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Abstract

The crosstalk between macrophages (MΦ) and adipocytes within white adipose tissue 
(WAT) influences obesity-associated insulin resistance and other associated metabolic 
disorders, such as atherosclerosis, hypertension and type 2 diabetes. MΦ infiltration is 
increased in WAT during obesity, which is linked to decreased mitochondrial content and 
activity. The mechanistic interplay between MΦ and mitochondrial function of adipocytes 
is under intense investigation, as MΦ and inflammatory pathways exhibit a pivotal role in 
the reprogramming of WAT metabolism in physiological responses during cold, fasting and 
exercise. Thus, the underlying immunometabolic pathways may offer therapeutic targets 
to correct obesity and metabolic disease. Here, I review the current knowledge on the 
quantity and the quality of human adipose tissue macrophages (ATMΦ) and their impact 
on the bioenergetics of human adipocytes. The effects of ATMΦ and their secreted factors 
on mitochondrial function of white adipocytes are discussed, including recent research 
on MΦ as part of an immune signaling cascade involved in the ‘browning’ of WAT, which 
is defined as the conversion from white, energy-storing adipocytes into brown, energy-
dissipating adipocytes.

Introduction

White adipose tissue (WAT) is a metabolically active 
tissue that modifies systemic metabolism significantly by 
regulating the storage and release of lipids. Free fatty acids 
serve as a major fuel source during times of energy scarcity 
and high energy demands, such as exercise, cold exposure 
and immune responses. The dysregulation of fatty acid 
release contributes to dyslipidemia, resulting in ectopic fat 
deposition into various organs. Ectopic fat in turn impairs 
organ functionality, as seen during many metabolic 
diseases. Importantly, WAT also releases metabolites other 
than fatty acids (e.g. lactate as glycolytic end-product) (1). 
Beyond the direct metabolic effects, WAT also mediates 
endocrine crosstalk by secretion of various adipokines 
(e.g. adiponectin and leptin) (2, 3).

The crucial role of mitochondrial activity for WAT 
function is well established and impacts the capacity 
of lipid storage (4, 5) and secretory function (6, 7, 8). 

Clinical studies substantiate the strong association 
between decreased mitochondrial content and oxygen 
consumption of WAT/adipocytes, which is in particular 
evident during metabolic complications such as insulin 
resistance, type 2 diabetes (T2DM) and cardiovascular 
diseases (9, 10, 11, 12, 13). A crucial hallmark in the 
development of obesity-associated metabolic disorders 
is the chronic, low-grade inflammation of WAT (14, 
15). Although obesity-associated inflammation and 
macrophage (MΦ) infiltration affect many tissues (such 
as liver, muscle, brain and pancreas (16, 17, 18, 19, 20)), 
the infiltration into WAT is disproportionately increased. 
Notably, it has been suggested that the obesity-associated 
inflammation of human WAT compromises mitochondrial 
function (21, 22, 23, 24).

Adipose tissue macrophages (ATMΦ) also reside in 
the WAT of lean and healthy individuals, suggesting a 
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fundamental physiological role for ATMΦ, beyond the 
context of pathology (Fig. 1). Some inflammatory processes 
appear to be important for healthy WAT expansion 
(25). The ATMΦ-secreted cytokines and chemokines 
act in an autocrine and paracrine manner, the latter by 
controlling the inflammatory response of other immune 
cells or possibly impacting the metabolism of adjacent 
adipocytes. Recent mouse studies suggest the secretion 
of ATMΦ factors that metabolically enhance adipocytes 
during cold, stress and exercise (26, 27, 28), which has 
been broadly termed the ‘browning’ of WAT. Some 
mechanistic aspects of MΦ-induced browning have been 
questioned (29, 30), but most studies collectively support 
a role for MΦ in the energy metabolism of adipocytes, in 
particular controlling adipocyte mitochondrial function 
(26, 27, 31, 32, 33, 34).

Taken together, there is accumulating evidence that 
ATMΦ enhances or suppresses the mitochondrial function 

in WAT. The understanding of how adipocyte energy 
metabolism and mitochondria are regulated during 
physiological and pathophysiological adaptation requires 
the mechanistic understanding of the immunometabolic 
interaction between ATMΦ and adipocytes. The 
molecular networks of this interaction may offer potential 
interference points to correct imbalanced metabolism 
during pathological situations such as obesity and T2DM.

Adipose tissue macrophages (ATMΦ)

MΦ number increases in human white adipose tissue 
during obesity

ATMΦ are numerically the dominant type of immune 
cells in human WAT, and obesity further enhances MΦ 
numbers in WAT, which contributes to obesity-related 
immune imbalances (Fig. 1A). However, the data on the 

Figure 1
Obesity-associated impaired immune balance in white adipose tissue. (A) Obesity is associated with an impaired immune balance toward pro-
inflammatory in WAT. All fat depots are affected, but mostly the viscWAT. (B) ATMΦ amount is low in lean scWAT (~13% of SVF). However, MΦ are 
numerically the dominant type of immune cells representing half of the immune cells. MΦ increase in obese WAT, for example in human scWAT from 13 
to 20% of the SVF (36). (C) The roles of ATMΦ in lean (left) and obese (right) WAT. The number of MΦ is low and they are interspersed between adipocytes 
in WAT of lean subjects, contrasting the higher number and local accumulation of MΦ in crown-like structures during obesity, which is fostered by 
proliferation, high immigration and low emigration. The low inflammatory profile (surface markers, cytokine expression and secretion, e.g. IL4, IL10) in 
lean subjects transforms into higher inflammatory status (e.g. TNFα, IL6, IL1β) during obesity.
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cellular composition of WAT (and thus the amount of 
ATMΦ) vary quantitatively between studies, depending on 
donor, fat depot, WAT isolation/processing method and 
molecular readout. The relative amount of MΦ varies from 
as little as ≤1% (CD11c+ cells, immunohistochemistry) in 
lean human scWAT (35), to up to 40% in obese scWAT, as 
seen in the first report from Weisberg et al. (CD68+ cells, 
immunohistochemistry) (24). The recent publication 
from Ehrlund et  al. found that the stromal vascular 
fraction (SVF) of scWAT from lean donors consists of ~60% 
progenitors including preadipocytes, ~3% endothelial 
cells, ~25% immune cells (and an undetermined rest) 
(36) (Fig.  1B). Half of this immune cell population is 
represented by MΦ (CD45+/CD14+ cells), whereas the 
other half is represented by T cells, B cells, mast cells, 
neutrophils and eosinophils. This study also reports that 
MΦ content significantly increases during obesity to ~20% 
of SVF in scWAT (36). The identified numbers of ~13% MΦ 
in lean scWAT and ~20% in obese scWAT (Fig. 1B) agree 
well with other reports (35, 37, 38, 39, 40, 41, 42, 43, 44, 
45, 46). Several publications show increased MΦ numbers 
in WAT during obesity that are more pronounced in 
viscWAT than in scWAT (47, 48, 49). The ATMΦ numbers 
in both viscWAT and scWAT correlate with BMI (24, 40, 
50). Although ATMΦ increase significantly in viscWAT 
during obesity, a recent publication also notes that the 
relative contribution of MΦ to the SVF is much smaller in 
viscWAT (lean: 3%; obese: 7%) as compared to scWAT (51). 
Comparing immune cell populations in viscWAT from 
lean, middle-aged, male mice to cynomolgus macaques 
and healthy humans revealed that MΦ are the dominant 
immune cell type in murine viscWAT, whereas in humans 
and cynomolgus macaques, T cells dominate, followed by 
MΦ as the second largest immune cell population (52). 
Considering these cross-species comparisons, MΦ may 
not always be the most abundant immune cell type in 
adipose tissue. Nevertheless, MΦ are present in scWAT 
and viscWAT with increasing numbers during obesity. 
Furthermore, the obese condition alters their quality, 
comprising the mode of activation and the diversity of 
the secretome.

The local accumulation of ATMΦ in obese WAT

Excessive energy intake (overnutrition) is broadly 
accepted as an inducer of increased ATMΦ infiltration in 
obese WAT, causing adipocyte hypertrophy and hypoxia, 
eventually leading to adipocyte dysfunction, cell death 
and fibrosis. This scenario is accompanied by higher 
levels of chemoattractant cytokines such as chemokine  

(C-C motif) ligand 2 (CCL2/MCP-1), chemokine (C-C 
motif) ligand 3 (CCL3/MIP1a) and others. These cytokines 
provide a chemotactic gradient that attracts monocytes 
into WAT (39, 53, 54, 55). Inside WAT, monocytes 
enhance the chemotactic gradient by secreting their own 
chemokines, thereby attracting additional MΦ and setting 
up a feed-forward inflammatory process. Between lean 
and obese, not only the number of MΦ changes, but also 
their localization: In lean WAT, ATMΦ are interstitially 
spaced, contrasting the local accumulation of ATMΦ in 
so-called ‘crown-like structures’ around dead, apoptotic 
adipocytes and/or fibrotic areas in obese WAT (35, 50, 56). 
Mouse studies indicate that the increased MΦ content 
in obese WAT presumably results from several processes: 
higher rates of recruited/infiltrating monocytes (e.g. 
via CCL2, see above) (57, 58, 59), proliferation of WAT-
resident monocytes (60, 61) and lower emigration rates of 
ATMΦ out of obese WAT (e.g. via netrin 1) (62).

The physiological importance of dynamic ATMΦ for 
WAT biology

ATMΦ exert distinct physiological roles and beneficial 
effects on WAT homeostasis, for example, healthy lipid 
storage (25, 26, 63, 64, 65) (Fig. 1C). ATMΦ are dynamic cells 
and they quickly adapt their phenotype and metabolism 
to changing environments, for example during fasting-
induced WAT lipolysis (65, 66) and overnutrition (67). 
ATMΦ stimulate healthy lipid storage and therefore 
prevent adverse ectopic lipid storage in other organs (e.g. 
hepatic steatosis). Anti- and pro-inflammatory signals 
seem to be involved in maintaining WAT homeostasis: 
Healthy WAT expansion is impaired by ablating tissue-
resident ATMΦ (anti-inflammatory M2) (68) or reducing 
pro-inflammatory signals in murine WAT (25). Recently, 
ATMΦ function has been implicated in cold adaptation 
and exercise of mice (27, 28). IL4-activated MΦ appear 
to be part of an anti-inflammatory signaling cascade 
contributing to cold-induced browning and recruitment 
of beige adipocytes in scWAT (26, 27, 28, 63, 69, 70). The 
underlying molecular mechanisms, however, and some of 
the reported effects have been controversially discussed 
(29, 30). The potential role of ATMΦ in browning will be 
detailed in later sections.

ATMΦ display a mixed phenotype in obese WAT

One of the first studies investigating ATMΦ proposed a 
phenotypic switch during obesity: while resident M2-like 
ATMΦ dominate in lean WAT, pro-inflammatory (M1) 
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ATMΦ dominate in obese WAT (71). The stressed, obese 
WAT is marked by elevated levels of fatty acids and LPS, 
which can activate TLR4 signaling to polarize MΦ toward 
the pro-inflammatory M1 phenotype (72). Thus, ATMΦ 
can resemble the phenotype of LPS and IFNγ-activated MΦ 
during diet-induced obesity (15, 24, 37). This simplified 
classification of anti- (M2) vs pro- (M1) inflammatory 
activated MΦ, however, does not reflect the actual 
situation in vivo, where a spectrum of mixed markers is 
found (73). Notably, there are also species differences on 
the molecular level between human and murine ATMΦ. 
For example, the markers commonly used for murine 
MΦ polarization, such as inducible nitric oxide synthase 
(iNos) and arginase 1 (Arg1), are barely expressed in 
human ATMΦ (74, 75, 76, 77). Recently, several different 
ATMΦ subtypes have been identified in obese human 
WAT expressing macrophage activation markers of both 
the M1 spectrum (e.g. CD11c) and the M2 spectrum (e.g. 
CD163, CD206) (51, 78, 79, 80, 81). Additionally, human 
ATMΦ displaying M2 surface markers are capable of 
secreting both, pro- and anti-inflammatory cytokines (82).  
CD11c+-ATMΦ show a reduced pro-inflammatory 
profile after weight loss (79). Thus, in particular during 
obesity, ATMΦ cannot be classified using the simple 
dual M1/M2 model. A new category of MΦs, termed 
‘metabolically’ activated MΦ, was recently proposed, 
which can be activated by the WAT-specific environment 
(hormones and nutrients) (83). Indeed, the WAT-specific 
microenvironment and/or the long retention time of MΦ 
in WAT during obesity may be the cause for the unique 
phenotype of ATMΦ. Data on monocytes/MΦ during 
obesity reveal higher immigration rates into obese WAT 
(59) and lower emigration rates (62), indicating longer 
exposure times for ATMΦ in the WAT microenvironment 
during obesity.

Dissecting the different spatiotemporal phenotypes 
of human ATMΦ, including their secreted cytokines, 
chemokines and other factors, either during acute or 
chronic metabolic challenges (e.g. feeding/fasting, 
different diets, exercise, cold), is a challenging task. 
However, further insights on the role of ATMΦ in WAT 
metabolism and dysfunction would be gained from those 
studies, including the potential to distinguish and classify 
subgroups of obese patients with high risk for certain 
obesity-associated metabolic complications (e.g. NAFLD, 
cardiovascular complications).

In summary, ATMΦ assist the maintenance of normal 
tissue function, such as adipokine secretion, healthy lipid 
storage and adaptation toward metabolic challenges (e.g. 
cold, exercise, fasting) (Fig. 1C). In obesity, the amount of 

ATMΦ increases through the combination of proliferation, 
immigration and retention. ATMΦ accumulate around 
dead adipocytes in crown-like structures and change 
their phenotype. Indeed, ATMΦ of the obese display 
altered secretion profiles, surface marker expression and 
metabolic function, thereby contributing to the overall 
(dys)function of WAT, which will eventually impact whole 
body metabolic homeostasis.

The bioenergetics of human white fat cells

Mitochondrial activity is important for lipid storage 
and secretory function of human white adipocytes

Synthesis of ATP through oxidative phosphorylation 
(OXPHOS) is a major function of mitochondria to provide 
sufficient cellular energy. Therefore, energy-demanding 
adipose-specific functions, such as endocrine signaling and 
lipid storage, highly depend on adequate mitochondrial 
activity. Indirectly, mitochondria also control free fatty 
acid (FA) levels as the consequence of lipid storage control. 
Beyond ATP production, mitochondria also generate 
metabolic intermediates that are required for de novo 
lipogenesis. For example, the mitochondrial pyruvate 
dehydrogenase complex (PDH) decarboxylates pyruvate to 
acetyl-CoA, and thereby regulates glyceroneogenesis and 
the metabolic switch from glucose to lipid metabolism 
(4). A similar regulating role of mitochondria is found for 
the reverse process of lipolysis, the breakdown of lipids. 
Lipolysis and mitochondrial activity are closely linked as 
mitochondria facilitate lipolysis through FA oxidation. 
Furthermore, free FA can uncouple mitochondrial chain 
activity from ATP synthesis and enhance respiratory 
activity, while inhibitors of mitochondrial ATP production 
can abolish catecholamine-stimulated lipolysis (84, 85, 86).

Mitochondria are also important players in the 
regulation of Ca2+ homeostasis (87), tying into the well-
documented calcium-dependent processes in adipocytes 
during insulin-stimulated glucose uptake, leptin secretion 
and adipogenesis (88, 89, 90, 91, 92). Furthermore, 
adequate mitochondrial activity is required to execute 
the endocrine function of WAT (e.g. adiponectin 
secretion (6)). Finally, the basic processes of adipocyte 
differentiation and maturation are closely linked to the 
initiation of de novo mitochondrial biogenesis and reactive 
oxygen species (ROS) production (93, 94). Collectively, 
mitochondrial activity of adipocytes has an impact on 
all the essential and specialized functions of WAT, even 
those that control distantly the processes that maintain 
systemic homeostasis.
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The bioenergetic profile of (pre-)adipocytes and the 
regulation by nutrients and hormones

As most proliferating progenitor cells, human subcutaneous 
preadipocytes depend mainly on glycolytic ATP production 
(~85% from glycolysis vs 15% from OXPHOS, Fig. 2) (95). 
During adipogenic differentiation, the mitochondrial 
content increases several fold (96) and the relative 
contribution of OXPHOS to total ATP production increases 
to 45–73% in human adipocytes (95, 97). Comparing 
mitochondrial oxygen consumption rates (OCRs) revealed 
four- to five-fold higher OCR in adipocytes as compared 
with preadipocytes (SGBS and primary cells) (95, 98). Of 
note, at least under in vitro conditions, glycolysis seems 
to be the preferred energy-producing pathway in both, 

preadipocytes and mature adipocytes. Adipocytes partially 
switch from OXPHOS to glycolysis in the presence 
of glucose. In the absence of glucose, however, only 
adipocytes, but not preadipocytes, are able to maintain 
their ATP demand by increasing mitochondrial activity. 
Therefore, mitochondria in human adipocytes allow 
for the high flexibility in substrate choice to maintain 
their energy metabolism (95). Visceral adipocytes show 
lower mitochondrial activity than subcutaneous, when 
calculated per cell and normalized for mitochondrial 
content (99, 100). When comparing isolated mitochondria 
from subcutaneous and visceral adipocytes, no significant 
difference in mitochondrial function was observed (9). 
This indicates that differences in energy metabolism 
between visceral and subcutaneous adipocytes, and WAT 
depots, do not depend on intrinsic mitochondrial capacity. 
Instead, cellular capacity of OXPHOS may depend on 
mitochondrial mass per cell (e.g. higher mitochondrial 
density in visceral than subcutaneous adipocytes (99)), the 
control of mitochondrial function at the cellular level (e.g. 
higher beta-3 adrenergic receptor mRNA levels in viscWAT 
than in scWAT (101)) and the depot-specific surrounding 
(e.g. higher vascularization in viscWAT than scWAT (102)), 
including the inflammatory environment created by MΦ 
(higher concentration of cytokines such as IL6 in viscWAT 
than scWAT (103)).

Upon adrenergic activation, subcutaneous adipocytes 
of lean humans display increased OCR that associates 
with increased lipolysis (13). In parallel, extracellular 
acidification rates (ECARs), which estimate glycolytic 
activity, are increased (13). Notably, the extracellular 
acidification may also derive from increased carbon 
dioxide production of the TCA cycle (dissolved as carbonic 
acid), and therefore, partially unrelated to glycolysis. 
Insulin stimulation of subcutaneous adipocytes from 
obese donors leads to increased glycolytic activity and 
simultaneously, to decreased ATP-linked respiration (104). 
Whether this response is different in adipocytes from lean 
donors, or different in visceral adipocytes, needs to be 
determined. Overall, the high capacity of mitochondrial 
OXPHOS, that is linked to trigacylglycerol/FA cycling 
activity and induced by hormones and nutrients, is 
essential for metabolic flexibility of WAT (105, 106, 107), 
representing a marker of healthy adipocytes (Fig. 2).

Obesity-induced changes in the bioenergetics of 
white adipocytes

Decreased mitochondrial function in white adipocytes 
leads to dysfunction in lipid storage and endocrine 

Figure 2
The dynamics of adipocyte energy metabolism. Oxygen consumption rates 
(OCRs), representing mitochondrial function, are plotted against 
extracellular acidification rates (ECARs), representing an estimate for 
glycolytic activity. Both pathways fuel cellular ATP demands, are 
complementary and display metabolic flexibility, in particular in healthy, 
lean adipocytes (orange). Preadipocytes (yellow) display lower OCR, higher 
ECAR and less metabolic flexibility. During adipogenic differentiation, 
glycolytic ATP production is replaced by oxidative phosphorylation 
(OXPHOS). OXPHOS increases about five-fold, and its contribution to 
cellular ATP increases from 15% in preadipocytes (yellow circle) to ~60% in 
adipocytes (orange circle) under basal, normoglycemic conditions. 
Adipocytes in lean WAT display high flexibility of OCR and ECAR, depending 
on nutrient availability (e.g. glucose: 45% OXPHOS in hyperglycemic (green 
circle) and 73% OXPHOS in hypoglycemic (blue circle) conditions), 
depending on hormonal input (e.g. catecholamine (brown circle) induces 
simultaneous glycolysis and OXPHOS = increased metabolic activity; insulin 
(green circle) suppresses OXPHOS and increases glycolysis = metabolic 
shift), and depending on inflammatory mediators (e.g. TNFα (pink circle) is 
suspected to reduce OCR and ECAR = metabolic depression).
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function of WAT (2, 6) that associate with obesity-induced 
metabolic complications such as insulin resistance 
(108) (Fig.  3). Several studies demonstrate reduced 
mitochondrial content and activity of subcutaneous 
and visceral adipocytes from obese donors (9, 10, 12, 13, 
109) independent of fat cell size (9, 12). Furthermore, 
subcutaneous adipocytes from obese donors show lower 
OCR responses after β-adrenergic stimulation as compared 
to lean individuals (13). The depression of ATP metabolism 
in adipocytes from obese donors is supported by data on 
lower mitochondrial activity, reduced lipid accumulation 
and insulin-stimulated glucose uptake, as compared 
to SGBS adipocytes, which represent a model for lean, 
insulin-sensitive human white subcutaneous adipocytes 
(110). In line with these observations, previous studies on 
basal heat production of primary (‘floating’) adipocytes 
from lean vs obese humans revealed an obesity-related 
reduction in heat output by ~50% (111). Interestingly, not 
only impaired mitochondrial function but also altered 
glycolytic activity in adipocytes is associated with obesity. 
Higher lactate secretion of WAT from obese patients has 
been reported previously, indicating higher glycolytic 
fluxes, impaired conversion of lactate to pyruvate and/or 
impaired pyruvate import into the mitochondria (1, 112, 
113). This is in line with suggestions on the increased 
requirement of glycolytic energy production during insulin 
resistance (114). Under hypoxic condition, adipocytes 
show increased glucose uptake, leading to glycogen 
accumulation that has been linked to impaired adipokine 

secretion (115). Additionally, mitochondrial uncoupling in 
adipocytes, either induced by overexpressing uncoupling 
protein 1 (UCP1) or by administration of chemical 
uncouplers such as FCCP, results in less ATP yield from 
OXPHOS. This is usually compensated by the increase of 
glycolytic energy production. If the compensation fails 
to maintain ATP homeostasis, adipocytes show reduced 
lipid accumulation, possibly by diverting glucose-derived 
carbon flux away from fatty acid synthesis into lactate 
production (116, 117, 118, 119). This reduction in lipid 
accumulation capacity of adipocytes may lead to the 
adverse lipid accumulation in other organs (e.g. NAFLD), 
a commonly seen feature in metabolically unhealthy 
obese patients (120). Thus, appropriate functionality, 
balance and regulation of the main energy-producing 
pathways, oxidative phosphorylation and glycolysis, 
is important for metabolic flexibility to retain healthy 
adipocytes. Any perturbation of these metabolic processes 
leads to metabolic imbalances and adverse outcomes for 
the whole metabolic system of the body.

In summary (Fig. 3), healthy adipocytes possess the 
adequate mitochondrial mass and activity, allowing 
a wide scope of metabolic responses to hormones such 
as insulin and adrenaline. Mitochondrial function is 
required for insulin-stimulated glucose metabolism 
and adrenergic-stimulated OXPHOS capacity, allowing 
for rapid adjustments of energy metabolism. Obesity is 
characterized by lower mitochondria number and activity, 
altered basal/insulin-stimulated glucose metabolism and 

Figure 3
Obesity-associated impaired energy metabolism in white adipocytes. In lean WAT, high mitochondrial mass and activity in adipocytes allow for high 
metabolic flexibility. OXPHOS and glycolysis are adjusted in response to hormonal regulation (insulin and adrenergic activation). Visceral adipocytes 
display lower mitochondrial activity than subcutaneous adipocytes (normalize per cell and mitochondrial content). Contrasting lean WAT, obese WAT is 
characterized by lower mitochondrial mass and activity, impaired glucose metabolism and dampened hormonal responses. Obesity overall renders 
adipocytes metabolically inflexible.
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lower adrenergic-stimulated OXPHOS. Therefore, it is  
not surprising that unhealthy adipocytes are less 
metabolically flexible.

Linking ATMΦ to human 
adipocyte bioenergetics

Metabolically healthy (vs unhealthy) obesity is 
characterized by dampened inflammatory molecular 
signatures in WAT and lower levels of circulating 
inflammation markers (TNFα and hCRP) (121, 122, 
123, 124). Together, this indicates the link between 
inflammation and dysregulated metabolism. Early 
observations by Weisberg et  al. that showed obesity-
associated increases in ATMΦ content, also reported on 
the decreased expression of several mitochondria-related 
genes (24). Cytokines are potential candidates mediating 
the crosstalk between ATMΦ and the energy metabolism 
of adipocytes (Fig. 4). Typical cytokines involved in WAT 
inflammation are TNFα, IL6 and IL1β. These cytokines 
promote insulin resistance and/or induce lipolysis 
(125, 126, 127, 128). Notably, some of these and other 
cytokines suppress mitochondrial function (22) (Fig. 4B). 
The crosstalk between ATMΦ and adipocytes is certainly 
bidirectional, and dysfunctional adipose mitochondria 
possibly promote WAT inflammation as well (129). This 
review, however, will focus on the effects of ATMΦ in 
controlling adipocyte mitochondria.

In vivo, the paracrine interactions between ATMΦ 
and adipose cells are complex, as MΦ are very dynamic 
cells with a changing cytokine profile that is influenced 
by adipokines (130, 131), sympathetic nerve activation 
(132), as well as insulin and nutrients (83). ATMΦ could 
represent a distinct subpopulation in WAT with a unique, 
not yet fully characterized phenotype that is altered 
during obesity (as discussed in the sections above). 
Thus, studying ex vivo the effects of MΦ-conditioned 
media, which represent the global secretome of MΦ, 
provides only a rudimentary picture of the effects that 
MΦ-derived products impose on fat cell bioenergetics. 
This ex vivo system, however, enables us to identify the 
factors, signaling pathways and mechanisms that can 
be further investigated and targeted in vivo to modulate 
mitochondrial function of adipocytes.

ATMΦ and secreted factors affect glucose 
metabolism/glycolysis of adipocytes

Using conditioned media from LPS-activated MΦ (MΦ-
CM), Lumeng et al. observed higher basal glucose uptake 
in adipocytes in a murine cell culture system (3T3-L1 
adipocytes and RAW264.7 or J774 macrophages) (133). 
In line with this, we demonstrated higher glycolytic 
activity in adipocytes after incubation with either  
LPS/INFγ-activated MΦ-CM or IL10/TGFβ-activated 
MΦ-CM (34), using a human model system composed 
of SGBS cells, a human subcutaneous adipocyte model 

Figure 4
Control of adipocyte energy metabolism. In the 
WAT-specific environment (yellow background), 
multiple cytokines/chemokines, metabolites, lipid 
species and hormones from diverse cell types 
within WAT and/or circulation can exert either 
positive (upper box, A) or negative (lower box, B) 
effects on WAT metabolism. These factors control 
mitochondrial function of (pre-)adipocytes either 
directly and/or indirectly by first affecting the 
ATMΦ secretion profile. Notably, the composition 
of released factors depends on MΦ activation 
(known for factors written in blue/green). 
Depending on the TGFβ superfamily (BMPs and 
GDFs), WAT metabolism is either promoted or 
suppressed. A recently identified but 
controversially discussed mechanism of MΦ 
invoked browning and enhanced WAT 
metabolism is the secretion of catecholamine by 
IL4-activated MΦ during cold and exercise (upper 
box, A). On the contrary, NAMs/SAMs (lower box, 
B), which represent MΦ in close proximity of 
neurons/axons, may reduce local catecholamine 
levels and thus suppress mitochondrial function 
of adipocytes with age and obesity.
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and THP1 cells, a human monocytic cell line that can 
be differentiated into MΦ and subsequently activated 
with different stimuli (134). Overall, ATMΦ possess the 
potential to increase basal glucose uptake in adipocytes. 
The potential responsible factors comprise the classical 
inflammatory cytokines which are associated with obese 
WAT inflammation, such as TNFα and IL1β. Controversial 
reports exist for IL6, which is a cytokine that has often 
been associated with WAT inflammation (22, 57, 135). 
Furthermore, a few studies report on reduced insulin-
stimulated glucose uptake after exposing adipocytes to 
either different MΦ-CM, or to cytokines, such as TNFα, 
CCL2 and IL1β, which are mostly linked to the decreased 
activation of insulin signaling cascades (35, 128, 133, 136, 
137). Of note, many studies show the percentage or fold-
changes of glucose uptake vs vehicle (0 nM insulin), not 
fully excluding the possibility that the reduced response 
in these studies may be due to increased basal glucose 
uptake, at least partially.

The molecular identity of ATMΦ released factors 
reducing adipose energy metabolism

Maintenance of cellular homeostasis requires a constant 
production of ATP unless specific, energy-demanding 
tasks are performed. Therefore, increased basal glucose 
uptake may report increased energy demand. However, 
increased basal glucose uptake may equally report a 
compensatory mechanism to counter fit decreased 
OXPHOS activity (ATP-linked respiration). The latter 
scenario describes a switch in the energy producing 
pathways, rather than the increase in metabolic activity. 
IL10/TGFβ-activated MΦ and/or IL1β promote such a 
metabolic switch in adipocytes by increasing glucose 
uptake/glycolysis while simultaneously decreasing 
mitochondrial activity (22, 34) (Fig. 4B). IL1β also inhibits  
cAMP- and isoproterenol-induced PGC1a and UCP1 
mRNA levels (138, 139), further supporting the IL1β 
signaling pathway in suppressing oxidative metabolism 
of adipocytes. TNFα represents a cytokine that appears 
to reduce major energy-producing pathways, glycolysis 
and OXPHOS. The lowering in production of cellular 
energy subsequently results in adipocyte death, finally 
seen as the loss of mitochondrial membrane potential 
and cleaved caspase-3 (22). Notably, TNFα levels and 
mitochondrial mass correlate negatively in human WAT 
(129, 140). Whether the secretome of the ‘metabolically’ 
activated MΦ in obese WAT (83) is significantly involved 
in decreased adipose mitochondrial function is not 
known as yet (Fig. 4B).

ATMΦ and their secreted factors may, however, not 
only directly affect adipocyte energy metabolism, but also 
indirectly by altering neuronal signals into the tissue. 
One of those signals is catecholamine, which enhances 
energy dissipation. Two mechanisms have been described 
how MΦ may limit bioactive catecholamine in WAT and 
brown adipose tissue (BAT): One mechanism proposes 
the inhibition of neuronal innervation. BAT-specific MΦ 
inhibit sympathetic neuronal innervation and thereby 
impair catecholamine signaling in BAT, while WAT 
innervation is not affected (141). The other mechanism 
proposes neurotransmitter clearance. A distinct MΦ-type 
that is attached, or at least in close proximity, to axons 
of the SNS takes up and degrades norepinephrine (NE). 
These MΦ have been termed either sympathetic neuron-
associated MΦ (SAMs) (30) or nerve-associated MΦ (NAMs) 
(142). So far, SAMs/NAMs have been identified in murine 
viscWAT (142) and scWAT (30), but not unequivocally 
in murine BAT (30). SAMs/NAMs may regulate local 
catecholamine concentrations and prevent catecholamine 
spill over into the circulation (30, 142, 143). The MΦ-
mediated NE uptake and degradation system is apparently 
enhanced during obesity (increased number of SAMs (30)) 
and aging (GDF3-dependent increased expression of genes 
controlling NE degrading in NAMs (142)), and potentially 
contribute to decreased energy metabolism with age and 
obesity (Fig. 4B).

Mediators between ATMΦ and increased adipose 
energy metabolism

The interaction between ATMΦ and increased WAT energy 
metabolism is supported by mouse models that claim 
the involvement of MΦ in the ‘browning’ of WAT upon 
cold exposure, exercise and caloric restriction (26, 27, 28, 
144, 145) (Fig. 4A). Browning of WAT has been classically 
defined as the upregulation of uncoupling protein 1 
(UCP1) and the appearance of multilocular adipocytes in 
WAT, termed beige adipocytes. Beige adipocytes associate 
with mitochondrial biogenesis and higher energy turnover. 
UCP1 resides in the mitochondrial inner membrane and 
uncouples the proton motive force from ATP synthesis, 
thereby directly releasing energy as heat and accelerating 
catabolic processes. With this energy-burning machinery, 
the browning of WAT can restore dysregulated glucose 
and lipid metabolism in diverse obese and diabetic mouse 
models (26, 27, 28, 146). With these observations in 
mouse models, browning-inducing pathways have gained 
remarkable attention in biomedicine to treat metabolic 
diseases. In the context of browning, ATMΦ may release 
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cytokines, which could induce UCP1 expression, higher 
energy turnover and energy wasting in adipocytes 
(Fig. 4A). Several publications implicate IL6 signaling in 
beige adipocyte formation and WAT browning (147, 148, 
149), but some aspects of IL6-stimulated glucose uptake 
are controversial (147, 148, 149, 150).

Another cytokine that affects WAT energy metabolism, 
either directly or via MΦ, is IL4 (Fig. 4A). IL4 is secreted 
by MΦ and to a higher extent by eosinophils in WAT (26). 
It may directly control WAT metabolism, by acting either 
on preadipocytes to promote differentiation into beige 
adipocytes, or on adipocytes to induce higher ATP turnover 
(151, 152). Several publications place IL4-activated MΦ 
into immune signaling cascades that are able to induce 
UCP1 expression and mitochondrial activity in adipocytes. 
The IL4-MΦ axis can be modulated by additional factors 
of endocrine (e.g. released distantly from muscle (27)) 
and/or paracrine nature (e.g. released adjacently from 
other WAT cell types, including eosinophils, type 2 innate 
lymphoid cells, regulatory and natural killer T cells (26, 
153, 154)). The underlying mechanisms how the IL4-
MΦ system induces browning is not fully understood. In 
particular, the involvement of catecholamine-producing 
ATMΦ is controversially discussed (28, 29). Although some 
reports on catecholamine synthesis in MΦ exist (143, 155, 
156), the physiological contribution during cold-induced 
thermogenesis seems to be of minor importance (29). 
Whether MΦ-mediated uptake (143) or degradation of 
catecholamines (as shown for SAMs/NAMs (30, 142)) is 
inhibited and substantially contributes to cold-induced 
WAT browning requires further investigations.

Additional candidates that impact mitochondrial 
function in adipocytes belong to the TGFβ superfamily. 
TGFβ3 inhibits the ‘browning’ of WAT and stimulates 
proliferation of white adipocytes (150, 157, 158, 159). Our 
functional work demonstrated that IL10/TGFβ-activated 
MΦ secreted factors decrease ATP-linked respiration 
in human subcutaneous adipocytes, thus providing 
evidence for indirect suppression of mitochondrial 
respiration by TGFβ (34). Several other members of the 
TGFβ superfamily have been proposed in the regulation 
of oxidative metabolism in adipocytes and the browning 
of WAT, affecting whole body energy metabolism. Many 
of these factors are indeed secreted by MΦ. Whether 
these factors promote or suppress energy metabolism 
depends on the distinct factor or receptor, as well as on 
the adipose depot (BAT or WAT). Examples for specific 
effects include bone morphogenetic proteins (BMP 2, 4, 
7 and 8b) (160, 161, 162, 163, 164, 165, 166) and growth 
differentiation factors (GDF 1, 3, 5, 15) (142, 167, 168, 

169, 170, 171, 172) (Fig.  4A and B). The effects also 
depend on the developmental stage of the adipocytes, 
whether the cytokine acts directly on the mesenchymal 
stem cell, on the early committed preadipocytes (brown, 
beige or white) or on the adipocytes, or whether the 
cytokine acts indirectly by changing MΦ infiltration and 
their phenotype (170, 173). Additionally, there are reports 
that these cytokines act on the central nervous system to 
control metabolism (164, 174).

Other mediators between ATMΦ and adipocyte 
metabolism are metabolites. Upon activation, MΦ change 
their metabolomic profile (175, 176), for example upon 
LPS activation, more lactate and pyruvate are released 
(176). Lactate and acetate have been suggested as inducers 
of WAT browning (177, 178, 179). Lipid mediators (e.g. 
oleoylethanolamine (OEA), prostaglandin E2 (PGE2)) are 
differentially released by MΦ, depending on the mode 
of activation (180, 181, 182). Circulating metabolites 
and lipid mediators are involved in the browning of 
rodent WAT (177, 183, 184), indicating that these 
factors represent additional candidates by which MΦ 
modulate mitochondrial activity in white adipocytes 
(Fig.  4A). Although MΦ may not be the main source 
for some cytokines or factors that have been linked to 
increased or decreased energy expenditure in WAT (e.g. 
IFNγ, retinoic acid, catecholamine, IL17, lactate), the 
indirect involvement of these factors cannot be formally 
excluded (29, 34, 185, 186, 187, 188). For instance, we 
have recently found increased ATP-linked respiration in 
white adipocytes after exposure to the secreted factors of  
LPS/IFNγ-activated MΦ (34) (Fig. 4A).

In summary (Fig. 4), ATMΦ can be activated by the 
WAT-specific microenvironment which is impacted 
by circulating endocrine and auto-/paracrine factors 
(cytokines, nutrients and hormones). Thus, the WAT-
specific environment is characterized by distinctly 
activated ATMΦ and MΦ-secreted factors which 
contribute to the microenvironment but furthermore and 
the regulation of WAT energy metabolism. During cold, 
exercise and fasting, the induction of adipose energy 
metabolism by enhancing beige adipocyte differentiation, 
inducing UCP1 expression, increasing ATP turnover 
and/or increasing energy dissipating pathways such as 
catecholamine can be mediated by activated MΦ (e.g.  
LPS/IFNγ- or IL4-activated MΦ) and MΦ released factors 
such as cytokines (IL4, IL6), metabolites (lactate, acetate) 
and/or lipid mediators (PGE2, OEA) (Fig.  4A). In the 
obese state, other activated MΦ (e.g. IL10/TGFβ- or 
‘metabolically’ activated MΦ) and MΦ released factors 
such as cytokines (e.g. IL1β and TNFα) may decrease energy 
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metabolism of adipocytes or limit local energy dissipating 
pathways by uptake and degradation of catecholamine (by 
SAM, NAM) (Fig. 4B). Several scenarios how these factors 
operate are conceivable, and they most likely overlap and 
work in concert, by direct action on mesenchymal stem 
cells, preadipocytes and adipocytes and by indirect signals 
via MΦ. Indirect action may also occur via additional cell 
types in WAT, including other immune cells (e.g. T cells), 
epithelial cells and neurons (not depicted in Fig. 4).

Conclusion and outlook

In the upcoming field of immunometabolism, which 
investigates the crosstalk between immune cell function 
and metabolic homeostasis, the understanding on 
paracrine regulation of human white adipocyte 
metabolism by ATMΦ, is utterly important. By identifying 
the ATMΦ-secreted factors that control mitochondrial 
function and energy metabolism in adipocytes, we may 
be able to find novel therapeutic targets to treat diseased 
WAT during obesity. This new understanding of the 
metabolic network in WAT needs to be resolved on the 
molecular level, investigating how controlling pathways 
are regulated under physiological and pathophysiological 
conditions. A detailed investigation is required on the 
ATMΦ phenotypes/subpopulations and how fat depot-, 
gender- and age-specific ATMΦ infiltration and activation 
are related to adipocytes, WAT and whole body metabolism 
in health and disease. Although this review focuses on 
the paracrine action of MΦ within the white adipose 
tissue, it should be considered that ATMΦ contribute to 
the overall secretion profile of WAT with factors that are 
released into the circulation for endocrine action causing 
systemic effects such as insulin resistance. It is feasible 
to speculate that these factors will not only impact the 
energy metabolism of adipocytes, but also as endocrine 
factors potentially impact the bioenergetics of other  
more distantly located target cells (such as hepatocytes 
and myocytes).

Furthermore, not only MΦ composition changes 
with obesity, but other immune cells, such as T cell, B 
cell, eosinophil, iNKT and neutrophils change in number 
and activation state, contributing to the impaired 
immune balance in obese WAT. Thus, the complex 
microenvironment of adipose tissue that controls the 
bioenergetics of adipocytes is composed of multiple 
cytokines and cell types with multiple cellular targets. 
Additionally, there is potentially a feed-back mechanism 

in place where adipocyte-secreted proteins and signals 
impact the immune cell secretome that in turn controls 
adipocyte metabolism. How the endocrine and nervous 
system that regulates metabolism (e.g. catecholamine, 
acetylcholine, insulin and glucagon) affects the crosstalk of 
ATMΦ and fat cells represents another promising research 
topic. Many other aspects require further investigation, 
concerning cytokine production and combinatorial 
effects on adipocytes, the interaction with energy storing 
and dissipating pathways, as well as the crosstalk between 
adipocytes and cell types other than ATMΦ to control 
adipocyte glycolysis and mitochondrial function.

Owing to the profound differences in the immune 
system between mice and humans, it is of major 
importance to consolidate murine pathways and their 
impact on metabolism in humans. That said, however, it 
is promising that certain activated MΦ not only induce 
energy-producing pathways (glycolysis and OXPHOS) in 
white adipocytes, but possibly in an UCP1-independent 
manner, suggesting new options to increase energy 
expenditure by targeting inflammatory pathways in 
WAT. Novel strategies in obesity therapy are required 
as obese and older subjects are usually characterized by 
the absence or low content of BAT (UCP1+-cells) (189). 
Whether the browning capacity of human subcutaneous 
WAT can be enhanced to that extent that it eventually 
contributes significantly to systemic energy expenditure, 
is still an open question (190, 191). Beyond energy 
wasting in adipocytes, mitochondria are crucial for all 
cellular pathways (e.g. differentiation, apoptosis, energy 
dissipation, adipokine secretion), thus representing 
ubiquitous targets to treat obesity and its associated 
disorders. Collectively, targeting inflammatory pathways 
in fat depots could be a feasible strategy for the treatment 
of metabolic diseases.
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