
Submitted 12 March 2020
Accepted 11 August 2020
Published 21 September 2020

Corresponding author
Abdulrazzaq Qasem Ali, abdulraz-
zaq.alyhari@gmail.com

Academic editor
Stefan Wagner

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.294

Copyright
2020 Ali et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Development of a valid and reliable
software customization model for
SaaS quality through iterative method:
perspectives from academia
Abdulrazzaq Qasem Ali, Abu Bakar Md Sultan, Abdul Azim Abd Ghani and
Hazura Zulzalil
Department of Software Engineering and Information System, Faculty of Computer Science and Information
Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia

ABSTRACT
Despite the benefits of standardization, the customization of Software as a Service
(SaaS) application is also essential because of the many unique requirements of
customers. This study, therefore, focuses on the development of a valid and reliable
software customization model for SaaS quality that consists of (1) generic software
customization types and a list of common practices for each customization type in the
SaaSmulti-tenant context, and (2) key quality attributes of SaaS applications associated
with customization. The study was divided into three phases: the conceptualization
of the model, analysis of its validity using SaaS academic-derived expertise, and
evaluation of its reliability by submitting it to an internal consistency reliability test
conducted by software-engineer researchers. The model was initially devised based on
six customization approaches, 46 customization practices, and 13 quality attributes in
the SaaS multi-tenant context. Subsequently, its content was validated over two rounds
of testing after which one approach and 14 practices were removed and 20 practices were
reformulated. The internal consistency reliability study was thereafter conducted by 34
software engineer researchers. All constructs of the content-validatedmodel were found
to be reliable in this study. The final version of themodel consists of 6 constructs and 44
items. These six constructs and their associated items are as follows: (1) Configuration
(eight items), (2) Composition (four items), (3) Extension (six items), 4) Integration
(eight items), (5) Modification (five items), and (6) SaaS quality (13 items). The results
of the study may contribute to enhancing the capability of empirically analyzing the
impact of software customization on SaaS quality by benefiting from all resultant
constructs and items.

Subjects Distributed and Parallel Computing, Emerging Technologies, Software Engineering
Keywords Customization approaches, Content validity, Iterative method, Model development,
Reliability study, SaaS quality, Software as a service

INTRODUCTION
Software maintenance comprises a significant portion (70%) of the total software
implementation costs (Lee, Park & Lim, 2013). According to Yang, Yoo & Jahng (2010),
‘‘more than 75% of the IT budget is spent just maintaining and running existing systems
and software infrastructure". The increase in development and operating costs, which

How to cite this article Ali AQ, Md Sultan AB, Abd Ghani AA, Zulzalil H. 2020. Development of a valid and reliable software customiza-
tion model for SaaS quality through iterative method: perspectives from academia. PeerJ Comput. Sci. 6:e294 http://doi.org/10.7717/peerj-
cs.294

https://peerj.com/computer-science
mailto:abdulrazzaq.alyhari@gmail.com
mailto:abdulrazzaq.alyhari@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.294
http://doi.org/10.7717/peerj-cs.294


was also one of the main reasons for the failure of application service provider (ASP) in
the 1990s (De Miranda, 2010), is inevitable. As a result, the demand for a software as a
service (SaaS) model is increasing because the costs of hardware, technology, maintenance,
and tenant management are lower (Walraven, 2014; Walraven et al., 2014; Shen et al.,
2011; Ali et al., 2017). Some problems, such as customization complexities (Walraven,
2014; Walraven et al., 2014; Guo et al., 2011; Al-Shardan & Ziani, 2015; Walraven, Truyen
& Joosen, 2011), for the implementation of SaaS applications remain.

Customization is an essential requirement for providing the same application to different
users (Walraven, 2014;Ali et al., 2018b), as theymay have different business flow, interfaces,
and data (Tsai, Zhong & Chen, 2016). Consequently for the hosts of SaaS applications, this
requirement will pose quality challenges and risks (Al-Shardan & Ziani, 2015; Rolia et
al., 2008). All SaaS application components are influenced by user-specific customization,
including both functional and non-functional aspects of all layers of SaaS architecture (Tsai,
Shao & Li, 2010).

Another complication is having to span multiple layers of SaaS architecture (Al-
Shardan & Ziani, 2015). All SaaS application elements, including those with cross-layer
relationships, must be customizable. Moreover, customization includes adjustments to the
softwares source code that becomes highly complex in the SaaS model (Walraven, 2014;
Walraven et al., 2014; Guo et al., 2011; Sun et al., 2008).

Changes in the requirements often occur after applications and services have
been developed; therefore, runtime customization must be provided within the same
software instance for different users (Walraven, 2014; Walraven et al., 2014; Ali et al.,
2018a; Van Landuyt, Walraven & Joosen, 2015), and should not impact their privacy and
the applications availability (Walraven, 2014; Van Landuyt, Walraven & Joosen, 2015).
Generally, SaaS applications lack the customizability of on-premises applications (Yang,
Yoo & Jahng, 2010), which would result in reduced software maintenance (Samir &
Darwish, 2016; Xin & Levina, 2008). By contrast, frequent customization of the SaaS
application would require a burdensome maintenance process and pose a significant
challenge to scalability and cost-efficiency (Walraven et al., 2014; Van Landuyt, Walraven
& Joosen, 2015). Therefore, application vendors should be cautious about their technical
capacity when making customization assessments (Sun et al., 2008; Samir & Darwish,
2016), especially when customization impacts the crucial features of SaaS (Walraven, 2014;
Walraven et al., 2014; Joha & Janssen, 2012; Espadas et al., 2013).

There is insufficient evidence in the available studies to assess the effect of software
customization on SaaS attributes (Ali et al., 2019a). Accordingly, it is important that the
type of customization be specified to assess the associated impact and risk (Chaumun et al.,
2002) as the software quality are likely to be influenced by any change (Parthasarathy &
Sharma, 2017; Parthasarathy & Sharma, 2016). Although several researchers have reported
the need to consider the customization of SaaS applications, no clear effort has been made
to categorize software customization types and practices in a multi-tenant context.

Accordingly, research is required to establish a clear model that considers: (1) generic
software customization types and a list of common practices for each client in the SaaS
multi-tenant context, and (2) key quality attributes associatedwith customization. Evidence

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 2/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


of the content validity and reliability of the proposed model are reported in detail in this
study. Two main calculations are considered for content validity: the item content validity
index (I-CVI) of each customization practice and SaaS quality attributes, and the scale
content validity index (S-CVI/Ave). Similarly, two quantities are evaluated to determine
the internal consistency reliability of the model in this study: Cronbach’s alpha coefficient,
and the corrected item-total correlation.

The structure of this manuscript is as follows. The next section discusses the related
works. The third section presents the conceptualization of the model. The fourth section
explains themethodology used, whereas the fifth section reports the results of the conducted
study, followed by a discussion in the sixth section and threats to validity in the seventh
section. Finally, conclusions and future work are presented in the eighth section.

RELATED WORK
This study presents an approach iteratively to develop, refine, and improve a software
customization model for SaaS quality that was initially constructed in (Ali et al.,
2019b). The main components of this model are the customization types, common
customization practices of each type, and quality attributes of SaaS applications associated
with customization. To the best of our knowledge, nomodel based on these criteria has been
developed and validated. However, in this section, we review the literature on generic SaaS
customization options, followed by the literature on quality models for SaaS applications.

SaaS customization
Different types of customization based on the layers of SaaS architecture and customization
objects have been suggested (Li, Shi & Li, 2009; Tsai & Sun, 2013; Al-Shardan & Ziani,
2015). Li, Shi & Li (2009) illustrated five types of customization: GUI customization, service
customization, process customization, data customization, and cross-layer customization.
Tsai & Sun (2013) considered the customization of GUI, service, process, data, and QoS.
Al-Shardan & Ziani (2015) defined three different types of SaaS customization: user
interface, workflow, and access control.

Conversely, some studies classified SaaS customization based on how customization
was performed. Tsai & Sun (2013) explained three types of customization: source code,
composition, and configuration. Based on where the customizations are hosted and
executed, the work of Müller et al. (2009) proposed three types of customization for
multi-tenant SaaS applications: desktop integration, user-interface customization, and
back-end customization.

Moreover, Kabbedijk & Jansen (2011) identified the types of customization in a tenant
base. Customization was classified as segment variability and tenant-oriented variability: in
the former, customization is performed based on the requirements of a tenant community,
whereas in the latter, it is performed based on the specific requirements of a tenant. The
most closely related studies are listed and summarized in Table 1.

As Table 1 indicates, although there were some generic customization approaches
proposed for SaaS, they did not explicitly declare the common customization practices
for each approach. In addition, several inconsistencies are found across all proposals. For

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 3/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 1 A summary of generic classification of SaaS Customization.

References Customization type Based on

Li, Shi & Li (2009) GUI , service , process, data
and cross-layer

SaaS architecture layers

Tsai & Sun (2013) GUI, service, process, data
and QoS

SaaS architecture layers

Source code, composition and
configuration

Manner of performing

Al-Shardan & Ziani (2015) GUI, workflow and access
control

SaaS architecture layers

Müller et al. (2009) UI customization, desktop in-
tegration and back-end cus-
tomization

Manner of performing

Kabbedijk & Jansen (2011) Segment Variability and
Tenant-oriented Variability

Tenant and Tenant’s community

example, the term ‘‘user interface customization" is used in both (Tsai & Sun, 2013;Müller
et al., 2009), but with different meanings. Additionally, these proposals argued for the
relevance of this approach, yet they did not consider reporting a comprehensive validation
either from academia or industry.

SaaS quality
Many studies have focused entirely on defining and identifying the quality attributes of SaaS
applications. For instance, Khanjani et al. (2014) proposed a list of 33 quality attributes for
SaaS and provided their definitions and Lee et al. (2009) proposed a comprehensive quality
model for assessing SaaS cloud services. Based on ISO/IEC 9126 (Coallier, 2001), these
authors identified characteristics and quality attributes and defined metrics to measure
them. A systematic process was proposed by La & Kim (2009) to build a high-quality SaaS
application, taking the main SaaS design criteria into consideration.

Duarte Filho et al. (2013) proposed a ‘‘SaaS Quality" method for evaluating the quality
of SaaS applications. The SaaS quality model, based on ISO/IEC 9126 (Coallier, 2001) and
IT management models (Publications Service Management, 2008; IT Governance Institute,
2007), was generated as a part of the proposed method. Another related study extracted
the critical quality attributes for SaaS reusability and identified SaaS reusability metrics
for every quality attribute (Samir & Darwish, 2016). Cancian et al. (2010) have customized
software quality models to fit the SaaS context, classifying the SaaS quality criteria for
products and processes and identifying quality attributes for each class.

Nadanam & Rajmohan (2012) proposed a QoS model for web services in cloud
computing, similar to the work of (Lee et al., 2009). Some of these attributes have been
included in the Lee model. However, these attributes only address a few relevant aspects;
many other significant features remain to be considered. These two models focus largely
on user perspectives. Table 2 summarizes all the SaaS quality models reported in this study.
Although some works in Table 2 mention customizability as a quality attribute of SaaS
applications, none of them focused on the quality attributes of SaaS applications associated
with customization.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 4/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 2 A summary of proposed quality models for SaaS application.

References Quality attributes Inspired by

Khanjani et al. (2014) Reliability, resiliency, Accuracy, Efficiency, Service response
time, Stability, Functionality, Customizability, Suitability,
Accessibility, Learnability, Commonality, Multi-tenancy,
Operability,Serviceability, Robustness, Data Integrity, Data
privacy, Adaptability, Extensibility, Flexibility, Scalability,
Changeability, Composability, Maintainability, Security
Management, Composability and Availability.

Service measurement index (CSMIC 2014)

Lee et al. (2009) Efficiency, Reliability, scalability, availability and
Reusability.

ISO/IEC 9126 (Coallier, 2001)

La & Kim (2009) Supporting commonality, supporting multi tenant’s access,
accessible via Internet, thin client model, Functionality,
High Reusability, High Availability and High Scalability.

key characteristics desired properties of SaaS in
(Espadas, Concha & Molina, 2008;Manford 2008)

Duarte Filho et al. (2013) Functionality, Usability, Security, Performance, Support,
Service Level, Portability

ISO/IEC 9126 (Coallier, 2001), ITIL v3
(Management 2008) and COBIT 4.1 (TGI 2007),

Samir & Darwish (2016) Understandability, Modularity, Composability, Complexity,
Customizability,reliability, Availability, Efficiency.

Literature analysis perfomed by the authors

Cancian et al. (2010) Integrity,reliability, security, accessibility,requirements
development and management, infrastructure
capability, quality control, acquisition, testing,
performance, utilization of standards, change control,
interoperability,robustness, availability, maintenance,
version control, technically competent in business,
technically competent employees, prevision of continuity of
service, scalability, help desk, process quality certification,
governance,reputation.

Literature analysis perfomed by the authors

Nadanam & Rajmohan (2012) Availability,reliability, scalability, efficiency,reusability,
understandability, publicity, adaptability and
composability.

Literature analysis perfomed by the authors

CONCEPTUAL MODEL
Based on a systematic mapping study (SMS) conducted by Ali et al. (2019), the proposed
model was initially constructed from 46 customization practices and 13 quality attributes
in the SaaS multi-tenant context. Each of the investigated customization practices was
assigned to a customization approach (personalization, configuration, composition,
modification, integration, and extension). These approaches were inferred from the most
popular software customization proposals (Ali et al., 2019).

The model presented in this study, as shown in Fig. 1, demonstrates the concept of all
the approaches and SaaS quality. The purpose of the conceptual model is to analyze the
variables in this study comprehensively.

Personalization approach
The personalization approach refers to all solutions that provide transparent customization
without needing to inform users (Gilmore & Pine, 1997; Mathiassen & Sandberg, 2014;
Sunikka & Bragge, 2008). Personalization involves gathering and analyzing datasets
correlated to individuals and/or groups (Tsai, Shao & Li, 2010; Fan et al., 2015; Tsai,
Huang & Shao, 2011; Truyen et al., 2012) accurately to implement services based on their

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 5/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Figure 1 Proposed model of this study.
Full-size DOI: 10.7717/peerjcs.294/fig-1

current and common preferences (Tsai, Shao & Li, 2010; Fan et al., 2015; Truyen et al.,
2012). Moreover, a set of potential services is offered by publicly available pre-structured
templates from SaaS providers (Fan et al., 2015). The main data sources for personalization
may be tenant or tenant communities (Tsai, Shao & Li, 2010).

Recommendation mechanisms are often used with this approach to propose suitable
services according to preferences, profiles, data, and service directories of the users
(Tsai, Shao & Li, 2010; Fan et al., 2015). The personalization approach also considers
the meaning (semantics) of user and community data (Tsai, Shao & Li, 2010; Fan et al.,
2015) by employing runtime behavior adaptation facilities to adapt the behavior of SaaS
applications to the performance context (Truyen et al., 2012; Xiaojun, Yongqing & Lanju,
2013; Aulbach et al., 2011). A summary of common customization practices related to
personalization in the context of multi-tenant SaaS applications is given in Table 3.

Configuration approach
According to the configuration approach, solutions offer a predefined setting for the
alteration of application functions within a predefined scope (Sun et al., 2008; Brehm,
Heinzl & Markus, 2001; Parhizkar, 2016; Davenport, 1998). Diversity is usually maintained
by establishing predefined parameters, options, and components, treating each user
individually (Xin & Levina, 2008; Salih & Zang, 2016; Kabbedijk & Jansen, 2011). Each
SaaS tenant has to be able to configure the application by employing techniques to modify
the functions of the applications within established limits (Xin & Levina, 2008; Zhang et
al., 2007; Li, Shi & Li, 2009). Meanwhile, SaaS providers have to develop sets of services
and plugins with which tenants perform configurations (Zhao et al., 2014;Mohamed et al.,
2014). This type of SaaS application must enable tenants to create or select features based
on the template repository (Tsai, Shao & Li, 2010; Tsai, Huang & Shao, 2011; Saleh, Fouad

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 6/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-1
http://dx.doi.org/10.7717/peerj-cs.294


Table 3 Multi-tenant SaaS customization practices of Personalization approach.

Id Customization practice References

Par 1 Tenants profile Tsai, Shao & Li (2010), Fan et al. (2015), Tsai, Huang &
Shao (2011), Truyen et al. (2012)

Par 2 Tenants preferences Tsai, Shao & Li (2010), Fan et al. (2015), Truyen et al. (2012)

Par 3 Tenants behavioral activities Fan et al. (2015), Truyen et al. (2012)
Par 4 Service directory Fan et al. (2015)
Par 5 Recommendation mechanism Tsai, Shao & Li (2010), Fan et al. (2015)
Par 6 Semantics data Tsai, Shao & Li (2010), Fan et al. (2015)
Par 7 Runtime personalization Truyen et al. (2012), Xiaojun, Yongqing & Lanju (2013),

Aulbach et al. (2011)
Par 8 Tenants and Tenants communities (Info source) Tsai, Shao & Li (2010)

Table 4 Multi-tenant SaaS customization practices of Configuration approach.

Id Customization practice References

Con 1 Pre-defined parameters and options Xin & Levina (2008), Salih & Zang (2016), Kabbedijk &
Jansen (2011)

Con 2 Tenant configuration Interface Xin & Levina (2008), Zhang et al. (2007), Li, Shi & Li (2009)
Con 3 Provider plugins Zhao et al. (2014),Mohamed et al. (2014)
Con 4 Customization templates Tsai, Shao & Li (2010), Tsai, Huang & Shao (2011), Saleh,

Fouad & Abu-Elkheir (2014), Ralph (2008), Chen, Li & Kong
(2013), Ruehl & Andelfinger (2011), Tsai & Sun (2013)

Con 5 Template repository Tsai, Huang & Shao (2011), Saleh, Fouad & Abu-Elkheir
(2014), Tsai & Sun (2013)

Con 6 Customization point Shahin (2014),Mietzner & Leymann (2008)
Con 7 Feature selection Mohamed et al. (2014), Ying et al. (2010)
Con 8 Runtime Configuration Xin & Levina (2008), Gey, Landuyt & Joosen (2015),Moens

& De Turck (2014), Shi et al. (2009)
Con 9 Features deactivation Nguyen, Colman & Han (2016),Moens et al. (2012)

& Abu-Elkheir, 2014; Ralph, 2008; Chen, Li & Kong, 2013; Ruehl & Andelfinger, 2011; Tsai
& Sun, 2013).

A set of components, which accommodate a variety of tenant needs, is provided in the
application template. By selecting a relevant component set, tenants can personalize each
customization point (Shahin, 2014; Mietzner & Leymann, 2008). When a tenant wishes
to subscribe to the SaaS application, the capabilities of each feature within the system
are analyzed to determine whether they ought to be incorporated into the application
(Mohamed et al., 2014; Ying et al., 2010). All configurations established by the tenants must
be adapted during the applications runtime (Xin & Levina, 2008; Gey, Landuyt & Joosen,
2015;Moens & De Turck, 2014; Shi et al., 2009). In addition, a disabling or excluding option
for some features could be provided (Nguyen, Colman & Han, 2016; Moens et al., 2012).
Table 4 summarizes the common customization practices of the configuration approach
in the context of multi-tenant SaaS applications.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 7/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 5 Multi-tenant SaaS customization practices of Composition approach.

Id Customization practice References

Com 1 Components consolidation and sharing Saleh, Fouad & Abu-Elkheir (2014),Moens et al. (2012),
Moens, Dhoedt & De Turck (2015), Liu et al. (2010), Rico
et al. (2016), Ruehl, Wache & Verclas (2013),Makki et al.
(2016)

Com 2 Runtime composition Moens et al. (2012),Moens, Dhoedt & De Turck (2015),
Kumara et al. (2013),Mietzner, Leymann & Papazoglou
(2008), Lee & Choi (2012)

Com 3 Subcomponents composition Kumara et al. (2013), Schroeter et al. (2012), Kumara et al.
(2015)

Com 4 Decomposition Shahin (2014),Moens et al. (2012), Gey et al. (2014)
Com 5 Components relationships Li, Shi & Li (2009), Shahin (2014),Moens, Dhoedt & De

Turck (2015)

Composition approach
In this approach, the multiple interacting components of the SaaS application are
consolidated and new components can be shared between tenants and end-users (Saleh,
Fouad & Abu-Elkheir, 2014; Moens et al., 2012; Moens, Dhoedt & De Turck, 2015; Liu et
al., 2010; Rico et al., 2016; Ruehl, Wache & Verclas, 2013; Makki et al., 2016). Different
components of the SaaS applications that collaborate must be composed during runtime
(Moens et al., 2012; Moens, Dhoedt & De Turck, 2015; Kumara et al., 2013; Mietzner,
Leymann & Papazoglou, 2008; Lee & Choi, 2012). The final composition must take into
consideration the subcomponents of the core application (Kumara et al., 2013; Schroeter
et al., 2012; Kumara et al., 2015). The composition approach enables simplification of the
consolidated SaaS components (Shahin, 2014; Moens et al., 2012; Gey et al., 2014) as the
relationships and dependencies between them are considered (Li, Shi & Li, 2009; Shahin,
2014; Moens, Dhoedt & De Turck, 2015). Table 5 summarizes the common customization
practices of the composition approach in the context of multi-tenant SaaS applications.

Extension approach
SaaS application can be extended by adding custom code to be compiled during runtime
(Saleh, Fouad & Abu-Elkheir, 2014; Mietzner & Leymann, 2008; Correia, Penha & Da Cruz,
2013). Furthermore, a set of extension points, which permit a customized service to be
plugged in,must be provided (Mietzner & Leymann, 2008;Correia, Penha & Da Cruz, 2013;
Moens & De Turck, 2014; Salih & Zang, 2012). The SaaS provider should also supply an
open platform and an API, which allows developers to compile custom code (replacements
for existing objects or extensions to them) into the business object layers of the application
(Zhao et al., 2014; Müller et al., 2009). Any extension to a SaaS application may be public
or accessible only by an individual tenant (Aulbach et al., 2011). Table 6 summarizes the
common customization practices of the extension approach in the context of multi-tenant
SaaS.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 8/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 6 Multi-tenant SaaS customization practices of Extension approach.

Id Customization practice References

Ext 1 Custom code insertion Saleh, Fouad & Abu-Elkheir (2014),Mietzner & Leymann
(2008), Correia, Penha & Da Cruz (2013)

Ext 2 Extension points Mietzner & Leymann (2008), Correia, Penha & Da Cruz
(2013)

Ext 3 Runtime extension Moens & De Turck (2014), Salih & Zang (2012)
Ext 4 Extension interface Zhao et al. (2014),Müller et al. (2009)
Ext 5 Replacements of existing code Müller et al. (2009)
Ext 6 Private/public extension Aulbach et al. (2011)

Integration approach
In this case, the SaaS applicationmust be capable of incorporating extra services via external
SaaS providers (Aulkemeier et al., 2016; Sun et al., 2007; Almorsy, Grundy & Ibrahim, 2012;
Scheibler, Mietzner & Leymann, 2008). Most SaaS service customers assume that the SaaS
application will merge easily with their in-house systems (Müller et al., 2009; Aulkemeier et
al., 2016; Sun et al., 2007; Scheibler, Mietzner & Leymann, 2008; Zhang, Liu & Meng, 2009).
However, this integration must consider nonfunctional elements, such as security controls,
which should be accommodated by the applications architecture (Sun et al., 2007; Almorsy,
Grundy & Ibrahim, 2012), at both design time and runtime (Aulkemeier et al., 2016; Sun et
al., 2007).

Integration platforms may present a service framework, responsible for assimilating
services, and process frameworks, through which business processes can be executed
(Aulkemeier et al., 2016; Sun et al., 2007). Any additional services from third-party SaaS
providersmust employ different programming languages and run in different environments
(Scheibler, Mietzner & Leymann, 2008). In some cases, code or scripts will be utilized to
incorporate these services (Aulkemeier et al., 2016). Incorporation requires an integration
interface (Aulkemeier et al., 2016; Sun et al., 2007), synchronization toolkits, and data
retrieval mechanisms to respond to the demands posed by integration (Sun et al., 2007;
Zhang, Liu & Meng, 2009). In this study, the common customization practices related to
the integration approach in the context of multi-tenant SaaS applications are summarized
in Table 7.

Modification approach
This approach refers to techniques and solutions that alter the design or other functional
requirements of the application by changing part of its source code (Luo & Strong, 2004;
Haines, 2009). The modifications must consider the allocation of resources to take the
customized code into account, thereby ensuring operational cost-efficiency regarding
maintenance and resource sharing among tenants (Sun et al., 2008; Moens & De Turck,
2014;Helmich et al., 2009). SaaS vendors must manage all elements of customization codes
for any individual tenant without developing unique versions for each (Sun et al., 2008).
As a result, they should alter the code of the application when identical customizations are
made by a considerable number of tenants (Sun et al., 2008;Moens & De Turck, 2014).

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 9/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 7 Multi-tenant SaaS customization practices of Integration approach.

Id Customization practice References

Int 1 Integration with another SaaS Mohamed et al. (2014), Aulkemeier et al. (2016), Sun et
al. (2007), Almorsy, Grundy & Ibrahim (2012), Scheibler,
Mietzner & Leymann (2008)

Int 2 Integration with other on-premise applications Müller et al. (2009), Aulkemeier et al. (2016), Sun et al.
(2007), Scheibler, Mietzner & Leymann (2008), Zhang, Liu &
Meng (2009)

Int 3 Non-functional integration Sun et al. (2007), Almorsy, Grundy & Ibrahim (2012)
Int 4 Runtime integration Aulkemeier et al. (2016), Sun et al. (2007)
Int 5 Service & process integration Aulkemeier et al. (2016), Sun et al. (2007)
Int 6 Integration of different PL applications Scheibler, Mietzner & Leymann (2008)
Int 7 Third party code injection Aulkemeier et al. (2016)
Int 8 Integration interface Aulkemeier et al. (2016), Sun et al. (2007)
Int 9 Synchronization & data retrieval tools Sun et al. (2007), Zhang, Liu & Meng (2009)

Table 8 Multi-tenant SaaS customization practices of Modification approach.

Id Customization practice References

Mod 1 Source code modifications Sun et al. (2008),Moens & De Turck (2014), Helmich et al.
(2009)

Mod 2 Resources allocation for customized code Sun et al. (2008),Moens & De Turck (2014)
Mod 3 Individual tenant basis Sun et al. (2008)
Mod 4 Identical customizations Sun et al. (2008),Moens & De Turck (2014)
Mod 5 Runtime Modification Moens & De Turck (2014)
Mod 6 Dependency relationship of modified functions Dong et al. (2010)
Mod 7 Namespaces, inheritance, and polymorphism Lee & Choi (2012)
Mod 8 Add or changes methods or attributes Ziani & AlShehri (2015), Kong, Li & Zheng (2010)
Mod 9 Deletion of custom objects, methods, or attributes Ziani & AlShehri (2015), Kong, Li & Zheng (2010)

Runtime code changes must consider the interrelationship between different functions,
as one function can depend on one or several other functions simultaneously (Dong et
al., 2010). Namespaces, inheritance, and polymorphism are often used to implement
source code customizations in this case (Lee & Choi, 2012). Source-code modifications
are made by adding or deleting methods or attributes, or by changing the current
implementation methods of the object (Ziani & AlShehri, 2015; Kong, Li & Zheng, 2010).
Table 8 summarizes the common customization practices of the modification approach in
the context of multi-tenant SaaS applications.

SaaS quality
The list of SaaS quality attributes in the proposed customization solutions for SaaS
applications was provided in (Ali et al., 2019), but the attributes were not defined.
Therefore, in this work, we focus on the definitions provided by (Khanjani et al., 2014),
which have been evaluated and validated in a PhDdissertation (Khanjani, 2015).Moreover,

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 10/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 9 Quality attributes of SaaS applications associated with customization.

Id Quality attribute Defination References

QA 1 Multi-tenancy SaaS services can support in-
stances of simultaneous access by
multiple users for multiple ten-
ants.

Khanjani et al. (2014), La & Kim (2009)

QA 2 Scalability SaaS providers can manage
growth or decline in the level of
services.

Khanjani et al. (2014), Lee et al. (2009), Nadanam &
Rajmohan (2012), Zia & Khan (2012), Akojwar et al. (2012),
CSMIC (2014)

QA 3 Availability SaaS services can function within
a specific time to satisfy users
needs.

Khanjani et al. (2014), Lee et al. (2009), Nadanam &
Rajmohan (2012), Akojwar et al. (2012), CSMIC (2014),
Cancian et al. (2010), Alhamad, Dillon & Chang (2010)

QA 4 Reliability SaaS application maintains op-
erating and functioning under
given conditions without failure
within a given time period.

Khanjani et al. (2014), Lee et al. (2009), Nadanam &
Rajmohan (2012), Akojwar et al. (2012), CSMIC (2014),
Cancian et al. (2010), Alhamad, Dillon & Chang (2010)

QA 5 Maintainability Modifications to the application
are made by SaaS provider to re-
tain it in the condition of good
repair.

Khanjani et al. (2014), CSMIC (2014), Cancian et al. (2010)

QA 6 Security The effectiveness of SaaS
provider’s controls on service
data, access to the services, and
the physical facilities from which
service are provided.

Khanjani et al. (2014), CSMIC (2014)

QA 7 Usability The ease with which SaaS service
can be used to achieve tenant-
specific-goal.

Khanjani et al. (2014), Alhamad, Dillon & Chang (2010)

QA 8 Interoperability SaaS service can easily inter-
act with other services from the
same SaaS provider or other
providers.

Khanjani et al. (2014), CSMIC (2014), Cancian et al. (2010)

QA 9 Efficiency SaaS services effectively utilize
resources to perform their func-
tions.

Khanjani et al. (2014), Lee et al. (2009), Nadanam &
Rajmohan (2012), Akojwar et al. (2012)

QA 10 Functionality SaaS application provides an ex-
tensive set of features.

Khanjani et al. (2014), CSMIC (2014)

QA 11 Accessibility SaaS services are operable by
users with different disabilities.

Khanjani et al. (2014), CSMIC (2014), Cancian et al. (2010)

QA 12 Commonality SaaS services possess common
features and are amenable to
reuse by multiple users.

Khanjani et al. (2014), La & Kim (2009), Lee et al. (2009),
Nadanam & Rajmohan (2012)

QA 13 Response time SaaS application adheres to a de-
fined time limit between service
request and service response.

Khanjani et al. (2014), CSMIC (2014), Salama et al. (2012),
Badidi (2013), Song et al. (2012), He et al. (2012),Wang et
al. (2011)

these definitions were compared with those available in the literature provided by other
SaaS quality models.

The identification and definitions of the quality attributes that play an important role
in SaaS customization or could be influenced by customization are presented in Table 9.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 11/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Figure 2 Conceptual model of this study.
Full-size DOI: 10.7717/peerjcs.294/fig-2

All the customization practices for each approach and the quality attributes associated
with the relevant SaaS applications are presented in Fig. 2. In this study, all customization
approaches are variables that may affect the quality of SaaS applications. In the remaining
sections of this study, customization practices and quality attributes are labeled as items,
while approaches and SaaS quality are labeled as ‘‘constructs".

METHODOLOGY
The methodology of this study is composed of three main phases, as indicated in Fig. 3.
The first phase is the development of the customization model concept for SaaS quality,
as presented in the previous section. The second and third phases consider the content
validity and reliability of the model.

Rounds of content validity
Content validity is a vital topic for high-quality measurement (Wynd, Schmidt & Schaefer,
2003). It holds that each item has a requisite sample of aspects that depicts the construct
of interest (Cohen, Manion & Morrison, 2002). In this study, this quantity was evaluated to
validate the conceptual model.

Content validity is generally determined based on the opinion of experts, who analyze if
the model or instrument correctly depicts its concept (Bell, Bryman, & Harley, 2015; Hair
et al., 2015), in the field. To validate the conceptual model, a questionnaire was elaborated
and provided to researchers who had previous experience in the SaaS customization field.
These researchers were identified through an extensive systematic mapping study and

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 12/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-2
http://dx.doi.org/10.7717/peerj-cs.294


Figure 3 Methodology phases of this study.
Full-size DOI: 10.7717/peerjcs.294/fig-3

selected based on their published papers and affinity with this study, 224 researchers were
identified (Ali et al., 2019). A cover letter describing the objective of the questionnaire and
asking some personal information on the background of experts was attached.

As the available literature on the classification and identification of software
customization approaches and related quality attributes in the SaaS multi-tenant context
is insufficient, we conducted iterative content validity evaluation as recommended by
(Polit & Beck, 2006; Parratt et al., 2016;Harris & Holloway, 2012). While designing the data
analysis for each round, we primarily followed the content validity index (CVI) method,
which is the common method for this purpose (Bhatti & Ahsan, 2017), as guided by (Polit
& Beck, 2006). The popularity of CVI is not only limited to educational, psychological,
or nursing research, but also to other disciplines or research areas, such as researches in
software engineering and information systems (Bhatti & Ahsan, 2017; Yilmaz et al., 2017;
Wang et al., 2019). In this study, two quantities were calculated (Polit & Beck, 2006):
1. The item content validity index (I-CVI) for each item.
2. The scale content validity index (S-CVI/Ave), which is an average of the I-CVIs for

each construct.
Lynn (1986) suggests that at least three experts should be present to evaluate the model;

however, more than ten experts would probably be unnecessary (Polit & Beck, 2006).
Other scholars mention that at least five experts should be sufficient to validate the model
(Zamanzadeh et al., 2015). Questionnaires that queried the relevance of each item with
respect to its construct were, therefore, sent to a group of experts. As recommended by
(Polit & Beck, 2006; Lynn, 1986;Davis, 1992), the respondent replied according to a 4-point
ordinal scale in which 1, 2, 3 and 4 respectively corresponded to ‘‘not relevant’’, ‘‘somewhat
relevant’’, ‘‘quite relevant’’, and ‘‘very relevant’’. The experts were also requested to provide
further comments about each item and construct and about the overall model, including
recommendations for improvement.

After each round (after at least five experts had replied to the questionnaire), the inputs
and suggestions were analyzed. Any item that was deemed unclear or did not meet the

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 13/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-3
http://dx.doi.org/10.7717/peerj-cs.294


I-CVI criteria was either revised or removed. The rounds were suspended when the S-CVI
and I-CVI criteria were achieved:
1. I-CVI of 1.00 with 3 to 5 experts (Polit & Beck, 2006; Lynn, 1986).
2. I-CVI of 0.78 or higher for 6 to 10 experts (Polit & Beck, 2006; Lynn, 1986).
3. S-CVI of 0.80 or higher (Polit & Beck, 2006; Yamada et al., 2010).
Our intention in round 1 was to revise the items that did not meet the I-CVI criteria

rather than deleting them. The deletion of invalid items or constructs was left to the
subsequent rounds. This strategy, therefore, allowed most of the items to be assessed more
than one time.

Furthermore, the CVI analysis in all rounds had to be supplemented by computation of
the Kappa coefficient to remove possible chance agreement among the experts (Shrotryia
& Dhanda, 2019; Polit & Beck, 2006). The evaluation criteria for Kappa are fair = k of
0.40–0.59, good = k of 0.60–0.74, and excellent = k > 0.74 (Zamanzadeh et al., 2014;
Shrotryia & Dhanda, 2019; Polit & Beck, 2006).

Reliability study
After the content validity was established, a study was conducted to determine the
reliability of the model. Thirty-four respondents from software engineering research
groups, familiar with SaaS applications, were purposively sampled. They were from four
Malaysian universities, namely Universiti Putra Malaysia, Universiti Kebangsaan Malaysia,
Universiti Malaysia Pahang, and Universiti Tenaga Nasional.

The reliability of the measured items used in the survey was examined using Cronbachs
alpha internal consistency test. Its results range from 0 to 1, in which high numbers indicate
high reliability. Values greater than 0.9 are excellent; between 0.8 and 0.9 are good; between
0.7 and 0.8 are acceptable; between 0.6 and 0.7 are questionable, and below 0.6 are poor
(Sekaran & Bougie, 2016). The reliability of the research instrument or model is related to
its consistency and stability (Sekaran & Bougie, 2016; Alkawsi, ALI & Alghushami, 2018).
The reliability of the model was assessed using three quantities:
1. Cronbach’s alpha value for each construct must be 0.70 or above.
2. Corrected item-total correlation should exceed 0.2.
3. Cronbachs Alpha if Item deleted must be lower than that of Cronbach’s alpha for a

construct.

RESULTS
The results of the content validity evaluation and consistency tests are reported in this
section.

Rounds of content validity
We conducted two evaluation rounds for content validity between February 2019 and
June 2019, starting with version 1 of the model produced in the conceptualization phase.
It was revised after each round, generating versions 2 and 3. The versions 1, 2, and 3
questionnaires are provided in Appendices A–C.

In round 1, the questionnaire was sent to the first 100 researchers identified by Ali
et al. (2019); only five experts replied and completed the content validity questionnaire.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 14/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294#supp-1
http://dx.doi.org/10.7717/peerj-cs.294#supp-1
http://dx.doi.org/10.7717/peerj-cs.294


Table 10 Basic research-related information of the experts participated in round 1.

No Designation Research expertise Experience

1 Researcher Software Engineering, Software Systems >5
2 Associate Professor Software Engineering <5
3 Professor Software Engineering, Software Tools, Model-driven

Development
>5

4 Associate Professor Software engineering >5
5 Researcher Software engineering, big data, AI <5

Table 11 Basic research-related information of the experts participated in round 2.

No Designation Research expertise Experience

1 Assistant Professor Software Engineering >5
2 Professor Software Engineering >5
3 Researcher Software Engineering, Distributed & Cloud Computing >5
4 Researcher Software Engineering, Machine Learning <5
5 Associate Professor Software Engineering, Cloud Computing >5
6 Associate Professor Software engineering >5

Therefore, in round 2, we considered sending it to all the researchers identified by Ali et
al. (2019) (including all the researchers who were addressed in round 1); only six experts
replied. Tables 10 and 11 contain the basic research-related information of the experts who
participated in rounds 1 and 2. Due to the satisfying level of consensus indicated by the
I-CVI and S-CVI scores after the analysis of round 2, it was determined that an additional
round was unnecessary; therefore, data collection was suspended.

Table 12 demonstrates the level of consensus for each of the items in the two rounds as
well as the initial 59 items and 7 constructs of round 1, and 56 items and 7 constructs of
round 2. These items were deleted in round 1 for the following reasons:
1. Item Con 1 was removed as it was adequately measured by item Con 6, thus item Con

6 was retained as its I-CVI (0.8) was higher than item Con 1 (0.4).
2. Item Mod 7 was removed as it was applicable to all software developed with object-

oriented approach.
3. Item Mod 9 was merged with item Mod 8 as they complement each other.
In round 1, consensus (I-CVI >=1.00) was reached by the overall panel for 19 of the

59 items (32.20%). An I-CVI of 0.80 was attained for 24 items (40.68%) and 0.60 for 12
items (20.34%). In addition, an I-CVI of 0.40 was attained for only 4 of 59 items (6.78%).
Figure 4 depicts the number of items in the I-CVI results. From our interpretation of the
answers, the experts suggested that more refinement of the description was required for
some items. The need for these refinements could have been avoided if the multi-tenancy
concept was included.

In round 2, the Id of each item was redefined to reflect the resulting list of items from
round 1. Table 12 also displays the I-CVIs obtained from round 2. The 31, 17, 6, and 2 of

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 15/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 12 Results of I-CVI, S-CVI and Kappa within content validity rounds.

Construct Round_1 Round_2

Item_1 I-CVI_1 Kappa S-CVI_1 Item_2 I-CVI_2 Kappa S-CVI_2

Per 1 0.4 0.13 Per 1 0.67 0.56
Per 2 0.8 0.76 Per 2 1 1.00
Per 3 0.8 0.76 Per 3 0.5 0.27
Per 4 0.8 0.76 Per 4 0.67 0.56
Per 5 0.8 0.76 Per 5 0.67 0.56
Per 6 0.8 0.76 Per 6 0.67 0.56
Per 7 1 1.00 Per 7 0.83 0.82

Personalization a

Per 8 1 1.00

0.8

Per 8 0.83 0.82

0.72

Con 1 0.4 0.13 Con 1 1 1.00
Con 2 0.8 0.76 Con 2 1 1.00
Con 3 1 1.00 Con 3 1 1.00
Con 4 1 1.00 Con 4 1 1.00
Con 5 1 1.00 Con 5 0.83 0.82
Con 6 0.8 0.76 Con 6 0.83 0.82
Con 7 0.8 0.76 Con 7 1 1.00
Con 8 0.8 0.76 Con 8 1 1.00

Configuration

Con 9 0.6 0.42

0.8 0.958

Com 1 1 1.00 Com 1 1 1.00
Com 2 1 1.00 Com 2 0.83 0.82
Com 3 0.8 0.76 Com 3 1 1.00
Com 4 0.4 0.13 Com 4 0.5 0.27

Composition

Com 5 1 1.00

0.84

Com 5 1 1.00

0.86b

Ext 1 1 1.00 Ext 1 1 1.00
Ext 2 1 1.00 Ext 2 0.83 0.82
Ext 3 0.6 0.42 Ext 3 0.83 0.82
Ext 4 1 1.00 Ext 4 1 1.00
Ext 5 0.8 0.76 Ext 5 1 1.00

Extension

Ext 6 1 1.00

0.9

Ext 6 0.83 0.82

0.91

Int 1 1 1.00 Int 1 1 1.00
Int 2 1 1.00 Int 2 0.83 0.82
Int 3 1 1.00 Int 3 0.83 0.82
Int 4 0.6 0.42 Int 4 1 1.00
Int 5 0.8 0.76 Int 5 1 1.00
Int 6 0.4 0.13 Int 6 1 1.00
Int 7 0.6 0.42 Int 7 0.83 0.82
Int 8 0.6 0.42 Int 8 1 1.00

Integration

Int 9 0.8 0.76

0.75

Int 9 0.83 0.82

0.92

(continued on next page)

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 16/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Table 12 (continued)

Construct Round_1 Round_2

Item_1 I-CVI_1 Kappa S-CVI_1 Item_2 I-CVI_2 Kappa S-CVI_2

Mod 1 0.8 0.76 Mod 1 0.83 0.82
Mod 2 0.6 0.42 Mod 2 1 1.00
Mod 3 0.8 0.76 Mod 3 0.83 0.82
Mod 4 0.8 0.76 Mod 4 0.83 0.82
Mod 5 0.8 0.76 Mod 5 0.67 0.56
Mod 6 0.8 0.76 Mod 6 0.67 0.56
Mod 7 0.6 0.42 Mod 7 0.83 0.82
Mod 8 1 1.00

Modification

Mod 9 0.8 0.76

0.77 0.809c

QA 1 1 1.00 QA 1 1 1.00
QA 2 1 1.00 QA 2 1 1.00
QA 3 1 1.00 QA 3 1 1.00
QA 4 0.8 0.76 QA 4 1 1.00
QA 5 0.6 0.42 QA 5 1 1.00
QA 6 0.6 0.42 QA 6 1 1.00
QA 7 0.6 0.42 QA 7 1 1.00
QA 8 0.8 0.76 QA 8 1 1.00
QA 9 0.8 0.76 QA 9 1 1.00
QA 10 0.8 0.76 QA 10 1 1.00
QA 11 0.6 0.42 QA 11 0.83 0.82
QA 12 0.8 0.76 QA 12 1 1.00

SaaS Quality

QA 13 0.6 0.42

0.76

QA 13 1 1.00

0.98

Notes.
aItems and costructs with red color were removed from the Model.
bS-CVI of Composition construct after remvoing invalid items is 0.95.
cS-CVI of Modification construct after remvoing invalid items is 0.86.

Figure 4 Results of I-CVI within Content Validity rounds.
Full-size DOI: 10.7717/peerjcs.294/fig-4

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 17/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-4
http://dx.doi.org/10.7717/peerj-cs.294


Figure 5 Results of S-CVI within content validity rounds.
Full-size DOI: 10.7717/peerjcs.294/fig-5

56 items obtained I-CVIs of 1.00, 0.83, 0.67, and 0.5 respectively. In this round, all items
that did not meet the minimum I-CVI of 0.78 were removed.

However, more experts were involved in round 2 than in round 1 (considering the
fact that the larger the set of experts, the harder it is to reach consensus), a significant
improvement of the I-CVIs results was produced in round 2. Figure 4 compares the I-CVIs
of both rounds. The scores in round 1 varied from 0.4, 0.6, 0.8, and 1.00 to 0.5, 0.67,
0.83, and 1.00 in round 2. Furthermore, a significant increase in the percentage of items
obtaining an I-CVI of 1.00 in round 2 was observed.

Furthermore, the kappa coefficient values in Table 12 show that 4 items, 12 items, and
43 items in round 1 received poor, fair, and excellent agreement respectively. Conversely,
2 items, 6 items, and 48 items in round 2 received poor, good, and excellent agreement
respectively. Noticeably, all items with poor agreement also have poor I-CVI values.

Based on the S-CVI results in Table 12, most of the constructs attained an acceptable
S-CVI in both rounds, except for the Personalization S-CVI in round 2 that was 0.72.
Figure 5 shows that all S-CVI values were improved in round 2, except for the S-CVI value
for Personalization that dropped from 0.8 to 0.72. The decision to delete the Personalization
construct and all of its associated items was taken for the following reasons:
1. Comments from experts of both rounds indicated different interpretations; some of

them thought of this construct as an alternative name for ‘‘customization, whereas
others did not associate it with customization.

2. The S-CVI of 0.72 in round 2 did not meet the S-CVI criteria (> = 0.8).
3. Five of 8 items associated with this construct did not meet the I-CVI criteria (>= 0.78)

in round 2.
Moreover, the S-CVIs of the Composition (0.86) and Modification (0.80) constructs

in round 2 improved to 0.95 and 0.86, respectively, after removing their associated items
that breached the I-CVI criteria. Detailed calculations of the I-CVIs, S-CVIs, and Kappa

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 18/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-5
http://dx.doi.org/10.7717/peerj-cs.294


Table 13 The development of model in each version.

Construct Original Items deleted Total
items
deleted

Final
version

Round 1 Round 2

Personalization 8 0 8 8 0
Configuration 9 1 0 1 8
Composition 5 0 1 1 4
Extension 6 0 0 0 6
Integration 9 0 0 0 9
Modification 9 2 2 4 5
SaaS quality 13 0 0 0 13
Total 59 3 11 14 45

for rounds 1 and 2 are presented in Tables in the supplementary documents: Appendices
D and E. Because of the satisfactory level of consensus indicated by the I-CVI and S-CVI
scores after round 2, no further rounds were necessary.

In its final version, the software customization model for SaaS quality consisted of 45
items, grouped into six constructs: 8 items for Configuration, 4 items for Composition,
6 items for Extension, 9 items for Integration, 5 items for Modification, and 13 items for
SaaS quality, as illustrated in Table 13.

Internal consistency reliability test
Based on the results of the two content validity evaluation rounds, version 3 of the model
was further tested regarding its internal consistency reliability using a five-point Likert scale
ranging from 1 (strongly disagree) to 5 (strongly agree). In this study, selected profiles,
including gender, ages, and familiarity with SaaS applications, were reported. A sample of
34 software engineering researchers completed the survey. Most of the respondents were
male (n= 32, 94.12%). The age of the majority of respondents (55.88%) was between
31 and 40 years (n= 19), followed by 23.53% and 20.59% for 21–30 (n= 8) and over
40 (n= 7), respectively. The majority of respondents had an excellent knowledge of SaaS
applications (n= 32, 94.12%) and only 5.88% (n= 2) were somewhat familiar with it.

TheCronbachs alpha for each construct, corrected item-total correlation, andCronbachs
alpha coefficients if the item was deleted are summarized in Table 14. Reliability analysis
showed reasonable internal consistency. The computed values of Cronbachs alpha for the
Configuration (n= 8), Composition (n= 4), Extension (n= 6), Integration (n= 9), and
Modification (n= 5) constructs, as well as SaaS quality (n= 13) were 0.734, 0.709, 0.764,
0.814, 0.848, and 0.871, respectively. The corrected item-total correlation coefficients for
Configuration items ranged from 0.301 (Con 6) to 0.522 (Con 5); Composition items
ranged from 0.476 (Com 2) to 0.544 (Com 3); Extension items ranged from 0.382 (Ext 2)
to 0.661 (Ext 1); Integration items ranged from 0.249 (Int 3) to 0.71 (Int 2); Modification
items ranged from 0.532 (Mod 1) to 0.812 (Mod 3); and SaaS quality items ranged from
0.437 (QA 7) to 0.64 (QA 1).

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 19/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294#supp-2
http://dx.doi.org/10.7717/peerj-cs.294#supp-2
http://dx.doi.org/10.7717/peerj-cs.294#supp-1
http://dx.doi.org/10.7717/peerj-cs.294


Table 14 Reliability test results of validated model.

Construct Item Cronbach’s
Alpha if
item deleted

Corrected
item-total
correlation

Construct Item Cronbach’s
Alpha if
item deleted

Corrected
item-total
correlation

Con 1 0.702 0.455 Int 1 0.813 0.339
Con 2 0.702 0.451 Int 2 0.766 0.71
Con 3 0.716 0.381 Int 3 0.826 0.249b

Con 4 0.706 0.439 Int 4 0.799 0.484
Con 5 0.691 0.522 Int 5 0.772 0.708
Con 6 0.731 0.301 Int 6 0.81 0.426
Con 7 0.697 0.476 Int 7 0.783 0.608

Configuration
(0.734)a

Con 8 0.711 0.414 Int 8 0.791 0.557
Com 1 0.657 0.501

Integration
(0.814)

Int 9 0.788 0.572
Com 2 0.659 0.476 QA 1 0.858 0.64
Com 3 0.632 0.544 QA 2 0.856 0.627

Composition
(0.709)

Com 4 0.641 0.513 QA 3 0.861 0.545
Ext 1 0.684 0.661 QA 4 0.861 0.57
Ext 2 0.758 0.382 QA 5 0.86 0.581
Ext 3 0.723 0.532 QA 6 0.866 0.47
Ext 4 0.724 0.527 QA 7 0.869 0.437
Ext 5 0.715 0.557 QA 8 0.864 0.505

Extension
(0.764)

Ext 6 0.754 0.401 QA 9 0.86 0.57
Mod 1 0.843 0.532 QA 10 0.857 0.629
Mod 2 0.823 0.633 QA 11 0.866 0.507
Mod 3 0.771 0.812 QA 12 0.858 0.619
Mod 4 0.804 0.715

SaaS
Quality
(0.871)

QA 13 0.864 0.493

Modification
(0.848)

Mod 5 0.826 0.621

Notes.
aValue between brackets is Cronbach’s Alpha results for the construct.
bItem with red colour is deleted based on Cronbach’s Alpha results if item deleted.

Table 14 also indicates that none of the items significantly reduced the value of the
alpha coefficient if they were removed from the construct, except for Int 3 (in this case, the
value increased from 0.814 to 0.826). Moreover, Int 3 had the lowest item-total correlation
value (0.249), indicating that it did not measure the same construct as the other items. The
resulting values indicate that the model has high reliability.

DISCUSSION
From the initial development of the software customization model for SaaS quality
published in (Ali et al., 2019), we realized that the concept should be refined. The concept
was initially defined based on 46 customization practices and 13 quality attributes in
the SaaS multi-tenant context. Each customization practice was assigned to one of the
customization approaches (8, 9, 5, 6, 9, and 9 items for Personalization, Configuration,
Composition, Extension, Integration, and Modification, respectively).

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 20/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


To refine the model, a rigorous methodology, composed of an iterative content validity
evaluation process and a reliability test, was followed. During the two content validity
rounds, answers and comments were suggested by experts to further refine the language
used and explicitly declare the multi-tenancy concept in the items. Consequently, the
I-CVIs and S-CVIs results varied between rounds 1 and 2.

In round 1, the items that breached the I-CVI criteria were re-written. Moreover, a
reduction in the number of items (from 59 to 56) was achieved. Similarly, version 3,
consisting of 45 items, was created after round 2. A total of 11 items were deleted in
this round; 2, 1, and 8 items were deleted from the Modification, Composition, and
Personalization constructs, respectively. Although 3 of 8 items of the Personalization
construct did not breach the I-CVI criteria, they were deleted due to the removal of the
Personalization construct that did not meet the S-CVI criteria.

Several experts had conflicting opinions regarding the Personalization construct.
One opinion was that Personalization is a synonym word for customization, hence, all
approaches proposed in this study should be considered Personalization approaches. The
second point of view was that it is completely different from customization as it does not
involve any customer action, which is essential for customization. The authors of this study
agreed with the second opinion. The initial inclusion of Personalization as an approach to
Customization in this study was due to the ultimate purpose of both mechanisms to meet
the unique requirements of the customer by adapting the application to their needs.

The results of rounds 1 and 2 indicated considerable discrepancy in the numbers of
items deleted and revised. The number of items deleted in round 1 (3) was lower than
that in round 2 (11). By contrast, the number of items revised in round 1 (21 items) was
higher than that in round 2 (0). This result, however, is expected as the objective of the first
round was to revise the items that did not meet the I-CVI criteria rather than delete them.
The purpose of round 2, however, was to remove any item that did not meet the criteria.
This strategy, therefore, allowed most of the items to be assessed twice. Moreover, with
this strategy, stability in the response of experts was also achieved with the recommended
minimum number of rounds (two rounds) (Landeta, 2006), overcoming the limitations of
iteration structure methods (e.g., the Delphi method), which does not specify any number
of rounds (Keeney, Hasson & McKenna, 2001).

The consensus for content validity was reached and an additional round was included
to test the internal consistency reliability of the model items and constructs. In this round,
software engineer researchers were asked to reassess the items and evaluate them using a 5-
point Likert-type scale. The reliability, found by using Cronbachs alpha, is proof of items
consistently representing the constructs. In this test, only one item was deleted to increase
the value of Cronbachs alpha. At the end of this round, all constructs and items achieved
the required values of reliability and validity. The final version of the proposed model is
shown in Fig. 6.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 21/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


Figure 6 Final proposed software customizationmodel for SaaS quality.
Full-size DOI: 10.7717/peerjcs.294/fig-6

THREATS TO VALIDITY
Threemajor limitations emerge. These include sample size, selection bias, andmodification
bias.

Sample size
The experts involved in the content validation rounds numbered 5 in the first round
and 6 in the second round. Although this sample is fairly small for the iterative method,
smaller numbers are considered sufficient for homogeneous samples (Hong et al., 2019).
Moreover, when using the content validity index (CVI) method, 5 experts are considered
sufficient to validate the model (Zamanzadeh et al., 2015). Because our samples were
relatively homogeneous (academicians) in terms of participants, expertise, 3 to 10 experts
are sufficient for the adopted CVI analysis method, and more than 10 experts would be
unnecessary (Polit & Beck, 2006). Accordingly, the number of experts used in this study
should be considered acceptable.

Another issue with our sample size is the imbalance in the numbers of experts in rounds
1 and 2. The increased number of experts from 5 to 6 in round 2 was because the group
of experts invited to participate in the second round was larger. Although the required
threshold value for consensus decreases as the number of experts increases, it is harder
to achieve consensus with larger numbers. As such, the increase from 5 to 6 in round 2
did not skew the results of this study. Additionally, it is not required to have a consistent
number of participants in all rounds of a study; for instance, Cadorin et al. (2017) had 10
participants in the first round and 8 in the subsequent rounds of their study.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 22/34

https://peerj.com
https://doi.org/10.7717/peerjcs.294/fig-6
http://dx.doi.org/10.7717/peerj-cs.294


Selection bias
The selection of experts is essential for obtaining valid and reliable results. Compared to
random selection methods, our purposive sampling of experts may have led to selection
bias. In our study, four possible issues related to selection bias were identified:
1. Self-selection bias: This concern was mitigated by identifying and approaching the most

suitable experts for our study via an extensive systematic mapping study (Ali et al.,
2019).

2. Homogeneous sample: The diversity of experts strengthens the statistical power and the
generalizability of results; however, a homogeneous sample in the studies that used the
iterative method is acceptable to facilitate group decision-making process (Skulmoski,
Hartman & Krahn, 2007; Logue & Effken, 2013).

3. Bias of superior individuals: Experts were approached based on their published papers
(81 papers) that were most related to this study, and every paper had more than
one author. Therefore, there is a possibility that the experts who participated in
this study are from the same organization or university, and in such a case, there
is a real possibility that the ideas and opinions of one expert will be influenced by
more dominant experts in the same organization (Mubarak et al., 2019; Fletcher &
Marchildon, 2014). Accordingly, the experts opinions were collected anonymously via
e-mail without being affected or pressured by other individuals (Mubarak et al., 2019;
Halim et al., 2017; Stevens et al., 2006).

4. Different experts in each round: Another possible limitation is having different expert
panels in each round, which is not common in iterative methods (Stevens et al.,
2006; Parratt et al., 2016). Although having the same experts in the initial round who
continued to participate in all rounds of a study provides the opportunity for the
experts to alter their opinions in successive rounds based on the results of previous
rounds to achieve consensus (Stevens et al., 2006), the results may be influenced by
forced consensus through conformity and diverse opinions being relinquished (Parratt
et al., 2016). Considering this fact, having different experts participate in each round
may arguably improve the results of a study (Parratt et al., 2016). It is worth noting
that the survey for round 2 was sent to the same experts who were involved in the
initial round and none responded within the time limit, leading to new respondents
being selected for the second round. In addition, as participation in our study was
voluntary, those who participated in round 1 may not have had the time or inclination
to continue.

Modification bias
The model manipulation applied in this study resulted in the number of constructs being
reduced from 7 to 6 by the removal of the Personalization construct and associated items
that did not attain an acceptable CVIs value. Although this modification to the model may
have added a certain level of bias, the deletion of the Personalization construct is indirectly
supported by the findings of SMS, where Personalization received the lowest consideration
of all customization solutions proposed for SaaS applications. Furthermore, we followed
the strategy of revising the items that did not meet the I-CVI criteria rather than deleting

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 23/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


them in round 1, leaving the deletion of the invalid item(s)/construct to the subsequent
rounds. This strategy provided the opportunity for most of the items to be assessed at least
twice. Eventually, the deletion of the Personalization construct and other items was deemed
necessary for the study on grounds supported in the literature and by experts’ comments.

CONCLUSIONS
The comprehension of the generic customization approaches and practices in the SaaS
multi-tenant context and the identification of the key quality attributes of SaaS applications
associated with customization is an opportunity to increase the understanding of SaaS
customization, creating further discussions of the subject. The purpose of this study was,
therefore, to develop a software customization model for SaaS quality to identify possible
customization approaches, practices, and quality attributes in the SaaS Multi-Tenant
context. In addition, this study can be considered the first one, to the best of the authors’
knowledge, to develop a theoretical, validated, and reliable software customization model
for SaaS quality. To evaluate this model, an iterative method was used to conceptualize it,
assess its content validity, and evaluate its reliability.

A preliminary version of this model, composed of seven constructs (six customization
approaches and SaaS quality) and 59 items (46 SaaS customization practices and 13 SaaS
quality attributes), was used. After the completion of two rounds of content validity
evaluation, one construct and 14 items were removed. To improve the reliability of
the validated model, round 3 was executed and all constructs achieved the required
Cronbachs alpha value. Furthermore, the removal of only one item significantly reduced
the Cronbachs alpha value. The final version of the model consisted of six constructs and
44 items. These six constructs and their associated items are as follows: 1) Configuration
(eight items), 2) Composition (four items), 3) Extension (six items), 4) Integration (8
items), 5) Modification (five items), and 6) SaaS quality (13 items).

However, the model that was iteratively validated offers some certainty of construct
validity, our ongoing research is to evaluate its construct validity and reliability with a
larger sample of SaaS implementation team members, based on the industry environment.
In addition, this study is restricted to the quality attributes of SaaS applications from
a systematic mapping study (Ali et al., 2019). However, this study does not claim that
only these SaaS quality attributes are associated with customization. Future studies could
also be conducted to expand the model to include many other quality attributes of SaaS
applications, especially SaaS attributes related to the affordability quality attribute (e.g.,
resource cost and maintenance costs). The key contribution of this study is that it advances
existing knowledge on SaaS customization and quality by the development and validation
of a software customization model. It also enhances the potential to analyze empirically
the impact of software customization on SaaS quality from a software professionals
perspectives. This study can be used as a source of qualitative and quantitative data for
further investigation into the statistical linkage between software customization and SaaS
quality. The findings of these future investigations will prompt evaluators, testers, and
developers of SaaS applications to resolve quality-related issues before any customization
is introduced.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 24/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294


ACKNOWLEDGEMENTS
The authors gratefully acknowledge the reviewers for their valuable feedback and comments.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by Universiti Putra Malaysia. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Universiti Putra Malaysia.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Abdulrazzaq Qasem Ali conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Abu Bakar Md Sultan conceived and designed the experiments, prepared figures and/or
tables, authored or reviewed drafts of the paper, and approved the final draft.
• Abdul Azim Abd Ghani and Hazura Zulzalil conceived and designed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw measurements are available in the Supplementary Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.294#supplemental-information.

REFERENCES
Akojwar MRA, Kothari MRV, Kahate MSA, Ganvir MRD. 2012. Software as a service

with cloud computing. IJECCE 3(1):149–155.
Al-ShardanMM, Ziani D. 2015. Configuration as a service in multi-tenant enterprise

resource planning system. Lecture Notes on Software Engineering 3(2):95–100.
AlhamadM, Dillon T, Chang E. 2010. Conceptual SLA framework for cloud computing.

In: 4th IEEE international conference on digital ecosystems and technologies. Piscat-
away: IEEE, 606–610 DOI 10.1109/DEST.2010.5610586.

Ali AQ, Sultan ABM, Ghani AAA, Zulzalil H. 2017. Critical issues across SaaS develop-
ment: learning from experience. International Journal of Advances in Electronics and
Computer Science 4(9):69–74.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 25/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.294#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.294#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.294#supplemental-information
http://dx.doi.org/10.1109/DEST.2010.5610586
http://dx.doi.org/10.7717/peerj-cs.294


Ali AQ, Sultan ABM, Ghani AAA, Zulzalil H. 2018a. Customization of software as
a service application: problems and objectives. Journal of Computer Science &
Computational Mathematics 8(3):27–32 DOI 10.20967/jcscm.2018.03.001.

Ali AQ, Sultan ABM, Ghani AAA, Zulzalil H. 2018b. The five ws taxonomy on cus-
tomization of software as a service applications. Journal of Computer Science &
Computational Mathematics 8(3):43–48 DOI 10.20967/jcscm.2018.03.003.

Ali AQ, Sultan ABM, Ghani AAA, Zulzalil H. 2019a. Empirical studies on the impact
of software customization on quality attributes: a systematic review. Journal of
Theoretical and Applied Information Technology 97(6):1747–1763.

Ali AQ, Sultan ABM, Ghani AAA, Zulzalil H. 2019b. A systematic mapping study
on the customization solutions of software as a service applications. IEEE Access
7:88196–88217 DOI 10.1109/ACCESS.2019.2925499.

Alkawsi GA, Ali NB, Alghushami A. 2018. Toward understanding individuals acceptance
of internet of things-based services: developing an instrument to measure the
acceptance of smart meters. Journal of Theoretical & Applied Information Technology
96(13):4265–4281.

Almorsy M, Grundy J, Ibrahim AS. 2012. TOSSMA: a tenant-oriented SaaS security
management architecture. In: 2012 IEEE fifth international conference on cloud
computing, 981–988 DOI 10.1109/CLOUD.2012.146.

Aulbach S, SeiboldM, Jacobs D, Kemper A. 2011. Extensibility and data sharing in
evolving multi-tenant databases. In: 2011 IEEE 27th international conference on data
engineering, 99–110 DOI 10.1109/ICDE.2011.5767872.

Aulkemeier F, ParamarthaMA, IacobM-E, Van Hillegersberg J. 2016. A pluggable
service platform architecture for e-commerce. Information Systems and e-Business
Management 14(3):469–489 DOI 10.1007/s10257-015-0291-6.

Badidi E. 2013. A framework for software-as-a-service selection and provisioning. ArXiv
preprint. arXiv:1306.1888.

Bell E, Bryman A, Harley B. 2015. Business research methods. 4th edition. Oxford
University Press.

Bhatti MW, Ahsan A. 2017. Global monitoring and control: a process improvement
framework for globally distributed software development teams. Journal of Global
Information Technology Management 20(1):43–63.

Brehm L, Heinzl A, MarkusML. 2001. Tailoring ERP systems: a spectrum of choices and
their implications. In: Proceedings of the 34th annual Hawaii international conference
on system sciences. 9 DOI 10.1109/HICSS.2001.927130.

Cadorin L, Bagnasco A, Tolotti A, Pagnucci N, Sasso L. 2017. Developing an instrument
to measure emotional behaviour abilities of meaningful learning through the Delphi
technique. Journal of Advanced Nursing 73(9):2208–2218 DOI 10.1111/jan.13273.

CancianMH, Hauck JCR, VonWangenheim CG, Rabelo RJ. 2010. Discovering software
process and product quality criteria in software as a service. In: Product-focused
software process improvement. Berlin, Heidelberg: Springer Berlin Heidelberg,
234–247.

ChaumunM, Kabaili H, Keller RK, Lustman F. 2002. A change impact model for
changeability assessment in object-oriented software systems. Science of Computer

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 26/34

https://peerj.com
http://dx.doi.org/10.20967/jcscm.2018.03.001
http://dx.doi.org/10.20967/jcscm.2018.03.003
http://dx.doi.org/10.1109/ACCESS.2019.2925499
http://dx.doi.org/10.1109/CLOUD.2012.146
http://dx.doi.org/10.1109/ICDE.2011.5767872
http://dx.doi.org/10.1007/s10257-015-0291-6
http://arXiv.org/abs/1306.1888
http://dx.doi.org/10.1109/HICSS.2001.927130
http://dx.doi.org/10.1111/jan.13273
http://dx.doi.org/10.7717/peerj-cs.294


Programming 45(2):155–174. Special Issue on Software Maintenance and Reengi-
neering (CSMR 99) DOI 10.1016/S0167-6423(02)00058-8.

Chen D, Li Q, Kong L. 2013. Process customization framework in SaaS applica-
tions. In: 2013 10th web information system and application conference, 471–474
DOI 10.1109/WISA.2013.94.

Coallier F. 2001. Software engineering–product quality–part 1: quality model. Geneva:
International Organization for Standardization.

Cohen L, Manion L, Morrison K. 2002. Research methods in education. Routledge.
Correia A, Penha JR, Da Cruz AMR. 2013. An architectural model for customizing the

business logic of SaaS applications. In: ICSOFT. Setúbal, Portugal: SciTePress.
CSMIC. 2014. Service measurement index framework Version 2.1. Carnegie Mellon

University. Available at https:// pdf4pro.com/view/ service-measurement-index-
framework-version-2-155f7a.html .

Davenport TH. 1998. Putting the enterprise into the enterprise system. Harvard Business
Review 76(4):121–131.

Davis LL. 1992. Instrument review: getting the most from a panel of experts. Applied
Nursing Research 5(4):194–197 DOI 10.1016/S0897-1897(05)80008-4.

DeMiranda PG. 2010. Saas (software as a service)-infrastructures and applications in real
scenarios. PhD thesis, Instituto Superior Técnico, Universidade Tecnológica de.

Dong J, Zhang S, Shi Y, Xu X, GuoW. 2010. Process customization based on dependent
topology in Software as a Service model. In: The 2nd international conference on
software engineering and data mining. Piscataway: IEEE, 295–298.

Duarte Filho NF, De Souza Bermejo PH, Zambalde AL, De Barros US. 2013.
Saasquality-a method for quality evaluation of software as a service (saas). Interna-
tional Journal of Computer Science & Information Technology 5(3):101–117.

Espadas J, Concha D, Molina A. 2008. Application development over software-as-a-
service platforms. In: 2008 the third international conference on software engineering
advances. IEEE, 97–104.

Espadas J, Molina A, Jiménez G, MolinaM, Ramírez R, Concha D. 2013. A tenant-based
resource allocation model for scaling Software-as-a-Service applications over cloud
computing infrastructures. Future Generation Computer Systems 29(1):273–286.

Fan H, Hussain FK, Younas M, Hussain OK. 2015. An integrated personalization
framework for SaaS-based cloud services. Future Generation Computer Systems
53:157–173 DOI 10.1016/j.future.2015.05.011.

Fletcher AJ, Marchildon GP. 2014. Using the Delphi method for qualitative, participa-
tory action research in health leadership. International Journal of Qualitative Methods
13(1):1–18.

Gey F, Landuyt DV, JoosenW. 2015.Middleware for customizable multi-staged
dynamic upgrades of multi-tenant SaaS applications. In: 2015 IEEE/ACM
8th international conference on utility and cloud computing (UCC). 102–111
DOI 10.1109/UCC.2015.26.

Gey F, Van D,Walraven S, JoosenW. 2014. Feature models at run time feature mid-
dleware for multi-tenant saas applications. In: Proceedings of the 9th international
workshop on models at run.time.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 27/34

https://peerj.com
http://dx.doi.org/10.1016/S0167-6423(02)00058-8
http://dx.doi.org/10.1109/WISA.2013.94
https://pdf4pro.com/view/service-measurement-index-framework-version-2-155f7a.html
https://pdf4pro.com/view/service-measurement-index-framework-version-2-155f7a.html
http://dx.doi.org/10.1016/S0897-1897(05)80008-4
http://dx.doi.org/10.1016/j.future.2015.05.011
http://dx.doi.org/10.1109/UCC.2015.26
http://dx.doi.org/10.7717/peerj-cs.294


Gilmore JH, Pine BJ. 1997. The four faces of mass customization. Harvard Business
Review 75(1):91–102.

Guo C-J, SunW, Jiang Z-B, Huang Y, Gao B,Wang Z-H. 2011. Study of software
as a service support platform for small and medium businesses. In: Agrawal D,
Candan KS, Li W-S, eds. New frontiers in information and software as services. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1–30.

Haines MN. 2009. Understanding enterprise system customization: an exploration
of implementation realities and the key influence factors. Information Systems
Management 26(2):182–198 DOI 10.1080/10580530902797581.

Hair Jr JF, Anderson RE, Tatham RL, BlackWC. 2015.Multivariate data analysis. New
Jersey: Pearson education.

Halim N, Sulaiman S, Talib K, Ng E. 2017. Identifying the relevant features of the
National Digital Cadastral Database (NDCDB) for spatial analysis by using the
Delphi Technique. In: Proc. international conference on research methodology for built
environment and engineering.

Harris CL, Holloway S. 2012. Development of an evidence-based protocol for care
of pilonidal sinus wounds healing by secondary intent using a modified reactive
Delphi procedure. Part one: the literature review. International Wound Journal
9(2):156–172 DOI 10.1111/j.1742-481X.2011.00874.x.

HeQ, Han J, Yang Y, Grundy J, Jin H. 2012. QoS-driven service selection for multi-
tenant SaaS. In: 2012 IEEE fifth international conference on cloud computing. Piscat-
away: IEEE, 566–573 DOI 10.1109/CLOUD.2012.125.

HelmichM,Müller J, Krüger J, Zeier A, Enderlein S, Plattner H. 2009.MapperMania:
a framework for native multi-tenancy business object mapping to a persistent data
source. In: AMCIS. Atlanta: AIS Electronic Library (AISeL).

Hong QN, Pluye P, Fábregues S, Bartlett G, Boardman F, CargoM, Dagenais P,
GagnonM-P, Griffiths F, Nicolau B, O’Cathain A, RousseauM-C, Vedel I. 2019.
Improving the content validity of the mixed methods appraisal tool: amodified e-
Delphi study. Journal of Clinical Epidemiology 111:49–59
DOI 10.1016/j.jclinepi.2019.03.008.

IT Governance Institute. 2007. COBIT 4.1: Control objectives, Management guidelines,
Maturity models. Rolling Meadows: ITGI.

Joha A, JanssenM. 2012. Design choices underlying the software as a service (saas)
business model from the user perspective: exploring the fourth wave of outsourcing.
Journal of Universal Computer Science 18(11):1501–1522.

Kabbedijk J, Jansen S. 2011. Variability in multi-tenant environments: architectural
design patterns from industry. In: Proceedings of the 30th international conference
on advances in conceptual modeling: recent developments and new directions, ER’11.
Berlin, Heidelberg: Springer-Verlag, 151–160.

Keeney S, Hasson F, McKenna HP. 2001. A critical review of the Delphi technique
as a research methodology for nursing. International Journal of Nursing Studies
38(2):195–200 DOI 10.1016/S0020-7489(00)00044-4.

Khanjani A. 2015. Quality of service model for software as a service in cloud computing
from users’ and providers’ perspectives. PhD thesis, Universiti Putra Malaysia.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 28/34

https://peerj.com
http://dx.doi.org/10.1080/10580530902797581
http://dx.doi.org/10.1111/j.1742-481X.2011.00874.x
http://dx.doi.org/10.1109/CLOUD.2012.125
http://dx.doi.org/10.1016/j.jclinepi.2019.03.008
http://dx.doi.org/10.1016/S0020-7489(00)00044-4
http://dx.doi.org/10.7717/peerj-cs.294


Khanjani A, RahmanWNWA, Ghani AAA, Sultan ABM. 2014. SaaS quality of service at-
tributes. Journal of Applied Sciences 14(24):3613–3619 DOI 10.3923/jas.2014.3613.3619.

Kong L, Li Q, Zheng X. 2010. A novel model supporting customization sharing in SaaS
applications. In: 2010 international conference on multimedia information networking
and security. 225–229 DOI 10.1109/MINES.2010.57.

Kumara I, Han J, Colman A, KapurugeM. 2015. Software-defined service networking:
runtime sharing with performance differentiation in multi-tenant saas applications.
In: 2015 IEEE international conference on services computing. Piscataway: IEEE,
210–217 DOI 10.1109/SCC.2015.37.

Kumara I, Han J, Colman A, Nguyen T, KapurugeM. 2013. Sharing with a difference:
realizing service-based SaaS applications with runtime sharing and variation in
dynamic software product lines. In: 2013 IEEE international conference on services
computing. Piscataway: IEEE, 567–574 DOI 10.1109/SCC.2013.30.

La HJ, Kim SD. 2009. A systematic process for developing high quality SaaS cloud
services. In: Jaatun MG, Zhao G, Rong C, eds. Cloud computing. Berlin, Heidelberg:
Springer Berlin Heidelberg, 278–289.

Landeta J. 2006. Current validity of the Delphi method in social sciences. Technological
Forecasting and Social Change 73(5):467–482 DOI 10.1016/j.techfore.2005.09.002.

Lee JY, Lee JW, Cheun DW, Kim SD. 2009. A Quality model for evaluating software-
as-a-service in cloud computing. In: 2009 seventh ACIS international confer-
ence on software engineering research, management and applications. 261–266
DOI 10.1109/SERA.2009.43.

Lee S, Park SB, Lim GG. 2013. Using balanced scorecards for the evaluation of Software-
as-a-service. Information & Management 50(7):553–561 DOI 10.1016/j.im.2013.07.006.

LeeW, Choi M. 2012. A multi-tenant web application framework for SaaS. In: 2012 IEEE
fifth international conference on cloud computing. Piscataway: IEEE, 970–971
DOI 10.1109/CLOUD.2012.27.

Li H, Shi Y, Li Q. 2009. A multi-granularity customization relationship model for SaaS.
In: 2009 International conference on web information systems and mining. 611–615
DOI 10.1109/WISM.2009.128.

LiuW, Zhang B, Liu Y,Wang D, Zhang Y. 2010. New model of SaaS: SaaS with tenancy
agency. In: 2010 2nd international conference on advanced computer control, 463–466
DOI 10.1109/ICACC.2010.5486635.

LogueMD, Effken JA. 2013. Validating the personal health records adoption
model using a modified e-Delphi. Journal of Advanced Nursing 69(3):685–696
DOI 10.1111/j.1365-2648.2012.06056.x.

LuoW, Strong DM. 2004. A framework for evaluating ERP implementation choices.
IEEE Transactions on Engineering Management 51(3):322–333
DOI 10.1109/TEM.2004.830862.

LynnMR. 1986. Determination and quantification of content validity. Nursing Research
35(6):382–385 DOI 10.1097/00006199-198611000-00017.

Makki M, Van Landuyt D,Walraven S, JoosenW. 2016. Scalable and manageable
customization of workflows in multi-tenant saas offerings. In: Proceedings of the 31st

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 29/34

https://peerj.com
http://dx.doi.org/10.3923/jas.2014.3613.3619
http://dx.doi.org/10.1109/MINES.2010.57
http://dx.doi.org/10.1109/SCC.2015.37
http://dx.doi.org/10.1109/SCC.2013.30
http://dx.doi.org/10.1016/j.techfore.2005.09.002
http://dx.doi.org/10.1109/SERA.2009.43
http://dx.doi.org/10.1016/j.im.2013.07.006
http://dx.doi.org/10.1109/CLOUD.2012.27
http://dx.doi.org/10.1109/WISM.2009.128
http://dx.doi.org/10.1109/ICACC.2010.5486635
http://dx.doi.org/10.1111/j.1365-2648.2012.06056.x
http://dx.doi.org/10.1109/TEM.2004.830862
http://dx.doi.org/10.1097/00006199-198611000-00017
http://dx.doi.org/10.7717/peerj-cs.294


annual ACM symposium on applied computing, SAC ’16. New York: ACM, 432–439
DOI 10.1145/2851613.2851627.

Manford C. 2008. The impact of the SaaS model of software delivery. In: Proceedings of
the 21st annual NACCQ conference, NACCQ, Auckland, New Zealand. 283–286.

Mathiassen L, Sandberg AB. 2014. Process mass customization in a global software firm.
IEEE Software 31(6):62–69 DOI 10.1109/MS.2014.21.

Mietzner R, Leymann F. 2008. Generation of BPEL customization processes for SaaS
applications from variability descriptors. In: 2008 IEEE international conference on
services computing, vol. 2, 359–366 DOI 10.1109/SCC.2008.85.

Mietzner R, Leymann F, PapazoglouMP. 2008. Defining composite configurable SaaS
application packages using SCA, variability descriptors and multi-tenancy patterns.
In: 2008 third international conference on Internet and web applications and services,
156–161 DOI 10.1109/ICIW.2008.68.

Moens H, De Turck F. 2014. Feature-based application development and management
of multi-tenant applications in clouds. In: Proceedings of the 18th international
software product line conference - volume 1, SPLC ’14. New York: ACM, 72–81
DOI 10.1145/2648511.2648519.

Moens H, Dhoedt B, De Turck F. 2015. Allocating resources for customizable multi-
tenant applications in clouds using dynamic feature placement. Future Generation
Computer Systems 53(C):63–76 DOI 10.1016/j.future.2015.05.017.

Moens H, Truyen E,Walraven S, JoosenW, Dhoedt B, De Turck F. 2012. Developing
and managing customizable Software as a Service using feature model conversion.
In: 2012 IEEE network operations and management symposium. Piscataway: IEEE,
1295–1302 DOI 10.1109/NOMS.2012.6212066.

Mohamed F, Abu-Matar M, Mizouni R, Al-Qutayri M, Mahmoud ZA. 2014. SaaS
dynamic evolution based on model-driven software product lines. In: 2014 IEEE 6th
international conference on cloud computing technology and science. Piscataway: IEEE,
292–299 DOI 10.1109/CloudCom.2014.131.

Mubarak N, Hatah E, Aris MAM, Shafie AA, Zin CS. 2019. Consensus among health-
care stakeholders on a collaborative medication therapy management model
for chronic diseases in Malaysia; a Delphi study. PLOS ONE 14(5):e0216563
DOI 10.1371/journal.pone.0216563.

Müller J, Krüger J, Enderlein S, HelmichM, Zeier A. 2009. Customizing enterprise soft-
ware as a service applications: back-end extension in a multi-tenancy environment.
Berlin, Heidelberg: Springer Berlin Heidelberg, 66–77.

Nadanam P, Rajmohan R. 2012. QoS evaluation for web services in cloud computing.
In: 2012 third international conference on computing, communication and networking
technologies (ICCCNT’12). 1–8 DOI 10.1109/ICCCNT.2012.6395991.

Nguyen T, Colman A, Han J. 2016. A feature-based framework for developing and
provisioning customizable web services. IEEE Transactions on Services Computing
9(4):496–510 DOI 10.1109/TSC.2015.2405546.

Parhizkar M. 2016. Impact analysis of enterprise resource planning post-implementation
modifications. PhD thesis, City, University of London.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 30/34

https://peerj.com
http://dx.doi.org/10.1145/2851613.2851627
http://dx.doi.org/10.1109/MS.2014.21
http://dx.doi.org/10.1109/SCC.2008.85
http://dx.doi.org/10.1109/ICIW.2008.68
http://dx.doi.org/10.1145/2648511.2648519
http://dx.doi.org/10.1016/j.future.2015.05.017
http://dx.doi.org/10.1109/NOMS.2012.6212066
http://dx.doi.org/10.1109/CloudCom.2014.131
http://dx.doi.org/10.1371/journal.pone.0216563
http://dx.doi.org/10.1109/ICCCNT.2012.6395991
http://dx.doi.org/10.1109/TSC.2015.2405546
http://dx.doi.org/10.7717/peerj-cs.294


Parratt JA, Fahy KM, HutchinsonM, Lohmann G, Hastie CR, ChaselingM, OBrien K.
2016. Expert validation of a teamwork assessment rubric: a modified Delphi study.
Nurse Education Today 36:77–85 DOI 10.1016/j.nedt.2015.07.023.

Parthasarathy S, Sharma S. 2016. Efficiency analysis of ERP packages-a customization
perspective. Computers in Industry 82:19–27 DOI 10.1016/j.compind.2016.05.004.

Parthasarathy S, Sharma S. 2017. Impact of customization over software quality
in ERP projects: an empirical study. Software Quality Journal 25(2):581–598
DOI 10.1007/s11219-016-9314-x.

Polit DF, Beck CT. 2006. The content validity index: are you sure you know what’s
being reported? Critique and recommendations. Research in Nursing & Health
29(5):489–497 DOI 10.1002/nur.20147.

Publications Service Management. 2008. Information technology infrastructure library
(ITIL v3). London: Publications Service Management.

RalphM. 2008. Using variability descriptors to describe customizable SaaS application
templates. Institute of Architecture of Application Systems 1–27.

Rico A, Noguera M, Garrido JL, Benghazi K, Barjis J. 2016. Extending multi-tenant
architectures: a database model for a multi-target support in SaaS applications.
Enterprise Information System 10(4):400–421 DOI 10.1080/17517575.2014.947636.

Rolia J, Krishnamurthy D, XuM, Graupner S. 2008. APE: an automated performance
engineering process for software as a service environments. Report HPL-2008-65,
HP Labs, HP Labs. Available at https://www.hpl.hp.com/ techreports/ 2008/HPL-2008-
65.html .

Ruehl ST, Andelfinger U. 2011. Applying software product lines to create customiz-
able software-as-a-service applications. In: Proceedings of the 15th international
software product line conference, volume 2, SPLC ’11. New York: ACM, 16:1–16:4
DOI 10.1145/2019136.2019154.

Ruehl ST,Wache H, Verclas SAW. 2013. Capturing customers’ requirements
towards mixed-tenancy deployments of saas-applications. In: 2013 IEEE
sixth international conference on cloud computing. Piscataway: IEEE, 462–469
DOI 10.1109/CLOUD.2013.42.

SalamaM, Shawish A, Zeid A, Kouta M. 2012. Integrated QoS utility-based model
for cloud computing service provider selection. In: 2012 IEEE 36th annual com-
puter software and applications conference workshops. Piscataway: IEEE, 45–50
DOI 10.1109/COMPSACW.2012.18.

Saleh AI, FouadMA, Abu-Elkheir M. 2014. Classifying requirements for variability
optimization in multitenant applications. In: 2014 IEEE 6th international conference
on cloud computing technology and science. 32–37 DOI 10.1109/CloudCom.2014.142.

Salih NK, Zang T. 2012. Variable service process by feature meta-model for SaaS
application. In: 2012 International conference on green and ubiquitous technology.
102–105 DOI 10.1109/GUT.2012.6344158.

Salih NK, Zang T. 2016.Modeling and self-configuring SaaS application, CoRR. ArXiv
preprint. arXiv:1606.05991.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 31/34

https://peerj.com
http://dx.doi.org/10.1016/j.nedt.2015.07.023
http://dx.doi.org/10.1016/j.compind.2016.05.004
http://dx.doi.org/10.1007/s11219-016-9314-x
http://dx.doi.org/10.1002/nur.20147
http://dx.doi.org/10.1080/17517575.2014.947636
https://www.hpl.hp.com/techreports/2008/HPL-2008-65.html
https://www.hpl.hp.com/techreports/2008/HPL-2008-65.html
http://dx.doi.org/10.1145/2019136.2019154
http://dx.doi.org/10.1109/CLOUD.2013.42
http://dx.doi.org/10.1109/COMPSACW.2012.18
http://dx.doi.org/10.1109/CloudCom.2014.142
http://dx.doi.org/10.1109/GUT.2012.6344158
http://arXiv.org/abs/1606.05991
http://dx.doi.org/10.7717/peerj-cs.294


Samir A, Darwish NR. 2016. Reusability quality attributes and metrics of SaaS from
perspective of business and provider. International Journal of Computer Science and
Information Security 14(3):295–312.

Scheibler T, Mietzner R, Leymann F. 2008. EAI as a service—combining the
power of executable EAI patterns and SaaS. In: 2008 12th international IEEE
enterprise distributed object computing conference. Piscataway: IEEE, 107–116
DOI 10.1109/EDOC.2008.21.

Schroeter J, Cech S, Goetz S, Wilke C, Aßmann U. 2012. Towards modeling a variable
architecture for multi-tenant SaaS-applications. In: Proceedings of the sixth interna-
tional workshop on variability modeling of software-intensive systems, VaMoS ’12. New
York: ACM, 111–120 DOI 10.1145/2110147.2110160.

Sekaran U, Bougie R. 2016. Research methods for business: a skill building. 7 edition.
Hoboken: John Wiley & Sons.

Shahin AA. 2014.Multi-dimensional customization modelling based on metagraph For
Saas multi-tenant applications, CoRR. ArXiv preprint. arXiv:1402.6045.

Shen Y, CuiW, Li Q, Shi Y. 2011.Hybrid fragmentation to preserve data privacy for
SaaS. In: 2011 eighth web information systems and applications conference. 3–6
DOI 10.1109/WISA.2011.8.

Shi Y, Luan S, Li Q,Wang H. 2009. A multi-tenant oriented business process customiza-
tion system. In: 2009 international conference on new trends in information and service
science. 319–324 DOI 10.1109/NISS.2009.181.

Shrotryia VK, Dhanda U. 2019. Content validity of assessment instrument for employee
engagement. Sage Open 9(1):2158244018821751.

Skulmoski GJ, Hartman FT, Krahn J. 2007. The Delphi method for graduate research.
Journal of Information Technology Education: Research 6(1):1–21 DOI 10.28945/199.

Song J, Zhang S, Gong Y, Dai B. 2012. A QoS evaluation model for test-bed in the cloud
computing environment. In: 2012 IEEE ninth international conference on e-business
engineering. Piscataway: IEEE, 292–295 DOI 10.1109/ICEBE.2012.54.

Stevens B, McGrath P, Yamada J, Gibbins S, Beyene J, Breau L, Camfield C, Finley
A, Franck L, Howlett A, Johnston C, McKeever P, O’Brien K, Ohlsson A. 2006.
Identification of pain indicators for infants at risk for neurological impairment: a
Delphi consensus study. BMC Pediatrics 6(1):1 DOI 10.1186/1471-2431-6-1.

SunW, Zhang K, Chen S-K, Zhang X, Liang H. 2007. Software as a service: an inte-
gration perspective. In: Krämer BJ, Lin K-J, Narasimhan P, eds. Service-oriented
computing–ICSOC 2007. Berlin, Heidelberg: Springer Berlin Heidelberg, 558–569.

SunW, Zhang X, Guo CJ, Sun P, Su H. 2008. Software as a service: configuration and
customization perspectives. In: 2008 IEEE congress on services part II (services-2 2008).
Piscataway: IEEE, 18–25 DOI 10.1109/SERVICES-2.2008.29.

Sunikka A, Bragge J. 2008.What, who and where: insights into personalization. In:
Proceedings of the 41st annual Hawaii international conference on system sciences
(HICSS 2008). 283–283 DOI 10.1109/HICSS.2008.500.

Truyen E, Cardozo N,Walraven S, Vallejos J, Bainomugisha E, Günther S, D’Hondt T,
JoosenW. 2012. Context-oriented programming for customizable SaaS applications.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 32/34

https://peerj.com
http://dx.doi.org/10.1109/EDOC.2008.21
http://dx.doi.org/10.1145/2110147.2110160
http://arXiv.org/abs/1402.6045
http://dx.doi.org/10.1109/WISA.2011.8
http://dx.doi.org/10.1109/NISS.2009.181
http://dx.doi.org/10.28945/199
http://dx.doi.org/10.1109/ICEBE.2012.54
http://dx.doi.org/10.1186/1471-2431-6-1
http://dx.doi.org/10.1109/SERVICES-2.2008.29
http://dx.doi.org/10.1109/HICSS.2008.500
http://dx.doi.org/10.7717/peerj-cs.294


In: Proceedings of the 27th annual ACM symposium on applied computing, SAC ’12.
New York: ACM, 418–425 DOI 10.1145/2245276.2245358.

TsaiW, Huang Y, Shao Q. 2011. EasySaaS: a SaaS development framework. In: 2011
IEEE international conference on service-oriented computing and applications (SOCA).
Piscataway: IEEE, 1–4 DOI 10.1109/SOCA.2011.6166262.

TsaiW, Shao Q, LiW. 2010. OIC: ontology-based intelligent customization framework
for SaaS. In: 2010 IEEE international conference on service-oriented computing and
applications (SOCA). Piscataway: IEEE, 1–8 DOI 10.1109/SOCA.2010.5707139.

TsaiW, Sun X. 2013. SaaS multi-tenant application customization. In: 2013 IEEE seventh
international symposium on service-oriented system engineering. Piscataway: IEEE,
1–12 DOI 10.1109/SOSE.2013.44.

TsaiW-T, Zhong P, Chen Y. 2016. Tenant-centric sub-tenancy architecture in
software-as-a-service. CAAI Transactions on Intelligence Technology 1(2):150–161
DOI 10.1016/j.trit.2016.08.002.

Van Landuyt D,Walraven S, JoosenW. 2015. Variability middleware for multi-
tenant SaaS applications: a research roadmap for service lines. In: Proceedings of the
19th international conference on software product line, SPLC ’15. New York: ACM,
211–215 DOI 10.1145/2791060.2791080.

Walraven S. 2014.Middleware and methods for customizable SaaS. PhD thesis, Faculty
of Engineering, KU Leuven.

Walraven S, Landuyt DV, Truyen E, Handekyn K, JoosenW. 2014. Efficient customiza-
tion of multi-tenant Software-as-a-Service applications with service lines. Journal of
Systems and Software 91:48–62 DOI 10.1016/j.jss.2014.01.021.

Walraven S, Truyen E, JoosenW. 2011. A middleware layer for flexible and cost-
efficient multi-tenant applications. In: Kon F, Kermarrec A-M, eds.Middleware 2011.
Berlin, Heidelberg: Springer Berlin Heidelberg, 370–389.

Wang S, Zheng Z, Sun Q, Zou H, Yang F. 2011. Cloud model for service selection. In:
2011 IEEE conference on computer communications workshops (INFOCOMWKSHPS).
Piscataway: IEEE, 666–671 DOI 10.1109/INFCOMW.2011.5928896.

Wang Y, Mäntylä M, Eldh S, Markkula J, Wiklund K, Kairi T, Raulamo-Jurvanen
P, Haukinen A. 2019. A self-assessment instrument for assessing test automation
maturity. In: Proceedings of the evaluation and assessment on software engineering.
New York: ACM, 145–154.

Wynd CA, Schmidt B, Schaefer MA. 2003. Two quantitative approaches for esti-
mating content validity.Western Journal of Nursing Research 25(5):508–518
DOI 10.1177/0193945903252998.

Xiaojun R, Yongqing Z, Lanju K. 2013. SaaS template evolution model based on tenancy
history. In: 2013 third international conference on intelligent system design and
engineering applications. 1242–1247 DOI 10.1109/ISDEA.2012.293.

XinM, Levina N. 2008. Software-as-a-service model: elaborating client-side adoption
factors. In: Boland R, Limayem M, Pentland B, eds. Proceedings of the 29th interna-
tional conference on information systems. Paris.

Yamada J, Stevens B, Sidani S, Watt-Watson J, De Silva N. 2010. Content validity of
a process evaluation checklist to measure intervention implementation fidelity

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 33/34

https://peerj.com
http://dx.doi.org/10.1145/2245276.2245358
http://dx.doi.org/10.1109/SOCA.2011.6166262
http://dx.doi.org/10.1109/SOCA.2010.5707139
http://dx.doi.org/10.1109/SOSE.2013.44
http://dx.doi.org/10.1016/j.trit.2016.08.002
http://dx.doi.org/10.1145/2791060.2791080
http://dx.doi.org/10.1016/j.jss.2014.01.021
http://dx.doi.org/10.1109/INFCOMW.2011.5928896
http://dx.doi.org/10.1177/0193945903252998
http://dx.doi.org/10.1109/ISDEA.2012.293
http://dx.doi.org/10.7717/peerj-cs.294


of the EPIC intervention.Worldviews on Evidence-Based Nursing 7(3):158–164
DOI 10.1111/j.1741-6787.2010.00182.x.

Yang S, Yoo B, Jahng J. 2010. Does the SaaS model really increase customer benefits. Asia
Pacific Journal of Information Systems 20(2):87–101.

YilmazM, O’Connor RV, Colomo-Palacios R, Clarke P. 2017. An examination of
personality traits and how they impact on software development teams. Information
and Software Technology 86:101–122 DOI 10.1016/j.infsof.2017.01.005.

Ying L, Bin Z, Guoqi L, DeshuaiW, Yan G. 2010. Personalized modeling for SaaS
based on extended WSCL. In: 2010 IEEE Asia-Pacific services computing conference.
Piscataway: IEEE, 355–362 DOI 10.1109/APSCC.2010.38.

Zamanzadeh V, Ghahramanian A, Rassouli M, Abbaszadeh A, Alavi-Majd H, Nikanfar
A-R. 2015. Design and implementation content validity study: development of
an instrument for measuring patient-centered communication. Journal of Caring
Sciences 4(2):165–178 DOI 10.15171/jcs.2015.017.

Zamanzadeh V, Rassouli M, Abbaszadeh A, Majd HA, Nikanfar A, Ghahramanian
A. 2014. Details of content validity and objectifying it in instrument development.
Nursing Practice Today 1(3):163–171.

Zhang Y, Liu S, Meng X. 2009. Towards high level SaaS maturity model: methods
and case study. In: 2009 IEEE Asia-Pacific services computing conference (APSCC).
273–278 DOI 10.1109/APSCC.2009.5394111.

Zhang K, Zhang X, SunW, Liang H, Huang Y, Zeng L, Liu X. 2007. A policy-driven
approach for software-as-services customization. In: The 9th IEEE international
conference on E-commerce technology and the 4th IEEE international conference on
enterprise computing, E-Commerce and E-Services (CEC-EEE 2007). Piscataway: IEEE,
123–130 DOI 10.1109/CEC-EEE.2007.9.

Zhao S, Zhang Y, Shen B, Shen X, Chen R. 2014.Mass data processing and personal-
ized services in Shanghai e-commerce credit evaluation platform. In: 2014 IEEE
international conference on progress in informatics and computing. Piscataway: IEEE,
481–485 DOI 10.1109/PIC.2014.6972382.

Zia A, KhanMNA. 2012. Identifying key challenges in performance issues in cloud
computing. International Journal of Modern Education and Computer Science
4(10):59–68.

Ziani D, AlShehri A. 2015. A new framework for customizing ERP systems in a multi
tenant SaaS environment. In: 2015 2nd world symposium on web applications and
networking (WSWAN). Piscataway: IEEE, 1–7 DOI 10.1109/WSWAN.2015.7209089.

Ali et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.294 34/34

https://peerj.com
http://dx.doi.org/10.1111/j.1741-6787.2010.00182.x
http://dx.doi.org/10.1016/j.infsof.2017.01.005
http://dx.doi.org/10.1109/APSCC.2010.38
http://dx.doi.org/10.15171/jcs.2015.017
http://dx.doi.org/10.1109/APSCC.2009.5394111
http://dx.doi.org/10.1109/CEC-EEE.2007.9
http://dx.doi.org/10.1109/PIC.2014.6972382
http://dx.doi.org/10.1109/WSWAN.2015.7209089
http://dx.doi.org/10.7717/peerj-cs.294

