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ABSTRACT
Technological advances have lead to the creation of large epigenetic datasets, including
information aboutDNAbinding proteins andDNA spatial structure. Hi-C experiments
have revealed that chromosomes are subdivided into sets of self-interacting domains
called Topologically Associating Domains (TADs). TADs are involved in the regulation
of gene expression activity, but the mechanisms of their formation are not yet fully
understood. Here, we focus on machine learning methods to characterize DNA folding
patterns in Drosophila based on chromatin marks across three cell lines. We present
linear regression models with four types of regularization, gradient boosting, and
recurrent neural networks (RNN) as tools to study chromatin folding characteristics
associated with TADs given epigenetic chromatin immunoprecipitation data. The
bidirectional long short-term memory RNN architecture produced the best prediction
scores and identified biologically relevant features. Distribution of protein Chriz
(Chromator) and histonemodificationH3K4me3were selected as themost informative
features for the prediction of TADs characteristics. This approach may be adapted
to any similar biological dataset of chromatin features across various cell lines and
species. The code for the implemented pipeline, Hi-ChiP-ML, is publicly available:
https://github.com/MichalRozenwald/Hi-ChIP-ML

Subjects Bioinformatics, Computational Biology, Molecular Biology, Data Mining and Machine
Learning, Data Science
Keywords Topologically Associating Domains (TADs), Recurrent Neural Networks (RNN), Hi-C
experiments, Linear Regression, Gradient Boosting, Chromatin, DNA folding patterns, Machine
Learning

INTRODUCTION
Machine learning has proved to be an essential tool for studies in the molecular biology
of the eukaryotic cell, in particular, the process of gene regulation (Eraslan et al., 2019;
Zeng, Wang & Jiang, 2020). Gene regulation of higher eukaryotes is orchestrated by two
primary interconnected mechanisms, the binding of regulatory factors to the promoters
and enhancers, and the changes in DNA spatial folding. The resulting binding patterns
and chromatin structure represent the epigenetic state of the cells. They can be assayed
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by high-throughput techniques, such as chromatin immunoprecipitation (Ren et al., 2000;
Johnson et al., 2007) and Hi-C (Lieberman-Aiden et al., 2009). The epigenetic state is tightly
connected with inheritance and disease (Lupiáñez, Spielmann & Mundlos, 2016; Yuan
et al., 2018; Trieu, Martinez-Fundichely & Khurana, 2020). For instance, disruption of
chromosomal topology in humans affects gliomagenesis and limb malformations (Krijger
& De Laat, 2016). However, the details of underlying processes are yet to be understood.

The study of Hi-C maps of genomic interactions revealed the structural and regulatory
units of eukaryotic genome, topologically associating domains, or TADs. TADs represent
self-interacting regions of DNA with well-defined boundaries that insulate the TAD from
interactions with adjacent regions (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et
al., 2014). In mammals, the boundaries of TADs are defined by the binding of insulator
proteinCTCF (Rao et al., 2014).However,DrosophilaCTCFhomolog is not essential for the
formation of TAD boundaries (Wang et al., 2018). Contribution of CTCF to the boundaries
was detected in neuronal cells, but not in embryonic cells ofDrosophila (Chathoth & Zabet,
2019). At the same time, up to eight different insulator proteins have been proposed to
contribute to the formation of TADs boundaries (Ramírez et al., 2018).

Ulianov et al. (2016) demonstrated that active transcription plays a key role in the
Drosophila chromosome partitioning into TADs. Active chromatin marks are preferably
found at TAD borders, while repressive histone modifications are depleted within inter-
TADs. Thus, histone modifications instead of insulator binding factors might be the main
TAD-forming factors in this organism.

Todetermine factors responsible for theTADboundary formation inDrosophila,Ulianov
et al. (2016) utilized machine learning techniques. For that, they formulated a classification
task and used a logistic regression model. The model input was a set of ChIP-chip signals
for a genomic region, and the output, a binary value indicating whether the region was
located at the boundary or within a TAD. Similarly, Ramírez et al. (2018) demonstrated
the effectiveness of the lasso regression and gradient boosting for the same task.

However, this approach has two substantial limitations. First, the prediction of TAD state
as a categorical output depends on the TAD calling procedure. It requires setting a threshold
for the TAD boundary definition and it is insensitive to sub-threshold boundaries.

Alternatively, the TAD status of a region may be derived from a Hi-C map either by
calculation of local characteristics of TADs such as Insulation Score (Crane et al., 2015),
D-score (Stadhouders et al., 2018), Directionality Index (Dixon et al., 2012), or by dynamic
programming methods, such as Armatus (Filippova et al., 2014). Methods assessing local
characteristics of TADs result in assigning a continuous score to genomic bins along
the chromosome. Dynamic programming methods are typically not anchored to a local
genomic region and consider Hi-C maps of whole chromosomes. The calculation of
transitional gamma has the advantages of both approaches (Ulianov et al., 2016). It runs
dynamic programming for whole-chromosome data for multiple parameters and assesses
the score for each genomic region.

The second limitation is that regression and gradient boosting in Ulianov et al. (2016)
and Ramírez et al. (2018) account for the features of a given region of the genome, but
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ignore the adjacent regions. Such contextual information might be crucial for the TAD
status in Drosophila.

For a possible solution, one may look at instructive examples of other chromatin
architecture problems, such as improvement of Hi-C data resolution (Gong et al., 2018;
Schwessinger et al., 2019; Li & Dai, 2020), inference of chromatin structure (Cristescu et
al., 2018; Trieu, Martinez-Fundichely & Khurana, 2020), prediction of genomic regions
interactions (Whalen, Truty & Pollard, 2016; Zeng, Wu & Jiang, 2018; Li, Wong & Jiang,
2019; Fudenberg, Kelley & Pollard, 2019; Singh et al., 2019; Jing et al., 2019; Gan, Li & Jiang,
2019; Belokopytova et al., 2020), and, finally, TAD boundaries prediction in mammalian
cells (Gan et al., 2019;Martens et al., 2020).

The machine learning approaches used in these works include generalized linear
models (Ibn-Salem & Andrade-Navarro, 2019), random forest (Bkhetan & Plewczynski,
2018; Gan et al., 2019), other ensemble models (Whalen, Truty & Pollard, 2016), and
neural networks: multi-layer perceptron (Gan et al., 2019), dense neural networks (Zeng,
Wu & Jiang, 2018; Farré et al., 2018; Li, Wong & Jiang, 2019), convolutional neural
networks (Schreiber et al., 2017), generative adversarial networks (Liu, Lv & Jiang, 2019),
and recurrent neural networks (Cristescu et al., 2018; Singh et al., 2019; Gan, Li & Jiang,
2019).

Among these methods, recurrent neural networks (RNNs) provide a comprehensive
architecture for analyzing sequential data (Graves, Jaitly & Mohamed, 2013), due to the
temporal modeling capabilities. A popular implementation of RNN long short-term
memory (LSTM) models (Hochreiter & Schmidhuber, 1997) creates informative statistics
that provide solutions for complex long-time-lag tasks (Graves, 2012). Thus, the application
of LTSM RNNs to problems with sequential ordering of a target, such as DNA bins
characteristics, is a promising approach. Moreover, this feature is particularly relevant for
the TAD boundary prediction in Drosophila, where the histone modifications of extended
genomic regions govern the formation of boundaries (Ulianov et al., 2016).

Here, we analyze the epigenetic factors contributing to the TAD status of the genomic
regions of Drosophila. As opposed to previous approaches, we incorporate information
about the region context on two levels. First, we utilize the context-aware TAD characteristic
transitional gamma. Second, we use the advanced method of recurrent neural network that
preserves the information about features of adjacent regions.

MATERIALS AND METHODS
Data
Hi-C datasets for three culturedDrosophila melanogaster cell lines were taken fromUlianov
et al. (2016). Cell lines Schneider-2 (S2) and Kc167 from late embryos and DmBG3-c2
(BG3) from the central nervous system of third-instar larvae were analysed. TheDrosophila
genome (dm3 assembly) was binned at the 20-kb resolution resulting in 5950 sequential
genomic regions of equal size. Each bin was described by the start coordinate on the
chromosome and by the signal from a set of ChIP-chip experiments. The ChIP-chip data
were obtained from the modENCODE database (Waterston et al., 2009) and processed as
in Ulianov et al. (2016).
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As chromatin architecture is known to be correlated with epigenetic characteristics in
Drosophila (Ulianov et al., 2016; Hug et al., 2017; Ramírez et al., 2018), we selected two sets
of epigenetic marks, i.e., transcription factors (TF), and insulator protein binding sites, and
histone modifications (HM), for further analysis. The first set included five features (Chriz,
CTCF, Su(Hw), H3K27me3, H3K27ac), which had been reported as relevant for TAD
formation in previous studies (Ulianov et al., 2016). The second set contained eighteen
epigenetic marks in total, extending the first set with thirteen potentially relevant features
chosen based on the literature (RNA polymerase II, BEAF-32, GAF, CP190, H3K4me1,
H3K4me2, H3K4me3, H3K9me2, H3K9me3, H3K27me1, H3K36me1, H3K36me3,
H4K16ac). To normalize the input data, we subtracted the mean from each value and
then scaled it to the unit variance using the preprocessing scale function of the Sklearn
Python library (Pedregosa et al., 2011). We standardized each feature independently; the
mean and variance were calculated per each feature (chromatin mark) separately across all
input objects (bins), see Fig. S2. For the full list of chromatin factors and theirmodENCODE
IDs, see Table S1.

Target value
TADs are calculated based onHi-C interactionsmatrix. As a result of TADcalling algorithm,
TADs are represented as a segmentation of the genome into discrete regions. However,
resulting segmentation typically depends on TAD calling parameters. In particular, widely
used TAD segmentation software Armatus (Filippova et al., 2014) annotates TADs for
a user-defined scaling parameter gamma. Gamma determines the average size and the
number of TADs produced by Armatus on a given Hi-C map.

Following Ulianov et al. (2016), we avoided the problem of selection of a single set of
parameters for TADs annotation and calculated the local characteristic of TAD formation of
the genome, namely, transitional gamma. The calculation of transitional gamma includes
the TAD calling for a wide range of reasonable parameters gamma and selection of
characteristic gamma for each genomic locus. This procedure is briefly described below.

When parameter gamma is fixed, Armatus annotates each genomic bin as a part of a
TAD, inter-TAD, or TAD boundary. The higher the gamma value is used in Armatus, the
smaller on average the TADs sizes are. We perform the TAD calling with Armatus for a set
of parameters and characterize each bin by transitional gamma at which this bin switches
from being a part of a TAD to being a part of an inter-TAD or a TAD boundary. We
illustrate the TADs annotation and calculation of transitional gamma in Figs. 1A–1C.

Whole-genome Hi-C maps of Drosophila cells were collected from Ulianov et al. (2016)
and processed using Armatus with a gamma ranging from 0 to 10 with a step of 0.01. We
then calculated the transitional gamma for each bin. The resulting distribution of values
can be found in Fig. 1D. We note that the value 10 is corresponding to the bins that form
TAD regions that we have never observed as being TAD boundary or inter-TAD. These
bins might switch from TADs with the further increase of gamma. However, they represent
a minor fraction of the genome corresponding to strong inner-TAD bins.
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Figure 1 (A–C) Example of annotation of chromosome 3R region by transitional gamma. For a given
Hi-Cmatrix of Schneider-2 cells (A), TAD segmentations (B) are calculated by Armatus for a set of
gamma values (from 0 to 10, a step of 0.01). Each line in B represents a single TAD. Then gamma tran-
sitional (C) is calculated for each genomic region as the minimal value of gamma where the region be-
comes inter-TAD or TAD boundary. The blue line in C represents the transitional gamma value for
each genomic bin. The plots (B) and (C) are limited by gamma 2 for better visualization, although they
are continued to the value of 10. Asterisk (*) denotes the region with gamma transitional of 1.64, the
minimal value of gamma, where the corresponding region transitions from TAD to inter-TAD. (D) The
histogram of the target value transitional gamma for Schneider-2 cell line. Note the peak at 10.

Full-size DOI: 10.7717/peerjcs.307/fig-1

Problem statement
To avoid ambiguity, we formally state our machine learning problem:

• objects are genomic bins of 20-kb length that do not intersect,
• input features are the measurements of chromatin factors’ binding,
• target value is the transitional gamma, which characterizes the TAD status of the region
and, thus, the DNA folding,
• objective is to predict the value of transitional gamma and to identify which of the
chromatin features are most significant in predicting the TAD state.

Selection of loss function
The target, transitional gamma, is a continuous variable ranging from 0 to 10, which
yields a regression problem (Yan & Su, 2009). The classical optimization function for the
regression is Mean Square Error (MSE), instead of precision, recall or accuracy, as for
binary variables. However, the distribution of the target in our problem is significantly
unbalanced (see Fig. 1D) because the target value of most of the objects is in the interval
between 0 and 3. Thus, the contribution of the error on objects with a high true target
value may be also high in the total score when using MSE.

We note that the biological nature of genomic bins with high transitional gamma
is different from other bins. Transitional gamma equal to 10 means that the bin never
transformed from being a part of a TAD to an inter-TAD or TAD boundary. To solve this
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contradiction, we have introduced a custom loss function called modified weighted Mean
Square Error (wMSE). It might be reformulated as MSE multiplied by the weight (penalty)
of the error, depending on the true value of the target variable.

wMSE =
1
N

N∑
i=1

(ytruei−ypredi)
2α−ytruei

α
,

where N is the number of data points, ytruei is the true value for data point number i,
ypredi is the predicted value for data point number i. Here, α is the maximum value of ytrue
increased by 1 to avoid multiplying the error by 0. The maximum value of the transitional
gamma in our dataset is 10, thus in our case, α equals 11. With wMSE as a loss function,
the model is penalized less for errors on objects with high values of transitional gamma.

Machine learning models
To explore the relationships between the 3D chromatin structure and epigenetic data,
we built linear regression (LR) models, gradient boosting (GB) regressors, and recurrent
neural networks (RNN). The LR models were additionally applied with either L1 or L2
regularization and with both penalties. For benchmarking we used a constant prediction
set to the mean value of the training dataset.

Due to the DNA linear connectivity, our input bins are sequentially ordered in the
genome.NeighboringDNA regions frequently bear similar epigeneticmarks and chromatin
properties (Kharchenko et al., 2011). Thus, the target variable values are expected to be
vastly correlated. To use this biological property, we applied RNN models. In addition,
the information content of the double-stranded DNA molecule is equivalent if reading
in forward and reverse direction. In order to utilize the DNA linearity together with
equivalence of both directions on DNA, we selected the bidirectional long short-term
memory (biLSTM) RNN architecture (Schuster & Paliwal, 1997). The model takes a set
of epigenetic properties for bins as input and outputs the target value of the middle bin.
The middle bin is an object from the input set with an index i, where i equals to the floor
division of the input set length by 2. Thus, the transitional gamma of the middle bin is
being predicted using the features of the surrounding bins as well. The scheme of this
model is presented in Fig. 2.

We exploited the following parameters of the biLSTM RNN in our experiments.
The sequence length of the RNN input objects is a set of consecutive DNA bins with

fixed length that was varied from 1 to 10 (window size).
The numbers of LSTM units that we tested for were 1, 4, 8, 16, 32, 64, 128, 256, 512.
The weighted Mean Square Error loss function was chosen and models were trained

with a stochastic optimizer Adam (Kingma & Ba, 2014).
Early stopping was used to automatically identify the optimal number of training epochs.

The dataset was randomly split into three groups: train dataset 70%, test dataset 20%, and
10% data for validation.

To explore the importance of each feature from the input space, we trained the RNNs
using only one of the epigenetic features as input. Additionally, we built models in which
columns from the feature matrix were one by one replaced with zeros, and all other features
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Figure 2 Scheme of the implemented bidirectional LSTM recurrent neural networks with one out-
put. The values of {x1,..,xt } are the DNA bins with input window size t , {h1,..,ht } are the hidden states of
the RNN model, yt/2 represents the corresponding target value transitional gamma of the middle bin xt/2.
Note that each bin xi is characterized by a vector of chromatin marks ChIP-chip data.

Full-size DOI: 10.7717/peerjcs.307/fig-2

were used for training. Further, we calculated the evaluation metrics and checked if they
were significantly different from the results obtained while using the complete set of data.

RESULTS
Chromatin marks are reliable predictors of the TAD state
First, we assessed whether the TAD state could be predicted from the set of chromatin
marks for a single cell line (Schneider-2 in this section). The classical machine learning
quality metrics on cross-validation averaged over ten rounds of training demonstrate
strong quality of prediction compared to the constant prediction (see Table 1).

High evaluation scores prove that the selected chromatinmarks represent a set of reliable
predictors for the TAD state of Drosophila genomic region. Thus, the selected set of 18
chromatin marks can be used for chromatin folding patterns prediction in Drosophila.

The quality metric adapted for our particular machine learning problem, wMSE,
demonstrates the same level of improvement of predictions for different models (see
Table 2). Therefore, we conclude that wMSE can be used for downstream assessment of
the quality of the predictions of our models.

These results allow us to perform the parameter selection for linear regression (LR) and
gradient boosting (GB) and select the optimal values based on the wMSE metric. For LR,
we selected alpha of 0.2 for both L1 and L2 regularizations.

Gradient boosting outperforms linear regression with different types of regularization
on our task. Thus, the TAD state of the cell is likely to be more complicated than a linear
combination of chromatin marks bound in the genomic locus. We used a wide range
of variable parameters such as the number of estimators, learning rate, maximum depth
of the individual regression estimators. The best results were observed while setting the
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Table 1 Evaluation of classical machine learning scores for all models, based on 5-features and 18-
features inputs.

Model type MSE MSE MAE MAE R2

Train Test Train Test

Constant prediction 3.71 3.72 1.36 1.31 0

Using 5 features:
LR + L1 2.91 2.91 1.11 1.11 0.21
LR + L2 2.92 2.93 1.12 1.12 0.21
LR + L1 + L2 2.86 2.87 1.11 1.11 0.23
GB-250 2.45 2.67 1.10 1.11 0.28
biLSTM RNN 2.36 2.90 0.92 1.01 0.33

Using 18 features:
LR + L1 2.77 2.77 1.09 1.09 0.25
LR + L2 2.69 2.69 1.08 1.08 0.27
LR + L1 + L2 2.67 2.68 1.07 1.07 0.28
GB-250 2.22 2.53 1.06 1.07 0.32
biLSTMRNN 2.03 2.45 0.85 0.90 0.43

Table 2 WeightedMSE of all models, based on 5-features and 18-features inputs.

5 features 18 features

Train Test Train Test

Constant prediction 1.61 1.62 1.61 1.62
Linear Regression 1.20 1.20 1.13 1.14
Linear regression + L1 1.17 1.17 1.12 1.12
Linear regression + L2 1.18 1.19 1.11 1.12
Linear regression + L1 + L2 1.17 1.16 1.11 1.11
Grad boosting 100 estimators 1.11 1.13 1.08 1.10
Grad boosting 250 estimators 1.06 1.11 0.95 1.07
biLSTM 64 units & 6 bins 0.83 0.88 0.79 0.84

‘n_estimators’: 100, ‘max_depth’: 3 and n_estimators’: 250, ‘max_depth’: 4, both with
‘learning_rate’: 0.01. The scores are presented in Tables 1 and 2.

The context-aware prediction of TAD state is the most reliable
The alternative model that we studied was biLSTM neural network, which provides explicit
accounting for linearly ordered bins in the DNA molecule.

We have investigated the hyperparameters set for biLSTM and assessed the wMSE on
various input window sizes and numbers of LSTM units. As we demonstrate in Fig. 3, the
optimal sequence length is equal to the input window size 6 and 64 LSTM units. This result
has a potential biological interpretation as the typical size of TADs in Drosophila, being
around 120 kb at 20-kb resolution Hi-C maps which equals to 6 bins.

The incorporation of sequential dependency improved the prediction significantly, as
demonstrated by the best quality scores achieved by the biLSTM (Table 2). The selected
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Figure 3 Selection of the biLSTM parameters. Weighted MSE scores for the train and test datasets are presented. (A) Results of RNN with 64
units for different sizes of sequence length. The sequence size corresponds to the input window size of the RNN or number of bins used together as
an input sequence for the neural network. (B) Results of RNN with an input sequence of six bins for the different number of LSTM units. The box
highlights the best scores. The biLSTM with six input bins and 64 LSTM units was used throughout this study if not specified otherwise.

Full-size DOI: 10.7717/peerjcs.307/fig-3

biLSTM with the best hyperparameters set performed two times better than the constant
prediction and outscored all trained LR and GB models, see Tables 1 and 2. We note that
the proposed biLSTMmodel does not take into account the target value of the neighboring
regions, both while training and predicting. Our model uses the input values (chromatin
marks) solely for the whole window and target values for the central bin in the window for
training and assessment of validation results. Thus, we conclude that biLSTM was able to
capture and utilize the sequential relationship of the input objects in terms of the physical
distance in the DNA.

Reduced set of chromatin marks is sufficient for a reliable prediction
of the TAD state in Drosophila
Next, we used an opportunity to analyse feature importance and select the set of factors
most relevant for chromatin folding. For an initial analysis, we selected a subset of five
chromatin marks that we considered important based on the literature (two histone marks
and three potential insulator proteins, 5-features model).

The 5-features model performed slightly worse than the initial 18-features model (see
Tables 1 and 2). The difference in quality scores is rather small, supporting the selection of
these five features as biologically relevant for TAD state prediction.

We note that the small impact of shrinking of the number of predictorsmight indicate the
high correlation between chromatin features. This is in line with the concept of chromatin
states when several histone modifications and other chromatin factors are responsible for
a single function of DNA region, such as gene expression (Filion et al., 2010; Kharchenko et
al., 2011).

Feature importance analysis reveals factors relevant for chromatin
folding into TADs in Drosophila
We have evaluated the weight coefficients of the linear regression because the large weights
strongly influence the model prediction. Chromatin marks prioritization of 5-features LR
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Figure 4 WeightedMSE using one feature for each input bin in the biLSTMRNN. The first mark (‘all’)
corresponds to scores of NNs using the first dataset of chromatin marks features together, the last mark
(‘const’) represents wMSE using constant prediction. Note that the lower the wMSE value the better the
quality of prediction.

Full-size DOI: 10.7717/peerjcs.307/fig-4

model demonstrated that the most valuable feature was Chriz, while the weights of Su(Hw)
and CTCF were the smallest. As expected, Chriz factor was the top in the prioritization
of the 18-features LR model. However, the next important features were histone marks
H3K4me1 and H3K27me1, supporting the hypothesis of histone modifications as drivers
of TAD folding in Drosophila.

We used two approaches for the feature selection of RNN: use-one feature and drop-one
feature. When each single chromatin mark was used as the only feature of each bin of the
RNN input sequence for training, the best scores were obtained for Chriz and H3K4me2
(Figs. 4, 5 and 6), similarly to the LR models results. When we dropped out one of the five
features, we got scores that are almost equal to the wMSE using the full dataset together.
This does not hold for experiment with excluded Chriz, where wMSE increases. These
results align with the outcome of use-one approach and while applying LR models.

Similar results were obtained while using the broader dataset. The results of applying
the same approach of omitting each feature one by one using the second dataset of features
allowed the evaluation of the biological impact of the features. The corresponding wMSE

Rozenwald et al. (2020), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.307 10/21

https://peerj.com
https://doi.org/10.7717/peerjcs.307/fig-4
http://dx.doi.org/10.7717/peerj-cs.307


Figure 5 WeightedMSE using four out of five chromatin marks features together as the biLSTMRNN
input. Each colour corresponds to the feature that was excluded from the input. Note that the model is af-
fected the most when Chriz factor is dropped from features.

Full-size DOI: 10.7717/peerjcs.307/fig-5

scores are presented in Fig. 6 as well as the result of training the model on all features
together.

The results of omitting each feature one by one while using the second dataset of
features are almost identical as we expected. It could be explained by the fact that most of
the features are strongly correlated.

TAD state prediction models are transferable between cell lines of
Drosophila
In order to explore the transferability of the results between various Drosophila cell lines,
we have applied the full pipeline for Schneider-2 and Kc167 cells from late embryos and
DmBG3-c2 (BG3) cells from the central nervous system of third-instar larvae. Across all
cell lines, the biLSTM model has gained the best evaluation scores (Table 3). On average,
the smallest errors were produced on the test set of the BG3 cell line.

Notably, the selected top features are robust between cell lines. The results of the usage
of each feature separately for each of the cell lines can be found in Fig. S1. Chriz was
identified as the most influencing feature for Schneider-2 and BG3 while being in the top
four features for Kc167. Histone modifications H3K4me2 and H3K4me3 gain very high
scores on each dataset. However, CTCF was found in the top of the influencing chromatin
marks only on the Kc167, while insulator Su(Hw) constantly scores almost the worst wMSE
across all cell lines.
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Figure 6 WeightedMSE on the test dataset while using each chromatin mark either as a single feature
(blue line) or excluding it from the biLSTMRNN input (yellow line).

Full-size DOI: 10.7717/peerjcs.307/fig-6

Table 3 WeightedMSE on cross-validation of all methods for each cell line and while using them to-
gether. Lower wMSE orresponds to better quality of prediction.

Method Schneider-2 Kc167 DmBG3-c2 All

Constant prediction 1.62± 0.09 1.53± 0.06 1.36± 0.05 1.51± 0.04
Linear regression 1.14± 0.08 1.01± 0.06 0.91± 0.08 1.04± 0.04
Linear regression + L1 1.12± 0.07 1.04± 0.06 0.95± 0.07 1.05± 0.04
Linear regression + L2 1.12± 0.07 1.01± 0.06 0.9± 0.08 1.03± 0.04
Linear regression + L1 + L2 1.11± 0.07 1.02± 0.06 0.91± 0.07 1.03± 0.04
Gradient boosting 1.07± 0.06 0.98± 0.07 0.86± 0.08 0.96± 0.04
biLSTM 64 units & 6 bins 0.86± 0.04 0.83± 0.04 0.73± 0.01 0.78± 0.01

The all-cell-lines model improves prediction for most cell lines
Finally, we tested the improvement of the prediction models that can be achieved by
merging the information about all cell lines. For that, we merged all three cell lines as the
input dataset and used the all-cell-lines model for the prediction on each cell line.
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The gain of scores was the highest for Schneider-2 and Kc167, while BG3 demonstrated
a slight decline in the prediction quality. We also note that biLSTM was less affected by the
addition of cross-cell-line data among all models.

In general, the quality of the prediction has mostly improved, suggesting the universality
of the biological mechanisms of the TAD formation between three cell lines (two embryonic
and one neuronal) of Drosophila.

DISCUSSION
Here, we developed the Hi-ChIP-ML framework for the prediction of chromatin folding
patterns for a set of input epigenetic characteristics of the genome. Using this framework,
we provide the proof of concept that incorporation of information about the context of
genomic regions is important for the TAD status and spatial folding of genomic regions.
Our approach allows for diverse biological insights into the process of TAD formation in
Drosophila, identified using the features importance analysis.

Firstly, we found that chromodomain protein Chriz, or Chromator (Eggert, Gortchakov
& Saumweber, 2004), might be an important player of the TAD formation mechanism.
Recurrent neural networks that used only Chriz as the input produced the highest scores
among all RNNs using single epigenetic marks (Figs. 4, 6). Moreover, the removal of Chriz
strongly influenced the prediction scores when four out of five selected ChIP features
were together (Fig. 5). All linear models assigned the highest regression weight to the
Chriz input signal. Further, with the L1 regularization Chriz was the only feature that
the model selected for prediction. This chromodomain protein is known to be specific
for the inter-bands of Drosophila melanogaster chromosomes (Chepelev et al., 2012), TAD
boundaries and the inter-TAD regions (Ulianov et al., 2016), while profiles of proteins
that are typically over-represented in inter-bands (including Chriz) correspond to TAD
boundaries in embryonic nuclei (Zhimulev et al., 2014). The binding sites of insulator
proteins Chriz and BEAF-32 are enriched at TAD boundaries (Hou et al., 2012; Hug et al.,
2017; Ramírez et al., 2018; Sexton et al., 2012). Wang et al. (2018) reported the predictor
of the boundaries based on the combination of BEAF-32 and Chriz. This might explain
BEAF-32 achieving the third rank of the predictability score.

Secondly, the application of the recurrent neural network using each of the selected
chromatin marks features separately (Fig. 6) has revealed a strong predictive power
of active histone modifications such as H3K4me2. This result aligns with the fact that
H3K4me2 defines the transcription factor binding regions in different cells, about 90% of
transcription factor binding regions (TFBRs) on average overlap with H3K4me2 regions,
and use H3K4me2 together with H3K27ac regions to improve the prediction of TFBRs
(Wang, Li & Hu, 2014). HistonemodificationsH3K4me3,H3K27ac,H3K4me1,H3K4me3,
H4K16ac, and other active chromatin marks are also enriched in inter-TADs and TAD
boundaries (Ulianov et al., 2016). In addition, H3K27ac and H3K4me1 distinguish poised
and active enhancers (Barski et al., 2007; Creyghton et al., 2010; Rada-Iglesias et al., 2011).

Thirdly, models using Su(Hw) and CTCF perform as expected given that, for the
prediction of TAD boundaries, the binding of insulator proteins Su(Hw) and CTCF have
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performed worse than other chromatin marks (Ulianov et al., 2016). In Drosophila, the
absence of strong enrichment of CTCF at TAD boundaries and preferential location of
Su(Hw) inside TADs implies that CTCF- and Su(Hw)-dependent insulation is not a major
determinant of TAD boundaries. Our results also demonstrate that the impact of Su(Hw)
and CTCF is low for both proteins.

Thus, our framework not only accurately predicts positions of TADs in the genome but
also highlights epigenetic features relevant for the TAD formation. Importantly, the use
of adjacent DNA bins created a meaningful biological context and enabled the training of
a comprehensive ML model, strongly improving the evaluation scores of the best RNN
model.

We note that there are few limitations to our approach. In particular, the resolution of
our analysis is 20 kb, while TAD properties and TAD-forming factors can be different at
finer resolutions (Wang et al., 2018; Rowley et al., 2017; Rowley et al., 2019). On the other
hand, the use of coarsemodels allowed us to test the approach and select the best parameters
while training the models multiple times efficiently. The training of the model for Hi-C
with the resolution up to 500 bp presents a promising direction for future work, leading
to the clarification of other factors’ roles in the formation of smaller TAD boundaries that
are beyond the resolution of our models.

We also note that transitional gamma is just one of multiple measures of the TAD
state for a genomic region. We motivate the use of transitional gamma by the fact that it
is a parameter-independent way of assessing TAD prominence calculated for the entire
map. This guarantees the incorporation of the information about the interactions of the
whole chromosome at all genomic ranges, which is not the case for other approaches
such as the Insulation Score (Crane et al., 2015), D-score (Stadhouders et al., 2018), and
Directionality Index (Dixon et al., 2012). On the other hand, the presented pipeline may be
easily transferred to predict these scores as target values, which is an important direction
for the extension of the work.

Here we selected features that had been reported to be associated with the chromatin
structure. We note there might be other factors contributing to the TAD formation that
were not included in our analysis. The exploration of a broader set of cell types might
be a promising direction for this research, as well as the integration of various biological
features, such as raw DNA sequence, to the presentedmodels. We also anticipate promising
outcomes of applying our approach to study the chromatin folding in various species except
for Drosophila.

The code is open-source and can be easily adapted to various related tasks.

CONCLUSIONS
To sum up, we developed an approach for analysis of a set of chromatin marks as predictors
of the TAD state for a genomic locus. We demonstrate a strong empirical performance of
linear regression, gradient boosting, and recurrent neural network prediction models for
several cell lines and a number of chromatin marks. The selected set of chromatin marks
can reliably predict the chromatin folding patterns in Drosophila.
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Recurrent neural networks incorporate the information about epigenetic surroundings.
The highest prediction scores were obtained by the models with the biologically
interpretable input size of 120 kb that aligns with the average TAD size for the 20 kb
binning in Drosophila. Thus, we propose that the explicit accounting for linearly ordered
bins is important for chromatin structure prediction.

The top-influencing TAD-forming factors of Drosophila are Chriz and histone
modification H3K4me2. The chromatin factors that influence the prediction most are
stable across the cell lines, which suggests the universality of the biological mechanisms
of TAD formation for two embryonic and one neuronal Drosophila cell line. On the
other hand, the training of models on all cell lines simultaneously generally improves the
prediction.

The implemented pipeline called Hi-ChIP-ML is open-source. The methods
can be used to explore the 3D chromatin structure of various species and may be
adapted to any similar biological problem and dataset. The code is freely available at:
https://github.com/MichalRozenwald/Hi-ChIP-ML.
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Data Availability
The following information was supplied regarding data availability:

1. The code and the data are available at GitHub: https://github.com/MichalRozenwald/
Hi-ChIP-ML

2. The chromatin marks are available at modEncode using the following IDs:
# name Schneider-2 Kc167 DmBG3-c2
1 Chriz 279 277 275
2 CTCF 3749 3749 3671
3 Su(Hw) 5147 3801 3717
4 BEAF-32 922 3745 3663
5 CP190 925 3748 3666
6 GAF 3753 3753 2651
7 H3K4me1 3760 5138 2653
8 H3K4me2 965 4935 2654
9 H3K4me3 3761 5141 967
10 H3K9me2 311 938 310
11 H3K9me3 4183 3013 312
12 H3K27ac 3757 3757 295
13 H3K27me1 3943 3942 3941
14 H3K27me3 298 5136 297
15 H3K36me1 3170 3003 299
16 H3K36me3 303 302 301
17 H4K16ac 320 318 316
18 RNA-polymerase-II 329 328 950
3. The Hi-C data is available at NCBI GEO: GSE69013.
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