
International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

DOI: 10.21307/ijanmc-2019-071 56

Design and Research of Future Network (IPV9) API

Xu Yinqiu

Shanghai Decimal Network Information

Technology Co. Ltd.

E-mail: 8918616209@126.com

Xie Jianping

Shanghai Decimal Network Information

Technology Co. Ltd.

E-mail: 13386036170@189.cn

Abstract—Socket is a way of process communication, that is

used it to invoke some API function to realize the distribution

network libraries in different host of data exchange between

the relevant process. According to the TCP/IP protocol

assigned to the network address of the local host, to

communicate between the two processes, the host must know

the other's location first, that is, the IP of the other host. At the

same time, to get the port number, it is used to identify the

local communication process; a local process in communication

will occupy a port number, different process port number is

different, so it must be assigned a port number that is not used

before communication. A complete inter-network process

consists of two processes and should use the same high-level

protocol. IPV9 is the most important part of future network.

This paper introduces the interface function and socket of

IPV9, which lays a foundation for further network application

programming.

Keywords -IPV9; Interface; Socket; API

I. INTERFACE AND SOCKET

The transport layer implements end-to-end

communication, so there are two terminals for each

transport layer connection. What is the terminal of the

transport layer connection? It is neither the host, nor

the host's IP address, and not the application process,

not the transport layer protocol port. The terminal to

which the transport layer connects is called a socket.

According to the definition of RFC793, the port

number is spliced to the IP address to form a socket. A

socket is actually a communication endpoint, an

interface between an application and a network

protocol. Each socket has a socket number, including

the IP address of the host and a 16-bit host port

number, such as (host IP address: port number).

In short, Socket is equals to (IP address: port

number), which is represented by a decimal IP address

followed by a port number, separated by a colon or

comma. Each transport layer connection is uniquely

identified by two terminals (that is, two sockets) at

each end of the communication. For example, if the

IPv4 address is 118.38.18.1 and the port number is 23,

the resulting socket is (118.38.18.1:23), If the IPV9

address is 86[128[5]118.38.18.1 and the port number

is 23, the resulting socket is (86[128[5] 18.38.18.1:23).

A socket can be thought of as a terminal in the

communication connection between two network

applications. During communication, a piece of

information to be transmitted by one of the network

applications is written into the Socket of its host,

which sends the piece of information to the Socket of

another host through the transmission medium of the

network interface, so that the piece of information can

be transmitted to other programs. Therefore, the data

transfer between the two applications is done through

the socket.

During network application design, IPv4 can be

realized through the programming interface of TCP/IP

provided by the system, since the core content of

TCP/IP is encapsulated in the operating system.

All clients and servers of TCP-based socket

programming begin with calling a socket, which

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

57

returns a socket descriptor. The client then calls the

connect function, while the server calls the bind (),

listen (), and accept () functions. The socket is usually

closed by using the standard close function, but it can

be also used the shutdown function to close the socket.

The Socket interaction flow is shown in figure 1.

Figure 1. The Socket interaction flow

II. IPV9 SOCKET

In the Linux environment of IPv9, the core contents

of TCP 9/IP9 are encapsulated in the operating system

kernel. In order to support user development of

application-oriented communication programs, most

systems provide a set of application programming

interfaces (API) based on TCP 9 or UDP 9, which are

usually presented in the form of a set of functions, also

known as sockets. These sockets are described below.

This document is the IPv9 protocol experimental

application development instructions, non-industry

standard documents.

A. Socket

A socket is an abstraction layer through which

applications can send or receive data and open, read,

and close it as if it were a file.Sockets allow

applications to plug I/O into the network and

communicate with other applications in the network.

This version of network sockets supports a

combination of IPv4, IPv6, and IPv9 addresses and

ports.

1) Head file

#include<sys/types.h>

#include<sys/socket.h>

2) Prototype

int socket(int domain, int type, int protocol);

3) Description

Socket: Creates and returns a communication

sleeve interface handle.

The parameter domain describes the

communication domain, that is, the select

communication protocol family. These communication

protocol families are defined in the header file

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

58

<sys/socket.h>. Currently supported protocol families

are as follows:

 PF_UNIX,PF_LOCAL(Local

communication protocol)

 PF_INETIPv4 (Protocol)

 PF_INET6(IPv6 Protocol)

 PF_INET9(IPv9 Protocol)

 PF_IPXNovell (Protocol)

 PF_NETLINK(Core user interface device)

 PF_X25ITU-T X.25 (Protocol)

 PF_AX25AX.25 (Protocol)

 PF_ATMPVC(Access to the original ATM

PVCs)

 PF_APPLETALKAppletalk

 PF_PACKET(Low-level envelope interface)

The parameter type is used to describe the

communication semantics. Currently defined types are

as follows:

 SOCK_STREAM

It provides sequential, reliable, duplex,

connection-based byte streams that can also support

out-of-band data transfer.

 SOCK_DGRAM

It supports datagram (connectionless, unreliable

messages of fixed maximum length).

 SOCK_SEQPACKET

It provides a sequential, reliable, duplex,

connection-based data path for datagram of fixed

maximum length.

 SOCK_RAW

It provides original network protocol access.

 SOCK_RDM

It provides a reliable datagram layer that does not

guarantee order.

Some sets of interface types are not implemented

on all protocol families, such as the SOCK

SEQPACKET is not implemented in the AF_INET

protocol family

The parameter protocol describes a special protocol

for the socket interface. There is usually only one

simple protocol that can support a particular set of

interface types that contain a given family of protocols.

Of course, sometimes when multiple protocols exist

that must be specified with this parameter.

4) Returned value

-1 is returned value when an error occurs, and errno

represents the error type value. Otherwise, the socket

interface handle value is returned。

B. Bind ()

Bind () is a local address to a set of interfaces

function. This function is suitable for unconnected

datagram or stream class interfaces and is used before

connect () or listen () calls. When a socket () is created,

it exists in a namespace (address family) but is not

named. The bind () function establishes a local binding

(host address/port number) for the socket interface by

assigning a local name to an unnamed socket interface.

1) Head file

#include<sys/types.h>

#include<sys/socket.h>

2) Prototype

Bind(intsockfd, structsockaddr *my_addr,

socklen_taddrlen);

3) Description

Bind() provides the local address my_addr for the

socket interface handle, the length of my_addr is the

parameter addrlen, which is called set interface name

assignment.

In general, a socket interface of type

SOCK_STREAM must call bind() to assign a local

address in order to connect and receive.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

59

The structure of the assignment is also different for

different protocol families. Such as for AF_INET is

sockaddr_in and AF_INET9 is sockaddr_in9.

4) Returned value

Return 0 on success. The error returns -1, and errno

represents the error type value.

C. Connect ()

Connect () is used to establish a connection to the

specified socket。

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) Prototype

Connect (intsockfd, conststructsockaddr *serv_addr,

socklen_taddrlen);

3) Description

The handle sockfd must point to a socket interface.

If the type of the socket interface is SOCK_DGRAM,

the address represented by the parameter serv_addr is

the default destination address of the datagram and the

source address when the datagram is received. If the

socket interface is of type SOCK_STREAM or

SOCK_SEQPACKET, the call attempts to establish a

connection to another socket interface. The other

interface is described by the serv_addr parameter,

which is the address of interface communication

spaces, each of which interprets the serv_addr

parameter.

Typically, connection-based protocols only

successfully connect once; connectionless interfaces

may connect multiple times to change sessions. A

connectionless interface may also connect to an

address whose family of protocols is AF_UNSPEC to

cancel the session.

4) Returned value

Return 0 on success. The error returns -1, and errno

represents the error type value.

D. Listen ()

It is used to create a socket interface and listen for

the requested connection.

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) Prototype

int listen(int s, int backlog);

3) Description

To confirm the connection, the socket is called to

create a socket interface, and the listen () describes the

willing to confirm the connection and the length limit

of the connection queue before calling accept to

confirm the connection. The listen () call only works

on the socket interfaces of types SOCK_STREAM and

SOCK_SEQPACKET.

The parameter backlog defines the maximum

length of the unconnected queue.

4) Returned value

Return 0 on success. The error returns -1, and errno

represents the error type value.

E. Accept ()

It is used to create a socket interface and

monitoring for the requested connection.

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) Prototype

int accept(int s, structsockaddr *addr, socklen_t

*addrlen);

3) Description

The accept function can be used based on the

socket interface type of the connection

(SOCK_STREAM, SOCK_SEQPACKET, and

SOCK_RDM). It selects the first connection request in

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

60

the unconnected queue, creates a new connected

socket interface similar to the parameter s, and then

assigns a handle to that socket interface and returns.

The newly created socket interface is no longer in the

listening state, and the source socket interface s is not

affected by the call.

4) Returned value

The error returns -1, and errno represents the error

type value. Successfully returns a non-negative integer,

representing the handle to the socket interface.

F. Select ()

It is used for monitoring three socket interfaces.

1) Head file

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

2) Prototype

int select(int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds,

structtimeval*timeout);

FD_CLR(intfd, fd_set *set);

FD_ISSET(intfd, fd_set *set);

FD_SET(intfd, fd_set *set);

FD_ZERO(fd_set *set);

3) Description

Select () allows to monitoringthe three socket

interface at the same time: readfds, writefds and

exceptfds.

The socket interface in the Readfds will be listened

for acceptable characters; the socket interface in

writefds will be monitored to see if data can be sent

immediately. The socket interface in exceptfds will be

monitored for exceptions.

Four macros are defined to manipulate the set of

socket interfaces: FD_ZERO will empty a set;

FD_SET and FD_CLR add or remove a handle from

the set. FD_ISSET is used to test whether a handle is

in the set.

The parameter n should be equal to the value of the

highest file descriptor plus 1.

The timeout parameter defines the maximum

interval for the select call to block until it returns. It

can be zero, so that select returns directly. If the

timeout structure pointer is NULL, select will block

the indeterminate time.

4) Returned value

On success, return the socket interface handle

contained in the socket interface set, returns 0 if no

change occurs after the maximum interval. -1 is

returned on error, and errno represents the error type

value

G. Recv (), Recvfrom(), Recvmsg()

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) Prototype

intrecv(int s, void *buf, size_tlen, int flags);

Intrecvfrom(int s, void *buf, size_tlen, int flags,

structsockaddr *from,

socklen_t *fromlen);

Intrecvmsg(int s, structmsghdr *msg, int flags);

3) Description

The Recvfrom() and recvmsg() calls are used to

receive information from a socket interface, regardless

of whether the socket interface is connection-oriented.

If the from () parameter is not NULL, then the socket

interfaces is not connection-oriented and the source

address of the message is assigned to it. The fromlen

parameter starts with the data buffer size of the

parameter from and returns the buffer size of the actual

storage address in the parameter from.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

61

A Recv () call is usually used in a connected socket

interface, this is equivalent to the case where the

parameter from is NULL when recvfrom is called.

If the data message is successfully received, the

return value is the length of the data message. If the

length of the data message exceeds the length of the

data buffer, the excess is discarded, depending on the

type of socket interface used to receive the message.

If the socket interface does not receive the

information, it will always wait for the information

unless the socket interface is non-blocking. When the

socket interface is non-blocking, the return value is -1

and the errno value is EAGAIN.

The Recvmsg call the MSGHDR structure, defined

in the header file <sys/socket.h>.

4) Returned value

The length of the received data is returned on

success, -1 is returned on error, and errno represents

the value of the error type.

H. Send(), Sendto(), Sendmsg()

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) (2) Prototype

Intsend(int s, const void *msg, size_tlen, int

flags);

Intsendto(int s, const void *msg, size_tlen, int

flags, conststructsockaddr *to,

socklen_ttolen);

Intsendmsg(int s, conststructmsghdr *msg, int

flags);

3) Description

The Send (), sendto, and sendmsg calls are used to

transfer information to other interfaces. The Send ()

call applies only to the connection-oriented socket

interface, while the sendto and sendmsg calls apply to

all situations.

The destination address is set by the parameter to,

its length is the parameter tolen, and the length of the

message is represented by the parameter len. If the

length of the message is too large to be sent all at once

by the low-level protocol, -1 is returned, and errno is

set to EMSGSIZE.

If the length of the send message is greater than the

length of the socket interface send buffer, the send call

will normally block unless the socket interface is set to

a non-blocking mode. In non-blocking mode -1 is

returned and errno is set to EAGAIN. The Select call

can determine whether more data can be sent.

The structure MSGHDR is defined in the header

file <sys/socket.h>.

4) Returned value

The length of the sent data is returned on success,

-1 is returned on error, and errno represents the value

of the error type.

I. Ioctl()

1) Head file

#include <sys/ioctl.h>

2) Prototype

intioctl(int d, intrequest, ...);

3) Description

Ioctl() calls operate on the parameters of the

underlying device. Parameter d is the file handle, and

the parameter request determines the type and size of

the back parameters. See the <sys/ioctl.h> for the

macro definition used to describe the parameter

request.

4) Returned value

0 is returned on success, -1 is returned on error, and

errno represents the error type value.

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

62

J. Getsockopt()，setsockopt()

1) Head file

#include <sys/types.h>

#include<sys/socket.h>

2) Prototype

Intgetsockopt(int s, intlevel, intoptname, void

*optval, socklen_t *optlen);

Intsetsockopt(int s, int level, intoptname, const void

*optval, socklen_toptlen);

3) Description

The Getsockopt() and setsockopt() calls can

operate on the options of the socket interface. Options

exist at multiple protocol levels, but are always

represented at the highest socket interface level. When

socket interface options are setting, it must be specify

the level name and option name. For the socket

interface level option, the level is called

SOL_SOCKET. For other levels of protocol, other

protocol control Numbers are provided, such as the

TCP protocol, and the level name must be the TCP

series.

The parameters optval and optlen are used when

setsockopt calls access option values. For the

getsockopt calls, they are buffers that return the

request option value; the optlen parameter starts with

the size of the buffer optval, and returns with the

buffer size of the actual return value. If no option

value can be returned, the parameter optval is set to

NULL.

The optname and option parameters are sent to the

appropriate core protocol module for interpretation

without explanation. In the header file <sys/socket.h>,

there is a detailed definition of the socket interface

level and option structure, and the option formats and

names for different protocol levels vary greatly.

Most interface-level options take an integer value

as the parameter optval, and for setsockopt calls, the

parameter must be non-zero to support Boolean

options, or zero to disable.

In the design of IPv9 stream label, the following

call can be used:

int on = 1；

struct in9_flowlabel_req freq；

structin9_addrdst_addr；

memcpy(&(freq.flr_dst)，&dst_addr，32)；

freq.flr_label = htonl(0x0000000f)；

freq.flr_action = IPV9_FL_A_GET；

freq.flr_share = IPV9_FL_S_EXCL；

freq.flr_flags = IPV9_FL_F_CREATE；

freq.flr_expires = 0；

freq.flr_linger = 0；

freq.__flr_pad = 0；

setsockopt(s, IPPROTO_IPV9,

IPV9_FLOWINFO_SEND, &on, sizeof(int))；

setsockopt(s, IPPROTO_IPV9, IPV9_FLOWINFO,

&on, sizeof(int))；

setsockopt(s, IPPROTO_IPV9,

IPV9_FLOWLABEL_MGR, &freq,

sizeof(structin9_flowlabel_req));

The above code sets the stream label of socket s to

0000f, where the destination address of the stream

label is defined in dst_addr.

Structure in9 flowlabelreq is defined as follows

struct in9_flowlabel_req{

struct in9_addrflr_dst；

__u32 flr_label；

__u8 flr_action；

__u8 flr_share；

__u16 flr_flags；

__u16 flr_expires；

__u16 flr_linger；

International Journal of Advanced Network, Monitoring and Controls Volume 04, No.04, 2019

63

__u32 __flr_pad；

}；

4) Returned value

0 is returned on success, -1 is returned on error, and

errno represents the error type value.

III. IPV9 DEVELOPMENT INSTRUCTION

1) Development environment

Centos7 operating system with Linux operating

environment with IPv9 kernel;

VMware virtual machine image:: Centos7_ IPv9_

dev_vm.

The compiled program copy in

Centos7_IPv9_dev_vm virtual machine image, it can

run normally, provides the virtual machine application

development and compilation environment, C

language headers file and IPv9_Linux kernel.

2) IPv9 network application development

directory:

/develop9

Development document directory:

/develop9/docs

The demo directory:

/develop9/test9

demo README

/develop9/test9/README

3) Test9 program

The test9 program mainly changes the socket

family program file.

cd /develop9/test9

make

4) Demo operation

#Configure the IPv9 address

ifconfig9 eth1 add 32768[86[21[4]10001

#Start the IPv9 server program: /test9_tcpserver

#Start the IPv9 client program: /test9_tcpcli

32768[86[21[4]10001

Verify the caught: tcpdump -s 0 -i any -w t.cap, or

wireshark with ipv9 plugin open t.cap.

IV. CONCLUSION

This paper introduces the commonly used socket

able and interface functions, including creating a

socket, binding function, link function, monitoring

function and accept function, read the function and

writing function, etc., each function is connected the

header files, prototyping, description, and the return

value, these are the basis of network programming,

mastering these functions, which plays a major role for

application development.

REFERENCES

[1] https://zh.wikipedia.org/wiki/Berkeley%E5%A5%97%E6%8E%A5%
E5%AD%97, Wikipedia: Berkeley sockets 2011-02-18, (Goodheart
1994, p. 11), (Goodheart 1994, p. 17)

[2] Cisco Networking Academy Program, CCNA 1 and 2 Companion
Guide Revised

[3] Third Edition, P.480, ISBN 1-58713-150-1

[4] Jack Wallen (2019-01-22). "An Introduction to the ss Command".

[5] V. S. Bagad, I. A. Dhotre (2008), Computer Networks (5th revised
edition, 2010 ed.), Technical Publications Pune, p. 52

[6] Ian Griffiths for IanG on Tap. 12 August, 2004. Raw Sockets Gone in
XP

[7] "raw(7): IPv4 raw sockets - Linux man page". die.net.

[8] "Raw IP Networking FAQ". faqs.org.

[9] www-306.ibm.com - AnyNet Guide to Sockets over SNA

[10] books.google.com - UNIX Network Programming: The sockets
networking API

[11] books.google.com - Designing BSD Rootkits: An Introduction to
Kernel Hacking

[12] historyofcomputercommunications.info - Book: 9.8 TCP/IP and XNS
1981 - 1983

[13] mit.edu - The Desktop Computer as a Network Participant.pdf 1985

