creation of the sound
synthesis models described below. For a more detailed explanation of these methods,
please refer to Jaeger’s extensive technical report on conceptors (Jaeger, 2014b). The
notation used below will be used throughout the paper. Matrices are represented by capital
letters, vectors by lower-case letters, and scalar variables are shown using the greek alphabet.
x(n) denotes the state of vector x at timestep n.M ′ denotes the transposition of matrixM .

The basic model is an RNN consisting of ψ nodes, updated according to Eqs. (1)–(3):

z(n+1)=Wx(n)+W ina(n+1) (1)

At discrete time step n, activation levels for each RNN node are stored in state vector x
of size ψ . The nodes are sparsely connected such that each node is connected, on average,
to 10 other nodes (as recommended in Lukoševičius (2012, section 3.2.2). Connection
weight values are stored in weight matrix W (of size ψ x ψ). Unconnected nodes share a
weight value of 0. An input signal vector a (size 1) is fully connected to the RNN nodes
with the input weight matrix W in (size ψ x 1). W in is generated using linear random
values between −γ input and γ input . Reservoir weight values are randomly chosen from a
normal distribution, scaled according to the spectral radius γW (to limit the maximum
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absolute eigenvalue), and then optimised during training. In Eq. (1), the activation levels
for each node are stored in vector z ; in Eq. (2) these activation values are passed through a
nonlinearity, and smoothed using leaky integration.

x(n+1)= (1−α)x(n)+αtanh(z(n+1)+b) (2)

b is a vector of ψ biases, which are generated from a linear random distribution between
−γ bias and γ bias. Scaling in the above cases refers to a tensor being multiplied element-wise
by a scalar value, X =Xγ . The tanh smoothing function ensures that the reservoir states
remain in the range −1 to 1, and introduces a nonlinearity into each node. α is a leaky
integration coefficient (Lukoševičius, 2012, section 3.2.6). This adds a one-pole lowpass
filter to each node; lowering α (between 0 and 1) will slow down reservoir dynamics. This
parameter can be fine-tuned to align the temporal dynamics of the reservoir to those of
the desired output.

y(n+1)=W outx(n+1) (3)

Output weights W out are a matrix of size 1 x ψ , whose values are optimised during
training. The output vector y is a vector of size 1.

A model is trained in two phases: (a) audio signals aj are stored (Jaeger, 2014a) in the
reservoir, so that they can later be reproduced, (b) a conceptor is calculated for each audio
signal. Following training, the model and conceptors are combined and manipulated to
synthesise sound.

Storing patterns in the RNN and calculating output weights
In this phase of training, a set of randomly generated reservoir weights W ∗ are adapted
so that the model can reproduce an array of driving audio signals aj , resulting in a new
set of weights W . The number of elements in aj is determined by the sample slicing
process detailed below. W ∗ is optimised such that (a) Wx(n)≈W ∗x(n)+W ina(n), i.e.,
the reservoir can simulate the driving inputs in their absence, and (b) the magnitudes of
weightsW are minimised. The resulting weight matrixW is used in all further calculations.
W in is no longer required after this step.

Training starts with a washout phase of length λ where the reservoir dynamics are
allowed to settle, reducing influence from any transients that might result from the initial
randomised state and that may adversely affect training. The model is subsequently driven
by an input for length φ. The size of φ is task dependent, but should by large enough to
collect the reservoir states that are likely to occur when perturbed by the input sequence. φ
is calculated as an integer multiple of the length of training signal aj . The training process
works as follows: for each pattern aj , the reservoir with weightsW ∗ is driven from an initial
randomised state for λ+φ steps using Eqs. (1) and (2), and the resultant reservoir states
are collected.

Beginning at timestep 0, the states x from timesteps λ−1...λ+φ−2 are stored in ψ x
φ matrix, X̃ j ; states x from timesteps λ...λ+φ−1 are stored in ψ x φ matrix, X j ; states z
from timesteps λ...λ+φ−1 are stored in ψ x φ matrix, M j . The remaining states from
the washout phase are discarded. The driving signals aj from timesteps λ...λ+φ−1 are
stored in 1 x φ matrices P j .
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These collections are concatenated intomatrices X̃ = [X̃ 1
|X̃ 2
|...X̃n

],X = [X 1
|X 2
|...Xn

],
M = [M 1

|M 2
|...Mn

] and P = [P1
|P2
|...Pn

]

W and W out can now be calculated using linear regression. The regression could
be solved using a number of techniques; in this case, following Jaeger’s initial work on
conceptors (Jaeger, 2014b), ridge regression is used:

W = ((X̃ X̃ ′+ρW Iψxψ )−1X̃M ′)′ (4)

W out
= ((XX ′+ρout Iψxψ )−1XP ′)′ (5)

In both of the above, I is an identity matrix and ρW and ρout are regularisation factors.

Calculating conceptors
Conceptors can take several forms, the form used in this study is the alloconceptor (Jaeger,
2017, p18), a matrix conceptor that is calculated after patterns are stored in the network,
and inserted into the update loop of the network at runtime. To calculate a conceptor
which will influence the RNN to reproduce audio signal aj , the reservoir state correlation
matrix R is initially calculated:

R=
X j(X j)′

φ
(6)

The singular value decomposition (SVD) of R is found

U jSj(U j)′=Rj (7)

Sj is modified as follows, and used to calculate the conceptor C j :

Snew = Sj(Sj+β−2Iψxψ )−1 (8)

C j
=U jSnew(U j)′ (9)

β is the aperture of the conceptor (Jaeger, 2014b, p43). The aperture is a scaling factor
for the amount of energy that is allowed to pass when the conceptor filters the reservoir
state in Eq. (11). The optimal value for β can be found programatically (see below).

The new conceptor can now be inserted to the runtime loop of the RNN, as follows:

z(n+1)=Wx(n) (10)

This is a modification of Eq. (1), with the audio signal input removed, as it is no longer
needed. z(n+1) is then passed through the leaky integration filter from Eq. (2), and result
is multiplied by the conceptor, as follows:

x∗(n+1)= (1−α)x(n)+αtanh(z(n+1)+b) (11)

x(n+1)=C jx∗(n+1) (11)

Following this step, Eq. (3) is used to calculate the output signal.
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An optimal value for β can be found by observing the attenuation aC,β , which is the
level of reservoir signal energy suppressed by the conceptor when the network is updated
using Eqs. (10) and (11) (Jaeger, 2014b, p47). Attenuation can be calculated as follows:

aC,β =
E[||z(n)−x(n)||2]

E[||z(n)||2]
(12)

The optimal value for β corresponds to the minimum value of attenuation, calculated
by collecting states from the model using conceptors calculated with varying values of β.

The result of this training process is an RNN coupled with a set of conceptors; this model
is referred to as a conceptor-controlled recurrent neural network (CCRNN).

These basic methods are used in the experiments below, and expanded on with new
techniques that allow training and exploitation of the models for sounds synthesis.

METHOD AND MATERIALS
This project asks how the pattern generation ability of CCRNNs can be applied to the
field of sound synthesis. It aims to establish and evaluate the fundamental capabilities of
CCRNNs to be trained to reproduce arbitrary audio signals, and to explore their creative
affordances. The next section evaluates the potential of CCRRNs to resynthesise sampled
sounds.

The ability of trained models to resynthesise the training signal is used as a measure of
basic success in sound synthesis. Resynthesis ability is the core indication of sound synthesis
quality, although this evaluation only tells part of the story, as the techniques outlined in
this project are intended for open-ended use in creative sound synthesis applications. To
this end, the project maps out key methods for parameterising and manipulating CCRNN
sound synthesis models to create new sonic variations of the original training material,
establishing the technical strengths and limitations of CCRNN sound synthesis, and identify
open questions for future research in this area.

There is some discussion of processing time to indicate the scale of computation involved
with these techniques. The conceptular synthesis experiment was run on a machine with
4.2 GHz i7 CPU and an NVidia GTX 1080 Ti GPU using TensorFlow.

Python 3 source code in Jupyter notebooks for all experiments is provided at
https://github.com/chriskiefer/conceptorSoundSynthesis. Source code for a working
implementation of conceptular synthesis in the form of a drum synthesiser can be found
at https://github.com/chriskiefer/conceptularBeatSynth.

Error and similarity metrics
The experiments in this project focus on the quality of audio signals resynthesised with
trained models in comparison to the original training material. In wider literature in
reservoir computing, Normalised Root-Mean-Square Error [30 p2] (NRMSE) is commonly
used to measure similarity between signals. NRMSE does not reflect perceptual aspects of
sound similarity; these are crucial to understanding the results therefore a different metric
is required. Mel-Frequency Cepstral Coefficients (MFCCS) have been shown to be a robust
measure of timbral similarity (Jensen et al., 2009), and a good model of perceptual timbre
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space (Pampalk, Dixon & Widmer, 2003). They are widely used for music information
retrieval tasks (Hamel & Eck, 2010) across a variety of use cases (e.g., (Yee-King, Fedden &
d’Inverno, 2018; Khunarsal, Lursinsap & Raicharoen, 2013).

For the purpose of audio signal comparison, MFCCs were calculated from a 2048 point
windowed FFT. The sounds being analysed were short (typically between 200 and 5000
samples); in order to capture the detail of the timbral envelope at all stages, a short 64
sample hop-size was used. The FFT results from each window were used to calculate
20 MFCCs. The first MFCC coefficient from each window was discarded as it does not
give information about timbre (Jensen et al., 2009). The remaining coefficients from each
window were appended to create a single feature vector. The feature vectors from two
sounds were compared using NRMSE to arrive at an error value that reflects the similarity
between the two sounds. This will be referred to as the MFCC error, with lower values
indicating higher similarity.

Where relevant, waveforms and spectrograms are displayed for visual comparison, and
audio is included in the dataset accompanying this paper.

CONCEPTULAR SYNTHESIS
Conceptular synthesis is a new sound synthesis method based on CCRNNs, and expanding
on an established method of sound synthesis, granular synthesis. In granular synthesis,
sound is broken into small parts (grains), which are recombined in varying ways to produce
new sounds. The theoretical roots of this method lie in Gabor’s (1947) theory of acoustic
quanta, and in the compositional theory of Xenakis (1971). Digital implementations of the
technique were developed by Roads (1978) and Truax (1986). Granular synthesis offers
methods for further sound manipulation techniques including timestretching (Truax,
1994) and corpus-based concatenative synthesis (Schwarz, 2006).

Jaeger’s demonstration of the ability of CCRNNs to be trained to generate arbitrary
sequences suggests that they could become powerful sound synthesis tools, as they can
theoretically reproduce arbitrary audio waveforms. However they are pragmatically limited
to playing relatively short sequences; the reason for this is that the computational complexity
of the model increases withψ , and the desired size ofψ increases with the length of training
sequences. However, if a model is trained to reproduce a set of shorter sound sequences,
then granular synthesis techniques can be used to recombine these sequences to produce
longer sounds. Conceptular synthesis therefore expands upon granular synthesis, by
dynamically generating grains using conceptors rather than replaying grains from sound
sample data. Grain patterns are stored in an RNN, and conceptors force the RNN to replay
specific grains. A granular synthesis-style control mechanism is used to switch conceptors
so that the model generates a sequence of short signals, which are combined into a longer
waveform. The use of dynamic models instead of static sample data broadens the sonic
potential of conceptular synthesis in comparison to classical granular synthesis, as the
models provide further possibilities for creative manipulation.

This section begins by describing conceptular synthesis techniques in detail, illustrated
by an example demonstrating resynthesis of a kick drum sample. Resynthesis quality is
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then explored in an experiment comparing conceptular synthesis to a baseline method
using feedback induced oscillation. Following this, extended sound synthesis options are
described.

Conceptular synthesis techniques
Conceptular synthesis works by subdividing the audio training data into a set of sub-
sequences, and learning an RNN and set of conceptors that can regenerate these sub-
sequences, with the intention of resynthesising the audio sample by recombining the
model-generated sequences. The audio training data may be a single audio sample, or it
may be composed of multiple audio samples to create a model that will create variation
between different samples.

Slicing training data
Two methods of slicing the audio were explored: using constant or variable values for the
sub-sequence size µ. Using constant µ, the sample is divided into a set of equal length
signals a, of length µ samples each. The optimal value of µ for a particular sound sample
can be determined programmatically through a grid search. The constant µ slicing method
runs into problems, particularly when there are dominant frequencies in the source audio
whose wavelength is longer than µ. Slicing lower frequency waveforms at non-zero points
creates high-frequency artefacts in the training data, which can distort the training process
because these artefacts are not present in the original training material. For example,
consider the kick drum waveform in Fig. 2. The sample has low frequency components
with varying long wavelengths, and there is no constant value of µ that will avoid slicing at
non-zero points. To avoid this, the sample can be analysed using a zero-crossing detector,
resulting in a set of points i at which the sample is sliced to create a set of driving audio
signals a.

i={n|y(n)> 0∧y(n+1)< 0}. (13)

Hyperparameters and training
A key parameter is the reservoir size ψ.ψ correlates with the memory capacity of the
reservoir; it should be at least equal to the number of independent variables needed for the
task the model is being trained for (Jaeger, 2002). As we increase the quantity and length
of training signals, we need to increase ψ to give the model the capacity to learn them.
However increasing ψ makes computation more expensive (at approximately O(N 2)), so
there are practical limits to this value.

The other key parameter is the leak rate α. Lowering α has the effect of filtering out high
frequencies in the reservoir activation levels x , and therefore slowing down the behaviour
of the RNN. α needs to be chosen such that the model can reproduce the frequency content
from the source audio, for example a sound with dominant low frequencies like the kick
drum in Fig. 2 will need a network with slowly changing activations, and therefore a low α
value. Optimal values can be found using a grid search.

After choosing hyperparameters, a model is trained using the techniques set out earlier
in the paper. The output is a set of conceptors, calculated to reproduce each audio signal
aj .
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Figure 2 A comparison of the original kick drum sample and the output of the trained CCRNNmodel.
Full-size DOI: 10.7717/peerjcs.205/fig-2

Table 1 Hyperparameters in the resynthesis quality experiment.

Model Type ψ α γW γ input γbias λ %W %out

CCRNN 900 {0.05, 0.15...0.95} 1.5 1.2 0.3 50 1e−5 1e−5
ESNSPF 20...900 0...1 1.0 0...1 0...1 50 1e−5 1e−5

Resynthesis
To resynthesise the training signal, the CCRNN is initially run for λ steps with the first
conceptor C0. The model is then run with each conceptor C j inserted into the update
loop, as described in Eqs. (10) and (11), to create a set of output signals q. The number of
samples for which each conceptor is used in the runtime loop corresponds with the length
of the audio signal from which the conceptor was trained. The algorithm makes a short
linear crossfade between conceptors, over a small percentage of the pattern length. This
prevents artefacts appearing from instantaneous switching of conceptors. Finally, output
signals are appended to create the waveform k= [q0|q1|...|qn].

Example: resynthesis of kick drum
The output of a trained conceptular synthesis model is now shown, to illustrate how this
technique can be applied. A CCRNN model was trained to resynthesise a kick drum. The
original audio (see Fig. 2 and Audio S5) was re-sampled at 22050 Hz (half of CD-quality),
in order to reduce the CPU load of training.

The sample was segmented using the zero-crossing method, and the model was trained
with the parameters as shown in Table 1, with leak rate α= 0.15 . The kick drum sample
was resynthesised with the crossfade length set at 5% of signal length. The result is shown
in Figs. 2 and 3, and included in Audio S7. Both show a close reconstruction of the original,
with the addition of some high frequency artefacts.

This example is not compared quantitatively to the original, instead this is done
systematically in the experiment below.

Measuring resynthesis quality
We have seen the potential capabilities for conceptular synthesis to resynthesise audio from
trained CCRNN models. These trained models offer extensive creative possibilities for
sound synthesis, which are detailed later in the paper. Before exploring these avenues, the
quality of resynthesis method should be evaluated, in comparison to an existing baseline.
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[A]

[B]

Figure 3 Spectrograms comparing the resynthesised kick drum (A) to the original sample (B).
Full-size DOI: 10.7717/peerjcs.205/fig-3

Baseline models: echo state networks with stored patterns and feedback
The closest comparable method to conceptular synthesis is to use ESNs with output
feedback as trainable oscillators. Feedback is used to guide reservoir dynamics to a stable
limit cycle where the model is outputing a desired signal. Early research on ESNs (Jaeger,
2010) showed their capability for self-driven oscillation using output feedback. More
recent research has focused on increasing the effectiveness of output feedback by adapting
the weight matrix W to increase the accuracy of reproduced patterns. Jaeger (2014a) p2
summarises this family of techniques including self-prediction (Mayer & Browne, 2004),
self-sensing networks (Sussillo & Abbott, 2012) and Jaeger’s ownmethod for storing patterns
which has already been detailed in this paper. The reservoirs for both techniques are created
using the same stored patternmethod, but then themethods diverge. These baselinemodels
will be referred to as ESNSPFs.

The training method for ESNSPFs works as follows: a set of audio signals is stored in an
RNN, using an identical approach as detailed earlier with Eqs. (1), (2) and (4). The result
of this process is to adapt the randomly initialised weight matrixW ∗ to trained matrixW .

Thismodel is now used for training a set of output weightmatrices, such that eachmatrix
W out j will be used to recreate audio signal aj . To train an ESNSPF using output feedback,
we train an output layer that will predict the the next sample from the input signal. The
model is driven with signal aj using Eqs. (1) and (2). Following a washout period, states
x(n) from timesteps λ to λ+φ−2 to are stored in ψxφ−1 matrix X . Samples from the
audio signal aj from λ+1 to λ+φ−1 are stored in 1 x φ−1 matrix P . The output weight
matrix W out j can then be calculated using Eq. (5). Feedback models are sensitive to initial
conditions; a brute force search can be used to find a good value for the initial state x(0),
stored to use later as xcue .

Kiefer (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.205 11/24

https://peerj.com
https://doi.org/10.7717/peerjcs.205/fig-3
http://dx.doi.org/10.7717/peerj-cs.205


At runtime, the model is run by feeding the output back into the input with a
modification of Eq. (1), starting from initial state xcue . To reproduce audio signal aj ,
the model is updated as follows:

z(n+1)=Wx(n)+W iny(n) (14)

x(n+1)= (1−α)x(n)+αtanh(z(n+1)+b) (14)

y(n+1)=W out jx(n+1) (14)

To recreate a sequence of patterns or grains that comprise a longer audio signal, each
output matrixW out j is sequentially inserted to the runtime loop for a period matching the
length of the audio signal aj .

Dataset
Sounds from the Ixi Lang data set (Magnusson & Kiefer, 2019) were used to compare the
two methods. This is a collection of the sounds that accompanies the Ixi Lang live coding
environment. The collection represents a wide variety of short samples that are used for
live performance. There are 127 audio clips, lasting between 5ms and 36.3s (mean: 1.75s).

Method
Each sample was resampled at 22,050 Hz, normalised and scaled by half, and truncated to
a maximum of 5,000 samples (or 0.23s); this was to create a balance between computation
demands on the model, and providing enough material to make a useful comparison.
The sample was then sliced; the zero-crossing method (Eq. (13)) was used as this is more
widely applicable to a range of timbres. A maximum of 150 patterns were kept from the
slicing process, again to reduce demands on computation time and memory for storing
conceptors. This process resulted in a set of patterns extracted from each sample in the
dataset. ESNSPF and CCRNN models were trained to resynthesise each pattern set, and
then used to resynthesise the corresponding samples.

Table 1 shows the hyperparameters used for both models types, chosen to match the
models as fairly as possible for comparison. Some were fixed, others were searched for
within the ranges shown. Fixed hyperparameters were chosen based on experimental
reports in wider literature (Lukoševičius, 2012; Jaeger, 2005; Jaeger, 2014b), and through
extensive manual experimentation. Some parameters were deemed to be sensitive to the
training material, for example α needs to be tuned to match the frequencies in the source,
in which case the values were optimised through automatic search as detailed below.

The use of randomly determined weight values is fundamental to the design of both
models, however this leads to variance in training results. To mitigate against this variance,
the training process was run multiple times at each hyperparameter setting and the
best models chosen. It is acknowledged that, as with all non-deterministically generated
models, it is possible that the most optimal model will not be found, but running the
training process multiple times will increase the possibility of finding a better model.
Further to this, variances in this process will be averaged out across the 127 samples in the
dataset.
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CCRNN
Models

The key hyperparameter for this model type was the leak rate α, which
needed to be tuned to match the frequency response of the model with the
frequencies needed for resynthesis of the training material. For each sample
in the dataset, α was determined through a grid search (as recommended
in (Lukoševičius, 2012, section 3.3.4)) of values {0.05,0.15,0.25...0.95}. The
grid search evaluated models at each of these settings at a lower model size (
ψ = 600) in order to save computation time, evaluating 5 different models
and recording the best MFCC error. This process resulted in an optimal value
of α which was used to evaluate 10 models at a higher model size ( ψ = 900).
The highest score of these models was recorded.

ESNSPF
Models

Models trained with output feedback showed sensitivity to four parameters:
model size ψ , leak rate α, bias scaling γ bias and input scaling γ input .
Interestingly, this technique showed sensitivity to ψ , while CCRNN models
show consistent improvement with larger ψ . A four-dimensional grid search
was impractical due to computational demands, instead a microbial genetic
algorithm (Harvey, 2009) was used to find optimal values, conducting a
stochastic evolutionary search of parameters in the ranges shown in Table 1.
The fitness function selected the bestmodel based on evaluations of 10models
created with identical hyperparameters. Each model was then evaluated with
10 randomised starting states xcue , and the xcue with the lowest error was
chosen.

Results
The experiment resulted in an error score for each model type for each of the 127 samples
in the dataset. The two methods gave comparable results (Fig. 4) (CCRNN: mean 0.542,
median 0.482, ESNSPF: mean 0.568, median 0.536). There was no significant difference
between the model types (wilcoxon signed rank test: W = 3872,p=0 .644). These results
are discussed further below, after contextualisation within extended synthesis techniques.

Extended conceptular synthesis techniques
The above experiment demonstrates that CCRNN models are capable of sound synthesis
quality comparable to ESNSPFs. Moving beyond this baseline, they offer a wider range of
creative sound synthesis possibilities.

Extended sound synthesis parameters
The sound generation algorithm can be manipulated with three key parameters: speed,
leak rate scale, and weight scaling. The speed parameter changes the amount of time in
which the algorithm waits until a new conceptor is plugged in to the RNN update loop. For
example, a speed of 0.5 results in two cycles of a pattern being played for each conceptor
C j and resulting in a rendered sample that is twice the length of the original. At negative
speeds, a sample can be crudely reversed by playing the patterns in reverse sequence. This
parameter can have the effect of timestretching, i.e., extending or compressing the length
of a sound, independent from its pitch. Audio S8 presents an example of timestretching
from 50% up to 800% in 50% steps with a CCRNN model trained on a kick drum sample.
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Figure 4 A violin plot of MFCC error scores for each model type, for resynthesis of samples in the Ixi
Lang dataset. The plot shows the distribution of scores, with real values marked by vertical lines.
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The leak rate α can be scaled during resynthesis, by updating Eq. (2) as follows:

αscaled =αξα (15)

x(n+1)= (1−αscaled)x target (n)+αscaled tanh(x target (n+1)+b) (15)

ξα becomes an useful parameter in resynthesis for control over timbre and pitch (which
is explained later when discussing pitch-controlled oscillators). It should be limited such
that α stays between 0 and 1.

Weight scaling can be introduced by updating Eq. (1) so that the weight matrix is linearly
scaled by scalar ξW :

W scaled
=W ξW (16)

z(n+1)=W scaledx(n)+W ina(n+1) (16)

This causes timbral changes in the rendered sample whose characteristics are based on
the randommake up of the RNN. There is some consistency in this parameter in that when
raised, more high frequency content tends to be introduced. At higher values, the RNN can
behave in musically interesting non-linear ways. Below a lower limit (model dependent),
the model output tends towards silence.

Further manipulations of sound can be achieved by manipulating conceptors.

Extending sound synthesis with conceptor logic
The use of conceptor logic and conceptor manipulation is where this mode of sound
synthesis significantly moves on from standard granular synthesis features, and brings
its own unique possibilities. New conceptors can be created using boolean logic rules;
Jaeger (2014b, p.52) defines formulae for AND, OR and NOT operations. Boolean
operations provide a system of logic with which to combine conceptors, with applications
in classification and memory management. In the case of conceptular synthesis, logic
operations provide a wide range of creative possibilities. Conceptors can be logically
recombined to create new timbral variations. Two examples are now given:

Kiefer (2019), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.205 14/24

https://peerj.com
https://doi.org/10.7717/peerjcs.205/fig-4
http://dx.doi.org/10.7717/peerj-cs.205


0 200 400 600 800 1000 1200 1400
Time (samples)

0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

Am
pl

itu
de

Original
Resynthesis

Figure 5 The waveform of a variant of a snare sample, produced using boolean logic C j
2 = C j ∨C j+1 ∨

C j+2 ∨C j+3.
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Figure 6 Waveforms showing generative variants of the snare sample, using the boolean logic rule
C j
3 =C j ∨C random1 ∨C random2.

Full-size DOI: 10.7717/peerjcs.205/fig-6

Example 1
A CCRNN model was trained to reproduce a snare sample (Audio S1). Each conceptor in
the snare model C j was combined with the subsequent three conceptors to make a new set
C2, using the rule C

j
2=C j

∨C j+1
∨C j+2

∨C j+3 This resulted in a variant on the original
snare sound shown in Fig. 5 (Audio S9).

Example 2
A new set of conceptors C3 was made by combining each conceptor in the set with a
random choice of two other conceptors in the set C j

3=C j
∨C random1

∨C random2. This is
designed with the intention of keeping the main structure of the sample but introducing
random variations. Fig. 6 shows the resulting waveforms from 4 separate iterations of this
process using the snare model detailed above (Audio S10).
In both these examples, the variations are subtle, and the renderings suffer from some
audible artefacts, however this does point to generative possibilities that are worthy of
further research.

Sound morphing with interpolated conceptors
Jaeger (2014b) p.42 demonstrated shape morphing between heterogeneous patterns using
conceptors. This same technique can be applied within conceptular synthesis to morph
between sounds. It is not within the scope of this paper to analyse the quality of sound
morphing using conceptular synthesis in comparison to other techniques, rather just to
demonstrate that sound morphing is a creative possibility with CCRNNs, and to outline
how it can be achieved.
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Morphing can be implemented by creating a linear combination of conceptors to
interpolate between the two patterns the conceptors were trained to recreate. Equation
(17) shows how this can be done with two conceptors, where ω is the morphing factor.

x(n+1)= ((1−ω)C i
+ωC j)tanh(Wx(n)+b) (17)

Varying ω between 0 and 1 forces the RNN to create a morph between the patterns
represented by the two conceptors. When 0≤ω≤1, the mix of conceptors will interpolate
between patterns. However, when ω is outside of this range, the mix of conceptors can
extrapolate between patterns.

The intention of morphing between sounds is to create a new mixture of sounds that
retains the shared perceptual properties of the original sources (Slaney, Covell & Lassiter,
1996).Morphing was investigated with conceptular synthesis by training a CCRNN recreate
patterns from two different samples: the snare sample already discussed, and a short bongo
sample (Audio S12). An 800-node network was trained for recreation of 100 individual
patterns (fixed length 15) for each sample, resulting in two sets of conceptors, Csnare and
Cbongo. Morphing was achieved by creating a new set of conceptors based on a linear
mixture of the trained conceptors, for each pattern segment. The results demonstrate a
morph between samples that is different from a linear mixture of the two samples. Figure
S1 shows how the time-domain waveform result varies over an 11 point morph from ω= 0
to ω= 1, and the result can be heard in Audio S3. For comparison, Fig. S2 and Audio S4
demonstrate a linear mix between amplitude values with the same two samples.

Boolean conceptor logic can also be used for sound morphing. For example, a set of
conceptors CbongoSnare was created, with each element combining elements from the snare
and the bongo C j

bongoSnare = C j
bongo∨C

j
snare . A sample rendered with this conceptor set

contains characteristics of both sounds (Audio S11).

Equivalent techniques with ESNSPF models
Where possible, equivalent extended sound manipulation techniques were attempted with
ESNSPF models. There is no parallel using ESNSPF models for conceptor logic. However,
it is possible to manipulate ξα and ξW during resynthesis, and also to introduce the
same timestretching mechanism as for CCRNN models. Attempts at all of these methods
however did not lead to satisfactory results. Timestretching with ESNSPFs only works
when slowing down playback at integer subdivisions of the original speed. At other ratios,
the models tend to quickly converge to silence. When altering ξα and ξW , the models tend
towards producing high-amplitude artefacts. To demonstrate this, all models trained in the
experiment above were tested with either ξα or ξW set to values {0.7,0.75...1.3}. Figure 7
shows the average percentage change in standard deviation of amplitudes of resynthesised
waveforms compared to a waveforms generated with ξα = 1 and ξW = 1. For ESNSPFs, this
change in standard deviation is high compared to the same measurement for conceptular
synthesis models, reflecting high amplitude artefacts introduced by the change in these
values. CCRNN models however remain close to the original amplitude range (although
with some very small variation).
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Figure 7 Demonstration of the effects of ξα and ξW on waveform amplitude, reflecting high-amplitude
artefacts in the ESNSPFmodels.
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Discussion
This work demonstrates how CCRNNs can be used to resynthesise short samples by
dividing the sample up into short signals and training a conceptor for the reproduction
of each one. An experiment on resynthesising the Ixi Lang dataset show that conceptular
synthesis can achieve comparable resynthesis quality to echo state network models that use
stored patterns and feedback, whenmeasured usingMFCCs. Both types of model could not
perfectly reproduce the training samples, but were able tomake reasonable reconstructions.
There was some variance in resynthesis quality across the results, the causes of which are
the topic of future investigation.

CCRNN models offer malleable sound synthesis possibilities when manipulated using
inherent runtime parameters and through conceptor combinations created either by
interpolation or by boolean logic. These techniques provide unsatisfactory results when
attempted with equivalent implementations in ESNSPF models. This is likely to be due to
the high sensitivity to initial conditions of models that use output feedback. While they
can provide good quality resynthesis, ESNSPF models are brittle in nature, while CCRNNs
show themselves to be highly robust to manipulation during resynthesis, making them
extremely valuable as creative tools.

There is natural variability between models, due to random initialisation of the RNN.
This variability is minimised when using the network within normal constraints, however
when pushed into non-linear modes of behaviour by, for example, changing the value
of ξW , a higher variability between different CCRNNs can be observed. This behaviour
for a particular network may turn out to be musically interesting, lending conceptular
synthesis potential for serendipitous discovery of new sounds, and a level of generative
unpredictability that is often valued by musicians (McCormack et al., 2009).

Is it possible that, by using the reconstruction error as the evaluation metric, this
experiment has produced models that are flawed because of overfitting? In this context,
overfitting would be the production of generative models that are only useful for
reproducing the training data, but do not function well as malleable creative tools when
manipulated using the techniques described above, ie. they would have a limited aesthetic
state space (Eldridge, 2015). Conventionally in ESN research, the complexity of reservoirs,
approximately determined by the size of N , has been established as a factor in overfitting
in discriminative models (Wyffels & Schrauwen, 2010); however, there is very little research
on the nature of overfitting in generative ESNs and related models, especially with regards
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to creating malleable models. Jaeger acknowledges that there are open questions around
the concept of overfitting (Jaeger, 2005). The experimental results do not indicate that
N is a factor in overfitting in this experiment. In the search for ESNSPF models, N was
optimised through evolutionary search. The resulting values of N follow an approximately
flat distribution across the search range (mean 379, std: 256). If higher N resulted in
higher scoring (but overfitted) models, these values would have been skewed towards
larger model sizes. Further investigation revealed no significant correlation between N
and reconstruction error. The measurement of high amplitude artefacts produced by
manipulation of ξα and ξW (as detailed above) could be taken as a metric for basic
malleability. There was no significant correlation between N and the level of artefacts,
overall showing a lack of evidence for a connection between N and the possible effects of
overfitting in ESNSPFs. CCRNN models were produced with a fixed N , and have shown
themselves to be highly malleable in the examples detailed in this project. When producing
generative reservoir models, increasing N could give the model more opportunity for
varied dynamical behaviours rather than limiting scope; it’s certain that overfitting in
generative reservoir models is a nebulous concept that warrants future attention.

An audio synthesis process would ideally run in realtime. In this example, the rendering
was carried out on a CPU, and was around 10 times slower than realtime. While this leaves
much room for improvement, it should be noted that this version was not optimised for
speed, and a dedicated C++ or GPU renderer is expected to be faster than the python
version used here. It does however show the scale of computation involved in this method
of sound synthesis, and indicates that computational resources are a challenge in this area.

CONCLUSIONS AND FUTURE WORK
The experiments presented here show how recurrent neural networks under conceptor
control, as originally described in (Jaeger, 2014b), can be configured, trained and run as
sample-level sound synthesisers. Conceptular synthesis is an extension of granular synthesis,
where a CCRNN is trained to reproduce very short segments of a sound sample using
conceptors to recall the different patterns. It is controlled at runtime to recombine these
short segments into a longer continuous sound. The models were not limited to straight-
forward sound reproduction; CCRNNs presented a large variety of creative options for
synthesising new sounds based on the training materials. Techniques included classic
granular synthesis methods: timestretching and compression, and creative recombination
of grains. Techniques were extended by the newpossibilities of combining conceptors, using
boolean conceptor logic, and using linear combinations of conceptors to morph between
signals. The leak rate of RNN nodes and the RNN spectral radius can be manipulated at
runtime to create new sonic possibilities.

CCRNNs were shown to have similar resynthesis quality to baseline ESNSPF models,
when compared using MFCCs. CCRNNs however excelled in their possibilities for creative
sound manipulation, compared to ESNSPFs which produced either significant artefacts or
silence when manipulated.

The experiments outlined common limitations of CCRNN models for sound synthesis.
There was always some high-frequency loss in the reproduction of the original driving
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audio signals, some further experimentation is needed to discover the source of this issue.
Issues with high frequencies are affected by the choice of leak rate α, which needs to be
chosen carefully to slow down RNN dynamics for reproduction of low frequency patterns,
while also preserving enough high-frequency dynamics. It’s possible that oversampling
may help, although the efficiency impact of oversampling could be significant considering
the high computational cost of training and running these models.

This work helps to answer the questions posed at the beginning of the paper concerning
the fundamental capability of conceptors to synthesise audio signals. Conceptors are
able to generate longer patterns needed for audio signals at reasonable sample rates, as
demonstrated by resynthesis of simple sine-like patterns up to 890 samples long in the
example of the kick drum, and resynthesis of varied audio materials in the Ixi Lang dataset.
These pattern lengths are relatively short but useful enough for sound synthesis. As pattern
lengths extend, pragmatic limits on computational resources limit further exploration. The
resynthesis quality experiment established that when training models with multi-timbre
sounds, there is variance in the ability of CCRNN models to reproduce these sounds
accurately, indicating sensitivity in CCRNNs to sonic qualities in the source materials. It’s
not clear yet what this relationship is; this should be the topic of further investigations.

Conceptular synthesis required large models (of approximately 800 nodes upwards)
to produce reasonable results, resulting in slow resynthesis times. The large size of these
models was required for them to be able to learn either long patterns or high volumes or
short patterns. The technique ran at around 10 times slower than realtime. The memory
requirements for conceptular synthesis were particularly large, as a conceptor was needed
to reproduce each training signal, resulting in model sizes between 0.5 and 1 GB in the
experiments above. These computation requirements still may be considered lightweight
compared to some deep learning sound-synthesis techniques, nevertheless it would be a
considerable success if these models could be optimised to reach realtime at reasonable
sample rates. Recent research into deep architectures in echo state networks may offer
promise for increasing computational efficiency, as they have been shown to have better
memory capacity compared to classical ESNs with similar numbers of nodes (Gallicchio,
Micheli & Silvestri, 2018). More broadly, the relationship between memory capacity and
computation time will be a limit on sound synthesis with CCRNNS and their potential to
move beyond short sound samples, until methods are found to change architectures and
reduce this dependency.

This initial demonstration of the potential of sound synthesis with CCRNNs stimulates
further questions. Future research should establish:
1. how these techniques can be scaled upwards to facilitate learning models of longer

sound samples;
2. the causes of variance in resynthesis quality when training models with signals of varied

timbre;
3. whether high-frequency loss in resynthesis can be resolved;
4. how to optimise the RNN leak rate α for sounds with wide frequency ranges;
5. how the techniques identified in this paper can be extended for the purpose of generative

sound synthesis;
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6. how to optimise network architectures to achieve closer-to-realtime performance;
7. how to conceptualise overfitting, in the context of producing creatively malleable

generative models;
8. potential for use with analysis and resynthesis in the spectral domain (as we are seeing

with systems such as NSynth (Engel et al., 2017), GANSynth (Engel et al., 2019)).
Conceptually, CCRNN architectures could be creatively compelling for computer

musicians; it can sometimes be challenging to create believable and coherent complexity
with standard digital sound generation and editing tools. With CCRNNs, complexity
comes for free and needs to be managed instead of created. The models presented here are
inherently variable, and can be easily encouraged towards unpredictability and nonlinearity,
creating sometimes surprising and serendipitous results. The models offer plenty of entry
points for creative manipulation, with a potentially wide aesthetic state space (Eldridge,
2015). The musician must interact with these models, rather than control them.

The experiments presented here have mapped out initial explorations into sound
synthesis with CCRNNs. They extend a classical sound synthesis method, bringing boolean
logic, pattern morphing and non-linear modulation possibilities into granular-style
synthesis. The techniques exhibit some limitations that require further investigation, but
also show unique creative possibilities for musicians, and rich potential for further research
in this area.
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