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ABSTRACT
Assessing levels of standing genetic variation within species requires a robust sampling
for the purpose of accurate specimen identification using molecular techniques such
as DNA barcoding; however, statistical estimators for what constitutes a robust sample
are currently lacking. Moreover, such estimates are needed because most species are
currently represented by only one or a few sequences in existing databases, which
can safely be assumed to be undersampled. Unfortunately, sample sizes of 5–10
specimens per species typically seen in DNA barcoding studies are often insufficient to
adequately capture within-species genetic diversity. Here, we introduce a novel iterative
extrapolation simulation algorithm of haplotype accumulation curves, called HACSim
(Haplotype Accumulation Curve Simulator) that can be employed to calculate likely
sample sizes needed to observe the full range of DNA barcode haplotype variation that
exists for a species. Using uniform haplotype and non-uniform haplotype frequency
distributions, the notion of sampling sufficiency (the sample size at which sampling
accuracy is maximized and above which no new sampling information is likely to be
gained) can be gleaned. HACSim can be employed in two primary ways to estimate
specimen sample sizes: (1) to simulate haplotype sampling in hypothetical species,
and (2) to simulate haplotype sampling in real species mined from public reference
sequence databases like the Barcode of Life Data Systems (BOLD) or GenBank for any
genomic marker of interest. While our algorithm is globally convergent, runtime is
heavily dependent on initial sample sizes and skewness of the corresponding haplotype
frequency distribution.

Subjects Bioinformatics, Computational Biology, Data Science, Optimization Theory and
Computation, Scientific Computing and Simulation
Keywords Algorithm, DNA barcoding, Extrapolation, Iterative method, Sampling sufficiency,
Species

INTRODUCTION
Background
Earth is in the midst of its sixth mass extinction event and global biodiversity is declining at
an unprecedented rate (Ceballos et al., 2015). It is therefore important that species genetic
diversity be catalogued and preserved. One solution to address this mounting crisis in a
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systematic, yet rapid way is DNA barcoding (Hebert et al., 2003). DNA barcoding relies
on variability within a small gene fragment from standardized regions of the genome to
identify species, based on the fact that most species exhibit a unique array of barcode
haplotypes that are more similar to each other than those of other species (e.g., a barcode
‘‘gap’’). In animals, the DNA barcode region corresponds to a 648 bp fragment of the
5′ terminus of the cytochrome c oxidase subunit I (COI) mitochondrial marker (Hebert et
al., 2003; Hebert, Ratnasingham & De Waard, 2003). A critical problem since the inception
of DNA barcoding involves determining appropriate sample sizes necessary to capture the
majority of existing intraspecific haplotype variation for major animal taxa (Hebert et al.,
2004; Meyer & Paulay, 2005; Ward et al., 2005). Taxon sample sizes currently employed in
practice for rapid assignment of a species name to a specimen, have ranged anywhere from
1–15 specimens per species (Matz & Nielsen, 2005; Ross, Murugan & Li, 2008; Goodall-
Copestake, Tarling & Murphy, 2012; Jin, He & Zhang, 2012; Yao et al., 2017); however,
oftentimes only 1–2 individuals are actually collected. This trend is clearly reflected within
the Barcode of Life Data Systems (http://www.boldsystems.org) (Ratnasingham & Hebert,
2007), where an overwhelming number of taxa have only a single record and sequence.

A fitting comparison to the issue of adequacy of specimen sample sizes can be made to
the challenge of determining suitable taxon distance thresholds for species separation on the
basis of the DNA barcode gap (Meyer & Paulay, 2005). It has been widely demonstrated
that certain taxonomic groups, such as Lepidoptera (butterflies/moths), are able to be
readily separated into distinct clusters largely reflective of species boundaries derived
using morphology (Čandek & Kuntner, 2015). However, adoption of a fixed limit of
2% difference between maximum intraspecific distance and minimum interspecific
(i.e., nearest-neighbour) divergence is infeasible across all taxa (Hebert, Ratnasingham
& De Waard, 2003; Collins & Cruickshank, 2013). Species divergence thresholds should be
calculated from available sequence data obtained through deep sampling of taxa across
their entire geographic ranges whenever possible (Young et al., 2017). There is a clear
relationship between specimen sample sizes and observed barcoding gaps: sampling too
few individuals can give the impression of taxon separation, when in fact none exists (Meyer
& Paulay, 2005; Hickerson, Meyer & Moritz, 2006; Wiemers & Fiedler, 2007; Dasmahapatra
et al., 2010; Čandek & Kuntner, 2015), inevitably leading to erroneous conclusions (Collins
& Cruickshank, 2013). It is thus imperative that barcode gap analyses be based on adequate
sample sizes to minimize the presence of false positives. Introducing greater statistical
rigour into DNA barcoding appears to be the clear way forward in this respect (Nielsen
& Matz, 2006; Čandek & Kuntner, 2015; Luo et al., 2015; Phillips, Gillis & Hanner, 2019).
The introduction of computational approaches for automated species delimitation such
as Generalized Mixed Yule Coalescent (GMYC) (Pons et al., 2006; Monaghan et al., 2009;
Fujisawa & Barraclough, 2013), Automatic Barcode Gap Discovery (ABGD) (Puillandre,
Lambert & Brouillet, 2011) and Poisson Tree Processes (PTP) (Zhang et al., 2013) has
greatly contributed to this endeavour in the form of web servers (GMYC, ABGD, PTP)
and R packages (GMYC: Species’ LImits by Threshold Statistics, splits (Ezard, Fujisawa
& Barraclough, 2017)).
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Various statistical resampling and population genetic methods, in particular coalescent
simulations, for the estimation of sample sizes, have been applied to Lepidoptera (Costa
Rican skipper butterflies (Astraptes fulgerator)) (Zhang et al., 2010) and European diving
beetles (Agabus bipustulatus) (Bergsten et al., 2012). Using Wright’s equilibrium island
model (Wright, 1951) and Kimura’s stepping stone model (Kimura & Weiss, 1964) under
varying effective population sizes and migration rates, Zhang et al. (2010) found that
between 156-1985 specimens per species were necessary to observe 95% of all estimated
COI variation for simulated specimens ofA. fulgerator. Conversely, real species data showed
that a sample size of 250-1188 individuals is probably needed to capture themajority of COI
haplotype variation existing for this species (Zhang et al., 2010). A subsequent investigation
carried out by Bergsten et al. (2012) found that a random sample of 250 individuals was
required to uncover 95% COI diversity in A. bipustulatus; whereas, a much smaller sample
size of 70 specimens was necessary when geographic separation between two randomly
selected individuals was maximized.

Others have employedmore general statistical approaches. Based on extensive simulation
experiments, through employing the Central Limit Theorem (CLT), Luo et al. (2015)
suggested that no fewer than 20 individuals per species be sampled. Conversely, using an
estimator of sample size based on the Method of Moments, an approach to parameter
estimation relying on the Weak Law of Large Numbers (Pearson, 1894), sample sizes
ranging from 150–5,400 individuals across 18 species of ray-finned fishes (Chordata:
Actinopterygii) were found by Phillips et al. (2015).

Haplotype accumulation curves paint a picture of observed standing genetic variation
that exists at the species level as a function of expended sampling effort (Phillips et al., 2015;
Phillips, Gillis & Hanner, 2019). Haplotype sampling completeness can then be gauged
through measuring the slope of the curve, which gives an indication of the number of
new haplotypes likely to be uncovered with additional specimens collected. For instance,
a haplotype accumulation curve for a hypothetical species having a slope of 0.01 suggests
that only one previously unseen haplotype will be captured for every 100 individuals found.
This is strong evidence that the haplotype diversity for this species has been adequately
sampled. Thus, further recovery of specimens of such species provide limited returns
on the time and money invested to sequence them. Trends observed from generated
haplotype accumulation curves for the 18 actinopterygian species assessed by Phillips et
al. (2015), which were far from reaching an asymptote, corroborated the finding that the
majority of intraspecific haplotypes remain largely unsampled in Actinopterygii for even
the best-represented species in BOLD. Estimates obtained from each of these studies stand
in sharp contrast to sample sizes typically reported within DNA barcoding studies.

Numerical optimization methods are required to obtain reasonable approximations
to otherwise complex questions. Many such problems proceed via the iterative method,
whereby an initial guess is used to produce a sequence of successively more precise (and
hopefully more accurate) approximations. Such an approach is attractive, as resulting
solutions can be made as precise as desired through specifying a given tolerance cutoff.
However, in such cases, a closed-form expression for the function being optimized is
known a priori. In many instances, the general path (behaviour) of the search space being
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explored is the only information known, and not its underlying functional form. In this
paper, we take a middle-ground approach that is an alternative to probing sampling
completeness on the basis of haplotype accumulation curve slope measurement. To this
end, iteration is applied to address the issue of relative sample size determination for
DNA barcode haplotype sampling completeness, a technique suggested by Phillips, Gillis
& Hanner (2019). Given that specimen collection and processing is quite a laborious and
costly endeavour (Cameron, Rubinoff & Will, 2006; Stein et al., 2014), the next most direct
solution to an otherwise blind search strategy is to employ computational simulation
that approximates specimen collection in the field. The main contribution of this work
is the introduction of a new, easy-to-use R package implementing a novel statistical
optimization algorithm to estimate sample sizes for assessment of genetic diversity within
species based on saturation observed in haplotype accumulation curves. Here, we present
a novel nonparametric stochastic (Monte Carlo) iterative extrapolation algorithm for
the generation of haplotype accumulation curves based on the approach of Phillips et al.
(2015). Using the statistical environment R (R Core Team, 2018), we examine the effect of
altering species haplotype frequencies on the shape of resulting curves to inform on likely
required sample sizes needed for adequate capture of within-species haplotype variation.
Proof-of-concept of our method is illustrated through both hypothetical examples and real
DNA sequence data.

Motivation
ConsiderN DNA sequences that are randomly sampled for a given species of interest across
its known geographic range, each of which correspond to a single specimen. Suppose further
that H* of such sampled DNA sequences are unique (i.e., are distinct haplotypes). This
scenario leads naturally to the following question: What is N *, the estimated total number
of DNA sequence haplotypes that exist for a species θ? Put another way, what sample size
(number of specimens) is needed to capture the existing haplotype variation for a species?

The naïve approach (adopted by Phillips et al. (2015)) would be to ignore relative
frequencies of observed haplotypes; that is, assume that species haplotypes are equally
probable in a species population. Thus, in the absence of any information, the best one
can do is adopt a uniform distribution for the number of sampled haplotypes. Such a path
leads to obtaining gross overestimates for sufficient sampling (Phillips et al., 2015). A much
better approach uses all available haplotype data to arrive at plausible estimates of required
taxon sample sizes. This latter method is explored here in detail.

METHODS
Haplotype accumulation curve simulation algorithm
Algorithm functions
Our algorithm, HACSim (short for Haplotype Accumulation Curve Simulator), consisting
of two user-defined R functions, HAC.sim() and HAC.simrep(), was created to run
simulations of haplotype accumulation curves based on user-supplied parameters. The
simulation treats species haplotypes as distinct character labels relative to the number
of individuals possessing a given haplotype. The usual convention in this regard is that
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Figure 1 Modified haplotype network from Phillips, Gillis & Hanner (2019). Haplotypes are labelled
according to their absolute frequencies such that the most frequent haplotype is labelled ‘‘1’’, the second-
most frequent haplotype is labelled ‘‘2’’, etc., and is meant to illustrate that much species locus variation
consists of rare haplotypes at very low frequency (typically only represented by 1 or 2 specimens). Thus,
species showing such patterns in their haplotype distributions are probably grossly under-respresented in
public sequence databases like BOLD and GenBank.

Full-size DOI: 10.7717/peerjcs.243/fig-1

Haplotype 1 is the most frequent, Haplotype 2 is the next most frequent, etc. (Gwiazdowski
et al., 2013). A haplotype network represents this scheme succinctly (Fig. 1).

Such an implementation closely mimics that seen in natural species populations, as each
character label functions as a unique haplotype linked to a unique DNA barcode sequence.
The algorithm then randomly samples species haplotype labels in an iterative fashion
with replacement until all unique haplotypes have been observed. This process continues
until all species haplotypes have been sampled. The idea is that levels of species haplotypic
variation that are currently catalogued in BOLD can serve as proxies for total haplotype
diversity that may exist for a given species. This is a reasonable assumption given that,
while estimators of expected diversity are known (e.g., Chao1 abundance) (Chao, 1984),
the frequencies of unseen haplotypes are not known a priori. Further, assuming a species is
sampled across its entire geographic range, haplotypes not yet encountered are presumed
to occur at low frequencies (otherwise they would likely have already been sampled).

Because R is an interpreted programming language (i.e., code is run line-by-line), it
is slow compared to faster alternatives which use compilation to convert programs into
machine-readable format; as such, to optimize performance of the present algorithm in
terms of runtime, computationally-intensive parts of the simulation code were written in
the C++ programming language and integrated with R via the packages Rcpp (Eddelbuettel
& François, 2011) and RcppArmadillo (Eddelbuettel & Sanderson, 2014). This includes
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function code to carry out haplotype accumulation (via the function accumulate(),
which is not directly called by the user). A further reason for turning to C++ is because
some R code (e.g., nested ‘for’ loops) is not easily vectorized, nor can parallelization be
employed for speed improvement due to loop dependence. The rationale for employing R
for the present work is clear: R is free, open-source software that it is gaining widespread
use within the DNA barcoding community due to its ease-of-use and well-established
user-contributed package repository (Comprehensive R Archive Network (CRAN)). As
such, the creation and disemination of HACSim as a R framework to assess levels of standing
genetic variation within species is greatly facilitated.

A similar approach to the novel one proposed here to automatically generate haplotype
accumulation curves from DNA sequence data is implemented in the R package spider
(SPecies IDentity and Evolution in R; (Brown et al., 2012)) using the haploAccum()

function. However, the approach, which formed the basis of earlier work carried out
by Phillips et al. (2015), is quite restrictive in its functionality and, to our knowledge,
is currently the only method available to generate haplotype accumulation curves in R
because spider generates haplotype accumulation curves from DNA sequence alignments
only and is not amenable to inclusion of numeric inputs for specimen and haplotype
numbers. Thus, the method could not be easily extended to address our question. This was
the primary reason for the proposal of a statistical model of sampling sufficiency by Phillips
et al. (2015) and its extension described herein.

Algorithm parameters
At present, the algorithm (consisting of HAC.sim() and HAC.simrep()) takes 13
arguments as input (Table 1).

A user must first specify the number of observed specimens/DNA sequences (N ) and
the number of observed haplotypes (i.e., unique DNA sequences) (H*) for a given species.
Both N and H* must be greater than one. Clearly, N must be greater than or equal to H*.

Next, the haplotype frequency distribution vectormust be specified. The probs argument
allows for the inclusion of both common and rare species haplotypes according to user
interest (e.g., equally frequent haplotypes, or a single dominant haplotype). The resulting
probs vector must have a length equal to H*. For example, if H*= 4, probsmust contain
four elements. The total probability of all unique haplotypes must sum to one.

The user can optionally input the fraction of observed haplotypes to capture p. By
default, p= 0.95, mirroring the approach taken by both Zhang et al. (2010) and Bergsten et
al. (2012) who computed intraspecific sample sizes needed to recover 95% of all haplotype
variation for a species. At this level, the generated haplotype accumulation curve reaches a
slope close to zero and further sampling effort is unlikely to uncover any new haplotypes.
However, a user may wish to obtain sample sizes corresponding to different haplotype
recovery levels, e.g., p= 0.99 (99%of all estimated haplotypes found). In the latter scenario,
it can be argued that 100% of species haplotype variation is never actually achieved, since
with greater sampling effort, additional haplotypes are almost surely to be found; thus,
a true asymptote is never reached. In any case, simulation completion times will vary
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Table 1 Parameters inputted (first 7) and outputted (last six) by HAC.sim() and HAC.simrep(), along
with their definitions. Range refers to plausible values that each parameter can assume within the hap-
lotype accumulation curve simulation algorithm. [ and ] indicate that a given value is included in the
range interval; whereas, ( and ) indicate that a given value is excluded from the range interval. Simulation
progress can be tracked through setting progress = TRUE within HACHypothetical() or HACReal().
Users can optionally specify that a file be created containing all information outputted to the R console
(via the argument filename, which can be named as the user wishes).

Parameter Definition Range

N total number of specimens/DNA sequences (1,∞)
H* total number of unique haplotypes (1, N ]
probs haplotype probability distribution vector (0, 1)
p proportion of haplotypes to recover (0, 1]
perms total number of permutations (1,∞)
input.seqs analyze FASTA file of species DNA sequences TRUE, FALSE
conf.level desired confidence level for confidence interval calculation (0, 1)
H cumulative mean number of haplotypes sampled [1, H ∗]
H ∗−H cumulative mean number of haplotypes not sampled [0, H ∗)
R= H

H∗ cumulative mean fraction of haplotypes sampled (0, 1]
H∗−H
H∗ cumulative mean fraction of haplotypes not sampled [0, 1)

N ∗ mean specimen sample size corresponding to H ∗ [ N ,∞)
N ∗−N mean number of individuals not sampled [0, N ]

depending on inputted parameter values, such as probs, which controls the skewness of
the observed haplotype frequency distribution.

The perms argument is in place to ensure that haplotype accumulation curves ‘‘smooth
out’’ and tend to H* asymptotically as the number of permutations (replications) is
increased. The effect of increasing the number of permutations is an increase in statistical
accuracy and consequently, a reduction in variance. The proposed simulation algorithm
outputs a mean haplotype accumulation curve that is the average of perms generated
haplotype accumulation curves, where the order of individuals that are sampled is
randomized. Each of these perms curves is a randomized step function (a sort of random
walk), generated according to the number of haplotypes found. A permutation size of 1,000
was used by Phillips et al. (2015) because smaller permutation sizes yielded non-smooth
(noisy) curves. Permutation sizes larger than 1,000 typically resulted in greater computation
time, with no noticeable change in accumulation curve behaviour (Phillips et al., 2015).
By default, perms = 10,000 (in contrast to Phillips et al. (2015)), which is comparable to
the large number of replicates typically employed in statistical bootstrapping procedures
needed to ensure accuracy of computed estimates (Efron, 1979). Sometimes it will be
necessary for users to sacrifice accuracy for speed in the presence of time constraints.
This can be accomplished through decreasing perms. Doing so however will result in only
near-optimal solutions for specimen sample sizes. In some cases, it may be necessary to
increase perms to further smooth out the curves (to ensure monotonicity), but this will
increase algorithm runtime substantially.

Should a user wish to analyze their own intraspecific COI DNA barcode sequence
data (or sequence data from any single locus for that matter), setting input.seqs =
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TRUE allows this (via the read.dna() function in ape). In such a case, a pop-up file
window will prompt the user to select the formatted FASTA file of aligned/trimmed
sequences to be read into R. When this occurs, arguments for N , H* and probs are set
automatically by the algorithm via functions available in the R packages ape (Analysis of
Phylogenetics and Evolution) (Paradis, Claude & Strimmer, 2004) and pegas (Population
and Evolutionary Genetics Analysis System) (Paradis, 2010). Users must be aware however
that the number of observed haplotypes treated by pegas (via the haplotype() function)
may be overestimated if missing/ambiguous nucleotide data are present within the final
alignment input file.Missing data are explicitly handled by the base.freq() function in the
ape package. When this occurs, R will output a warning that such data are present within
the alignment. Users should therefore consider removing sequences or sites comprising
missing/ambiguous nucleotides. This step can be accomplished using external software
such as MEGA (Molecular Evolutionary Genetics Analysis; (Kumar, Stecher & Tamura,
2016)). The BARCODE standard (Hanner, 2009) was developed to help identify high quality
sequences and can be used as a quality filter if desired. Exclusion of low-quality sequences
also has the advantage of speeding up compution time of the algorithm significantly.

Options for confidence interval (CI) estimation and graphical display of haplotype
accumulation is also available via the argument conf.level, which allows the user to
specify the desired level of statistical confidence. CIs are computed from the sample
α
2 100% and (1− α

2 )100% quantiles of the haplotype accumulation curve distribution. The
default is conf.level = 0.95, corresponding to a confidence level of 95%. High levels
of statistical confidence (e.g., 99%) will result in wider confidence intervals; whereas low
confidence leads to narrower interval estimates.

How does HACSim work?
Haplotype labels are first randomly placed on a two-dimensional spatial grid of size perms
× N (read perms rows by N columns) according to their overall frequency of occurrence
(Fig. 2).

The cumulative mean number of haplotypes is then computed along each column
(i.e., for every specimen). If all H* haplotypes are not observed, then the grid is expanded
to a size of perms× N * and the observed haplotypes enumerated. Estimation of specimen
sample sizes proceeds iteratively, in which the current value ofN * is used as a starting value
to the next iteration (Fig. 2). An analogy here can be made to a game of golf: as one aims
towards the hole and hits the ball, it gets closer and closer to the hole; however, one does
not know the number of times to hit the ball before it lands in the hole. It is important to
note that since sample sizes must be whole values, estimates of N * found at each iteration
are rounded up to the next whole number. Even though this approach is quite conservative,
it ensures that estimates are adequately reflective of the population from which they were
drawn. HAC.sim(), which is called internally from HAC.simrep(), performs a single
iteration of haplotype accumulation for a given species. In the case of real species, resulting
output reflects current levels of sampling effort found within BOLD (or another similar
sequence repository such as GenBank) for a given species. If the desired level of haplotype
recovery is not reached, then HAC.simrep() is called to perform successive iterations until
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Figure 2 Schematic of the HACSim optimization algorithm (setup, initialization and iteration). Shown
is a hypothetical example for a species mined from a biological sequence database like BOLD or GenBank
with N = 5 sampled specimens (DNA sequences) possessing H*= 5 unique haplotypes. Each haplotype
has an associated numeric ID from 1-H* (here, 1-5). Haplotype labels are randomly assigned to cells on
a two-dimensional spatial array (ARRAY) with perms rows and N columns. All haplotypes occur with a
frequency of 20%, (i.e., probs= (1/5, 1/5, 1/5, 1/5, 1/5)). Specimen and haplotype information is then fed
into a black box to iteratively optimize the likely required sample size (N *) needed to capture a propor-
tion of at least p haplotypes observed in the species sample.

Full-size DOI: 10.7717/peerjcs.243/fig-2

the observed fraction of haplotypes captured (R) is at least p. This stopping criterion is
the termination condition necessary to halt the algorithm as soon as a ‘‘good enough’’
solution has been found. Such criteria are widely employed within numerical analysis. At
each step of the algorithm, a dataset, in the form of a dataframe (called ‘‘d’’) consisting
of the mean number of haplotypes recovered (called means), along with the estimated
standard deviation (sds) and the number of specimens sampled (specs) is generated. The
estimated required sample size (N *) to recover a given proportion of observed species
haplotypes corresponds to the endpoint of the accumulation curve. An indicator message is
additionally outputted informing a user as to whether or not the desired level of haplotype
recovery has been reached. The algorithm is depicted in Fig. 3.

In Fig. 3, all input parameters are known a priori except Hi, which is the number of
haplotypes found at each iteration of the algorithm, and Ri=

Hi
H∗ , which is the observed

fraction of haplotype recovery at iteration i. The equation to compute N *

N ∗i+1=Ni+
Ni

Hi

(
H∗−Hi

)
=

NiH∗

Hi
=

Ni

Ri
(1)

is quite intuitive since as Hi approaches H*, H∗−Hi approaches zero, Ri=
Hi
H∗ approaches

one, and consequently, Ni approaches N *. In the first part of the above equation, the
quantity Ni

Hi
(H∗−Hi) is the amount by which the haplotype accumulation curve is

extrapolated, which incorporates random error and uncertainty regarding the true value
of θ in the search space being explored. Nonparametric estimates formed from the above
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Figure 3 Iterative extrapolation algorithm pseudocode for the computation of taxon sampling suffi-
ciency employed within HACSim. A user must input N , H* and probs to run simulations. Other function
arguments required by the algorithm have default values and are not necessary to be inputted unless the
user wishes to alter set parameters.

Full-size DOI: 10.7717/peerjcs.243/fig-3

iterativemethod produce a convergentmonotonically-increasing sequence, which becomes
closer and closer to N * as the number of iterations increase; that is,

N ∗1 ≤N ∗2 ≤ ...≤N ∗i ≤N ∗i+1→N ∗ (2)

which is clearly a desirable property. Since haplotype accumulation curves are bounded
below by one and bounded above byH*, then the above sequence has a lower bound equal
to the initial guess for specimen sampling sufficiency (N ) and an upper bound of N *.

Along with the iterated haplotype accumulation curves and haplotype frequency
barplots, simulation output consists of the five initially proposed ‘‘measures of sampling
closeness’’, the estimate of θ (N *) based on Phillips et al. (2015)’s sampling model, in
addition to the number of additional samples needed to recover all estimated total haplotype
variation for a given species (N ∗−N ; Fig. 4) (Table 1).

These five quantities are given as follows: (1) Mean number of haplotypes sampled:
Hi, (2) Mean number of haplotypes not sampled: H∗−Hi, (3) Proportion of haplotypes
sampled: Hi

H∗ , (4) Proportion of haplotypes not sampled: H∗−Hi
H∗ , (5) Mean number of

individuals not sampled: N ∗−Ni =
Ni
Hi
(H∗−Hi) and are analogous to absolute and

relative approximation error metrics seen in numerical analysis. It should be noted that
the mean number of haplotypes captured at each iteration, Hi, will not necessary be
increasing, even though estimates of the cumulative mean value of N * are. It is easily
seen above that Hi approaches H* with increasing number of iterations. Similarly, as the
simulation progresses, H∗−Hi, H∗−Hi

H∗ and N ∗−Ni =
Ni
Hi
(H∗−Hi) all approach zero,

while Hi
H∗ approaches one. The rate at which curves approach H* depends on inputs to

both HAC.sim() and HAC.simrep(). Once the algorithm has converged to the desired level
of haplotype recovery, a summary of findings is outputted consisting of (1) the initial guess
(N ) for sampling sufficiency; (2) the total number of iterations until convergence and
simulation runtime (in seconds); (3) the final estimate (N *) of sampling sufficiency, along
with an approximate (1 − α)100% confidence interval (see next paragraph); and, (4) the
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Figure 4 Graphical depiction of the iterative extrapolation sampling model as described in detail
herein. The figure is modified from Phillips, Gillis & Hanner (2019). The x-axis is meant to depict
the number of specimens sampled, whereas the y-axis is meant to convey the cumulative number of
unique haplotypes uncovered for every additional individual that is randomly sampled. Ni and Hi refer
respectively to specimen and haplotype numbers that are observed at each iteration ( i) of HACSim for a
given species. N * is the total sample size that is needed to capture all H* haplotypes that exist for a species.

Full-size DOI: 10.7717/peerjcs.243/fig-4

number of additional specimens required to be sampled (N ∗−N ) from the initial starting
value. Iterations are automatically separated by a progress meter for easy visualization.

An approximate symmetric (1 − α)100% CI for θ is derived using the (first order)
Delta Method (Casella & Berger, 2002). This approach relies on the asymptotic normality
result of the CLT and employs a first-order Taylor series expansion around θ to arrive at an
approximation of the variance (and corresponding standard error) ofN *. Such an approach
is convenient since the sampling distribution of N * would likely be difficult to compute
exactly due to specimen sample sizes being highly taxon-dependent. An approximate (large
sample) (1 − α)100% CI for θ is given by

N ∗±z1− α2

(
σ̂H

H

√
N ∗

)
(3)

where z1− α2 denotes the appropriate critical value from the standard Normal distribution
and σ̂H is the estimated standard deviation of the mean number of haplotypes recovered at
N *. The interval produced by this approach is quite tight, shrinking as Hi tends to H*. By
default, HACSim computes 95% confidence intervals for the abovementioned quantities.

It is important to consider how a confidence interval for θ should be interpreted. For
instance, a 95% CI for θ of (L, U ), where L and U are the lower and upper endpoints
of the confidence interval respectively, does not mean that the true sampling sufficiency
lies between (L, U ) with 95% probability. Instead, resulting confidence intervals for θ
are themselves random and should be interpreted in the following way: with repeated
sampling, one can be (1 − α)100% confident that the true sampling sufficency for p%
haplotype recovery for a given species lies in the range (L, U ) (1 − α)100% of the time.
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That is, on average, (1 − α)100% of constructed confidence intervals will contain θ (1
− α)100% of the time. It should be noted however that as given computed confidence
intervals are only approximate in the limit, desired nominal probability coverage may not
be achieved. In other words, the proportion of times calculated (1 − α)100% intervals
actually contain θ may not be met.

HACSim has been implemented as an object-oriented framework to improve modularity
and overall user-friendliness. Scenarios of hypothetical and real species are containedwithin
helper functions which comprise all information necessary to run simulations successfully
without having to specify certain function arguments beforehand. To carry out simulations
of sampling haplotypes from hypothetical species, the function HACHypothetical()must
first be called. Similarly, haplotype sampling for real species is handled by the function
HACReal(). In addition to all input parameters rquired by HAC.sim() and HAC.simrep()

outlined in Table 1, both HACHypothetical() and HACReal() take further arguments.
Both functions take the optional argument filenamewhich is used to save results outputted
to the R console to a CSV file. When either HACHypothetical() or HACReal() is invoked
(i.e., assigned to a variable), an object herein called HACSObj is created containing the
13 arguments employed by HACSim in running simulations. Note the generated object
can have any name the user desires. Further, all simulation variables are contained in an
environment called ‘envr’ that is hidden from the user.

RESULTS
Here, we outline some simple examples that highlight the overall functionality of HACSim.
When the code below is run, outputted results will likely differ from those depicted here
since our method is inherently stochastic. Hence, it should be stressed that there is not one
single solution for the problem at hand, but rather multiple solutions (Spall, 2012). This
is in contrast to a completely deterministic model, where a given input always leads to the
same unique output. To ensure reproducibility, the user can set a random seed value using
the base R function set.seed() prior to running HAC.simrep(). It is important that a
user set a working directory in R prior to running HACSim, which will ensure all created files
(‘seqs.fas’ and ‘output.csv’) are stored in a single location for easy access and reference at a
later time. In all scenarios, default parameters were unchanged (perms= 10,000, p= 0.95).

Application of HACSim to hypothetical species
Equal haplotype frequencies
Figure 5 shows sample graphical output of the proposed haplotype accumulation curve
simulation algorithm for a hypothetical species with N = 100 andH*= 10. All haplotypes
are assumed to occur with equal frequency (i.e., probs= 0.10). Algorithm output is shown
below.
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## Set parameters for hypothetical species ##

> N<-100 # total number of sampled individuals

> Hstar<-10 # total number of haplotypes

> probs<-rep(1/Hstar, Hstar) # equal haplotype frequency

### Run simulations ###

> HACSObj<-HACHypothetical(N = N, Hstar = Hstar, probs = probs) # call helper
function

# set seed here if desired, e.g., set.seed(12345)

> HAC.simrep(HACSObj)

Simulating haplotype accumulation...

|===============================================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 10

Mean number of haplotypes not sampled: 0

Proportion of haplotypes sampled: 1

Proportion of haplotypes not sampled: 0

Mean value of N*: 100

Mean number of specimens not sampled: 0

Desired level of haplotype recovery has been reached

---------- Finished. ----------

The initial guess for sampling sufficiency was N = 100 individuals

The algorithm converged after 1 iterations and took 3.637 s

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 100
individuals ( 95% CI: 100-100 )

The number of additional specimens required to be sampled for p = 95% haplotype
recovery is N* - N = 0 individuals

Algorithm output shows that R = 100% of the H* = 10 haplotypes are recovered from
the random sampling of N = 100 individuals, with lower and upper 95% confidence
limits of 100–100. No additional specimens need to be collected (N ∗−N = 0). Simulation
results, consisting of the six ‘‘measures of sampling closeness’’ computed at each iteration,
can be optionally saved in a comma-separated value (CSV) file called ‘output.csv’ (or
another filename of the user’s choosing). Figure 5 shows that when haplotypes are equally
frequent in species populations, corresponding haplotype accumulation curves reach an
asymptote very quickly. As sampling effort is increased, the confidence interval becomes
narrower, thereby reflecting one’s increased confidence in having likely sampled the
majority of haplotype variation existing for a given species. Expected counts of the number
of specimens possessing a given haplotype can be found from running max(envr$d$specs)
* envr$probs in the R console once a simulation has converged.However, real data suggest
that haplotype frequencies are not equal.
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Figure 5 Graphical output of HAC.sim() for a hypothetical species with equal haplotype frequen-
cies. (A) Iterated haplotype accumulation curve. (B) Corresponding haplotype frequency barplot. For the
generated haplotype accumulation curve, the 95% confidence interval for the number of unique haplo-
types accumulated is depicted by gray error bars. Dashed lines depict the observed number of haplotypes
(i.e., RH*) and corresponding number of individuals sampled found at each iteration of the algorithm.
The dotted line depicts the expected number of haplotypes for a given haplotype recovery level (here, p=
95%) (i.e., pH*). In this example, R= 100% of the H*= 10 estimated haplotypes have been recovered for
this species based on a sample size of only N = 100 specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-5

Unequal Haplotype Frequencies
Figures 6 and 7 show sample graphical output of the proposed haplotype accumulation
curve simulation algorithm for a hypothetical species with N = 100 and H* = 10. All
haplotypes occur with unequal frequency. Haplotypes 1–3 each have a frequency of 30%,
while the remaining seven haplotypes each occur with a frequency of c. 1.4%.

## Set parameters for hypothetical species ##

> N<-100

> Hstar<-10

> probs<-c(rep(0.30, 3), rep(0.10/7, 7)) # three dominant haplotypes each with 30%
frequency

### Run simulations ###

> HACSObj<-HACHypothetical(N = N, Hstar = Hstar, probs = probs)

> HAC.simrep(HACSObj)

Simulating haplotype accumulation...

|========================================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 8.3291

Mean number of haplotypes not sampled: 1.6709

Proportion of haplotypes sampled: 0.83291

Proportion of haplotypes not sampled: 0.16709

Mean value of N*: 120.061

Mean number of specimens not sampled: 20.06099
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Desired level of haplotype recovery has not yet been reached

|================================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 9.2999

Mean number of haplotypes not sampled: 0.7001

Proportion of haplotypes sampled: 0.92999

Proportion of haplotypes not sampled: 0.07001

Mean value of N*: 179.5718

Mean number of specimens not sampled: 12.57182

Desired level of haplotype recovery has not yet been reached

|==================================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 9.5358

Mean number of haplotypes not sampled: 0.4642

Proportion of haplotypes sampled: 0.95358

Proportion of haplotypes not sampled: 0.04642

Mean value of N*: 188.7623

Mean number of specimens not sampled: 8.762348

Desired level of haplotype recovery has been reached

---------- Finished. ----------

The initial guess for sampling sufficiency was N = 100 individuals

The algorithm converged after 6 iterations and took 33.215 s

The estimate of sampling sufficiency for p = 95% haplotype recovery is N∗ = 180
individuals ( 95% CI: 178.278-181.722 )

The number of additional specimens required to be sampled for p = 95% haplotype
recovery is N* - N = 80 individuals

Note that not all iterations are displayed above for the sake of brevity; only the first and
last two iterations are given. With an initial guess of N = 100, only R= 83.3% of all H* =
10 observed haplotypes are recovered. The value of N * = 121 in the first iteration above
serves as an improved initial guess of the true sampling sufficiency, which is an unknown
quantity that is being estimated. This value is then fed back into the algorithm and the
process is repeated until convergence is reached.

UsingEq. (1), the improved sample sizewas calculated asN ∗= 100+ 100
8.3291 (10−8.3291)=

120.061. After one iteration, the curve has been extrapolated by an additional
N ∗−Ni= 20.06099 individuals. Upon convergence, R= 95.4% of all observed haplotypes
are captured with a sample size ofN *= 180 specimens, with a 95% CI of 178.278–181.722.
Given that N = 100 individuals have already been sampled, the number of additional
specimens required is N ∗−N = 80 individuals. The user can verify that sample sizes close
to that found by HACSim are needed to capture 95% of existing haplotype variation. Simply
set N = N * = 180 and rerun the algorithm. The last iteration serves as a check to verify
that the desired level of haplotype recovery has been achieved. The value of N *= 188.7623
that is outputted at this step can be used as a good starting guess to extrapolate the curve
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Figure 6 Initial graphical output of HAC.sim() for a hypothetical species having three dominant hap-
lotypes. (A) Specimens sampled; (B) Unique haplotypes. In this example, initially, only R = 83.3% of
the H*= 10 estimated haplotypes have been recovered for this species based on a sample size of N = 100
specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-6

Figure 7 Final graphical output of HAC.sim() for a hypothetical species having three dominant haplo-
types. (A) Specimens sampled; (B) Unique haplotypes. In this example, upon convergence, R= 95.4% of
the H*= 10 estimated haplotypes have been recovered for this species based on a sample size of N = 180
specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-7

to higher levels of haplotype recovery to save on the number of iterations required to reach
convergence. To do this, one simply runs HACHypothetical() with N = 189.

Application of HACSim to real species
Because the proposed iterative haplotype accumulation curve simulation algorithm simply
treats haplotypes as numeric labels, it is easily generalized to any biological taxa and genetic
loci for which a large number of high-quality DNA sequence data records is available in
public databases such as BOLD. In the following examples, HACSim is employed to examine
levels of standing genetic variation within animal species using 5′-COI.
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Lake Whitefish (Coregonus clupeaformis)
An interesting case study on which to focus is that of Lake whitefish (Coregonus
clupeaformis). Lake whitefish are a commercially, culturally, ecologically and economically
important group of salmonid fishes found throughout the Laurentian Great Lakes in
Canada and the United States, particularly to the Saugeen Ojibway First Nation (SON) of
Bruce Peninsula in Ontario, Canada, as well as non-indigenous fisheries (Ryan & Crawford,
2014).

The colonization of refugia during Pleistocene glaciation is thought to have resulted in
high levels of cryptic species diversity in North American freshwater fishes (Hubert et al.,
2008; April et al., 2011; April et al., 2013a; April et al., 2013b). Overdyk et al. (2015) wished
to investigate this hypothesis in larval Lake Huron lake whitefish. Despite limited levels of
gene flow and likely formation of novel divergent haplotypes in this species, surprisingly, no
evidence of deep evolutionary lineages was observed across the three major basins of Lake
Huron despite marked differences in larval phenotype and adult fish spawning behaviour
(Overdyk et al., 2015). This may be the result of limited sampling of intraspecific genetic
variation, in addition to presumed panmixia (Overdyk et al., 2015). While lake whitefish
represent one of the most well-studied fishes within BOLD, sampling effort for this species
has nevertheless remained relatively static over the past few years. Thus, lake whitefish
represent an ideal species for further exploration using HACSim.

In applying the developed algorithm to real species, sequence data preparation
methodology followed that which is outlined in Phillips et al. (2015). Curation included
the exclusion of specimens linked to GenBank entries, since those records without
the BARCODE keyword designation lack appropriate metadata central to reference
sequence library construction and management (Hanner, 2009). Our approach here was
solely to assess comprehensiveness of single genomic sequence databases rather than
incorporating sequence data from multiple repositories; thus, all DNA barcode sequences
either originating from, or submitted to GenBank were not considered further. As well, the
presence of base ambiguities and gaps/indels within sequence alignments can lead to bias
in estimate haplotype diversity for a given species.

Currently (as of November 28, 2018), BOLD contains public (both barcode and
non-barcode) records for 262 C. clupeaformis specimens collected from Lake Huron in
northern parts of Ontario, Canada and Michigan, USA. Of the barcode sequences, N =
235 are of high quality (full-length (652 bp) and comprise no missing and/or ambiguous
nucleotide bases). Haplotype analysis reveals that this species currently comprisesH*= 15
unique COI haplotypes. Further, this species shows a highly-skewed haplotype frequency
distribution, with a single dominant haplotype accounting for c. 91.5% (215/235) of all
individuals (Fig. 8). The output of HACSim is displayed below.
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### Run simulations ###

> HACSObj<-HACReal()

> HAC.simrep(HACSObj)

Simulating haplotype accumulation...

| =====================================================| 100%

--- Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 11.0705

Mean number of haplotypes not sampled: 3.9295

Proportion of haplotypes sampled: 0.7380333

Proportion of haplotypes not sampled: 0.2619667

Mean value of N*: 318.4138

Mean number of specimens not sampled: 83.4138

Desired level of haplotype recovery has not yet been reached

| =======================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 13.8705

Mean number of haplotypes not sampled: 1.1295

Proportion of haplotypes sampled: 0.9247

Proportion of haplotypes not sampled: 0.0753 Mean value of N*: 603.439

Mean number of specimens not sampled: 45.43895

Desired level of haplotype recovery has not yet been reached

| ==========================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 14.3708

Mean number of haplotypes not sampled: 0.6292

Proportion of haplotypes sampled: 0.9580533

Proportion of haplotypes not sampled: 0.04194667

Mean value of N*: 630.4451

Mean number of specimens not sampled: 26.44507

Desired level of haplotype recovery has been reached

---------- Finished. ----------

The initial guess for sampling sufficiency was N = 235 individuals

The algorithm converged after 8 iterations and took 241.235 s

The estimate of sampling sufficiency for p = 95% haplotype recovery is N∗ =
604 individuals ( 95% CI: 601.504-606.496 )

The number of additional specimens required to be sampled for p = 95%
haplotype recovery is N* - N = 369 individuals

From the above output, it is clear that current specimen sample sizes found within BOLD
for C. clupeaformis are probably not sufficient to capture the majority of within-species
COI haplotype variation. An initial sample size of N = 235 specimens corresponds to
recovering only 73.8% of all H* = 15 unique haplotypes for this species (Fig. 9).
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Figure 8 Initial haplotype frequency distribution forN = 235 high-quality lake whitefish (Coregonus
clupeaformis) COI barcode sequences obtained from BOLD. This species displays a highly-skewed pat-
tern of observed haplotype variation, with Haplotype 1 accounting for c. 91.5% (215/235) of all sampled
records.

Full-size DOI: 10.7717/peerjcs.243/fig-8

Figure 9 Initial graphical output of HAC.sim() for a real species (Lake whitefish, C. clupeaformis) hav-
ing a single dominant haplotype. (A) Specimens sampled; (B) Unique haplotypes. In this example, ini-
tially, only R= 73.8% of the H*= 15 estimated haplotypes for this species have been recovered based on a
sample size of N = 235 specimens. The haplotype frequency barplot is identical to that of Fig. 8.

Full-size DOI: 10.7717/peerjcs.243/fig-9

A sample size of N * = 604 individuals (95% CI [601.504–606.496]) would likely be
needed to observe 95% of all existing genetic diversity for lake whitefish (Fig. 10).

SinceN = 235 individuals have been sampled previously, onlyN ∗−N = 369 specimens
remain to be collected.
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Figure 10 Final graphical output of HAC.sim() for Lake whitefish (C. clupeaformis) having a single
dominant haplotype. (A) Specimens sampled; (B) Unique haplotypes. Upon convergence, R = 95.8%
of the H*= 15 estimated haplotypes for this species have been uncovered with a sample size of N = 604
specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-10

Deer tick (Ixodes scapularis)
Ticks, particularly the hard-bodied ticks (Arachnida: Acari: Ixodida: Ixodidae), are well-
known as vectors of various zoonotic diseases including Lyme disease (Ondrejicka et
al., 2014). Apart from this defining characteristic, the morphological identification of
ticks at any lifestage, by even expert taxonomists, is notoriously difficult or sometimes even
impossible (Ondrejicka, Morey & Hanner, 2017). Further, the presence of likely high cryptic
species diversity in this group means that turning to molecular techniques such as DNA
barcoding is often the only feasible option for reliable species diagnosis. Lyme-competent
specimens can be accurately detected through employing a sensitive quantitative PCR
(qPCR) procedure (Ondrejicka, Morey & Hanner, 2017). However, for such a workflow
to be successful, wide coverage of within-species haplotype variation from across broad
geographic ranges is paramount to better aid design of primer and probe sets for rapid
species discrimination. Furthermore, the availability of large specimen sample sizes for tick
species of medical and epidemiological relevance is necessary for accurately assessing the
presence of the barcode gap.

Notably, the deer tick (Ixodes scapularis), native to Canada and the United States, is
the primary carrier of Borrelia burgdorferi, the bacterium responsible for causing Lyme
disease in humans in these regions. Because of this, I. scapularis has been the subject of
intensive taxonomic study in recent years. For instance, in a recent DNA barcoding study of
medically-relevant Canadian ticks, Ondrejicka, Morey & Hanner (2017) found that out of
eight specimens assessed for the presence of B. burgdorferi, 50% tested positive. However,
as only exoskeletons and a single leg were examined for systemic infection, the reported
infection rate may be a lower bound due to the fact that examined specimens may still
harbour B. burgdorferi in their gut. As such, this species is well-represented within BOLD
and thus warrants further examination within the present study.

As of August 27, 2019, 531 5′-COI DNA barcode sequences are accessble from BOLD’s
Public Data Portal for this species. Of these, N = 349 met criteria for high quality
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outlined in Phillips et al. (2015). A 658 bp MUSCLE alignment comprised H*= 83 unique
haplotypes. Haplotype analysis revealed that Haplotypes 1–8 were represented by more
than 10 specimens (range: 12–46; Fig. 11).

Simulation output of HACSim is depicted below.

### Run simulations ###

> HACSObj<-HACReal()

> HAC.simrep(HACSObj) Simulating haplotype accumulation...

| ======================================================| 100%

--- Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 65.3514

Mean number of haplotypes not sampled: 17.6486

Proportion of haplotypes sampled: 0.7873663

Proportion of haplotypes not sampled: 0.2126337

Mean value of N*: 443.2499

Mean number of specimens not sampled: 94.24988

Desired level of haplotype recovery has not yet been reached

| ============================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 78.3713

Mean number of haplotypes not sampled: 4.6287

Proportion of haplotypes sampled: 0.9442325

Proportion of haplotypes not sampled: 0.05576747

Mean value of N*: 802.7684

Mean number of specimens not sampled: 44.76836

Desired level of haplotype recovery has not yet been reached

| =========================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 79.2147

Mean number of haplotypes not sampled: 3.7853

Proportion of haplotypes sampled: 0.954394

Proportion of haplotypes not sampled: 0.04560602

Mean value of N*: 841.3716

Mean number of specimens not sampled: 38.37161

Desired level of haplotype recovery has been reached

---------- Finished. ----------

The initial guess for sampling sufficiency was N = 349 individuals

The algorithm converged after 8 iterations and took 1116.468 s

The estimate of sampling sufficiency for p = 95% haplotype recovery is N∗ =
803 individuals ( 95% CI: 801.551-804.449 )

The number of additional specimens required to be sampled for p = 95%
haplotype recovery is N* - N = 454 individuals

Phillips et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.243 21/37

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.243


Figure 11 Initial haplotype frequency distribution forN = 349 high-quality deer tick (Ixodes scapu-
laris) COI barcode sequences obtained from BOLD. In this species, Haplotypes 1-8 account for c. 51.3%
(179/349) of all sampled records.

Full-size DOI: 10.7717/peerjcs.243/fig-11

Figure 12 Initial graphical output of HAC.sim() for a real species (Deer tick, I. scapularis) having eight
dominant haplotypes. In this example, initially, only R= 78.7% of the H*= 83 estimated haplotypes for
this species have been recovered based on a sample size of N = 349 specimens. The haplotype frequency
barplot is identical to that of Fig. 11.

Full-size DOI: 10.7717/peerjcs.243/fig-12

The above results clearly demonstrate the need for increased specimen sample sizes
in deer ticks. With an initial sample size of N = 349 individuals, only 78.7% of all
observed haplotypes are recovered for this species (Fig. 12). N *= 803 specimens (95% CI:
801.551-804.449) is necessary to capture at least 95% of standing haplotype variation for I.
scapularis (Fig. 13) . Thus, a further N *− N = 454 specimens are required to be collected.
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Figure 13 Final graphical output of HAC.sim() for deer tick (I scapularis) having eight dominant hap-
lotypes. Upon convergence, R = 95.4% of the H*= 83 estimated haplotypes for this species have been
uncovered with a sample size of N = 803 specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-13

Scalloped hammerhead (Sphyrna lewini)
Sharks (Chondrichthyes: Elasmobranchii: Selachimorpha) represent one of the most
ancient extant lineages of fishes. Despite this, many shark species face immediate extinction
as a result of overexploitation, together with a unique life history (e.g., K-selected,
predominant viviparity, long gestation period, lengthy time to maturation) and migration
behaviour (Hanner, Naaum & Shivji, 2016). A large part of the problem stems from the
increasing consumer demand for, and illegal trade of, shark fins, meat and bycatch on
the Asian market. The widespread, albeit lucrative practice of ‘‘finning’’, whereby live
sharks are definned and immediately released, has led to the rapid decline of once stable
populations (Steinke et al., 2017). As a result, numerous shark species are currently listed
by the International Union for the Conservation of Nature (IUCN) and the Convention
on International Trade in Endangered Species of Wild Fauna and Flora (CITES). Interest
in the molecular identification of sharks through DNA barcoding is multifold. The COI
reference sequence library for this group remains largely incomplete. Further, many shark
species exhibit high intraspecific distances within their barcodes, suggesting the possibility
of cryptic species diversity. Instances of hybridization between sympatric species has also
been documented. As establishing species-level matches to partial specimens through
morphology alone is difficult, and such a task becomes impossible once fins are processed
and sold for consumption or use in traditional medicine, DNA barcoding has paved a clear
path forward for unequivocal diagnosis in most cases.

The endangered hammerheads (Family: Sphyrnidae) represent one of the most well-
sampled groups of sharks within BOLD to date. Fins of the scalloped hammerhead (Sphyrna
lewini) are especially highly prized within IUU (Illegal, Unregulated, Unreported) fisheries
due to their inclusion as the main ingredient in shark fin soup.

As of August 27, 2019, 327 S. lewini specimens (sequenced at both barcode and non-
barcode markers), collected from several Food and Agriculture Organization (FAO)
regions, including the United States, are available through BOLD’s Public Data Portal.

Phillips et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.243 23/37

https://peerj.com
https://doi.org/10.7717/peerjcs.243/fig-13
http://dx.doi.org/10.7717/peerj-cs.243


Of these, all high-quality records (N = 171) were selected for alignment in MEGA7 and
assessment via HACSim. The final alignment was found to comprise H* = 12 unique
haplotypes, of which three were represented by 20 or more specimens (range: 28–70;
Fig. 14).

HACSim results are displayed below.

### Run simulations ###

> HACSObj<-HACReal()

> HAC.simrep(HACSObj)

Simulating haplotype accumulation...

| ======================================================| 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 9.9099

Mean number of haplotypes not sampled: 2.0901

Proportion of haplotypes sampled: 0.825825

Proportion of haplotypes not sampled: 0.174175

Mean value of N*: 207.0657

Mean number of specimens not sampled: 36.06566

Desired level of haplotype recovery has not yet been reached

===================================================== 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 11.3231

Mean number of haplotypes not sampled: 0.6769

Proportion of haplotypes sampled: 0.9435917

Proportion of haplotypes not sampled: 0.05640833

Mean value of N*: 413.3144

Mean number of specimens not sampled: 23.31438

Desired level of haplotype recovery has not yet been reached

===================================================== 100%

---Measures of Sampling Closeness ---

Mean number of haplotypes sampled: 11.4769

Mean number of haplotypes not sampled: 0.5231

Proportion of haplotypes sampled: 0.9564083

Proportion of haplotypes not sampled: 0.04359167

Mean value of N*: 432.8695

Mean number of specimens not sampled: 18.8695

Desired level of haplotype recovery has been reached

---------- Finished. ----------

The initial guess for sampling sufficiency was N = 171 individuals

The algorithm converged after 9 iterations and took 174.215 s

The estimate of sampling sufficiency for p = 95% haplotype recovery is N* = 414
individuals ( 95% CI: 411.937-416.063 )

The number of additional specimens required to be sampled for p = 95% haplotype
recovery is N* - N = 243 individuals
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Figure 14 Initial haplotype frequency distribution forN = 171 high-quality scalloped hammerhead
(Sphyrna lewini) COI barcode sequences obtained from BOLD. In this species, Haplotypes 1–3 account
for c. 87.7% (150/171) of all sampled records.

Full-size DOI: 10.7717/peerjcs.243/fig-14

Figure 15 Initial graphical output of HAC.sim() for a real species (Scalloped hammerhead, S. lewini)
having three dominant haplotypes. In this example, initially, only R = 82.6% of the H*= 12 estimated
haplotypes for this species have been recovered based on a sample size of N = 171 specimens. The haplo-
type frequency barplot is identical to that of Fig. 14.

Full-size DOI: 10.7717/peerjcs.243/fig-15

Simulation output suggests that only 82.6% of all unique haplotypes for the scalloped
hammerhead have likely been recovered (Fig. 15) with a sample size of N = 171.

Further, HACSim predicts that N * = 414 individuals (95% CI [411.937–416.063])
probably need to be randomly sampled to capture the majority of intraspecific genetic
diversity within 5′-COI (Fig. 16). Since 171 specimens have already been collected, this
leaves an additional N * − N = 243 individuals which await sampling.
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Figure 16 Final graphical output of HAC.sim() for scalloped hammerhead (S. lewini) having three
dominant haplotypes. Upon convergence, R = 95.6% of the H*= 12 estimated haplotypes for this
species have been uncovered with a sample size of N = 414 specimens.

Full-size DOI: 10.7717/peerjcs.243/fig-16

DISCUSSION
Initializing HACSim and overall algorithm behaviour
The overall stochastic behaviour of HACSim is highly dependent on the number of
permutations used upon algorithm initialization. Provided that the value assigned to
the perms argument is set high enough, numerical results ouputted by HACSim will be
found to be quite consistent between consecutive runs whenever all remaining parameter
values remain unchanged. It is crucial that perms not be set to too low a value to prevent the
algorithm from getting stuck at local maxima and returning suboptimal solutions. This is a
common situation with popular optimization algorithms such as hill-climbing. Attention
therfore must be paid to avoid making generalizations based on algorithm performance
and obtained simulation results (Spall, 2012).

In applying the present method to simulated species data, it is important that selected
simulation parameters are adequately reflective of those observed for real species. Thus,
initial sample sizes should be chosen to cover a wide range of values based on those currently
observed within BOLD. Such information can be gauged through examining species lists
associated with BOLD records, which are readily accessible through Linnean search queries
within the Taxonomy browser.

As with any iterative numerical algorithm, selecting good starting guesses for
initialization is key. While HACSim is globally convergent (i.e., convergence is guaranteed
for any value of N ≥ H*), a good strategy when simulating hypothetical species is to
start the algorithm by setting N = H*. In this way, the observed fraction of haplotypes
found, R, will not exceed the desired level of haplotype recovery p, and therefore lead to
overestimation of likely required specimen sample sizes. SettingN high enough will almost
surely result in R exceeding p. Thus, arbitrarily large values of N may not be biologically
meaningful or practical. However, in the case of hypothetical species simulation, should
initial sample sizes be set too high, such that R> p, a straightforward workaround is to
observe where the dashed horizontal line intersects the final haplotype accumulation curve
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(i.e., not the line the touches the curve endpoint). The resulting value of N at this point
will correspond with p quite closely. This can be seen in Fig. 5, where an eyeball guess just
over N * = 20 individuals is necessary to recover p = 95% haplotype variation. A more
reliable estimate can be obtained through examining the dataframe ‘‘d’’ outputted once the
algorithm has halted (via envr$d). In this situation, simply look in the row corresponding
to pH* ≥ 0.95(10) ≥ 9.5. The required sample size is the value given in the first column
(specs). This is accomplished via the R code envr$d[which(envr$d$means >= envr$p

* envr$Hstar), ][1, 1].
The novelty of HACSim is that it offers a systematic means of estimating likely specimen

sample sizes required to assess intraspecific haplotype diversity for taxa within large-scale
genomic databases like GenBank and BOLD. Estimates of sufficient sampling suggested
by our algorithm can be employed to assess barcode coverage within existing reference
sequence libraries and campaign projects found in BOLD.While comparison of ourmethod
to already-established ones is not yet possible, we anticipate that HACSim will nevertheless
provide regulatory applications with an unprecedented view and greater understanding of
the state of standing genetic diversity (or lack thereof) within species.

Additional capabilities and extending functionality of HACSim
In this paper, we illustrate the application of haplotype accumulation curves to the broad
assessment of species-level genetic variation. However, HACSim is quite flexible in that one
can easily explore likely required sample sizes at higher taxonomic levels (e.g., order, family,
genus) or specific geographic regions (e.g., salmonids of the Great Lakes) with ease. Such
applicability will undoubtedly be of interest at larger scales (i.e.. entire genomic sequence
libraries). For instance, due to evidence of sampling bias in otherwise densely-sampled taxa
housed in BOLD (e.g., Lepidoptera), D’Ercole et al. (J. D’Ercole, 2019, unpublished data)
wished to assess whether or not intraspecific haplotype variation within butterfly species
remains unsampled. To test this, the authors employed HACSim to examine sampling
comprehensiveness for species comprising a large barcode reference library for North
American butterflies spanning 814 species and 14,623 specimens.

We foresee use of HACSim being widespread within the DNA barcoding community.
As such, improvements to existing code in terms of further optimization and algorithm
runtime, as well as implementation of new methods by experienced R programmers in the
space of DNA-based taxonomic identification, seems bright.

Potential extensions of our algorithm include support for the exploration of genetic
variation at the Barcode Index Number (BIN) level (Ratnasingham & Hebert, 2013), as well
as high-throughput sequencing (HTS) data for metabarcoding and environmental DNA
(eDNA) applications. Such capabilities are likely to be challenging to implement at this
stage until robust operational taxonomic unit (OTU) clustering algorithms are developed
(preferably in R). One promising tool in this regard for barcoding of bulk samples of real
species and mock communities of known species composition is JAMP (Just Another
Metabarcoding Pipeline) devised for use in R by Elbrecht and colleagues (Elbrecht et al.,
2018). JAMP includes a sequence read denoising tool that can be used to obtain haplotype
numbers and frequency information (H* and probs). However, because JAMP relies
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on third-party software (particularly USEARCH (Edgar, 2010) and VSEARCH (Rognes
et al., 2016)), it cannot be integrated within HACSim itself and will thus have to be used
externally. In extending HACSim to next-generation space, two issues arise. First, it is not
immediately clear how the argument N , is to be handled since multiple reads could be
associated with single individuals. That is, unlike in traditional Sanger-based sequencing,
there is not a one-to-one correspondence between specimen and sequence (Wares &
Pappalardo, 2015; Adams et al., 2019). Second, obtaining reliable haplotype information
from noisy HTS datasets is challenging without first having strict quality filtering criteria
in place to minimize the occurrence of rare, low-copy sequence variants which may
reflect artifacts stemming from the Polymerase Chain Reaction (PCR) amplification step
or sequencing process (Elbrecht et al., 2018; Braukmann et al., 2019; Turon et al., 2019).
Turning to molecular population genetics theory might be the answer (Adams et al., 2019).
Wares & Pappalardo (2015) suggest three different approaches to estimating the number
of specimens of a species that may have contributed to a metabarcoding sample: (1) use
of prior estimates of haplotype diversity, together with observed number of haplotypes;
(2) usage of Ewens’ sampling formula (Ewens, 1972) along with estimates of Watterson’s
θ (not to be confused with the θ denoting true sampling sufficency herein) (Watterson,
1975), as well as total number of sampled haplotypes; and (3) employment of an estimate
of θ and the number of observed variable sites (S) within a multiple sequence alignment.
A direct solution we propose might be to use sequencing coverage/depth (i.e., the number
of sequence reads) as a proxy for number of individuals. The outcome of this would be
an estimate of the mean/total number of sequece reads required for maximal haplotype
recovery. However, the use of read count as a stand-in for number of specimens sampled
would require the unrealistic assumption that all individuals (i.e., both alive and dead)
shed DNA into their environment at equal rates. The obvious issue with extending HACSim
to handle HTS data is computing power, as such data typically consists of millions of reads
spanning multiple gigabytes of computer memory.

Summary
Here, we introduced a new statistical approach to assess specimen sampling depth within
species based on existing gene marker variation found in public sequence databanks such
as BOLD and GenBank. HACSim is both computationally efficient and easy to use. We show
utility of our proposed algorithm through both hypothetical and real species genomic
sequence data. For real species (here, lake whitefish, deer tick and scalloped hammerhead),
results from HACSim suggest that comprehensive sampling for species comprising large
barcode libraries within BOLD, such as Actinopterygii, Arachnida and Elasmobranchii
is far from complete. With the availability of HACSim, appropriate sampling guidelines
based on the amount of potential error one is willing to tolerate can now be established.
For the purpose of addressing basic questions in biodiversity science, the employment
of small taxon sample sizes may be adequate; however, this is not the case for regulatory
applications, where greater than 95% coverage of intraspecific haplotype variation is needed
to provide high confidence in sequence matches defensible in a court of law.
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Of immediate interest is the application of our method to other ray-finned fishes, as well
as other species from deeply inventoried taxonomic groups such as Elasmobranchii (e.g.,
sharks), Insecta (e.g., Lepidoptera, Culicidae (mosquitoes)), Arachnida (e.g., ticks) and
Chiroptera (bats) that are of high conservation, medical and/or socioeconomic importance.
Although we explicitly demonstrate the use of HACSim through employing COI, it would be
interesting to extend usage to other barcode markers such as the ribulose-1,5-bisphosphate
carboxylase/oxygenase large subunit (rbcL) and maturase K (matK) chloroplast genes
for land plants, as well as the nuclear internal transcribed spacer (ITS) marker regions for
fungi. The application of ourmethod to non-barcode genes routinely employed in specimen
identification like mitochondrial cytochrome b (cytb) in birds for instance (Baker, Sendra
Tavares & Elbourne, 2009; Lavinia et al., 2016), nuclear rhodopsin (rho) for marine fishes
(Hanner et al., 2011) or the phosphoenolpyruvate carboxykinase (PEPCK) nuclear gene for
bumblebees (Williams et al., 2015) is also likely to yield interesting results since sequencing
numerous individuals at several different genomic markers can often reveal evolutionary
patterns not otherwise seen from employing a single-gene approach (e.g., resolution of
cryptic species or confirmation/revision of established taxonomic placements) (Williams
et al., 2015).

While it is reasonable that HACSim can be applied to genomic regions besides 5′-COI,
careful consideration of varying rates of molecular evolution within rapidly-evolving gene
markers and the effect on downsteam inferences is paramount, as is sequence quality.
Previous work in plants (Genus: Taxus) by Liu et al. (2012) has found evidence of a
correlation between mutation rate and required specimen sampling depth: genes evolving
at faster rates will likely require larger sample sizes to estimate haplotype diversity compared
to slowly-evolving genomic loci. We simply focused on 5′-COI because it is by far the most
widely sequenced mitochondrial locus for specimen identification, owing to its desirable
biological properties as a DNA barcode for animal taxa and because it has an associated data
standard to help filter out poor-quality data. (Phillips, Gillis & Hanner, 2019). However,
it should be noted that species diagnosis using COI and other barcode markers is not
without its challenges. While COI accumulates variation at an appreciable rate, certain
taxonomic groups are not readily distinguished on the basis of their DNA barcodes (e.g.,
the so-called ‘‘problem children’’, such as Cnidaria, which tend to lack adequate sequence
divergence (Bucklin, Steinke & Blanco-Bercial, 2011)). Other taxa, like Mollusca, are known
to harbour indel mutations (Layton, Martel & Hebert, 2014). Introns within Fungi greatly
complicate sequence alignment (Min & Hickey, 2007). Thus, users of HACSimmust exercise
caution in interpreting end results with other markers, particularly those which are not
protein-coding.

It is necessary to consider the importance of sampling sufficiency as it pertains to
the myriad regulatory applications of specimen identification established using DNA
barcoding (e.g., combatting food fraud) in recent years. It since has become apparent that
the success of such endeavours is complicated by the ever-evolving state of public reference
sequence libraries such as those found within BOLD, in addition to the the inclusion of
questionable sequences and lack of sufficent metadata for validation purposes in other
genomic databases like GenBank (e.g., Harris (2003)). Dynamic DNA-based identification
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systems may produce multiple conflicting hits to otherwise corresponding submissions
over time. This unwanted behaviour has led to a number of regulatory agencies creating
their own static repositories populated with expertly-identified sequence records tied to
known voucher specimens deemed fit-for-purpose for molecular species diagnosis and
forensic compliance (e.g., the United States Food and Drug Administration (USFDA)’s
Reference Standard Sequence Library (RSSL) employed to identify unknown seafood
samples from species of high socioeconomic value). While such a move has partially solved
the problem of dynamism inherent in global sequence databases, there still remains the
issue of low sample sizes that can greatly inflate the perception of barcode gaps between
species. Obtaining adequate representation of standing genetic variation, both within and
between species, is therefore essential to mitigating false assignments using DNA barcodes.
To this end, we propose the use of HACSim to assess the degree of saturation of haplotype
accumulation curves to aid regulatory scientists in rapidly and reliably projecting likely
sufficient specimen sample sizes required for accurate matching of unknown queries to
known Linnean names.

A defining characteristic of HACSim is its convergence behaviour: the method converges
to the desired level of haplotype recovery p for any initial guess N specified by the user.
Based on examples explored herein, it appears likely that already-sampled species within
repositories like BOLD are far from being fully characterized on the basis of existing
haplotype variation. In addition to this, it is important to consider the current limitations
of our algorithm.We can think of only one: it must be stressed that appropriate sample size
trajectories are not possible for species with only single representatives within public DNA
sequence databases because haplotype accumulation is unachievable with only one DNA
sequence and/or a single sampled haplotype. Hence, HACSim can only be applied to species
with at least two sampled specimens. Thus, application of our method to assess necessary
sample sizes for full capture of extant haplotype variation in exceedingly rare or highly
elusive taxa is not feasible. Despite this, we feel that HACSim can greatly aid in accurate and
rapid barcode library construction necessary to thoroughly appreciate the diversity of life
on Earth.

CONCLUSIONS
Herein, a new, easy-to-use R package was presented that can be employed to estimate
intraspecific sample sizes for studies of genetic diversity assessment, with a particular focus
on animal DNA barcoding using the COI gene. HACSim employs a novel nonparametric
stochastic iterative extrapolation algorithm with good convergence properties to generate
haplotype accumulation curves. Because our approach treats species’ haplotypes as numeric
labels, any genomic locus can be targeted to probe levels of standing genetic variation
within multicellular taxa. However, we stress that users must exercise care when dealing
with sequence data from non-coding regions of the genome, since these are likely to
comprise sequence artifacts such as indels and introns, which can both hinder successful
sequence alignment and lead to overestimation of existing haplotype variation within
species. The application of our method to assess likely required sample sizes for both
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hypothetical and real species produced promising results. We argue the use of HACSim
will be of broad interest in both academic and industry settings, most notably, regulatory
agencies such as the Canadian Food Inspection Agency (CFIA), Agriculture and Agri-Food
Canada (AAFC), United States Department of Agriculture (USDA), Public Health Agency
of Canada (PHAC) and the USFDA. While HACSim is an ideal tool for the analysis of
Sanger sequencing reads, an obvious next step is to extend usability to Next-Generation
Sequencing (NGS), especially HTS applications. With these elements in place, even the
full integration of HACSim to assess comprehensiveness of taxon sampling within large
sequence databases such as BOLD seems like a reality in the near future.
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