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A network approach to understanding obesogenic  
environments for children in Pennsylvania

Abstract

Network methods have been applied to obesity to map connections 
between obesity-related genes, model biological feedback mecha-
nisms and potential interventions, and to understand the spread of 
obesity through social networks. However, network methods have not 
been applied to understanding the obesogenic environment. Here, 
we created a network of 32 features of communities hypothesized 
to be related to obesity. Data from an existing study of determinants 
of obesity among 1,288 communities in Pennsylvania were used. 
Spearman correlation coefficients were used to describe the bivariate 
association between each pair of features. These correlations were 
used to create a network in which the nodes are community features 
and weighted edges are the strength of the correlations among 
those nodes. Modules of clustered features were identified using 
the walktrap method. This network was plotted, and then examined 
separately for communities stratified by quartiles of child obesity 
prevalence. We also examined the relationship between measures of 
network centrality and child obesity prevalence. The overall structure 
of the network suggests that environmental features geographically 
co-occur, and features of the environment that were more highly 
correlated with body mass index were more central to the network. 
Three clusters were identified: a crime-related cluster, a food-
environment and land use-related cluster, and a physical activity-
related cluster. The structure of connections between features of 
the environment differed between communities with the highest and 
lowest burden of childhood obesity, and a higher degree of average 
correlation was observed in the heaviest communities. Network 
methods may help to explicate the concept of the obesogenic 
environment, and ultimately to illuminate features of the environment 
that may serve as levers of community-level intervention.
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Networks are everywhere (Barabasi, 2007, 2012, 
2009, 2013). However, in public health, network 
science has only now begun to make signifi-
cant in-roads. To date, network science has made 
contributions in diverse areas of biomedical research 
including cellular communication in cancer (Stites et 
al., 2007; Berger et al., 2012; Gill et al., 2014; Mutation 

Consequences and Pathway Analysis working group 
of the International Cancer Genome Consortium, 
2015), protein–protein interactions (Jeong et al., 
2001), and complex disease interactions (Barabasi, 
2007; Goh et al., 2007; Hidalgo et al., 2009; Zhou et 
al., 2014). Common features link these diverse appli-
cations, including high dimensional data and emer-
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gent patterns not easily visible in bivariate space. 
Networks depict relationships among objects in a 
system, and network methods help identify struc-
tures that influence system behavior.

Obesity is a challenge for traditional public health 
research because we do not at present have a 
robust explanation for the temporal and spatial pat-
terns of the obesity epidemic (Galea et al., 2010). 
This has led obesity researchers to seek alternative, 
systems science-oriented methods and approaches 
(Burke and Heiland, 2007; Huang et al., 2009; 
Finegood, 2011). Network science has made impor-
tant contributions in obesity research along sever-
al dimensions. First, network methods have been 
used to identify complex linkages among obesity- 
related genes in animal models (Chen and Zhang, 
2013). Second, researchers have conceptualized the 
‘stress-response network’ to understand how feed-
back within biological systems leads to exacerbation 
and habituation that results in obesogenic growth 
(Dallman et al., 2003, 2006). Network approaches 
have been used to study interactions among or-
ganizations and components of obesity interven-
tions (Leroux et al., 2013; Marks et al., 2013), and 
applied to causal loop diagrams to identify lever-
age points for intervention (McGlashan et al., 2016). 
Several studies have focused on how obesity and 
physical activity spread through populations like in-
fection (Crandall, 1988; Christakis and Fowler, 2007; 
Blanchflower et al., 2009; Hammond, 2010; Hill et 
al., 2010; Ali et al., 2012; El-Sayed et al., 2012; Gesell 
et al., 2012; Simpkins et al., 2013; Hammond and 
Ornstein, 2014). Others have examined how obesity 
impacts social relationships (Brewis et al., 2011; de la  
Haye et al., 2011; Ali et al., 2012). Despite these 
advances, most network studies in obesity have 
focused on the structure of linkages between  
individuals connected through social ties. We are 
aware of no studies to date that focus on the struc-
ture of linkages between features of the environ-
ment, thought to be the main drivers of the obesity 
epidemic.

The concept of the ‘obesogenic environment’ 
was first proposed in the 1990s as a model for eval-
uating the contribution of environmental factors to 
obesity (Hill and Peters, 1998; Swinburn et al., 1999). 
The obesogenic environment assumes a pattern of 
spatially co-occurring features that jointly influence 
obesity risk. There is little doubt that aspects of the 
food and physical activity environment are important, 
but the question of how to identify patterns of fea-
tures within the obesity environment remains unan-
swered. Tools to examine the connections between 

features of the obesogenic environment are needed. 
Network analysis can be used to describe relation-
ships (edges) between objects (nodes), allowing for 
the characterization of network-level features that are 
otherwise hidden. Network methods also allow us to 
visualize these connections, facilitating understanding 
of a very complex epidemic and potentially prioritizing  
areas for intervention. In this study, we characterize 
the obesogenic environment with community features 
as nodes, and correlations between those features as 
edges. A version of this methodology has been used 
in neurologic and genetic research and is commonly 
referred to as ‘Weighted Correlation Network Analysis’  
(Fox et al., 2005; Zhang and Horvath, 2005). Our  
approach examines the structure of the relationships 
among multiple community features, instead of ex-
amining each community feature as an independent 
cause of obesity.

The literature demonstrates a strong relationship 
between environmental features that impact diet 
and physical activity. However, existing studies have 
focused on single obesity-related features in isolation, 
most often evaluated for their linear associations with 
obesity. There has been scant attention to the inter-
dependence of these environmental features and 
how relationships between obesogenic features of 
the environment are structured and may create qual-
itatively different risk environments for obesity. We 
draw from network analysis tools to study these in-
terrelations between features of the environment and 
explore how they relate to spatial patterns of obesity 
prevalence. We are guided by the view that transpor-
tation systems, cultural variation, markets, and other 
system dynamics create clusters of obesity-related 
features that may have synergistic and aggregative 
effects on population behavior. Market forces lead to 
clusters of restaurants, stores and activity spaces in 
the built environment (Hidalgo and Castañer, 2015). 
This clustering may potentiate the effect of any one 
facility by increasing the joint effect of a built and  
social environment designed to deliver excess calo-
ries with maximal efficiency. Therefore, the cluster-
ing of features and the existence of central bridging 
nodes that link disparate clusters may point toward 
novel targets for research and intervention.

Our primary aim is to explore the utility of net-
work analysis methods to characterize the linkages 
among a set of 32 spatially patterned features of the 
obesogenic environment. We created a weighted 
network of community features from 1,288 commu-
nities in Pennsylvania, and examined the relationship 
between centrality and clustering measures and a 
commonly used metric of childhood overweight and 
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obesity (percentage of children with body mass index 
(BMI) percentile ≥ 85th).

Methods

Our goal was to model the network of hypothesized 
obesity-related features of local environments to 
better understand how network and node centrality  
and clustering provide insights about the role of 
environments in child and adolescent obesity.

Data

Our study was based on data from a study of children 
from 1,288 communities in central and northeastern 
Pennsylvania served by Geisinger Health System. 
From the system’s electronic medical records system  
(EMR), we previously received data on all patients  
between 3 and 18 years old who visited a Geisinger 
primary care physician from 2001 to 2012. The sample  
included 163,473 children and 523,674 visits. The 
sample is representative of the youth population in the 
region (Schwartz et al., 2011). This study was approved 
by institutional review boards at Geisinger Health Sys-
tem and Johns Hopkins School of Public Health.

Children were previously assigned to one of 1,288 
communities based on their geocoded home address. 
Communities consisted of census tracts within cities, 
and minor civil divisions (townships and boroughs) 
outside of cities (Schwartz et al., 2011). From the 
Geisinger EMR we obtained longitudinal height and 
weight measurements for children. Implausible BMI 
values, defined as five standard deviations above and 
below the median, were assumed to be mismeas-
urement or data entry errors and were deleted using 
the standard CDC SAS Program (Schwartz et al.,  
2011). We calculated z-scores for individual BMI, esti-
mated community-level mean BMI z-score, and per-
cent of children who are overweight or obese (BMI 
greater than or equal to the 85th percentile for age 
and sex). We then categorized communities accord-
ing to quartiles of the percent of children with BMI at 
or above the 85th percentile.

To characterize obesity-related features of the 
environment we assembled a corpus of 32 variables 
hypothesized to be related to obesity based on exist-
ing research. These variables include demographic, 
economic, and geographic information from publicly 
available datasets, including those published by the 
U.S. Census, the Federal Bureau of Investigation, 
and two commercial data vendors, InfoUSA and Dun 
& Bradstreet, that provided registries of commercial 

food and physical activity establishments categorized 
using standard industry codes. Table 1 describes the 
community features we studied. This list was selected  
based on attributes that are well accepted in the  
literature, have acceptable measurement properties, 
and span a range of content domains and relations 
with some being related to physical activity and some 
related to diet. This set of variables has been used in 
our previous research to characterize diverse aspects  
of the obesity-related environment in communities 
(Nau et al., 2015). We categorized all variables in 
quintile or quartile rank scores to preserve the rank 
position of variables that are often poorly distributed. 
After reviewing variable distributions and Spearman, 
Pearson, and Phi correlation matrices, we chose 
Spearman correlations as the best representation of 
variable distributions and the strength of connections.

Network methods

Given the complex nature of obesogenic environments,  
we looked for a way to best characterize the relation-
ships between all 32 community features. We needed 
to honor both the pairwise (bivariate) correlations be-
tween variables and the structures that emerge from 
these pairwise correlations. We used a method analo-
gous to Weighted Correlation Network Analysis (Zhang 
and Horvath, 2005). We generated a data array of co-
variates (32 obesity-related community features) that 
we treat as nodes in a network of interconnected en-
vironmental attributes. Edges were operationalized as 
the strength of the bivariate correlation between each 
pair of attributes. Bivariate correlations were estimat-
ed using pairwise Spearman correlation coefficients 
between the community variables. Because we were 
primarily interested in the strength of linkages among 
nodes and there is controversy over the direction of 
the relationships between some of these variables 
and obesity, we chose to use the absolute value of the 
correlation between variables.

All 992 pairwise correlations were then con-
verted to a weighted undirected adjacency matrix 
where each cell was the correlation between any two 
variables. We created a weighted graph from this  
adjacency matrix using the R package iGraph (version 
1.0.1) (Csardi and Nepusz, 2006), specifying pairwise 
correlations as the edge weights. From this graph, we 
obtained five sets of results.

First, we plotted an overall network graph using 
all 1,288 communities. The coordinates of each node 
were computed using a force-based algorithm, the 
Fruchterman-Reingold algorithm (Fruchterman and 
Reingold, 1991), where the attraction between nodes is 
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proportional to the strength of the correlation between 
environmental features (nodes). We implemented  
the version of the algorithm in the R package qgraph 
(version 1.3.2) (Epskamp et al., 2012). The second 
set of results represents the same graph stratified 

by community obesity burden (quartiles). For ease 
of interpretation we show plots corresponding to  
quartile 1 and 4 (the thinnest and heaviest communities,  
respectively (see Fig. 1 (overall network) and Fig. 2 
(stratified network)).

Table 1. Obesity-related community features included in network analysis.

Variable identifier Feature 

C-1 Violent crime per 100,000 population

C-2 Crimes against person per 100,000 pop

C-3 Crimes against property per 100,000 pop

F-1 Grocery stores and supermarkets per square mile

F-2 Gas stations and convenience stores per square mile

F-3 Snack stores (donuts, pretzels, ice cream) per square mile

F-4 All food establishments per square mile

F-5 Fast food chain restaurants, count

F-6 All retail food establishments per square mile

F-7 All food service establishments per square mile

F-8 Diversity of food establishments in 9 categories

F-9 Limited service restaurants per capita

F-10 Full service restaurants per capita

F-11 Bars and taverns per capita

F-12 Health food and gourmet stores per capita

F-13 Fruit and vegetable stores and stalls per sqare mile

F-14 Discount stores per square mile

L-1 Average block length

L-2 Household density

L-3 Road intersection density

L-4 Road segment length diversity

P-1 Diversity of physical activity establishments in 6 categories

P-2 Indoor recreational centers per square mile

P-3 Outdoor recreational centers per square mile

P-4 Public outdoor parks and recreational spaces per street mile

P-5 All physical activity establishments per square mile

P-6 Indoor fitness and recreational facilities per street miles

P-7 Outdoor fitness & recreational facilities per capita

P-8 Indoor recreational clubs and organizations per square mile

P-9 Outdoor recreational clubs and organizations per square mile

T-1 Vehicle miles traveled on main roads (total)

T-2 Vehicle miles traveled on main roads per capita

Notes: Data are from combined Info USA and D&B databases, 2000; the Federal Bureau of Investigation Uniform 
Crime Reporting System; U.S. Census 2000; and Pennsylvania State Government.
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Third, in order to better understand the relation-
ships between the components of the obesogenic  
environment, we sought to obtain a measure of clus-
tering and community structure that allowed us to 
evaluate if network structure was different across 
communities classified by prevalence of childhood 
obesity. We conducted a module detection analysis 
using the walktrap method (Pons and Latapy, 2005) 
that performs a series of ‘random walks’ between 
nodes. The probability of ‘walking’ from one node 
to the next is proportional to the weight of the edge  
between the nodes, meaning that a walk is more likely 
to occur between two highly correlated nodes. Each 
node is restricted to membership in one module. This 
creates modules of variables that are highly connected  
to each other. We then calculated the normalized 
network modularity score (Newman, 2006), which 
quantifies the strength of the connections within and  
between modules. A higher modularity score indi-
cates a network with high within-module connectivity 
and low between-module connectivity. We calculated  

the modularity score for the overall network graph 
and each of the four graphs based on community 
strata of burden of childhood obesity (see Table 2). 
We used the pairwise correlation between variables 
(nodes) as a weight in the computation of modularity.
Fourth, we calculated an overall measure of network 
centrality by calculating the average network degree 
(Barrat et al., 2004). In a weighted undirected net-
work like ours, average network degree is the mean 
of all pairwise correlations (Barrat et al., 2004). A high  
average network degree represents a network that 
has an overall tighter correlation between all nodes. 
We calculated average network degree for the overall 
network graph and each of the four network graphs 
based on obesity prevalence (see Table 2).

Fifth, we examined the association between 
the centrality of a node and its correlation with the  
prevalence of childhood obesity. For this, we plot-
ted the degree centrality of each node against that 
node’s correlation with the prevalence of childhood 
obesity (Fig. 3).

Figure 1: Network graph for 1,288 communities in Pennsylvania. This shows a graph 
of the network of connections between attributes of communities in 1,288 communities in 
Pennsylvania. Each node in the network represents one feature of the communities, and the 
edges in the network are absolute values of Spearman correlation coefficients. The bivariate 
correlation between each variable and average body mass index (BMI) z-score is shown by the 
shading of each node, with darker colors representing stronger absolute correlation with average 
community BMI z-score. The strength of absolute correlation between two nodes is represented 
by the darkness and thickness of the lines connecting the variables. A thick, dark line may 
represent either a strong positive or a strong negative correlation. Modules of highly connected 
variables were created using the walktrap method.
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Results

The purpose of this analysis was to apply network 
methodology to characterize patterns of linkages  
and interactions among obesity-related environ-

mental features among communities in Penn-
sylvania. Figure 1 is a graph of the network of  
connections (pairwise correlations) between nodes 
(obesity-related features) in 1,288 Pennsylvania 
communities.

Figure 2: Network Graphs for 1288 Communities in Pennsylvania, by Quartile of Percent 
of Children at or Above the 85th Percentile of BMIz. In communities in the lowest quartile 
of percent of children who are overweight or obese (A: left), community features appear to be 
less tightly clustered, i.e., co-occur less often, than in communities in the highest quartile of 
community BMIz (B: right).

Table 2. Network modularity and average network degree in the overall network and 
by quartile of prevalence of childhood obesity.

Quartiles of prevalence of childhood obesity

Quartile 1 Quartile 2 Quartile 3 Quartile 4 Overall network

Network modularity 0.1891 0.2681 0.1181 0.0982 0.1496

Average network degree 0.3318 0.3533 0.3584 0.3623 0.3507

Note: Quartile 1 represents communities with the lowest prevalence of child overweight and obesity, and quartile 4 
represents communities with the highest prevalence of child overweight and obesity. Higher modularity indicates a 
network with high within-module connectivity and low between-module connectivity. Average network degree is the 
mean of all pairwise correlations.
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The graph illustrates three important network char-
acteristics. First, three clusters of tightly-connected  
variables were identified using the walktrap method. A 
cluster of the three crime-related variables (rates per 
100,000 persons of crimes against property, crimes 
against persons, and all Part I offenses) can be seen 
(green shading), and is weakly linked to the main net-
work. This suggests that communities with high rates 
of violent crime (i.e., assault) also have high rates of 
crime against property (i.e., arson). Crime rates appear 
to be moderately correlated with obesity rates as indi-
cated by the dark color of the crime-related nodes. A 
second cluster is identified consisting of features rep-
resenting land use patterns, transportation, and food 

establishment density (yellow shading). We believe  
this represents the spatial clustering that occurs 
in the context of suburban sprawl with co-location  
of establishments in high-volume transportation 
corridors. The nodes at the heart of this cluster in-
clude household density (per square mile) and all food  
establishments per square mile. This second cluster 
appears to be the tightest. Eleven of the 14 nodes 
have an above average absolute correlation with obe-
sity. The model identified a third cluster (pale blue 
shading) consisting mostly of features that describe 
the physical activity environment. These include diver-
sity of physical activity establishments, outdoor rec-
reational facilities per square mile, snack stores (e.g., 
donuts, pretzels, ice cream) per square mile, indoor 
recreation centers per square mile, all physical activity  
establishments per square mile, indoor fitness and 
recreational facilities per street mile, and indoor recre-
ational clubs and facilities per square mile.

In both the second and third clusters, the nodes 
that are most highly correlated with obesity (indicated 
by darker node color), are more central in the network 
overall, as well as within each cluster. Not all of the food 
or physical activity nodes are clustered. At the edge 
of the graph we see several food or physical activity 
nodes that are not as tightly coupled (including parks 
and big box stores). Finally, the overall structure of the 
network suggests that elements of these communities 
are geographically clustered and are not randomly dis-
persed across communities, especially features of the 
physical, food, and land use environments.

Next, we were interested in whether the struc-
ture of this network of features varied across strata 
of community obesity burden. Figure 2 shows the  
result of running a similar network model separately 
by quartile of percent of children at or above the 85th 
percentile on BMI-z, a threshold widely considered 
to be indicative of overweight and obesity burden. 
Among communities in the lowest quartile of obesi-
ty prevalence (Fig. 2A), community features appear 
to be less tightly connected than in communities in 
the highest quartile of obesity prevalence (Fig. 2B). 
This is also described by the higher modularity in  
Table 2. For example, among lower obesity prevalence 
communities, crime is weakly linked to the land use- 
food- physical activity cluster; but in higher obesity 
prevalence communities, crime is more tightly linked 
to this cluster. It is not just that quantities of these fea-
tures are larger in heavier communities, but that the  
connections between features are also altered: com-
munities that give rise to higher rates of childhood 
obesity are structured differently than those with less 
child obesity.

Figure 3: Association of degree 
centrality of each community 
feature with prevalence of 
overweight and obesity among 
children. Correlation between 
community features and body mass 
index is stronger for more central 
variables of the obesity-related network 
features (R = 0.51).
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Table 2 shows the results of the network structure  
analysis, overall, and stratified by quartile of obesity. 
The overall network has a positive modularity of 0.15, 
indicating that the nodes (environmental features) 
show a degree of clustering (as compared to a ran-
dom distribution of nodes with no clustering). In the 
analysis stratified by prevalence of childhood obesi-
ty, communities in the 1st and 2nd quartile (thinnest 
communities) show a higher modularity compared 
to communities in the 3rd and 4th quartile (heaviest 
communities) (modularity of 0.19 and 0.27 vs. 0.12 
and 0.09, respectively). This means that the modules 
of variables in thinner communities are either more 
clustered within each module or have weaker con-
nections to variables in other modules, and that in the 
heaviest communities variables (nodes) exhibit a lower  
degree of clustering in modules (as can be seen in 
Fig. 2). For example, a comparison of the two panels  
in Figure 2 demonstrates that the crime-related  
cluster shown in green has fewer strong ties (shown 
by darker lines) to the center of the network in the 
thinner communities on the left panel compared to 
the heavier communities in the right panel. Similarly, 
the average network degree is higher in the heaviest 
communities (degree = 0.362) compared with the 
thinnest communities (degree = 0.332), representing 
higher average correlation (i.e., stronger connections), 
between variables in communities with higher preva-
lence of childhood obesity.

Figure 3 shows the relationship between the 
degree centrality of each community feature (node) 
with the bivariate correlation of that feature with child-
hood overweight and obesity prevalence (percent 
of kids above the 85th BMI percentile). Each dot 
represents one of the 32 community features. The 
correlation between the degree of each feature and 
its correlation with the prevalence of childhood obe-
sity is positive (r = 0.51), indicating that more ‘central’ 
variables have a stronger association with the out-
come. For example, fresh fruit and vegetable stands 
per square mile has a low correlation with community 
obesity, and can be seen in Figure 1 as a variable far 
from the center of the network and with only a few 
weak ties into the rest of the network.

Discussion

We applied network methodology in order to describe 
linkages between community features associated with 
obesity. We used network analysis to characterize the 
obesogenic environment: instead of treating individual 
features of communities in isolation, this method hon-

ors the interactions and spatial co-occurrence that 
make up this landscape of obesity risk.

This work suggests that (i) there are identifiable 
clusters of environmental features; (ii) that the level of 
connectivity and structure of features in the network 
may be informative; and (iii) that features more highly 
associated with obesity are more likely to be central 
in the network of community features. Three clusters 
were identified in the overall network: a cluster of 
crime-related variables that was weakly linked into the 
main network, and food and land use and physical 
activity clusters, respectively. In communities strati-
fied by prevalence of childhood obesity, the structure 
and overall connectivity of the network appeared to 
differ by level of obesity. Not only are the values of 
these attributes different in the heaviest and thinnest 
communities, but also the patterns of connections 
are different. We also found that centrality alone,  
as measured by degree, is correlated with obesity. 
Obesity-related features are therefore more tightly 
geographically clustered. This may be evidence of 
synergy between features of the obesogenic environ-
ment, of non-independent features of communities 
that join forces to shape obesity risk.

Understanding and intervening on the drivers of 
the obesity epidemic is a challenge for obesity re-
searchers and policy makers. Obesity is complex 
and has multiple drivers at the individual, communi-
ty, and state and national levels (Huang et al., 2009). 
Traditional methods such as regression models fail 
to account for interaction between multiple factors 
at multiple scales, the complexity and importance 
of contextual factors, and feedback loops and oth-
er dynamic processes (Hammond, 2009). Although 
our work is preliminary, it suggests that systems ap-
proaches to obesity may be useful for characterizing 
linkages among features of the environment. Despite 
the recognition that environmental features of com-
munities play a strong role in the obesity epidemic, 
network methods to characterize linkages between 
attributes of communities has been underutilized. The 
structure and strength of these linkages may provide 
evidence for geographic areas or types of clusters of 
features that would be most efficient for intervention.

Network methods, especially graphical methods, 
could be used to help set priorities for obesity-relat-
ed interventions in communities. For example, food 
establishments exhibited both high centrality (as 
measured by degree) in our network and high cor-
relation with childhood obesity (Fig. 3). Using these 
network graphs (e.g., Fig. 2), we can narrow in on  
features such as these that may have far reaching  
effects, if intervened upon. This is consistent with the 
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literature on ‘food swamps’ and ‘food deserts’ – but 
helps to prioritize interventions in this area because 
these features are more central. This could point to the  
effectiveness of intervening on such variables that 
are highly central in the network, and thus may have 
more far-reaching effects than intervention on less 
central variables. Network methods may help identify 
such synergistic actors that could have large effects 
on obesity due to their connections to other variables.

In particular, our work points toward possible inter-
ventions regarding community-zoning policies. Our 
network graphs show tight clusters of food-related  
(e.g., grocery and convenience stores, fast food 
and full-service restaurants) and land use (e.g., road 
block length, household density) features that are 
strongly correlated with obesity. Restructuring the 
community environment may be a promising avenue 
for obesity prevention. Considering communities 
to be complex systems where multiple interrelated 
phenomena act together to create an obesogenic 
environment, these methods also push us to con-
sider intervening on not just the environmental fea-
tures themselves, but also on the linkages between 
features. This is a new way to approach the obesity 
epidemic – by looking for factors that may be link-
ing features, or that can be manipulated to disrupt 
harmful connections. For example, the crime-related 
cluster is more tightly linked to the network among 
communities with more childhood obesity. Further 
research into the underlying causes of this linkage 
(and why it differs in communities stratified by child-
hood obesity prevalence) may illuminate important 
drivers of the obesity epidemic.

This work also has methodological implications 
for obesity research. Future work should explore the 
mechanisms for how these clusters are associated 
with increased obesity prevalence, and whether inter-
ventions on features in this network change the net-
work structure itself. This future research should con-
sider the relationships, or clustering, of these features. 
Evaluating independent associations between any 
single feature and obesity rates would ignore the com-
plex inter-relations this work has highlighted. Other 
methods that acknowledge these clusters of features, 
such as latent variable methods (Nau et al., 2015), 
may be more appropriate to honor the way that en-
vironmental features cluster together and to uncover  
unobserved sources of the correlation observed in 
this network.

We have data from a large and diverse geographic 
area that includes urban, rural, and suburban com-
munities. However, this analysis is exploratory. We 
are not able to rule out the possibility that popula-

tion density and development may be a common 
cause of many of the variables we selected. This is 
potentially a source of bias or a possible explana-
tion for the clustering of features of the environment 
on which our study is based. It is widely recognized 
that obesity-related characteristics of communities 
are geographically correlated. The reasons for those 
correlations are not well understood. Our results, we 
believe, support the utility of network methods for the 
study of environments that are not formed randomly, 
but which are shaped by diverse market and demo-
graphic forces that may be important in driving spatial 
variation in obesity rates.

Conclusion

Network analysis may be a useful tool for evaluating 
obesogenic environments and other questions of  
interest in epidemiology. This preliminary analysis 
suggests that patterns of clustering and connections 
between features of the environment are important. 
Land use and food features are strongly linked (espe-
cially in ‘heavier’ communities), and features are more 
highly clustered in communities with higher average 
BMI. Network methods can illuminate patterns of link-
ages and key factors in obesogenic environments. 
Network position (centrality) is correlated with aver-
age BMI. Ultimately, the goal of this type of analysis 
would be to identify highly connected community 
features that can be used as levers of intervention to 
reduce population rates of obesity.
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